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DEGENERATE PRINCIPAL SERIES FOR CLASSICAL
AND ODD GSPIN GROUPS IN THE GENERAL CASE

YEANSU KIM, BAIYING LIU, AND IVAN MATIC

ABSTRACT. Let G, denote either the group SO(2n + 1,F), Sp(2n,F), or
GSpin(2n + 1, F) over a non-archimedean local field of characteristic differ-
ent from two. We determine all composition factors of degenerate principal
series of Gy, using methods based on the Aubert involution and known results
on irreducible subquotients of the generalized principal series of a particular
type.

1. INTRODUCTION

Let F' be a non-archimedean local field of characteristic different from two. Let
G,, denote a symplectic, odd special orthogonal, or odd general spin group of split
rank n defined over F, and G,, = G,(F'). The aim of this paper is to obtain a
uniform description of reducibility and composition factors of degenerate principle
series of G,,. This greatly generalizes and simplifies previous works of Jantzen
[8], Kudla-Rallis [16], Gustafson [7], and others. We note that the degenerate
principle series, besides being interesting by themselves, play an important role in
the theory of automorphic forms, especially the extension of the Siegel-Weil formula,
constructions of residual spectrum [12,13], and in the local theta-correspondence.

Let o denote an irreducible unitary cuspidal representation of some G,,. Also, let
po denote an irreducible unitary self-contragredient (resp., essentially self-contra-
gredient, i.e., p = p ® w,) cuspidal representation of GL(n,,, F'), and let p de-
note an irreducible unitary self-contragredient (resp., essentially self-contragredient)
cuspidal representation of GL(n,, F') when G,, is a classical group (resp., G, =
GSpin(2n + 1, F)). Then there exist unique non-negative half-integers a, § such
that v%p x o, v%py x o are reducible (for more details regarding the notation we
refer the reader to Section 2). For x > « > 0 such that x — a € Z, the induced
representation v %p x v™*T1p x ... x 1% x ¢ contains a unique irreducible sub-
representation, which we denote by ((p,x;0). A degenerate principal series is an
induced representation of the form

(1) C([v~"po, v~ "po)) x C(p, x;0),
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for a,b such that b — a € Z, where (([v = po, v"%po]) is a Zelevinsky segment rep-
resentation, i.e., the unique irreducible subrepresentation of v=lpy x v=0T1py x
-+ X v %yq. It has been explained in detail in [8, Section 2] that this definition
generalizes the classical notion of the degenerate principal series, studied in [7] and
[16]. We note that the composition series of the degenerate principal series (1) have
been determined in [8] for a € {0, %, 1}, using Tadié¢’s Jacquet modules method
[27,28], and here we treat the general case. Since the case a = 0 is also handled
in [5], and the results extend to the GSpin case in the same way, we consider the
case « > 0. Our results show that the degenerate principal series are multiplicity
one representations of length up to four, and also provide a deeper insight into the
structure of the irreducible subquotients.

Our approach to the determination of reducibility and composition factors of
induced representations of the form (1) is completely different from one used in [§],
and is based on the methods of the Aubert involution. The Aubert dual of the
degenerate principal series is a special type of the generalized principal series, and
the composition factors of such representations have been determined in [26] and
[19, Proposition 3.2]. To determine the Aubert duals of composition factors in ques-
tion, we use a further adjustment of the methods initiated in [20-22]. Eventually,
it turns out that needed Aubert duals of tempered representations mostly follow
directly from [20,22]. On the other hand, to determine the Aubert duals of the
involved non-tempered representations we use an inductive approach based on the
detailed investigation of embeddings and Jacquet modules of such representations,
using a case-by-case consideration. Let us also note that an algorithm for explicit
determination of the Aubert duals for classical groups in the half-integral case has
been recently provided in [11].

Let us now describe the contents of the paper in more detail. In the following
section we present some preliminaries, while the first special case f = 0 is treated
in the third section. The case 8 > 0 is studied in Sections 4 — 6, where in the fourth
section we handle the case a > 1, in the fifth section the case a < 0, and in the sixth
section we deal with the case a = % To work effectively, from Lemma 2.5 to the
end of Section 6, we mainly focus on the cases G,, = Sp(2n, F) and SO(2n+ 1, F)
(see Remark 2.4). In the final section we provide necessary adjustments in the odd
GSpin case.

2. PRELIMINARIES

Throughout the paper, F' will denote a non-archimedean local field of character-
istic different from two.

For a connected reductive p-adic group G defined over field F, let > denote
the set of roots of G with respect to fixed minimal parabolic subgroup and let A
stand for the corresponding subset of simple roots. For 8§ C A, we let Py denote
the standard parabolic subgroup of G corresponding to 6 and let My denote a
corresponding standard Levi subgroup. Let W denote the Weyl group of G.

For a parabolic subgroup P of G with the Levi subgroup M, and a representation
o of M, we denote by iy(0) a normalized parabolically induced representation of
G induced from o. Also, let rp (o) stand for the normalized Jacquet module of
an admissible finite length representation o of G, with respect to the standard
parabolic subgroup having the Levi subgroup equal to M.
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We take a moment to recall the definition of the Aubert involution and some of
its basic properties [3,4].

Theorem 2.1. Define the operator on the Grothendieck group of admissible repre-
sentations of finite length of G by

D =Y (=1)ing, o ragy.
0CA

Operator D¢ has the following properties:

(i) D¢ 1is an involution.

) D¢ takes irreducible representations to irreducible ones, up to +.

(iii) If o is an irreducible cuspidal representation, then Dg(o) = (—1)2lo.
(iv) For a standard Levi subgroup M = My, we have

Tpm © DG = Ad(w) ] Dw—l(M) O Tw=1(M),

where w is the longest element of the set {w € W : w=1 () > 0}.
(v) For a standard Levi subgroup M = My, we have Dg oip = ipr 0 Dyy.

We look at the usual towers of symplectic or orthogonal groups G, = G(V4,),
that are groups of isometries of F-spaces (V,, (, )),n > 0, where the form (, ) is
non-degenerate and it is skew-symmetric if the tower is symplectic and symmetric
otherwise. In the final section, we also consider the odd general spin groups G,, =
GSpin(2n 4+ 1, F') (see Section 7 for the definition). The set of standard parabolic
subgroups of the group G,, will be fixed in the usual way.

Then the Levi subgroups of standard parabolic subgroups have the form M =
GL(ny,F) x -+ x GL(ng, F) X Gy, where GL(n;, F') denotes a general linear group
of rank n; over F. For simplicity of exposition, if §;,7 = 1,2,...,k denotes a
representation of GL(n;, F'), and if 7 stands for a representation of G,,, we let
01 X 03 X -+ X 0 x 7 stand for the induced representation iy (01 ®J @ -+ ® 0 @ T)
of Gy, where M is the standard Levi subgroup isomorphic to GL(ny, F) x -+ x
GL(ng, F) X Gy, Here n=n1 +ng + -+ +ng + m.

Similarly, by 01 X d2 X - - - X g we denote the induced representation i,/ (61 ® do ®
-++® dy) of the group GL(n’, F'), where the Levi subgroup M’ equals GL(n1, F) X
GL(ng,F) x -+ x GL(ng, F) and n' =ny +ng + -+ + ng.

Let Irr(GL(n, F)) denote the set of all irreducible admissible representations of
GL(n, F), and let Irr(G,,) denote the set of all irreducible admissible representa-
tions of G,. Let R(GL(n, F)) stand for the Grothendieck group of admissible rep-
resentations of finite length of GL(n, F') and define R(GL) = @,,~, R(GL(n, F)).
Similarly, let R(G,,) stand for the Grothendieck group of admissible representations
of finite length of G, and define R(G) = P,,~( R(G»r).

If o is an irreducible representation of G,,, we denote by & the representation
+Dg, (o), taking the sign + or — such that & is a positive element in R(G,). We
call 6 the Aubert dual of o.

Using Jacquet modules for the maximal standard parabolic subgroups of
GL(n, F), one can define m*(w) = >, _o(ru (7)) € R(GL) ® R(GL), for an irre-
ducible representation 7 of GL(n, F'), and then extend m* linearly to R(GL). Here
(k) () denotes the normalized Jacquet module of m with respect to the standard
parabolic subgroup having the Levi subgroup equal to GL(k, F') x GL(n—k, F'), and
we identify r(7) with its semisimplification in R(GL(k, F)) ® R(GL(n — k, F)).



406 YEANSU KIM, BAIYING LIU, AND IVAN MATIC

Let v denote the composition of the determinant mapping with the normalized
absolute value on F. Let p € Irr(GL(k, F)) denote a cuspidal representation. By
a segment of cuspidal representations we mean a set of the form {p,vp,...,v™p},
which we denote by [p, v™p].

By the results of [30], each irreducible essentially square-integrable representa-
tion § € Irr(GL(n, F)) is attached to a segment, and we set § = §([v%p, %)),
which is the unique irreducible subrepresentation of v%p x v*~1p x - - - x v%p, where
a,b € R are such that b — a is a non-negative integer and p is an irreducible
unitary cuspidal representation of some GL(k, F). The induced representation
vpxvb~lpx .. xv%p also contains a unique irreducible quotient, which we denote
by ¢([v%p,v°p]). Furthermore, ¢([v%p,bp]) is the unique irreducible subrepresen-
tation of v%p x v**lp x -+ x V¥p, and in R(GL) we have

veip x v p = 6([vp, v pl) + ([ p, vt p))
and
veip x v p vt p = 5([vp, v pl) x v p + ([ p, v p]) x ¥,

both representations &([v%p, vt 1p]) x v p and (([v*p, v*+1p]) x v¥+1p being ir-
reducible.

Let us briefly recall the Langlands classification for classical groups. We favor
the subrepresentation version of this classification over the quotient one since it is
more appropriate for our Jacquet module considerations.

For every irreducible essentially square-integrable representation § € R(GL),
there is a unique e(8) € R such that v~°(%)§ is unitarizable. Note that e(5([v%p, v°p]))
= (a+b)/2. Every non-tempered irreducible representation 7 of G,, can be written
as the unique irreducible (Langlands) subrepresentation of an induced representa-
tion of the form §; X do X + - - X § ¥ 7, where T is a unitary tempered representation
of some Gy, and 61,93, ..., € R(GL) are irreducible essentially square-integrable
representations such that e(d1) < e(d2) < --- < e(dx) < 0. In this case, we write
m = L(d1,02,...,0,;7). For a given 7, the representations 41, ds, ..., d; are unique
up to a permutation among those §; having the same exponents.

Let 7 € R(G) denote an irreducible tempered representation. If 61,09, ..., 0 €
R(GL) are irreducible essentially square-integrable representations such that e(d;) <
Ofori=1,2,...,k, and §; x §; = 6; x §; for i < j such that e(d;) > e(d;), then the
induced representation d; X dg X - -+ X 0 X T contains a unique irreducible subrep-
resentation, which will also be denoted by L(d1,d2, ..., dx;7), for simplicity of the
notation.

