
2475-1456 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2020.3005429, IEEE Control
Systems Letters

Epistemic Uncertainty Quantification in State-space
LPV Model Identification Using Bayesian Neural

Networks
Yajie Bao, Javad Mohammadpour Velni, and Mahdi Shahbakhti

Abstract—This paper presents a variational Bayesian infer-
ence Neural Network (BNN) approach to quantify uncertain-
ties in matrix function estimation for the state-space linear
parameter-varying (LPV) model identification problem using
only inputs/outputs data. The proposed method simultaneously
estimates states and posteriors of matrix functions given data. In
particular, states are estimated by reaching a consensus between
an estimator based on past system trajectory and an estimator
by recurrent equations of states; posteriors are approximated
by minimizing the Kullback–Leibler (KL) divergence between
the parameterized posterior distribution and the true posterior
of the LPV model parameters. Furthermore, techniques such as
transfer learning are explored in this work to reduce computa-
tional cost and prevent convergence failure of Bayesian inference.
The proposed data-driven method is validated using experimental
data for identification of a control-oriented reactivity controlled
compression ignition (RCCI) engine model.

Index Terms—State-space linear parameter-varying model
identification, uncertainty quantification, Bayesian neural net-
works.

I. INTRODUCTION

DATA-DRIVEN methods have been increasingly devel-
oped for global identification of linear parameter-varying

(LPV) state-space (SS) models[1]. For LPV-SS identification
given only inputs/outputs data, the majority of the current LPV
identification methods, including direct prediction-error mini-
mization (PEM) methods and global subspace and realization-
based techniques (SID), assume affine scheduling dependency
with known basis functions, which restricts the complexity of
a representation. The authors in [2] used kernelized canonical
correlation analysis (KCCA) to estimate state sequence and
then a least-squares support vector machine (LS-SVM) to
capture the dependency structure, which suffers from the
kernel selection and computational complexity. Moreover, SID
techniques first identify a specific IO structure and then con-
struct SS models by either a direct realization or a projection to
estimate state sequence, which suffers heavily from the curse
of dimensionality, and finally estimate system matrices [3].
The expectation-maximization algorithms estimate states and
matrices alternatively [4]. In a very recent work, the authors
in [5] have used artificial neural networks to simultaneously

This work was financially supported by the United States National Science
Foundation under awards #1762595 and #1912757.

Y. Bao and J. Mohammadpour Velni are with the School of Electri-
cal & Computer Engineering, University of Georgia, Athens, GA 30602
yajie.bao@uga.edu,javadm@uga.edu.

M. Shahbakhti is with the Department of Mechanical Engineering, Univer-
sity of Alberta, Edmonton, AB, T6G 1H9 mahdi@ualberta.ca.

estimate states and explore LPV model structural dependency.
Most of the available methods in the literature, however, focus
on estimating a set of parameters rather than characterizing the
statistical properties of the estimation. This approach typically
produces good models in the sense of minimizing the expected
loss. However, the accuracy under a few operating points can
be poor, which can later result in a low-performing controller.
Furthermore, robust control techniques cannot be employed
without quantifying the uncertainty of estimated model.

In model identification, there are two categories of un-
certainty [6]: epistemic uncertainty and aleatoric uncertainty.
Epistemic uncertainty is systematic and represented by the
uncertainty in model parameters while aleatoric uncertainty
is stochastic and representative of the unknowns that result
in different system outputs given identical inputs. Multiplica-
tive disturbances in [7] correspond to epistemic uncertainty
while additive disturbances correspond to aleatoric uncertainty.
The objective of uncertainty quantification is to reduce the
epistemic uncertainty to aleatoric uncertainty, as epistemic
uncertainty can be reduced by increasing the number of data
points while aleatoric uncertainty can be quantified but not
reduced [8]. This paper assumes that aleatoric uncertainty is
known and aims to quantify epistemic uncertainty given an
input/output dataset, as matrix function uncertainties have a
significant impact on control design. Additionally, extending
the model in this paper to simultaneously capture and quantify
these two categories of uncertainties is briefly discussed.