For a representation o € R(G,,) and 1 < k < n, we denote by r()(c) the nor-
malized Jacquet module of o with respect to the parabolic subgroup F(;) having
the Levi subgroup equal to GL(k, ') x G, .. We identify r(;(o) with its semisim-
plification in R(GL(k,F)) ® R(G,—k) and consider

p(o)=1®0+ > ru(o) € R(GL)® R(G).
k=1
We pause to state a result, derived in [27] ([14] for odd GSpin groups), which
presents a crucial structural formula for our calculations of Jacquet modules of
classical groups.
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Lemma 2.2. Let p € Irr(GL(n, F)) denote a cuspidal representation and let
k,l € R such that k + 1 is a non-negative integer. Let o € R(G) denote an ad-
missible representation of finite length, and write p*(o) =3, T®d'. Ifoisa
representation of the odd GSpin group, let w, denote the central character of o,
otherwise let w, be trivial. Then the following holds:

l l
WG ) xo) = S SIS (v @ (wo o det), 5 ® (w, o det))

i=—k—1 j5=1 1,0’

x §([ T p, vlp]) x 7 @ 8([v T p,vip]) x 0.
We omit 6([v*p,v¥p)) if x > y.

An irreducible representation o € R(G) is called strongly positive if for every
embedding

0= Vpr X V2 py X oo X VR pp X Ocysp,

where p; € R(GL(n,,, F)),i=1,2,...,k, are unitary cuspidal representations and
Ocusp € R(G) is an irreducible unitary cuspidal representation, we have s; > 0 for
each 1.

Let us briefly recall an inductive description of non-cuspidal strongly positive
discrete series, which has been obtained in [14,17,25].

Proposition 2.3. Suppose that o5, € R(G) is an irreducible strongly positive repre-
sentation and let p € R(GL) denote an irreducible unitary cuspidal representation
such that some twist of p appears in the cuspidal support of os,. We denote by
Ocusp the partial cuspidal support of os,. Then there exist unique a,b € R such that
a>0,0>0,b—a€Z>o, and a unique irreducible strongly positive representation
U;p without v%p in the cuspidal support, with the property that o), is the unique
irreducible subrepresentation of §([v*p,v°p]) % ol,,. Furthermore, there is a non-
negative integer | such that a +1 = s for s > 0 such that v°p X 0cysp reduces. If
I =0, there are no twists of p appearing in the cuspidal support of i, and if | > 0
there exist unique b’ > b and a unique strongly positive discrete series ol , which

Sp?
contains neither v%p nor v®t1p in its cuspidal support, such that ng can be written

as the unique irreducible subrepresentation of 8([v*1p, v p]) x Tl

Throughout the paper, we fix an irreducible unitary cuspidal representation o €
R(G). Also, we fix an irreducible unitary cuspidal representation py € R(GL)
and an irreducible (essentially) self-contragredient unitary cuspidal representation
p € R(GL), such that v*p x o reduces for some a > 0. We note that 2« € Z, due
to results of [1], [24, Théoreme 3.1.1], and [6, Theorem 7.8], and that v°p x o is
irreducible for s & {«, —a}.

Let z stand for a half-integer such that x > a and x — a € Z. Then the induced
representation

x

v o x vy x o x v % x o

has a unique irreducible subrepresentation, which we denote by ((p, z; o). Using [20,
Theorem 3.5], we deduce that the Aubert dual of {(p, x; ) is the unique irreducible
subrepresentation of v%p x v 1p x --- x v%p x . We note that this representation
is strongly positive, and will be denoted by §(p, z; o).
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Let a, b denote real numbers such that b—a € Z. We are interested in determining
the composition factors of the degenerate principal series

(v "po, v pol) % C(p, 50).
Since in R(G) we have

C([v~"p0, v po]) % C(p, x;0) = C([v*po, v po]) % C(p, x;0)
if G, = Sp(2n, F),SO(2n+ 1, F),

C([v™"po, v pol) % C(p, a3 0) = C([V* o ® wo, 10 @ wo)) % C(p, x5 0)
if G,, = GSpin(2n + 1, F),

we can assume that —a < b.
By properties of the Aubert involution, the Aubert dual of the degenerate prin-
cipal series ¢([v="po, v~ %pg]) % ((p, x; ) is the generalized principal series

§([v*po, v°po)) % 6(p, x;0) if G, = Sp(2n, F),SO(2n + 1, F),

2
@ §([V"po ® wa, V2P0 @ we]) % 8(p, x;0) if G, = GSpin(2n + 1, F),

whose composition factors are completely described in [26] (this has been already
noted in [9, Corollary 4.3]). We note that the results of [26] extend to the GSpin case
by the last section of the paper. It follows from [26, Section 2] (or [14, Proposition
2.5] for GSpin groups) that the induced representation (2) is irreducible unless pg
is (essentially) self-contragredient. Thus, in what follows we can assume that pg
is (essentially) self-contragredient, and let us denote by 8 the unique non-negative
real number such that v py x o reduces. Again, it follows from [26, Section 2] that
the induced representation (2) is irreducible if a — 8 ¢ Z (the argument is similar
for GSpin). So, we can also assume that a — 3 € Z.

Remark 2.4. (1) To work effectively, from now on until Section 6, G,, will only
denote Sp(2n, F) and SO(2n + 1, F). In Section 7, we will consider the
case of G, = GSpin(2n + 1, F).

(2) All the lemmas and propositions in the rest of this section are also valid for
the odd GSpin case (with the same statements, after replacing “self-contra-
gredient” by “essentially self-contragredient”, and adding the unitarity con-
dition for the cuspidal representation o); see Section 7 for more detailed
comments.

We will use the following result [10, Lemma 5.5] several times.

Lemma 2.5. Suppose that m € R(G,,) is an irreducible representation, A an irre-
ducible representation of the Levi subgroup M of G, and 7 is a subrepresentation
of Indg["(/\). If L > M, then there is an irreducible subquotient p of Ind]L\/[(/\) such

that 7 is a subrepresentation of TndS™ (p).
The following result is a direct consequence of [20, Lemma 2.2].

Lemma 2.6. Suppose that the Jacquet module of m with respect to the appropri-
ate parabolic subgroup contains an irreducible cuspidal representation of the form
Vo QU*2ps Q-+ @ V% pp ® o, where p1, ..., px € R(GL) are self-contragredient
representations. Then T is a subrepresentation of V™% p1 Xv ™% py X -+ - XU % pp X0

We will now present a sequence of lemmas which enable us to use an inductive
procedure when determining the Aubert duals.



DEGENERATE PRINCIPAL SERIES IN THE GENERAL CASE 409

For a non-negative integer m, real number ¢, and an irreducible cuspidal rep-
resentation p; € R(GL), we denote by (v!p;)™ the induced representation vfp; x

- x vip1, where vtp; appears m times. Note that the induced representation
C([vep1,vip1]) x (vtp1)™ is irreducible for t € {c,c+1,...,d} [30].

Lemma 2.7. Let ¢ and d denote positive real numbers such that d — ¢ is a non-
negative integer. Let py € R(GL) denote an irreducible cuspidal self-contragredient
representation. Suppose that m is a subrepresentation of an induced representa-
tion of the form (([v°p1,vep1]) x (Vip1)™ x 1, where t € {c,c+ 1,...,d}, m
is wrreducible, and p*(m) does not contain an irreducible constituent of the form
vipy@my fori € {c,c+1,...,d}, with my € R(G). Then 7 is the unique irreducible
subrepresentation of 6([v"%p1,v=¢p1]) X (v™tp1)™ X 7.

Proof. We prove the lemma only in the case m = 0. The case m > 0 can be handled
in the same way. From properties of the Aubert involution we conclude that 7 is
contained in §([v=9p1, v p1]) x 7.

From embeddings

T C([chl,l/dpl]) Xy = vpy X - X vipy xom

and Frobenius reciprocity, it follows that the Jacquet module of 7 with respect to
the appropriate parabolic subgroup contains v°p; ® --- ® v9p; @ 7.

Using transitivity of Jacquet modules and Lemma 2.6, we obtain that the Jacquet
module of T with respect to the appropriate parabolic subgroup contains an irre-
ducible constituent of the form v~ p; ® --- @ v~%p; ® 7.

Since p*(m1) does not contain an irreducible constituent of the form v’p; ® mo
for i € {¢,c+1,...,d}, it follows from Lemma 2.6 that p*(7y) does not contain
an irreducible constituent of the form v=‘p; ® m for i € {c,c+ 1,...,d}, with
7o € R(G). Now it follows directly from the structural formula that v~ p1 @ - -+ ®
v~%p, @77 is the unique irreducible constituent of the form v~ ¢p; ®---®@v~%p; @7’
appearing in the Jacquet module of &([v=%p;, v ¢p;1]) x 7] with respect to the
appropriate parabolic subgroup, and it appears there with multiplicity one. It
follows that 6([v~%p1, v~ ¢p1]) X 71 contains a unique irreducible subrepresentation.

On the other hand, by Frobenius reciprocity every irreducible subrepresentation
of 6([v=%p1,v¢p1]) X 71 contains v~ p; @ --- @ v~ %p; @ 71 in the Jacquet module
with respect to the appropriate parabolic subgroup. Thus, 7 has to be the unique
irreducible subrepresentation of §([v~%py, v~ ¢p1]) x 7r1. This ends the proof. O

Lemma 2.8. Let ¢ and d denote positive real numbers such that d — ¢ is a non-
negative integer. Let p1 € R(GL) denote an irreducible cuspidal self-contragredient
representation. Suppose that w is a subrepresentation of an induced representation
of the form (([v°p1,vep1]) x (¥9p1)™ x 71, where w1 is an irreducible representa-
tion such that the Jacquet module of w1 with respect to the appropriate parabolic
subgroup does not contain an irreducible constituent of the form v**p, @ - ®
v~ @ vipy @ ' for a nonnegative integer k < d, with ' € R(G). Then 7 is the
unique irreducible subrepresentation of §([v=%p1,v=p1]) x (v™"%p1)™ x 1.

Lemma 2.9. Suppose that pg 2 p and let m denote an irreducible subquotient
of 6([v%po,v°po]) % 8(p,z;0). Then there is an irreducible representation m €
R(G) such that 7 is a subrepresentation of 6([v®p, v p|) X w1 and T is the unique
irreducible subrepresentation of v "p x v lp x .. x v x 71. Furthermore, if
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1 2 L(01,02, ..., 0k; Ttemp), where e(0;) < e(d;) fori < j, then
T L p,v ", v %, 81,0, ... 2Ok Tremp)-

Proof. By the results of [26], there is an irreducible tempered representation 7 €
R(G) such that either m = 7 or m = L(§([v°po, v %po)); T) for some ¢ > —b such
that ¢ — a < 0. Also, it is easy to see that there is an irreducible representation 7y
such that 7 is a subrepresentation of §([v*p, v*p]) x 71, and there are no twists of p
appearing in the cuspidal support of 1. If 7 & 7, we can take m = 71. Otherwise,

since pg % p we have
T = §([Vpo, v po]) X T = §([V°po, v % po]) X 6([v%p,vTp]) X Ty
= 6([Vap? pr]) X 5([ch0ay_ap0]) X T,

and by [25, Lemma 3.2] there is an irreducible representation m; such that = is a
subrepresentation of d([¥*p,v"p]) x 71. Since there are no twists of p appearing
in the cuspidal support of 7y, it can be seen in the same way as in the proof of
Lemma 2.7 that 7 is the unique irreducible subrepresentation of v=%p x v =%+ p x
Ce X UT% X T

If we write 1 = L(01,02,...,0k; Ttemp), then 6; = §([v™ pg, ¥ pg) for i =
1,2,...,k, and we have v?p x §; = 0; x v®p for all i = 1,2,...,k and z € R.
This ends the proof. O

The following result provides embeddings needed for an inductive determination
of the Aubert duals.

Proposition 2.10. Let p; € R(GL) denote an irreducible self-contragredient cus-
pidal representation, and let o5, € R(G) denote a strongly positive discrete series.
Let k,1 denote half-integers such that k — 1 is a positive integer and k +1 > 0.

(1) If v¥p1 x oy is irreducible and k > —1 + 2, then L(3([v="p1,v "' p1]); 05p)
is a subrepresentation of v¥py x L(6([v =" p1, v p1]);04p)-

(2) If u*(0sp) does not contain an irreducible constituent of the form v='p; @,
with m € R(G), then L(§([v=Fp1,v 7 p1]);05p) is a subrepresentation of
v o ) L([v ™ pr, v ) 0p)-

(3) Suppose that oy is a subrepresentation of v'py x agp for some t £k, t #
—I+1 and a strongly positive representation ol,. Then L(5([v=*py, v~ p1]);
osp) is a subrepresentation of vipy x L(6([v~Fpy, v~ p1]);0l,).

Proof. We only prove the first part of the proposition, other parts can be proved in
the same way but more easily. We have the following embeddings and isomorphisms:
LG pr,v™' pi])s05p) = 6([v ™" p1,v 7" p1]) % 0y
= 5 o, vl o)) x vFpy 1oy,
=5 o, vl o)) x VFpr X oy,
=~ ko x S([v " pr, v pa]) X oy
By Lemma 2.5, there is an irreducible subquotient 7 of §([v=5"1p1,v7!p1]) x 04
such that L(§([v"%p1,v7!p1]);05p) is a subrepresentation of v¥p; x 7. Frobenius
reciprocity implies that p*(v*p; x ) contains 6([v="p1,v "' p1]) ® osp.
Using the structural formula and a description of the Jacquet modules of strongly
positive representations, provided in [18, Theorem 4.6] and [23, Section 7], we
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deduce that p*(§([v=5"p1,v7!p1]) x 0sp) does not contain an irreducible con-
stituent of the form &([v=%p1,v7!p1]) ® 71, with m € R(G). Thus, u*(7) contains
S([v=F 1 p1, vl p1]) ® osp and it is a direct consequence of the Langlands classifica-
tion that m = L(6([v =" o1, v p1]); 0sp).- O

Note that both description of subquotients of 6([%po, °po]) ¥ §(p, 7; o) and their
Aubert duals depend on the reduciblity point 5 of pg and o [22,26]. The description
of the Aubert duals happens to be slightly different in the case 5 = 0. Accordingly
we also consider two cases: Section 3 is the case 8 = 0 (Section 5 of [22]) and
Sections 4, 5, 6 is the case 8 > 0 (Section 4 of [22]).

3. CASE =0

In this section we consider the 8 = 0 case. Note that this implies a € Z.
The following irreducibility result is a direct consequence of [26, Proposition 3.1].

Proposition 3.1. Degenerate principal series (([v="po,v=%po]) % {(p,z;0) is ir-
reducible if and only if a > 1.

We consider the remaining cases in the following proposition.

Proposition 3.2. Suppose that a < 0, and write pg X 0 = 71 + T7_1, as a sum of
mutually non-isomorphic irreducible tempered representations. If —a < b, then in
R(G) we have:

C([v™"po, v~ po)) X C(p, ;5 0)
= L(Vizpa ERRR) Vﬁaﬂ, Vﬁprv SERE) Vailp(h VapO, Vap()a B Vﬁlp()a VﬁlpO,Tl)
+L(V7xpa ) Viapv Vﬁpra R VailpOa Vava VapO, BEEE) VﬁlpO, V71p077—71)

o2 pOaVap()Dw",5([1/_1/)0;/)0};0-))'

a—1

+L(V_mp""al/_apa V_bp()a"'al/ pOa(S([V
If —a = b, then in R(G) we have:
C([*po, v~ %pol) % C(p, 23 0)
= L(Virpa ey Viapv VaPO; VapOa LR VﬁlPOa V71p077-1)
+L(v p, ..., v %, V%o, V0, .. v po, v po, To1).
Proof. We will only comment on the case —a < b, since the case —a = b can be
handled in the same way as in the proof of [22, Theorem 5.1]. By [26, Theorem 2.1]
and classification of discrete series [15,25], in R(G) we have
5([v*po, V’po]) % 8(p, w50) = o1 4+ 01+ L(3([v""po, v~ “po]); 8 (p, 23 0)),
where o; is a discrete series subrepresentation of &([v%pg,1’po]) x 6(p, x;0) such
that
(i) = 8([vpo, v~ po]) x 8([vpo, v*pol) x 6([v*p, v*p]) @ 7
and
W (0i) 2 6([vpo, v~ po)) x 8([vpo, v°pol) x 8([v™p, v p]) ® T
for i € {1,—-1}.
Since o; is a subrepresentation of §([v%pg, °po]) % 8(p, x; ), for i € {1, 1}, we
have
o = 6([%po, V7po]) 3 8(p, x;0) = 5([vpo, V" po]) x 6([v¥p, vep]) X &

= 5([vp, v"p]) x 6([v*po, ¥’ po)) x 0.
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By Lemma 2.5, there is an irreducible subquotient m; of §([v%pg,1°po]) x o such
that o; is a subrepresentation of §([v*p, v%p]) X ;.

Using [26, Theorem 2.1] and classification of discrete series one more time, we
obtain that in R(G) we have

5([v*po, proD Xxo=o0y+0 |+ L(é([l/_bpo, v %p]); ),

where o/ is a discrete series subrepresentation of 6([v%pg,’pg]) % o such that

1 (07) = 6([vpo, v~ *po]) x 8([vpo, ¥ po]) @ T

and p*(ol) # 0([vpo,v"%po]) x 8([vpo,°po]) ® T4, for i € {1,—1}. Also, note
that u*( (5([1/ ®po,v%pg]); o)) does not contain §([v%pg, vPpo]) ® o, since both
p* (o)) and p* (o’ ) contain §([v%po, v°po]) @, and pu* (§([v%po, ¥°po]) ¥ o) contains
5([v*po, v po]) ® o with multiplicity two.

Thus, m; = 0. Now Lemma 2.9 and [22, Theorem 5.1] imply that

= —x —a —b a—1 a a -1 -1
o'igL(V Py-vs VPV POy sV Po,V pPo,V pPo,---V “pPo,V p077—7i)'

In the same way we obtain that L(6([v = po, v %po]); 6(p,;0)) is a subrepresen-
tation of §([v%p,v%p]) x L(6([v"po,v%p0]);o). By Lemma 2.9, it remains to
determine the Aubert dual of L(§([v=%po, v~ %po]); o). Since b > 0, if b > —a + 2,
then using the first part of Proposition 2.10 we get that L(d([v~"pg, v~ %po]); o)
is a subrepresentation of 1°py x L(§([v="*1pg,v=%pg]); o). Also, it follows from
the structural formula that p*(L(5([v=pg, v~ %po]); o)) does not contain an ir-
reducible constituent of the form vpy ® 7. Using Lemma 2.7 and repeating this
procedure, we deduce that the Aubert dual of L(5([v"%pg, v %p]); ) is an irre-
ducible subrepresentation of

v lp0 x -+ x v 2pg 3 L(8([v+~Tpo, v po)); o).

The representation L(5([v% 1 pg, v~ %pg]); o) is the unique irreducible quotient of the
induced representation §([v%pg, v~ "1 pg]) x 0. By [26, Theorem 2.1], we see that
5([v%po, v~ pg]) ¥ o contains two irreducible subrepresentations and Frobenius
reciprocity implies that each of them contains an irreducible constituent of the
form v~ %t1py ® 7 in the Jacquet module with respect to the appropriate parabolic
subgroup.

If v~ @ is an irreducible constituent of 1* (§([%pg, v~ pg]) x0), it follows
from the structural formula that 7 is an irreducible subquotient of d([¥*pg, v~ %po]) X
o, which is a length two representation. Thus, there are only two irreducible con-
stituents of the form v=%*1py @ 7 appearing in p*(6([v%po, v~ 1pg]) x o), and
w*(L(5([v*tpo, v~ %po]); o)) does not contain any of them.

From the second part of Proposition 2.10 it follows that L(5([v* 1 pg,v=%po)); o)
is a subrepresentation of v=%pg x L(§([v* L po, v =L pg]); o).

Since a — 1 < —1, using the first part of Proposition 2.10 we also obtain

L(6([v* po, v pol); 0) = v po 30 L(8([v*po, v po]); 0).
Consequently, L(§([v*1pg,v~%po]); o) is a subrepresentation of

—a+1

po X L(6([v*po, v po)); o),

and there is an irreducible subquotient 75 of

v % XV

v %0 x v pg
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such that L(§([v* 1pg, v~ %po]); o) is a subrepresentation of
T2 % L(8([v*po, v~ pol); 0).

Since p*(L(3([v* 1po,v"%po]); o)) does not contain an irreducible constituent of
the form v~ 1py @ 7/, it follows that mo % J([v"%po, v~ 1po]), so we have that
7o =2 (([v™ %0, % 1po]). Tt can also be seen, following the same arguments as
for L(6([v* tpo, v %po]); o), that pu*(L(6([v%po, v Lpo]); o)) does not contain an
irreducible constituent of the form v'pg @', for i € {—a+ 1, —a}. Now Lemma 2.7

implies that L(&([V“*%,\V*Gpo]); o) is the unique irreducible subrepresentation of

5([v* " po. v pol) x L(([1po, 1=~ po]); o),

and a repeated application of this procedure ends the proof. O

4. CASEa>1

From now on, we assume that 8 > 0. In this section we consider the case
a > 1. Let us first consider the more complicated case py = p. Directly from
[26, Proposition 3.1] we obtain the following reducibility criterion.

Proposition 4.1. Degenerate principal series (([v=p,v=%p]) x ((p, ;) reduces
if and only if one of the following holds:

e a<a—-1<b<uz,
e a<zx+1andzxz <b.

Proposition 4.2. Ifa < a—1<b< x, then in R(G) we have

C(v™"p, v "p]) % C(p, 5 0)
=L p,...,v " oo v 0, v v, v 0)
HLw p v 0,8 ), (e v ] T P, s o).