One approach to uncertainty quantification is Bayesian
framework. Given a prior distribution of model parameters,
the posterior distribution conditioned on a dataset is estimated
by maximizing the likelihood of the dataset. The authors in [9]
used a recurrent network in a Bayesian framework to perform
nonlinear system identification. The authors in [10] used a
Gaussian process as a prior distribution to obtain a posterior
distribution of coefficient functions given the measured data
for identifying LPV models in an input/output (IO) form
with an autoregressive with exogenous variable noise struc-
ture. The authors in [11] assumed parameter-varying matrices
to be component-wise, zero-mean normally distributed and
approximated the posterior distribution of system parameters
and latent variables via variational inference. However, the
linear parameterization of matrix functions restricts model
expressiveness of complex systems. Moreover, Gaussian priors
can be improper and have negative effects on inference. Ad-
ditionally, authors in [12] designed deep variational Bayesian
filters to improve information content of the latent state-space

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 02,2020 at 15:51:38 UTC from IEEE Xplore.  Restrictions apply. 



2475-1456 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2020.3005429, IEEE Control
Systems Letters

embedding for state estimation. However, the approach in [12]
was not adapted to the general LPV-SS model identification
problem.

Inspired by weight uncertainty in neural networks [13]
and based on our previous work on identification of state-
space LPV models using artificial neural networks (ANN)
[5], we propose to use variational Bayesian inference neural
networks (BNN), a combination of ANN and variational in-
ference to identify LPV-SS models. Different from [10], [11],
[12], the proposed method can simultaneously estimate states,
explore arbitrary structural dependency of matrix functions of
a representative LPV model and approximate posteriors of
the parameters with non-Gaussian priors. States and matrix
functions are estimated using State Integrated Matrix Function
Estimation (SIME), which is an integrated ANN model in [5]
while uncertainties are introduced by assigning each weight of
ANN a prior. To approximate posteriors, the main idea is to
minimize the Kullback–Leibler (KL) divergence between the
parameterized posterior distribution and the true posterior of
the LPV model parameters. Monte Carlo sampling is employed
to avoid calculating expectation analytically. Sampling also
enables non-Gaussian priors. Moreover, reparameterization
trick [14] is used for backpropagation to work.

The main contribution of this paper lies in tailoring BNN
to the uncertainty quantification of the ANN-based LPV-SS
model identification. Remainder of the paper is organized
as follows: Section II introduces the problem formulation
and variational inference. Combining variational reference and
ANN in the context of LPV-SS model identification, i.e., BNN
is explained in Section III. Section IV presents model identi-
fication results using experimental data. Concluding remarks
are finally provided in Section V.

II. PROBLEM FORMULATION

We consider a discrete-time, state-space LPV model with
innovation-type noise as follows:

xk+1 = A(pk)xk +B(pk)uk +K(pk)ek, (1)
yk = C(pk)xk +D(pk)uk + ek, (2)

where pk ∈ P ⊂ Rnp , uk ∈ Rnu , xk ∈ Rnx , ek ∈ Rny ,
and yk ∈ Rny denote the scheduling variables, inputs, states,
stochastic white noise process, and outputs of the system at
time instant k, respectively, and A, B, C, D, and K are
smooth matrix functions of pk. In [5], each of the functions
was represented by a fully-connected ANN. By substituting
ek from (2) into (1), we obtain

xk+1 = Ã(pk)xk + B̃(pk)uk +K(pk)yk, (3)
yk = C(pk)xk +D(pk)uk + ek, (4)

where A(pk) = Ã(pk) +K(pk)C(pk) and B(pk) = B̃(pk) +
K(pk)D(pk). Instead of estimating a deterministic set of ma-
trix functions as in [5], all weights in the ANNs are mutually
independent random variables such that matrix functions are
also random variables. BNN is employed to estimate posteriors
for the weights. The posteriors of the matrix functions can
then be estimated using Monte Carlo method. Therefore,
the problem of LPV-SS model identification with uncertainty
quantification is to estimate states (if they are unknown) and

posteriors of Ã(pk), B̃(pk), C(pk), D(pk) and K(pk) given
the measurements D = {uk, yk, pk}ND

k=1
1.