Proof. In R(G) we have

S([vp,v"p]) x 8(p,a;0) = L(3([v="p, v~ %p]); 6(p, 250))
+L((5([l/_o‘+2p, ’/_ap])§ Usz))v

where o, is the unique irreducible subrepresentation of ([~ 1p, °p]) x §(p, z; 7).
We note that o, is a strongly positive discrete series.

Let us first determine the Aubert dual of L(§([v=p,v=%p]); 6(p, 7; 0)). The third
part of Proposition 2.10 implies that

L(5([v=tp,v=%]); 6(p, x;0)) — v%p x L(6([v~tp,v=%p]); 6 (p, = — 1;0)).

Using the structural formula and a description of the Jacquet modules of strongly
positive representations, we deduce that p*(6([v=p, v=%p]) x6(p, x—1;0)) does not
contain an irreducible constituent of the form v*p ® my. Repeating this procedure
and using Lemma 2.7, we obtain that the Aubert dual of L(5([v="p,v=%p]); 6(p, z; o))
is an irreducible subrepresentation of

—x+1

v o x v v pa L(S([vtp, vop]); 8(p, bi o).
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Since v°p x §(p, b; o) is irreducible, by [26, Proposition 3.1], we have
L(3([v=p,v=p)); 8(p, b5.0)) = 8([v ™" p, v p]) x v="p 20 6(p, b 0)
= 5([v="" p,v %)) x 1v¥p % 8(p, b5 0)
< (v p, v %)) x vbp x vbp X 5(p,b—1;0)
= vbp x vbp x 5([v 1 p, v%]) x 6(p,b—1;0).

Note that §([v=*1p,v=%]) x §(p,b — 1;0) is irreducible, thus isomorphic to
L(3([v="+1p,u=0]);8(p,b — 150)) and that 1 (3([v="+p,v=p]) x 6(p,b — 1;0))
does not contain an irreducible constituent of the form v*p @ 7. A repeated appli-
cation of Lemma 2.7 and the previous procedure implies that the Aubert dual of
L(5([v=p,v=%p]); (p, b;0)) is an irreducible subrepresentation of

v o x vl x X v X 1T Y X L(5([V*°‘fp,\y*ap]); o).

Since the induced representation 6([v =1 p, v=%p]) x0 is also irreducible, its Jacquet
module with respect to the appropriate parabolic subgroup contains v 1p® - ®
1% ® 0. Now Lemma 2.6 implies that the Aubert dual of L(§([v=*1p,v=%)]); 0)
is the unique irreducible subrepresentation of v~ *T1p x --- x v ™% x ¢. Altogether,
the Aubert dual of L(§([v=tp,v~%p]); d(p, x;0)) is isomorphic to

Lw™p,...,v " p v v . v, v %, v v 0).
It remains to determine the Aubert dual of L(§([v=*"2p,v=%l]); 05p).

If © > b+ 1, it follows from [18, Section 3] that oy, is a subrepresentation of
V¥ px o, where o/, is the unique irreducible subrepresentation of d([v*~ " p, v%p]) %
§(p,x — 1;0). The third part of Proposition 2.10 implies L(§([v=*"2p,v=%]); 05p)
is a subrepresentation of v*p 3 L(6([v=*"2p,v=p]);07,). Using Lemma 2.7 and
continuing in the same way, we deduce the Aubert dual of L(5([v=*"2p,v=%p]); 05)
is a subrepresentation of

V*"L’p X oo X yib*Qp X L((S([l/faJrQP, V”’PD; O'S))),

where ag}) is the unique irreducible subrepresentation of ([ 1p, 1))
X d(p,b+ 1;0). From embeddings of strongly positive representations ([18, Sec-
tion 3]), using Proposition 2.10(3) twice, we get
—a+2 —a . 1 b b+1 —a+2 —a . 2
L(3([v "2 p, v p]); 08)) = vPp x v p o L(S([v™*F2p, v %p)); 02),
where og,) is the unique irreducible subrepresentation of 6 ([v®~!p, v*~1p])xd(p, b; 7).
Now [18, Theorem 3.4] implies

LO([v = 2p, ™)) 0(1)) = C([Wp, v+ p]) 3 L6+ 2p, 077 p]);02).

Using a repeated application of Lemma 2.7 and continuing in the same way, we
obtain that the Aubert dual of L(§([v=*"2p,v=%p]); aﬁ})) is a subrepresentation of

5([r " p, v 0p)) x - x ([ p, ) 1 LB ([ F2p, -4 p]); ),

and it can be seen in the same way as in the case of L(§([v=*"1p, v =%p]); o) that the
Aubert dual of L(§([v=**2p,v=%p]); o) is the unique irreducible subrepresentation
of v 2p x ... x 1% x ¢. This ends the proof. (]
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Proposition 4.3. Suppose that a <z +1 and x < b. If a > a, then in R(G) we
have

(v ~"p,v %)) % C(p 5 0)
S LW e s e Y )
+L( v 0 (v ), ([ e p)), T R, v i),
If a < a, then in R(G) we have
C(v=lp, %)) x C(p, x5 0)
=L, ..., v v v %, v v v v o)
FLW T R 6 vl 6 (T T ]) o),

where o4y, s the unique irreducible subrepresentation of vep X --- X v%p X 0.

Proof. Under the assumptions of the proposition, in R(G) we have

8([vp,v°p]) % 8(p,x;0) = L(8([v="p, v~ p)); 8(p, x5 0))
+L(5([v"p, v "p]); 6(p, b5 0)).

Let us first determine the Aubert dual of L(§([v"p,v %p]); é(p,b;0)). Using the
third part of Proposition 2.10 and Lemma 2.7, we obtain that it is an irreducible
subrepresentation of

vl x o x v s L(S([v—=p, v=p]); 8(p, x5 0)).

=0
Note that the induced representation v*p x §(p,x;0) is irreducible. Using the
second part of Proposition 2.10 we deduce that L(6([v=*p,v~%p]);d(p,x;0)) is a
subrepresentation of v%p x L(6([v=* 1 p,v~%]); 6(p, z;0)), and then the third part
of the same proposition gives an embedding

L(6([v™"p,v%]); 6(p, x;0)) — v"p x vp x L(6([v ™" p,v™%]); 6(p,z — 1;0)).

We can continue in the same way to obtain the Aubert dual of L(§([v~*p, v~ %p]);
0(p, z;0)) using Lemma 2.7.

If a = a, it follows that the Aubert dual of L(6([v=*p,v~%p]);0(p,x;0)) is an
irreducible subrepresentation of

v o x v Tpx-xvT % x v Xo.

If a > a, it follows that the Aubert dual of L(6([v="p,v™%p]);d(p,x;0)) is an
irreducible subrepresentation of

L —

vV x v px o x v x v xd(p,a— 1;0),

and it follows from [20, Theorem 3.5] that 5(p,;-—\1; o) 2 L= p, ..., v"%;0).
Finally, if a < a, it follows that the Aubert dual of L(§([v~"p,v~%p]); d(p, x;0)) is
an irreducible subrepresentation of

VX T X 1% x % 1 LB ([ Fp -4 p]);0),

and the Aubert dual of L(6([v=2"1p,v~%p]); o) is the unique irreducible subrepre-
sentation of v ™T1p x -+ x 7% x o, as before.
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Let us now determine the Aubert dual of L(§([v="p,v~=%p]);6(p,x;0)). First,
using Lemma 2.7, together with the first part of Proposition 2.10, we obtain that
it is an irreducible subrepresentation of

vl x - x 120 LE([r g v p)); 6(p, 4 0)).
Note that, by [26, Proposition 3.1], in R(G) we have

S([vep, v™p]) X 8(p,x50)) = L6 p,v™%p]); 8(p, x5 0))
+LG(v ™ p, v p]); 6(p, x + 1;0)).

Since §([v*p, v7p]) x d(p, z; 0) is irreducible, the structural formula directly implies
that vt p @ 6([v%p, v%p]) x 6(p,x;0) is the unique irreducible constituent of the
form v*T1p ® 7 appearing in pu*(5([v%p, v*T1p]) x d(p, z;0)), which appears there
with multiplicity one, and it obviously appears in p*(L(§([v""p, v~ %p]); 6(p, xz +
1;0))). Thus, p*(L(6([v=*"tp,v=%)]);8(p,x;0))) does not contain an irreducible
constituent of the form v**1p @ 7.

Now, using the third part of Proposition 2.10, and then the first part of the same
proposition, we obtain an embedding

LG([v="" p,v™"p)); 8(p, 250))
— ([, v* 1 p]) x L(6([v™%p, v %]); 8(p,z — 1;0)).

Also, in the same way as before we conclude that p*(L(§([v"p, v %p]); d(p,x —
1;0))) does not contain an irreducible constituent of the form vip @ m for i €
{z,x+1}. Using Lemma 2.7 and repeating this procedure, we obtain an embedding
of the Aubert dual of L(5([v=*"1p,v=%]);6(p,z;0)).

If a = «, it follows that the Aubert dual of L(§([v=*"tp,v=%p]); 8(p, x;0)) is an
irreducible subrepresentation of

S o v pl) x - x B[V p, ) 3 L(vpi0),

and it follows from [20, Theorem 3.5] that the Aubert dual of L(v~*p; o) is isomor-
phic to 0(p, a; o). Note that for ¢ = o we have o, = §(p, @; 0).

If a > a, it follows that the Aubert dual of L(§([v=2"tp,v=%]); 8(p, x;0)) is an
irreducible subrepresentation of

S v p]) x - x 8([v v p]) X 8(p,a = 250),

and it follows from [20, Theorem 3.5] that the Aubert dual of §(p,a — 2;0) is the
unique irreducible subrepresentation of v=%*2p x -+ x V™% x 0.

If a < a, it follows that the Aubert dual of L(§([v=*"tp,v=%]); 8(p, x;0)) is an
irreducible subrepresentation of

S o, %p]) x - x 8([v L p, %)) x L(5([V‘W‘“PD?U)7

and it follows from [20, Theorem 3.5] that the Aubert dual of L(§([v~%p,v~%p]); 0)
is the unique irreducible subrepresentation of v%p X - - - X v%p X ¢, which is strongly
positive. This proves the proposition. O

Let us now consider the case pg 2 p. The following proposition can be proved in
the same way as Proposition 4.3, using Lemma 2.9, details being left to the reader.
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Proposition 4.4. Degenerate principal series (([v="po, v=%po]) ¥ ((p, x; 7) is irre-
ducible if and only if either a > B orb < B. If C([v""po, v™%po]) % (p, z; o) reduces,
in R(G) we have

¢([v™"po, v~ po]) % ¢(p, ;5 0)
= L(V_bp07 s 7V_aP07V_xpa s >V_O(P§U)
+L(V_bp07 SERE) V_ﬁ_lp(h V_xp7 ) V_QPQ Usp)>

where o4, s the unique irreducible subrepresentation of v%py X - -+ X vPpo X 0.