A. Variational Inference
Variational inference is a machine learning technique to

approximate difficult-to-compute probability density functions
by finding a member from a family of densities that is closest
to the target in the sense of KL divergence [15]. Using Bayes’
formula, we have

p(w|D) =
p(D|w)p(w)

p(D)
∝ p(D|w)p(w),

where w denotes all the parameters of a model. However,
p(w|D) is hard to calculate analytically especially when the
probability graph is complex such as an ANN with the weights
being random variables. To circumvent this, variational infer-
ence computes

θ∗ = arg min
θ

KL
(
q(w; θ)‖p(w|D)

)
(5)

= arg min
θ

KL
(
q(w; θ)‖p(w)

)
− Eq(w;θ) [log p(D|w)]

= arg min
θ

(
Eq(w;θ) [log q(w; θ)]− Eq(w;θ) [log p(w)]

− Eq(w;θ) [log p(D|w)]
)
, (6)

where q(w; θ) is a family of distributions parameterized by θ,
p(w|D) is the true posterior, and p(w) is the prior. The cost
function (5), known as the evidence lower bound (ELBO) [15],
provides a trade-off between believing priors and fitting data
(the second term).

B. LPV-SS Model Identification Using ANN
In [5], we proposed State Integrated Matrix Function Esti-

mation (SIME), an integrated ANN model, to estimate states
and explore structural dependency of matrix functions simul-
taneously. SIME solves the following problem:

min
(
γ1

N−1∑
k=d+1

‖x̂(1)k+1 − x̂
(2)
k+1‖

2
2 + γ2

N−1∑
k=d+1

‖ŷk − yk‖22

+ γ3

N−1∑
k=d+1

‖ŷk+1 − yk+1‖22
)

(7)

s.t. x̂(1)k+1 = fDÃ
(pk)x̂

(2)
k + fDB̃

(pk)uk + fDK
(pk)yk, (8)

x̂
(2)
k = fDx

(zdk), x̂
(2)
k+1 = fDx

(zdk+1), (9)

ŷk = fDC
(pk)x̂

(2)
k , ŷk+1 = fDC

(pk+1)x̂
(1)
k+1. (10)

zdk :=
[
pdTk udTk ydTk pTk uTk

]T
represents the past

and current information at time instant k, where pdk :=[
pTk−d · · · pTk−1

]T
denotes the past scheduling trajectory,

and udk and ydk are defined similarly. Furthermore, x(2) is an
estimator inspired by

xk =

(
d∏
i=1

Ã(pk−i)

)
xk−d︸ ︷︷ ︸

Xd
p (k)

+Rdp(k)udk + Vdp (k)ydk,

1We use identical notations for random variables and samples, which can
be inferred from the context.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 02,2020 at 15:51:38 UTC from IEEE Xplore.  Restrictions apply. 



2475-1456 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2020.3005429, IEEE Control
Systems Letters

as derived in [2] while x(1) is by the recurrent equation of
states. Based on Lemma 3.1 in [2], d ≥ nx. A larger value
of d indicates using more information but also increases com-
putational cost. In experiments, d is determined using cross
validation. Finally, fDi

, i = Ã, B̃,K,C,D, x are represented
by fully-connected ANNs to approximate true matrix functions
and states.

The outcome of SIME is a point estimate of matrix func-
tions, i.e., a set of w, from the perspective of parameter estima-
tion. Minimizing mean squared error (MSE) is equivalent to
maximizing the likelihood of data by viewing p(y|p, z, u;w)
as a Gaussian distribution. Moreover, maximum likelihood
estimation can be seen as a special case of the maximum
a posteriori (MAP) estimation that assumes a uniform prior
distribution of the parameters. Furthermore, by using `2 regu-
larization with respect to w, we can obtain a MAP estimation
of w with a Gaussian prior, which can be seen from

max
w

log p(w|D) = max
w

(
log p(D|w) + log p(w)

)
= max

w

(
log p(D|w) + ‖w‖22

)
.

This paper aims to estimate p(w|D) instead of one set of w∗

that minimizes the expected loss.

III. BAYESIAN NEURAL NETWORK (BNN)

In this section, we first introduce the necessary tools that
enable ANNs to do variational inference by backpropagation,
which results in a DenseVariational layer [13], a key compo-
nent of BNN. Then, we discuss how to combine DenseVaria-
tional layer with SIME for LPV-SS model identification.

A. Variational Inference in ANNs

First, we consider the forward-pass and backward-pass in
an ANN training iteration separately. For the forward pass,
cost function (6) is evaluated. As q(w; θ) cannot be expressed
in closed form and integral operation is prohibitive in ANN,
we estimate (6) by

1

N

N∑
i=1

[
log q(w(i); θ)− log p(w(i))− log p(D|w(i))

]
(11)

where {w(i)}Ni=1 are i.i.d. samples drawn from the parameter-
ized posterior q(w; θ). For the backward pass, gradients of (6)
are required for optimization. However, when computing the
gradient of the first term in (6)

5θEq(w;θ) [log q(w; θ)] =

∫
w

5θ log q(w; θ)5θ q(w; θ)dw

+ Eq(w;θ) [5θ log q(w; θ)] , (12)

the first term in (12) is not an expectation, which impedes
the estimation of the gradients using Monte Carlo methods
and hence the backpropagation of a training iteration. To
tackle this problem, a reparameterization trick is employed.
In particular, a sample ε is drawn from a known distribution
and then transformed by a deterministic function t(θ, ε) for
which a gradient can be computed. The known distribution
and transform function determine q(w; θ). For example, if

ε ∼ N (0, I) and t = µ + σ
⊙
ε where

⊙
denotes element-

wise multiplication, then q(w;µ, σ) is Gaussian. This repa-
rameterization trick provides an unbiased gradient estimation
of (6) with respect to θ, as shown by Proposition 1 in [13].
Additionally, the variance of yk can be decomposed as

var(yk) ≈ σ2 +
1

N

N∑
i=1

ŷk(x;w(i))Tŷk(x;w(i))

−

(
1

N

N∑
i=1

ŷk(x;w(i))

)T(
1

N

N∑
i=1

ŷk(x;w(i))

)
, (13)

where x denotes all the inputs to the neural networks and

ŷk(x;wi) =
1

N

N∑
i=1

fDC
(pk)×(

fDVÃ
(pk−1;w(i)) · fDx

(zk−1) + fDB
(pk−1)uk−1

)
in the context of LPV-SS model identification using BNN
and SIME2. The third term in (11), named the negative log-
likelihood loss, can be used to quantify aleatoric uncertainty σ
in (13). For example, when aleatoric uncertainty is assumed to
be white noise, then p(D|w(i)) ∼ N (µa, σ

2
a), where µa and σ2

a

can be learned from data. Moreover, heteroscedastic aleatoric
uncertainty can be expressed using a parameterized func-
tion of inputs to represent σa [8]. However, simultaneously
quantifying epistemic uncertainty and aleatoric uncertainty
can increase the difficulty of inference and cause over-fitting
problem. Decomposition of uncertainties is required [16],
which is beyond the scope of this paper and will be examined
in a future work.

Another advantage of using Monte Carlo method is that
we can use arbitrary priors with/without tractable marginal
distributions. In Bayesian methods, priors encode the infor-
mation known before any evidence is presented and provide a
means for stabilizing inferences in complex, high-dimensional
problems [17]. More importantly, priors can affect the param-
eterized posterior and thus the predictive posterior [18] by the
KL divergence loss (6). On prior selection, there are many
schools of thoughts, such as informative, weakly informative
and noninformative priors. Providing a prior for each weight
to constitute a meaningful prior of the represented function
by ANNs is intractable. Using a trainable prior is possible but
criticized for employing data twice. Instead, the scale mixture
of two Gaussian densities

p(w) =
∏
j

πN (wj |0, σ2
1) + (1− π)N (wj |0, σ2

2), (14)

was proposed in [13] to avoid the need for prior parameter
optimization based upon training data. This prior can represent
both a heavy tail by a large σ1 and concentration by a small
σ2.