5. CASEa <0

In this section we analyze the case when a < 0. To make the notation uniform,
we let 71 = pyxoifa € Zand 7V = o if a ¢ Z. Also, if a & Z, let 7(?
denote the unique irreducible (strongly positive) subrepresentation of Ve Po X % Po X
- xVPpyxo. If a € Z, let 7/ denote the unique irreducible (strongly positive)
subrepresentation of vpgx - - -xv/% pgxo and let 7(2) denote an irreducible (tempered)
subrepresentation of pg % 7/ which does not contain an irreducible representation of
the form vpy ® 7 in the Jacquet module with respect to the appropriate parabolic
subgroup. We note that such a subrepresentation of pg X 7' is unique by [29,
Section 4].

For an irreducible self-contragredient cuspidal representation p; € R(GL) and
an irreducible cuspidal representation o1 € R(G) such that v p1 X o1 reduces, we de-
note by 7(p1,01) the unique irreducible tempered subrepresentation of
5([V_%p1, u%pl]) x o1 which is not a subrepresentation of u%pl X u%pl X o1, Also,
for a real number y let [y] stand for the smallest integer which is not smaller than
Y.

We will again first consider the more complicated case py = p. Let us first
assume that —a = b.

Proposition 5.1. Degenerate principal series (([v=%p,v%p]) x ((p,x;0) is irre-
ducible if and only if either —a < a—2 or —a=z. Ifa—2 < —a < z, in R(G)
we have
C([vp,v%p]) x C(p, a5 0)
=L "p,...,v"  p,vp, v, 0%, . v p v p v p v g T
Vfa]—a—lp’ V(oz]—a—lp; 7_(1)) +

where
7= L %p, ..., v 2, 6([v* tp,v%]), %, ..., 8([v " %p, v 1 p]), v p,
vty pmat2, V(O‘]_O‘_lp, V(O‘]_O‘_lp; T(l))
if o> 3,

T2 Ly "p,.. .,Va_Qp,(S([l/a_lp, veo)), v, ... ,(5([V_2p,V_lp]),y_lp,é([u_lp, o)); o)
ifa=1,

—x a— a— a a -5 -3 -3
7= L %p, ..., v 2, 6([v* tp,v%]), %, ..., 0([v " 2p, v 2p]), v 2p,

(v 2 p,v 5 p])i 7(p, )

ifa:%.
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If —a > z, in R(G) we have
C(lv™%p,vpl) 2 C(p, 2;0)

T T p v p v p T v, Y,
[al—a=1 ). 7 (1))

x

=L, %, ..., v " pv
votlp ymetly o plelmesly p;T
+L(p, v, v Rp v R T ([T v ),
v 5[ v p]), v Y, T T g 2 (),
Proof. Reducibility of o([v~%p,v%p]) x 0(p, x;0) is an integral part of the classifi-
cation of discrete series. If such an induced representation reduces, it is a direct
sum of two mutually non-isomorphic irreducible tempered representations, whose

Aubert duals can be easily obtained from [22, Theorem 4.11, Theorem 4.16, Theo-
rem 4.21]. O

Now we deal with the case —a < b. The reducibility criterion follows from
[26, Theorem 4.1(i)].

Proposition 5.2. Degenerate principal series (([v=p,v=%]) x ((p,x;0) is irre-
ducible if and only if one of the following holds:

eb<a—1,
e a<a—1andb==x.

Other possibilities will be studied using a case-by-case consideration.
Proposition 5.3. Suppose that a — 1 < —a <b < x. Let
m = L, v 2 6 v 0p)), L B P, v ),
5" 0] Vs B p )
V_O‘+2p, U—a+2p7 o u“’]‘a‘lp, V(a]—a—lp; T(l))
ifa>3,
m = L p, v P, 6 o, lp)), L 6 e, v ),
S o, v p)) vy 0 200 ), v, ([, p))s 0)
ifa=1, and
m = L, v 20 6 ), B P, v ),

(v pl) v, B R p v ) v 2 p, 6([v R v 2 p))s T, ),
1

if a=3.
Also, let
T 2 L p, .. v v, vt v R, v R v p S( T p, ),
—a+1 —a+2 —a+2

v, 8([vp, v ), e p e R ety yledmaly plalmal (1)

ifoa> 2,
L(Virp""7V7b71p7yibp7yibp7"'5u a p’l/ p7ya71p,6([ya71p7yap]),.'.’
v, 8([v"tp, pl), o),

1

T2
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ifa=1, and

b a—2 a

M 2 L p,. .. ,v v vl v T, R v S ([

o, %)), ..,
v 2p,8(lv " 2p,v 3 p))i7(p,0))
ifa= %

Then in R(G) we have

C([v~p,v™%]) % ¢(p, x;0)
=L " p,...,v " o, p, v, T v v, v, V0,

v p, v p, v p, v p ety pledmety plelmasly 20y 4oy 4.
Proof. By [26, Theorem 2.1], in R(G) we have
5([vp, %)) x 8(p,x;0) = L(6([v=Cp, v=%]); 6(p, z;0)) + o1 + 09,

where 01,02 are mutually non-isomorphic discrete series representations. Aubert
duals of o1 and o3 have been obtained in [22, Theorems 4.11, 4.16]. It remains to de-
termine the Aubert dual of L(6([v=%p,v~%p]); §(p, z;0)). Using Proposition 2.10(3)
and Lemma 2.7, we deduce that the Aubert dual of L(6([v=p,v~%]);8(p,z;0)) is
an irreducible subrepresentation of

%  x  pa LS (v p. v p)): 8. s ).
If b > —a + 1, we have the following embeddings and isomorphisms:
L(S([v="p,v"p]); 6(p,b;0)) <= 6([v ="+ p, v ™)) x v p % 6(p, b5 0)
= §([v="p, %)) x 1°p % 8(p, b; o)
=00 x 8([v="* o, v ™)) % 8(p, b 0)
— vPp x §([v " p, v %)) x vPp X 5(p,b—1;0)

=0 x v p x 6", p]) 1 6(p,b— 1;0).

Thus, there is an irreducible subquotient m of 6([v=*1p,v=%)]) x 6(p,b — 1;0)
such that L(5([v="p,v=%p]);6(p,b;c)) is a subrepresentation of v?p x 1vPp x 7.
Since p*(L(5([v="p,v=p)); 6(p, b;0))) > d([vp, v~ %p]) @ 3(p, b; &), it follows that
72 L([v=" ' p,v7%p]); 6(p, b—1;0)). Obviously, u*(L(6([v="* p,v=%p]); 8(p, b~
1;0))) does not contain an irreducible constituent of the form v°p ® ;. Repeated
application of this procedure and Lemma 2.7 lead us to an embedding

L(s([v=tp,v=2p]); 6(p, by 0))
S v o x vy x - x v 2 x v 2p x L(6([ve1p, U_W(p, —a+ 1;0)).
Thus, it remains to determine L(&([ve—1p, V—a/p])\;é(p, —a+ 1;0)). Proposition

2.10(2) implies that L(§([v*1p,v=%]);8(p,—a + 1;0)) is a subrepresentation of
v=% x L(6([v* Lp,v=%"1p]); 6(p, —a+1;0)), and in the same way as before we get

L([v* " p,v™%));8(p, —a +1;0))
v % x v x vy L(§([vp, v~ 1p)); 6(p, —a; 0)).
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By [26, Theorem 4.1], in R(G) we have
S([vep, v 1)) x 8(p, —a + 150)
= L(([v* p,v™p]);8(p, —a + 150)) + Teemp,
where Ty, is the unique common irreducible subrepresentation of
S o, v p]) x §(p, —a; o)
and
S([Wep,v™ " p]) % 8(p, —a + 150).
From the structural formula we obtain that
v x v p @ 6([v7p, v p)) X 8(p, —a;0)

is the unique irreducible constituent of u*(5([v%p, v~ 1p]) x 6(p, —a+1;0)) of the
form v=1p x vty ® 7/, which appears there with multiplicity one, and by
Frobenius reciprocity it is contained in p*(7emp). Thus,

(L[ o, v ]); 6(p, —a+ 150)))
does not contain an irreducible constituent of the form v=*!px v~ p@ 7’ which
yields
L™ p,v™p]);8(p, —a + 150))
= ([ p, v p]) x v p o LG([v7p, v p]); 8(p, —a;0).
Also, u*(L(§([v*p, v~ 1p]); 8(p, —a; 0))) does not contain an irreducible constituent
of the form v=%"1p ® 7|, so using Lemma 2.8 and a repeated application of this

procedure, we get that the Aubert dual of L(§([v*~tp,v=%p]); d(p, —a+1;0)) is an
irreducible subrepresentation of

—x

“Tpx (v v %))
X L(6([v=ap, ua/—l\p]); 0(p,a;0)).

v p x 8([ T p, vtpl) X e x

—

If o = 1, by [22, Lemma 4.10] we have L(6([v—p,v*1p]);6(p, a;0)) = 7(p,0). If
a > %, in the same way as before we get

L(3 (v~ p.v*""p]):8(p, )
= v x ([, v ) 3 L(8([v— T p, v pl)s ).

For a = 1, we have L(6([v=p,v*~2p]);0) = 0, and for o > 2 we have

L([r=Tp, vo-2p]); 0)

N VfaJrlp % V7a+2p % Vfa+2p N V]'oc]faflp % V[a]faflp «q 7_(1).

This ends the proof. |
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Proposition 5.4. If —a > z, in R(G) we have
C(v=lp,v %)) X C(p, 75 0)

= L(Vibp’ MR Vailp, I/ap7 I/ap’ MR Ijimilp’ Vﬁzilp, Vﬁxp, Vﬁxp’ Vﬁmp’ MR
v, v p, v p v p et L yledmanty lalmant (1))

+L(w . v T v, v 2 T 2 v ) S v ),
v, 6 v %)), v %, T g (2))

FLW " p, v 2 6 v ), O R ),
(v, p)), v, ([ e, v %)), v v, e e g (20,
Proof. Again, by [26, Theorem 2.1}, in R(G) we have

([0 p, ) % 60, 2:0) = L(8(["p, v~p]); 8(p, 33 9)) + o1 + 0,

where 1,09 are mutually non-isomorphic discrete series representations. It is
enough to determine the Aubert dual of L(§([v=tp,v~%p]);d(p,x;c)), which can
be determined in a similar way as in the proof of the previous proposition, details
being left to the reader. O

Proposition 5.5. Suppose that o — 1 < —a < x <b. Let

PV p v p, v R R p 6 p, v ),

TR 02 p))i (0, )

m = L p,... vt

ifa=3%,
T = L, v v e v p, v R, v R v p 5[V p, v %)),

v 8 pspl)s 0)

ifa=1, and
T 2L p, .. v v v, v R, v, v, B ([, %)),
v, 6([v v pl) g w2 p a2 ylel ety lalmant 2 ()
if a > %

Let

m = L, v, 0 o)), B[, ),
(v 2p,v%]),..., 5([1/_%/), I/%p]); o)
ifa=g3,

x

m = L, v " 2, 0 o)), B[, ),
5[ 2p,v%pl), ..., 6([vp, p)); 6(p, 1;0))
ifa=1, and
mo = L™ p, . v 2p, (v o)), ([, v R p)),
S 2p, %)), ([ o)) w2, el 2 (20

. 3
zfa2§.
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If x < b, in R(G) we have

([, v™ %)) % C(p, x;0)

T a—1

=L p,... v T v v v T T v v v,

v, v v Y p v 0 p ety plelmemly ledmaml ()

+L( ", v R 6 o)), B[P, v ), B[, v ), v,

(T e, %)), v p v, Ll g2 (2))

+7m1 + mo.
If x = b, in R(G) we have

", v %)) % C(p, w;0)

=L p,v™lp, . v v v, v, Vo, g v, v Y,

pootlp ekl o plalmasty plelmasl, Dy 4oy

Proof. Let us first consider the case © < b By [19, Proposition 3.2], in R(G) we
have

5([vp, %)) x 8(p,x;0) = L(6([v~tp,v=%]); 6(p, x;0)) + 0
+L(O([v"p,v"p)); 8(p, —a; 0)) + L(3([v~" p,v™%p]); 6(p, b; ),

where o1 is the unique common discrete series subrepresentation of both &([v%p, v°p])
x d(p,a;0) and 6([v%p, v7p]) x 6(p, b; o).