Combining the components described above, a
DenseVariational layer is composed of priors p(wj),
parameterized posteriors p(wj ; θ) and estimated
Eq(wj ;θ) [log q(wj ; θ)− log p(wj)] which are added to
the cost function of the ANNs (see Figure 1). Here, we use

2We use subscript DV to distinguish BNNs composed of DenseVariational
layers from ANNs composed of Dense layers.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 02,2020 at 15:51:38 UTC from IEEE Xplore.  Restrictions apply. 



2475-1456 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2020.3005429, IEEE Control
Systems Letters

Fig. 1: Schematic diagram of DenseVariational layer, where
µw, σw, µb and σb are trainable parameters while Dense layers
only have w and b. Note that w(i) and b(i) can be seen
as samples from posterior distributions. All parameters are
initialized according to priors.

t = µ + σ
⊙
ε as the transform function to parameterize

posteriors and attribute the expressiveness of the parameterized
posterior of fDVÃ

to the compositions of wj . Compared with
a Dense layer (i.e., a fully-connected layer), two more sets
of parameters (µ, σ) are required along with weights w and
biases b if we use fixed priors. For implementation of the
DenseVariational layer, interested reader is referred to [19],
in which the authors provide Bayesian layers, a module for
neural network uncertainty, to expedite the experimentation
with neural network uncertainty.

To predict outputs using the trained BNN, samples are
drawn from the posteriors of weights and used to compute the
output value of the network, which is equivalent to predicting
outputs using neural networks drawn from the selected hypo-
thetical ensemble. Statistics such as the mean and standard
deviation can be computed using the predictions. The number
of samples is determined to guarantee a stable estimation.
Monte Carlo methods enable Bayesian inference for ANNs
but also pose challenges to the broad application of BNNs,
such as the high computational cost and convergence failure
[20]. In the next subsection, we will tackle these challenges
in the context of LPV-SS model identification problem.

B. BNN in LPV-SS Model Identification

In this section, we discuss techniques that facilitate the
training of BNNs for quantifying uncertainty in LPV-SS model
identification.

This work aims to quantify uncertainties specifically in
matrix functions. If a single DenseVariational layer with a
linear activation function is used to represent a matrix function
(e.g., fDVÃ

), then, the model degrades to be a Gaussian
Process and fDVÃ

|D follows Gaussian distribution as wj |D
are independently distributed and follow Gaussian distribution.
However, if we use multiple DenseVariational layers with
non-linear activation functions, the explicit analytical form of
q(fDVÃ

|D) is intractable while Monte Carlo sampling can be
used to estimate the variance of fDVÃ

|D and thus the variance
of ŷ.

1) Trade-off between bias and variance: As variational
inference is done layer-wise, it is straightforward to replace
all fDi with fDVi . However, such replacement significantly
increases model complexity and thus the probability of arriving
at bad local minima. Instead, a more reasonable approach is

Fig. 2: Schematic diagram of the proposed transfer learning
approach.

to only replace fDÃ
with fDVÃ

. From the perspective of LPV
modeling, uncertainty in Ã(pk) has a larger impact on the
system description than other matrix functions especially when
states xk are unknown and estimated from inputs/outputs data.
Moreover, SIME in [5] uses the consensus of two estimators of
one state to facilitate the state and matrix function estimation.
Using DenseVariational layers for both estimators can cause
instability of training and even failure of convergence.

2) Transfer learning by fine-tuning: Generally, Bayesian
models cannot achieve an accuracy as high as that of a
deterministic model given a dataset. A question arises here
that how to quantify uncertainty of the deterministic model.
As SIME and BNN can share the same ANN structures, one
can transfer parameters (w∗SIME , b

∗
SIME) of a trained SIME

to the corresponding BNN, fix those parameters in fDVÃ
and

train the parameters related to variance evaluation (i.e., σw and
σb) and other parameters (see Figure 2). In particular, when
initializing the BNN, we replace the randomly initialized µw0

and µb0 by (w∗SIME , b
∗
SIME). Moreover, when training the

BNN, we can choose to fix or fine-tune µw and µb while σw
and σb are always trainable for capturing uncertainty. This
transfer learning technique, named fine-tuning, can accelerate
the training process by providing a good initialization and
achieve better accuracy compared to training from the scratch.
In addition, all the parameters can be fine-tuned after param-
eter transfer.