The Aubert duals of oy and of L(§([v="p,v%p]);d(p, —a;o)) can be obtained
from Proposition 5.4, interchanging the roles of a and x. Also, the Aubert dual of
L(6([v—"p,v%p]);6(p,b;c)) can be obtained from Proposition 5.3, interchanging
the roles of b and «.

It remains to determine the Aubert dual of L(5([v~%p, v~ %p]); §(p, z; 7). First, in

the same way as in the previously considered cases we obtain that L(5([v~%p, v—9p]);
0(p,x;0)) is a subrepresentation of

vl x e x 20 5 L(E([v=e 1 p,vp)); 8(p, 73 0))-
Also, if £ > —a + 1, we have

LS(v " p, v %));0(p,z;0)) = vp x 1" p xx L(§([v""p, v %p]); 8(p, x — 1;0)),

and there is an irreducible subquotient m; of v*p x v*+1p such that L(§([v=*"1p,

v=%]); 8(p, x;0)) is a subrepresentation of w1 x L(§([v~"p, v %p]); 6(p, z — 1;0)).

The induced representation §([v%p, v*T1p]) x 6(p,z;0) is a length four repre-
sentation, again by [19, Proposition 3.2]. If v**1p ® 7 is an irreducible con-
stituent of u*(5([v%p,v®1p]) x &(p,x;0)), using the structural formula we eas-
ily obtain that 7 is an irreducible subquotient of d([v%p,v*p]) % d(p, x;0). From
[26, Theorem 4.1] we conclude that u*(5([v%p,v**1p]) x §(p,x;0)) contains two
irreducible constituents of the form v**!'p ® m, which have to be contained in
w(LO([v=*p,v=%p]);d(p,x + 1;0))) and in p*(o2), where o9 is a discrete series
subrepresentation of §([v%p,v*T1p]) x §(p,x;0). Thus, p*(L(§([v=="tp,v"%)]);
d(p,x;0))) does not contain irreducible constituents of the form v**1p ® 7, so m
= (([v*p,v™tp)).
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This can be used to conclude that the Aubert dual of L(5([v=*"tp,v™%));
d(p,x;0)) is a subrepresentation of

S v pl) x - x B[P p, v p]) x L(8([va=2p,v=p]); 0(p, —a + 15 0)).
Using Proposition 2.10(2), (3), and (1), respectively, we get
L(S([v*2p,v™%p]);8(p, —a + 150))
v % x v M x v 2 5 LS([v* o, v p]); 6(p, —a; o).

We have already seen that p*(L(§([v*2p,v=%p]); 8(p, —a+1;0))) does not contain
an irreducible constituent of the form v~ %*2p @ . If v~ p @ 7 is an irreducible
constituent of u*(5([v*p, v=9"2p]) xd(p, —a+1;0)), then 7 is an irreducible subquo-
tient of §([v%p, v~ 2p]) x 6(p, —a; o), which is a length two representation. Thus,
the Frobenius reciprocity can be used to deduce that p*(L(5([v* 2p, v 1p]);
0(p,—a;0))) and p*(os), where o3 is a discrete series subrepresentation of
5([v*2p,v=%]) % d(p, —a + 1;0), contain all irreducible constituents of the form
v~ pm appearing i i* (35[0 p, v+ p)) 16 (p,—atL; 0)). So, L(8([2p, v~"p]);
d(p, —a + 1;0)) is a subrepresentation of

C(v™p, v 2p]) 3 L(5([v* o, v ™1 p)); 8(p, —a;0)).

In the same way it can be seen that u*(L(5([v* tp,v=%"1p]);8(p, —a;0))) does
not contain irreducible constituents of the form v¥p @ 7 for 7 € {—a,—a + 1}.
Using Lemma 2.7 and continuing in the same way, we get that the Aubert dual of
L(5([v*p,v=71p]); 8(p, —a;0)) is a subrepresentation of

5([v=2p,v0]) x -+ x (12,7 p]) 1 L(S([v="1p, 22 1p]); 8(p, a3 7).

Let us first consider the case @ = Then it can be seen, using the inter-

1
5.
twining operators method, that L((S([V_%p, V_%p]);é(p, %;a)) is a subrepresenta-
tion of u_%p X u%p X V%p X ¢. Thus, there is an irreducible subquotient m; of
V"2p X vip X v2p such that L((S([V_%p,u_%p});é(p, 3:0)) is a subrepresentation
of m x o.

By [26, Theorem 5.1(ii)], in R(G) we have

3([v2p,v2pl) % 8(p, %m = L(6([v "2 p,v2p]):6(p, 550)) + 0a

[\)

+L(O([v "2 p,vEp));0) + L(v ™2 p; (p, ;; 7)),

where oy is the unique discrete series subrepresentation of 6([v2 p, % p]) % 8(p, 10).

Since both induced representations §([vZp,v2p]) % o and v2p x §(p, 1;0) are
of length two (by [26, Theorem 5.1]), it follows from the structural formula that
w*(8([vzp, vz p)) % d(p, 1;0)) contains exactly two irreducible constituents of the
form l/%p ® m and exactly two irreducible constituents of the form I/%p ® m. Now
Frobenius reciprocity and transitivity of the Jacquet modules imply that all irre-
ducible constituents of the form I/%p ® 7 are contained in p*(o4) and in
w*(L(v=2 p; 6(p, 3:0))), while all irreducible constituents of the form vip® m are
contained in p*(0y) and in p*((L(8([v~2p,v2p]); 0)).

Consequently, p*(L(8([v=2p,v~2p]); 8(p, 1:0))) does not contain irreducible
constituents of the form vYp ® w for y € {%, % .
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Thus, it follows that m = ¢([v~2p,v2p]), so L(6([v=2p,v=2p]); 8(p, 1.0))is a
subrepresentation of ¢([v~2p,v2p]) x 0. Now Lemma 2.7 can be used to obtain the
Aubert dual of L(6([v=2 p,v2p]); (p, 3;0)) is isomorphic to L(6([v2p,v2p));o).

If a>1, in the same way as before we deduce that the Aubert dual of L(([v=>"!p,
v*~1p]); 6(p, ;o)) is a subrepresentation of

5(l v pl) 3 L3 (. v 2p))z0).
If « = 1, from [20, Theorem 3.5] we deduce that L(5([1/*W*2p]);a) &
§(p,1;0). If @ > 3, from [22, Lemma 4.10] we get that L(§([v—p,v*2p]);0

is the unique irreducible subrepresentation of v=2p x ... x plel=a=1, 5 7(2),
If x = b, in R(G) we have

8([v°p,v°p]) % 6(p, bs0) = L(3([v~"p,v™%p)); 6(p, b5 0)) + 7,

where 7 is the unique common irreducible tempered subrepresentation of
3([v%p,v°p]) x 6(p, b;0) and §([v=p,°p]) x 6(p, a; o). The Aubert dual of the rep-
resentation L(§([v=bp,v~%p]); d(p, b; 7)) has been determined in the proof of Propo-
sition 5.3, while the Aubert dual of 7 can be obtained from [22, Theorem 4.16]. O

Proposition 5.6. If —a<a—2 and a — 1 <b < z, in R(G) we have

(v, v ™)) % ¢(p, x;0)
=L p,....v " v p v, T,
fal-a=1, (1)

vep,vp, .. vl Py

+L(I/7Ip, BN Vﬁbizpa 5([V7b71p, Vibp})v s ,5([V7apa VﬁaJrlp])a Vﬁa+2pa ce

v v, v, il Tty ylalmaty (1)),

If—a=a—-2and a—1<b<z, in R(G) we have

C(v="p,v=p]) % C(p, x50)
a+1 —a+2 —a+2

=L p,....v " v o, T p g v p T R p T2,

e I/]'oc]—oz—lp7 I/[o[\—oc—lp; 7_(1))
+L(v " %p, ..., v 2p (v o, v 0], ..., 6([v%p, v p)),
VfaJer’ ijoﬁLQp7 s y]—oz]fozflp7 V[of\fozflp; T(l)).

Proof. We discuss only the case —a = a — 2, since the case —a < a — 2 can be
handled in the same way, but more easily. Let us denote by o, a strongly positive
discrete series subrepresentation of §([v*~1p,%p]) x d(p,x;0) ([17, Section 4] or
Proposition 2.3). Note that we have v > 2.

By [26, Theorem 4.1], in R(G) we have

51" p,vp)) % 8(p,;0) = L(3(Iv~"p, v~ pl); 6(p, 25 0)) + 7,

where 7 is the unique common irreducible (tempered) subrepresentation of induced
representations §([v =+ 2p, 10p]) x 6(p, x;0) and §([v=*F2p, v 2p]) X 0.



DEGENERATE PRINCIPAL SERIES IN THE GENERAL CASE 425

Using the same reasoning as in the previously considered cases, we deduce that
the Aubert dual of L(&6([v=tp,v*2p]);6(p, x;0)) is isomorphic to
L™ p,....v " p,vbpvbp, v p, v p, v 0 g TR p a2y
. V[a‘\fozflp’ V[a"lfaflp; 7,(1))'

Let us determine the Aubert dual of 7. If x > b+ 1, it follows from the classifi-

cation provided in [17, Section 4] that o, is a subrepresentation v*p x ngl,), where

ngl,) is the unique irreducible subrepresentation of §([v*~1p,vbp]) x §(p,z — 1;0).
Then 7 is a subrepresentation of ¥*p x 71, where 71 is a common irreducible subrep-
resentation of both §([v=%2p,1%p]) x 6(p,x — 1;0) and &([v =+ 2p, v*2p]) x nglg).
Continuing in this way we obtain that the Aubert dual of 7 is a subrepresentation
of

VI X e x v T2 T,

where 7 is the unique common irreducible subrepresentation of §([v=2%2p, %))

X 0(p, b+ 1;0) and §([v=*F2p, v2"2p]) x Ugi), where Ugf,) is the unique irreducible

subrepresentation of §([v*~1p,1v%p]) x §(p,b+ 1;0). Since ogf,) is a subrepresenta-

tion of ¢([1*~1p, %)) x US;), where ogz) is the unique irreducible subrepresentation

of §([v*~1p,v*~1p]) x §(p,b; o), and ,u*(agg)) does not contain an irreducible con-
stituent of the form v*p ® 7 by [18, Theorem 4.6], we can continue in the same way
to obtain that 75 is an irreducible subrepresentation of

51w p,vp]) x - x 8([v= p,u%p]) % 7,

where 73 is the unique common irreducible subrepresentation of ¢ ([~ 12

p, v~ pl)
x 0(p, ;o) and 6([v=T2p,v¥ 2p]) % agfé), where agf,) is the unique irreducible
subrepresentation of v 1p x §(p, a; o).