IV. EXPERIMENTAL RESULTS AND VALIDATION

In this section, we use data collected from a high fidelity
simulation model of a reactivity controlled compression igni-
tion (RCCI) engine to validate our proposed method.

1) Data generation: The data consists of measurements
of the control inputs, scheduling variable, and measurement
outputs which are as follows: U = [SOI FQ]T, p =
PR, Y = [CA50 IMEP ]T, where SOI is start of injection;
FQ is fuel quantity; PR is premixed ratio of dual fuel;
CA50 is the engine combustion phasing; IMEP is indicated
mean effective pressure of the engine. The states of the model
are assumed to be not available for measurement. Figure 3
shows the signals used to generate an input/output dataset.
Additionally, a normally distributed measurement noise is
added to the outputs to maintain SNR = 20 db. The noisy
dataset contains 926 operating points and is split into a training
set and a testing set with a splitting ratio of 65%/35%.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 02,2020 at 15:51:38 UTC from IEEE Xplore.  Restrictions apply. 



2475-1456 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2020.3005429, IEEE Control
Systems Letters

(a) Inputs to the engine.

(b) Outputs from the engine.

Fig. 3: Input/output dataset used for LPV-SS model learning
of RCCI engine. The blue line in (b) shows the true outputs
and red dashed line shows the noisy outputs.

2) Technical details of BNN: For all the DenseVariational
layers we used in the experiments, the hyperparameters in the
priors (14) are set as π = 0.5, σ2

1 = 1.5 and σ2
2 = 0.1 for

simplicity, although each layer can have respective hyperpa-
rameter settings. We used a BNN with three DenseVariational
layers to represent fDVÃ

. For fi, i = B̃, C,K, x, as discussed
in Section III-B1, ANNs with Dense layers are adopted and
the number of Dense layers are considered to be 3, 4, 3, and 5,
respectively. Moreover, all the layers use Exponential Linear
Units (ELU) as activation function except for the last layer
of each neural network3. Additionally, we implemented the
model with all the matrix functions represented by BNN for
comparison. var(D|w) is assumed to be 1.

For model optimization, we use Adam optimizer in Keras
[21]. The learning rate of Adam is set to be 0.0001 and decay
to be 1e − 6. All the other parameters of Adam are set as
default. We trained the complete model for 3, 000 epochs
with batch size of 1. Larger batch size can be used but may
slightly lower performance for regression, as the samples in
one batch can have different scheduling variables. Using cross-
validation, the weights of three loss functions were determined
to be 0.1, 1 and 1. Additionally, the experiments are conducted
on a computer with a 3.6 GHz CPU and 8 GB RAM.

3) Results and discussion: First, we consider using the
following model

x̂
(1)
k+1 = fDVA

(pk)x̂
(2)
k + fDB

(pk)uk,

ŷk = fDC
(pk)x̂

(2)
k , ŷk+1 = fDC

(pk+1)x̂
(1)
k+1,

(15)

to fit data. The idea is to further reduce model complexity by
removing fDk

in (8). The results are shown in Figure 4. The

3We refer to SIME proposed in [5] to design the model.

Fig. 4: The area between the two dashed red lines is within
2 estimated standard deviations of estimated mean (the blue
line), which is about 95% confidence interval. It is noted that
BFRCA50 = 86.65% and BFRIMEP = 95.90% using the
estimated mean as predictions for outputs.

Fig. 5: BFRIMEP and average of σ̂IMEP (in KPa).

Best Fit Ratio (BFR) is calculated according to

BFR(θ) = 100% ·max
k

(
1− ‖yk − ŷk(θ)‖2

‖yk − ȳ‖2
, 0

)
, (16)

where ȳ denotes the mean value. Only 3.4% (11 out of
324) of outputs in the testing set are outside 2σ̂CA50 of
ŷCA50, which shows the proposed method has a very good
generalization performance. For IMEP, as BFRIMEP is pretty
high, σ̂IMEP is close to zero and of little significance for
control design purposes. Figure 5 shows that the average of
estimated standard deviation decreases and the BFR of IMEP
increases as the epoch increases, which shows that optimizing
the BNN can lead to a better model with higher confidence.
Estimating statistics of fDVÃ

is similar to estimating the
outputs using sampling, as fDVÃ

is the output of a BNN.
Moreover, we tested a few varieties of Model (15) and

the results are summarized in Table I. Model-α replaces
fDi

, i = B̃, C in (15) with fDVi
, i = B,C while Model-β

adds fDK
to Model (15). Model-γ further transferred and

fine-tuned the parameters from the solution to Problem (7)
to Model-β. As Monte Carlo sampling is adopted to estimate
mean and variance, BFR and σ̂ can vary slightly with each
run of evaluation process which samples 500 times. For each
model, we run evaluation for 10 times and use the average of
10 evaluation results as the final performance measure of the
identified model. Comparing the results of Model-α and Model
(15) shows that using BNNs to represent all matrix functions
resulted in a worse nominal model with larger variance,
which confirms our discussion in Section III-B1. Additionally,
Model-α costs 14 times more training time than Model (15).
Moreover, Model-β considers innovation-type noise but shows

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 02,2020 at 15:51:38 UTC from IEEE Xplore.  Restrictions apply. 



2475-1456 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2020.3005429, IEEE Control
Systems Letters

Fig. 6: Estimated mean and 95% confidence interval of
fDVÃ

(p) using transfer learning without tuning µ. The (i, j)-th
subplot shows function Ã[i, j](p).

TABLE I: Results of model varieties

Model (15) Model-α Model-β Model-γ
BFRCA50 86.65% 76.27% 79.17% 87.46%

Avg. of σ̂CA50 0.4011 0.5283 0.5347 0.3735
BFRIMEP 95.90% 93.80% 92.07% 97.38%

Avg. of σ̂IMEP 0.7078 2.6994 0.5236 0.7888

no advantage over Model (15), which indicates that complexity
is not necessarily positively correlated with performance.
However, by using transfer learning approach discussed in
Section III-B2, Model-γ shows a significant enhancement over
Model-β and beats Model (15) by a narrow margin. Figure
6 shows the estimated mean and 95% confidence interval of
fDVÃ

(p) using transfer learning without tuning µ of all the
weights. The estimated mean fDVA

is almost identical to the
result in [5], which shows that Monte Carlo sampling with
500 samples is sufficient to estimate the mean of fDVA

.
In addition, on the noisy dataset, deterministic SIME model

achieves 70.05% BFR for CA50 and 96.32% for IMEP using
the reported hyperparameters in [5]. This result, compared
with Model (15), shows that BNNs are better at handling noise.
The BFR of CA50 can be increased to 83.83% and IMEP to
97.33% by fine-tuning the pre-trained model on the dataset
shown in Figure 3 while Model-γ gives similar accuracy with
uncertainty quantification.

V. CONCLUDING REMARKS

In this paper, a BNN approach was proposed to quan-
tify uncertainties in identified LPV-SS models only using
inputs/outputs data. Specifically, a DenseVariational layer was
introduced to do the variational inference layer-wise. Each
weight of this layer was considered to be a random vari-
able with a scale mixture Gaussian densities as the prior
and a parameterized Gaussian density as the posterior. By
minimizing the KL divergence between parameterized pos-
teriors and the true posteriors, and the MSE between the
predicted outputs and the true outputs, the proposed method
was shown to provide a robust nominal model with uncertainty
quantification. Experiments on a high-fidelity RCCI engine
model validated the effectiveness of the proposed method. In
particular, the identified LPV-SS model of the engine could

achieve a comparative BFR against deterministic SIME model
on the data without noise while it was shown to be more robust
to noise at different SNRs.

REFERENCES

[1] P. B. Cox, “Towards efficient identification of linear parameter-varying
state-space models,” Ph.D. dissertation, Ph. D. dissertation, Eindhoven
University of Technology, 2018.