It follows at once that 73 is a subrepresentation of the induced representation
v o x v%p 3 §([v=2p, v 2p]) x o. Since §([v™*T2p,v*72p]) x o is irreducible
and p* (agi)) does not contain an irreducible constituent of the form v“p® , it fol-
lows that 73 is a subrepresentation of (([v* tp,v%p]) x §([v=F2p, v 2p]) x 0.
Now the rest of the proof follows in the same way as in the previously con-
sidered cases. We note that the Aubert dual of 75 can also be obtained using

[22, Lemma 4.13, Lemma 4.15]. |

Proposition 5.7. If —a < o — 1 and = < b, in R(G) we have

(v, v™%]) % ¢(p, x;0)
=L bp,.... v 2p,6(v """ Lo, v %)), ..., 0([v " p, v %)),
Vep,...wlelmemlp 7 (2))
FLW T v v v T, T,

I/ap7 Vap, el Vfa]—a—lp, V(oz]—a—lp; 7_(1)).
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If —a =z, in R(G) we have

C(v="p,v %)) x C(p, 75 0)
=L p, . v 2,6 ), vy B[ o)) v %
vty L, y“ﬂ_“_lp; 7(2))
—|—L(V7bp, T v v v, T p T Y, v,
Y V(O‘]*aflp, I/[O‘Fo‘*lp; 7(1)).
Proof. If —a < a—1and z < b, in R(G) we have

§([v*p, v°p]) % 6(p, x;0)
= L(6([v""p, v %p]); 6(p, x50)) + L(8([v~"p,v™%p]); 6(p, b; 0)).

In the same way as in the previously considered cases, we deduce that the Aubert
dual of L(§([v="p,v~%0]); 6(p,x;0)) is a subrepresentation of

—x

p) X x 8([v= %))
) L(S([v=p,v-p]); 0),

vl xox v 2 x S(v ",

and it has been already proved that the Aubert dual of L(d([v~%p,v%p]);0) is
isomorphic to L(v%p, ..., vIel=a=1p. 7)),

Next, the Aubert dual of L(6([v~"p,v~%p]); d(p,b;0)) is an irreducible subrep-
resentation of

vl x o x v e L(S([v—7p, Vjﬂ);é(p,x;o)).

Since the induced representation d([v*p, v*p|) X §(p, x; o) is irreducible, the Jacquet
module of L(§([v~"p,v%));d(p, z;0)) with respect to the appropriate parabolic
subgroup contains

l/zp(g)Vrp@"'®I/Oép®l/ap®l/a71p®"'®I/7a+1p

®I/—ap ® V—ap - ® I/a—(oz]-ﬁ—lp ® I/a—(oz]-ﬁ—lp ® ,7_/7
where 7/ 2 ¢ if a € Z and 7’ = p ® o otherwise. Now, using Lemma 2.6 we obtain
the Aubert dual of L(§([v—"p, v %p]); d0(p, z;0)).

If —a =z, in R(G) we have
3([vp,v°p)) % 8(p,;0) = L(6([v =" p,v™%p]); 8(p, —a;0)) + 7,

where 7 is the unique irreducible (tempered) common subrepresentation of

5([v*p,v°p]) » 8(p, —a;0)

and §([v%p,v~%p]) x 6(p,b;0). The Aubert dual of L(5([v=p,v=%p]); 8(p, —a; o))
can be obtained in the same way as before.
In a standard way we obtain that the Aubert dual of 7 is a subrepresentation of

b a

vl x o x v X7,

where 7/ 22 §([v%p,v=p]) x 8(p, —a; o), and now 7' can be directly obtained using
Lemma 2.6. This ends the proof. (Il
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Now we turn our attention to the case py 2 p. We assume that 8 # 0, since the
case = 0 has been treated in the third section. We omit the proofs, since all the
results can be obtained in the same way as in the pg = p case, enhanced by Lemma
2.9.

Proposition 5.8. Suppose that po % p. Then (([v"bpo,v"%po]) % ((p,x;0) is
irreducible if and only if b < . If b > B and —a = b, in R(G) we have

(v "po, v’ po]) % ¢(p,x;0)

:L(l/impv'"7V7ap7l/7bpoayibp0""ay(ﬁ]iﬁil [1=p=t (1))

po, V pPo; T
+L(W p, ..., v v 00, v po, . v P o, v P po, v P po, 0 IPTET pg 2())
If 8 < —a < b, in R(G) we have
¢([v™"po, v ™" pol) x ¢ (p, 75 9)
=L "p,...,v v 00, 0" 00, v p0, v pos . P1TTET pg W BT g 2 (1)

+L(V72p7 . -vVﬁaPaVibPO: .. ~’Va71POaVaP0’VaPO7 .. -aVﬁBPO:ViﬁpO’

B o, IR (2
+L(w ", v v po, v 200, 8V o, v po))s - ([P pos v pol),
y7ﬁ+1p0,...,V[mfﬁflpo;rw).
If —a < B =0, in R(G) we have
(™" po,v™"pol) % (p, ; 0)
= L(l/_xp,...,V_ap,ll_bpo, .. .,l/a_lpo,llapo,l/apo,...,V[M_ﬂ_lpo,V[m_ﬁ_lpo;r(l))
+L(v" "p,..., v %p, l/apo,...,V[M_ﬂ_lpo;T(Q)).
If —a < B < b, in R(G) we have
C([v™"po, v~ po]) x ¢(p, x; 0)
=L "p,....v %, v " po,.. .,Vailpo,yapo,yapo,...,Vrm*ﬁ*lpo,urm*ﬁ*lpo;T(l))
FLW " p, v v p0, v po, v o, 0 PTTT pg 2(3),

6. CASE a = 3

[N

This section is devoted to the case a = Again, we first consider the more
complicated case py = p, and let 7(p1,01) be as in the previous section.
Irreducibility criterion is a direct consequence of [26, Theorem 5.1].

Proposition 6.1. Degenerate principal series C([v="p,v=2p]) x ((p, z;0) is irre-
ducible if and only if one of the following holds:

o o> % and b =z,

e b<a—1.

The composition factors in other cases are given in the following sequence of
propositions.

Proposition 6.2. If o > % and x < b, in R(G) we have

C([w="p,v™2p)) % (p, x50)
=L "p,....v " 2,8y v ")), . ([ g, v %)) 7))

FL( . v T v, T L TR o).



428 YEANSU KIM, BAIYING LIU, AND IVAN MATIC

Proof. By [26, Theorem 5.1}, in R(G) we have:
5([V%p, vPp]) 3 8(p, x5 0)
_ 1 1
— L(6(1v 0,0~ 3 p));0(p, 23 0)) + L(3([v " p, v % p]); 3, bi ).
First, in a standard way, using the intertwining operators methods, Proposition

2.10(1), and Lemma 2.7, we get that the Aubert dual of L(6([v="p, v~ 2 p]); 6(p, ;7))
is a subrepresentation of

vl x e x T R ([T T p)) X xS p, v %))
) L(3([v=p,v % p); 0),
and by [20, Theorem 3.5] the Aubert dual of L(8([v~%p, v~ % p]); o) is isomorphic
to 7(2).
Using Proposition 2.10(3) and Lemma 2.7, we deduce that the Aubert dual of
L(6([v=*p,v=2p]); 6(p, b; o)) is a subrepresentation of

vlpx - x v L(5([vp, v p)); 6(p, w5 0).

Now by irreducibility of §([v2p,v%p]) x 8(p, a;0), the rest of the proof follows in
the same way as in the proof of Proposition 5.7. O

The following result can be obtained following the same lines as in the proofs of
Propositions 6.2 and 4.2.

Proposition 6.3. Ifa >3 and a —1 < b <z, in R(G) we have

_ 1
(v p, v 2p]) % C(p a5 0)
:L(z/fxp7...,Vﬁb*lpwfbp,ufbp,...7V7ap,1/70‘p71/7a+1p,...,1/7% ;

—a+2

o _1
o)), v, v 2 ps0).

+L(w " p, . v P, (v v ), ([ Y,
Proposition 6.4. Ifa = % and x < b, in R(G) we have
S p v p]) % Ly 0)
=L p,...,v v %p v "%, .. v Ip, v 2p;0)
+Lwbp, .., v " 20, 5([v ", v %)), O[T

1
+L(v ..., v 2 ([, v )), ,(5([V_%p, V_%p]); o(p, 2 o))

FL( . v T v, T R p T R T (s 0)).
Proof. By [26, Theorem 5.1], in R(G) we have:

8([v* p,v"p]) % 6(p,w30) = LS "0, % p)); 6(p, 23.0)) +

e -1 bz
+LO([v =" p.v ™2 p]):0(p, b 0)) + L(S([v~"p, v"pl); ),

where 045 is the unique common irreducible (discrete series) subrepresentation of
both &([v2p,vPp]) x 8(p,a;0) and 6([v%p,"p]) x . Note that oz, has been de-
termined in [22, Theorem 5.2.(i)].

Let us determine the Aubert duals of representations L(5([v~"p,v%p]);o) and
L(6([v=p,v2p]); 8(p, x;0)). The Aubert dual of L(5([v=%p,v "2 p]); 8(p, b; ) can
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be obtained in a similar way, but more easily. Using the same arguments as before,
we obtain the following embeddings:

L(3([v~p, v7p));0) <> v x - x 15 2p 3 L(8([v=Lp, v7p]); o),

—

L(8([v="p,v=2p]); 6(p, 3 0))

—

S vl x x v 2 L(6([v=op, v 2p)); 6(p, a5 0)).

Since 6([v2 p, v"p]) % 8(p, ;o) is a length two representation by [26, Theorem 5.1],
it follows at once from the structural formula that p*(8([v2 p, v**1p]) x 6(p, z; 0))
contains exactly two irreducible constituents of the form v**!p @ 7, which have
to be contained in u*(L(8([v~*p, v~ 2p)); 8(p,x + 1;0))) and in p*(0?,), where o),
is the unique discrete series subquotient of (5([V%p, v® 1)) x 6(p, z;0). Thus, nei-
ther p*(L(S([v="""p,v"p]); 0)), mor p*(L(3([v=""'p,v=%p]); 8(p,x;0))) contains
an irreducible constituent of the form v**1p @ m. This leads to an embedding

L(S([v™" " p,v"pl); 0) = (" p, v™ T pl) 3 L(6([v ™" p, v* " p]); 0)

and, if x > %, to an embedding

L(3([v= " p,v ™2 p]):6(p, 3 0))
< (" p, v L)) x L(O([v ™ "p,v 2 p]); 6(p, = 1 0)).

Using Lemma 2.8 and repeating the same arguments, we obtain

L —

L(o([v===1p,v®p]); 0)

pvp]) X - x 8([vTE p,v TR p]) @ L(v~ 3 pio),

—z—1

— §([v

and

L —

L(3([v="=1p,v™2 p]); 6(p, w3 0))

= 0([v™" o, "pl) x e x ([ 3 p, w3 p]) 3 L(G([vE p, v E p)); 8(p, 53 0).
We have already seen that L(v=2p;o) = d(p, 3:0) and that the Aubert dual of
L(([v2p,v2p)); 8(p, 3;0)) is isomorphic to L(8([v"2p,v2p]);o). This ends the
proof. ]

The remaining cases are covered in the following propositions, a detailed verifi-
cation being left to the reader.

Proposition 6.5. If a = § and b < z, in R(G) we have

C(v=bp,v=2p)) x C(p, a3 0)

=L p,....,v v bp vty v

_3 —
2

pyv

nlw

p;T(p;0))

+Lw p, ..., v v 0, I/iép, I/iép; o).
Proposition 6.6. Suppose that pg % p. Then the degenerate principal series
C([V_bp(),l/_%po]) X C(p,xz;0) is irreducible if and only if b < B. Ifb > B, in
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R(G) we have

1

C([U_bp(hy_%p()]) A C(P7$7U) = L(V_wpu o '7V_ap> V_bpu e '7V_§p;0-)

+L(v " p, v vl p, P e @),

7. THE ODD GSpin CASE
In this section we consider the odd GSpin case.

Remark 7.1. All the propositions in Sections 3 — 6 are valid for the odd GSpin
case with exactly the same statements. More precisely, all the arguments used in
[20,22,26] (except [26, Theorem 2.1]), as well as those used in the previous sections,
can be directly carried out to the odd GSpin case, since they completely rely on
properties of the Aubert involution which hold for general reductive groups, the
structural formula and classifications of discrete series provided for the odd GSpin
groups in [14, 15] (see also Lemma 2.2 for the structure formula for odd GSpin
groups). In the following, we will comment on the generalizations of the results in
[26] to odd GSpin groups and give the proof for the odd G'Spin case of [26, Theorem
2.1].

Let us first recall the definition of odd GSpin groups. Let v, be the m x m
matrix with ones on the second diagonal and zeros elsewhere. Let

0 Vm
J2m - <_Vm 0 ) .

Then the similitude symplectic groups are defined as follows:
GSp(2n,F) ={g € GL(2n, F) : 'gJa,g = \(g)Jan for some \(g) € F*}.

Let T = {t = diag(ty,...,tn,at; ", ... at;') : t;;a € F*}; then T is a maximal
torus for GSp(2n, F). For t = diag(t1,...,tn,at, !, .. .,atfl) e T, let eg(t) = a,
and let e;(t) = t; fori = 1,...,n. Let X = Hom(T, F*) be the character lattice of T'.
Then X = Zeo®Ze1®- - -BZe,. Let XV = Hom(F*,T) be the cocharacter lattice of
X, and let {ef, 7, ..., €5} be the basis of XV dual to the basis {eg, e1, ..., e, } of X.
Then XV = Zei®Ze;®- - -dZek. Let A = {e;—eip1,i=1,...,n—1,2¢e,—eo}, AV =
{er—er,,i=1,...,n—1,e}}. Then the root datum of GSp(2n)is (X, A, XV, AV).

Definition 7.2. GSpin(2n + 1, F)) is F-points of the unique split F-group having
root datum (XY, AY, X, A) which is dual to that of GSp(2n, F).

Remark 7.3. Let Spin(2n + 1, F) be the double covering of special orthogonal
group SO(2n+ 1, F). Then by [2, Proposition 2.2], the derived group of the split
GSpin(2n + 1, F) is Spin(2n + 1, F') and GSpin(2n + 1, F) is isomorphic to

(GL(]-v F) X Spin(2n + 1; F))/{(la 1)7 (_1’0)}3
where ¢ = (2e,, — eg)(—1).

We now briefly summarize the main results in [26]. Let H,, be either a symplectic
group or a special odd orthogonal group defined over a non-archimedean local field
F of characteristic different from two, having split rank n. In [26], Mui¢ studies the
reducibility of § x o, where ¢ is a strongly positive representation in H,(F') and
§ := 6([v"lrp,vt2p]) is an irreducible essentially square integrable representation
of GL,,(F) (Here, p is an irreducible unitary cuspidal representation of GL(F)
and l1,l2 € R is such that I3 + I3 € Z>o.) Muié, in [26], further describes the
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composition series of § x o if it is reducible. Chapters 3, 4, and 5 in [26] describe the
cases Iy < —1,1; > 0, and Iy = —1/2 (Proposition 3.1, Theorem 4.1, and Theorem
5.1), respectively. The main ingredients for the proofs of those propositions and
theorems are Tadié’s structure formula for H,, [27] (he mainly uses the information
from the GL cuspidal part in the Jacquet modules of the representations) and the
classification of discrete series of H, [25]. All those ingredients are now available
for odd GSpin groups (Lemma 2.2 and [15]). However, we note that the proof
of [26, Theorem 2.1] cannot be applied to the GSpin groups. We will reprove
this theorem below (Theorem 7.5), in the case which we use when determining
the composition factors of the degenerate principal series. Then, for odd GSpin
groups, all the results in Chapters 3, 4, and 5 in [26], together with the correction
of [26, Theorem 4.1.(iv), Lemma 4.9] obtained in [19, Proposition 3.2], follow in the
same way as in those two papers. Therefore, our results on the composition factors
of the degenerate principal series also hold in the odd GSpin case.

Remark 7.4. To prove [26, Theorem 2.1], two lemmas ([26, Lemma 2.1, 2.2]: de-
scription of non-tempered subquotients and tempered but non-square integrable
subquotients of generalized principal series) are needed. The main ingredients in
the proofs of those lemmas are again Tadié¢’s structure formula (especially the in-
formation about GL cuspidal support), Casselman’s square-integrability criterion,
and classification of discrete series representations, which all can be applied directly
to GSpin(2n + 1, F'), so we skip the proofs of those lemmas for GSpin(2n + 1, F').

Recall that « (resp., ) is the reducibility point of p (resp., po) and o, i.e., v*px 0o
(resp., ¥°pg X o) is irreducible if and only if s & {«, —a} (resp., s € {8, —5}).

Theorem 7.5. Suppose that o is an irreducible unitary cuspidal representation of
GSpin(2n + 1, F), and that one of the following holds:

(1) pO%p; ﬂg_a<b7 andb_B€Z7

(2) po=p,b>—-a>z, andb—a € Z,

3) pp=p,a-1<—-a<b<z, —a>0,andb—aclZ.
Then in an appropriate Grothendieck group we have

8([v°po, v po)) % 8(p,x:0) = L(5([v~"1po, v~ p0)); 8(p, x30)) + 05 + 0,

1 2 , L . _
where 0((15) and UO(lS) are mutually non-isomorphic discrete series subrepresentations

of 6([v*po, v’ po]) % 6(p, ;5 0).

Proof. We prove only the part (3), other parts can be proved in the same way, but
more easily. It can be seen in the same way as in the proof of [26, Theorem 2.1]
that L(5([v~"po,v~%po]); (p, 7; ) is the unique non-tempered irreducible subquo-
tient of &([v%po,v"po]) % 6(p,x;0). Also, representations 0((1? and 0225) have been
constructed in [15, Theorem 3.14]. Let us prove that there are no other irreducible
tempered subquotients of &([v%po, v’ po]) % 3(p, ;7).

Let m denote an irreducible tempered subquotient of &§([v%pg, v°po]) % §(p, z; 7).
From the cuspidal support considerations one can conclude that 7 has to be square-
integrable and non-strongly positive. Thus, by the classification given in [15], if
a > 2, m can be written as a subrepresentation of one of the following induced
representations:

S([%p,vbp)) x 8(p, x;0),6([vp,v%p]) x 8(p, —a; ), 5([v " 2p, %)) X oy,
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where o, stands for the unique irreducible subrepresentation of &([v™~1p,1°p])
xd(p, x;0). Thus, p*(7) contains one of the following irreducible constituents:

5([vp, v°p)) @ 8(p, a;0),8([v="p, v7p]) @ 8(p, —a;0), 6([v™*Fp,v™p]) @ T p.

If & < 2, 7 can be written as a subrepresentation of one of the following induced
representations:

5([vp, %)) % 8(p, x;0),8([v""p,v%p]) x 6(p, —a; o),

and p* () contains one of the following irreducible constituents:

5([vp, %)) @ (p, x;0),8([v"p, v%p]) ® &(p, —a; o).

By [15, Theorem 3.14], only irreducible subrepresentations of &([v%p,v’p])
x 0(p,x;0) are 0((1? and 05125). Also, it is easy to see, using the odd GSpin version
of the structural formula given in [14], together with the classification of strongly
positive discrete series, that 6([v=°p,v%p]) ® 6(p, —a; o) appears with multiplicity
one in p*(5([v%p, v°p]) x 8(p, x;0)), and that 6([v=>T2p,v~%]) ® o, also appears
with multiplicity one in p*(§([v%p,v°p]) x §(p, z;0)) if a > 2.

Let 7;, for i« € {1,2}, denote an irreducible tempered subrepresentation of
o([vp,v=%p]) x 6(p,x;0) such that or((;s) is the unique irreducible subrepresenta-
tion of §([v=%*1p,v¥p]) x 7. By [29, Section 4], there is a unique j € {1,2} such
that 7; is a subrepresentation of §([v = p,v7p]) x 6([v*p,v=%p]) x §(p, —a; o). It

follows from the proof of [15, Theorem 3.15] that Uffs) is a subrepresentation of
5([v=bp,v%p]) x 8(p, —a; ), so p*(al(ii)) contains §([v="p, v%p]) ® §(p, —a; 7).

Similarly, if @ > 2, then there is a unique k € {1,2} such that 73 is a subrepre-
sentation of 6([v* 1p,v=%l]) x 6([v* Lo, v=%)]) x 6([v=2"2p,v* 2p]) x §(p, x;0).
It follows from the proof of [15, Theorem 3.15] that ogz) is a subrepresentation
of 6([v=**2p,v=%]) % 0sp. Frobenius reciprocity implies that u*(off?) contains
([ 2p, v %)) ® 0y

From the multiplicities of 6([v%p,’p]) ® §(p, z;0), S([v"p,v*p]) ® 8(p, —a; ),
and (v~ 2p,v=%)]) ® a5, in p*(5([vp,v°p]) x 6(p, x;0)), we conclude that 7 is
isomorphic either to USI? or to 05125), and the theorem is proved. ([l
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