[2] S. Z. Rizvi, J. Mohammadpour Velni, F. Abbasi, R. Tóth, and N. Me-
skin, “State-space LPV model identification using kernelized machine
learning,” Automatica, vol. 88, pp. 38–47, 2018.

[3] P. B. Cox, R. Tóth, and M. Petreczky, “Towards efficient maximum
likelihood estimation of LPV-SS models,” Automatica, vol. 97, pp. 392–
403, 2018.

[4] A. Wills and B. Ninness, “System identification of linear parameter
varying state-space models,” in Linear parameter-varying system iden-
tification: new developments and trends. World Scientific, 2012, pp.
295–315.

[5] Y. Bao, J. Mohammadpour Velni, A. Basina, and M. Shahbakhti,
“Identification of state-space linear parameter-varying models using
artificial neural networks,” in 21st IFAC World Congress (accepted and
to appear). IFAC, 2020.

[6] H. G. Matthies, “Quantifying uncertainty: Modern computational repre-
sentation of probability and applications,” in Extreme Man-Made and
Natural Hazards in Dynamics of Structures, A. Ibrahimbegovic and
I. Kozar, Eds. Springer Netherlands, 2007, pp. 105–135.

[7] Q. Cheng, M. Cannon, B. Kouvaritakis, and M. Evans, “Stochastic MPC
for systems with both multiplicative and additive disturbances,” IFAC
Proceedings Volumes, vol. 47, no. 3, pp. 2291–2296, 2014.

[8] A. Kendall and Y. Gal, “What uncertainties do we need in Bayesian
deep learning for computer vision?” in Advances in neural information
processing systems, 2017, pp. 5574–5584.

[9] A. Brusaferri, M. Matteucci, P. Portolani, and S. Spinelli, “Nonlin-
ear system identification using a recurrent network in a Bayesian
framework,” in 2019 IEEE 17th International Conference on Industrial
Informatics (INDIN), vol. 1. IEEE, 2019, pp. 319–324.

[10] A. Golabi, N. Meskin, R. Tóth, and J. Mohammadpour, “A Bayesian
approach for LPV model identification and its application to complex
processes,” IEEE Transactions on Control Systems Technology, vol. 25,
no. 6, pp. 2160–2167, 2017.

[11] C. O. Becker and V. M. Preciado, “Variational inference for linear sys-
tems with latent parameter space,” in 2019 American Control Conference
(ACC). IEEE, 2019, pp. 5662–5667.

[12] M. Karl, M. Soelch, J. Bayer, and P. van der Smagt, “Deep variational
bayes filters: Unsupervised learning of state space models from raw
data,” 2016.

[13] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural networks,” 2015.

[14] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” 2013.
[15] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:

A review for statisticians,” Journal of the American Statistical
Association, vol. 112, no. 518, p. 859–877, Feb 2017. [Online].
Available: http://dx.doi.org/10.1080/01621459.2017.1285773

[16] S. Depeweg, J. M. Hernández-Lobato, F. Doshi-Velez, and S. Udluft,
“Decomposition of uncertainty in Bayesian deep learning for efficient
and risk-sensitive learning,” arXiv preprint arXiv:1710.07283, 2017.

[17] A. Gelman, D. Simpson, and M. Betancourt, “The prior can often only
be understood in the context of the likelihood,” Entropy, vol. 19, no. 10,
p. 555, 2017.

[18] H. K. Lee, “Neural networks and default priors,” in Proceedings of the
American Statistical Association, 2005.

[19] D. Tran, M. W. Dusenberry, M. van der Wilk, and
D. Hafner, “Bayesian layers: A module for neural network
uncertainty,” CoRR, vol. abs/1812.03973, 2018. [Online]. Available:
http://arxiv.org/abs/1812.03973

[20] T. Papamarkou, J. Hinkle, M. T. Young, and D. Womble, “Challenges in
Bayesian inference via Markov chain Monte Carlo for neural networks,”
2019.

[21] F. Chollet et al., “Keras,” https://keras.io, 2015.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 02,2020 at 15:51:38 UTC from IEEE Xplore.  Restrictions apply. 


