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Abstract— Reactivity controlled compression ignition (RCCI)
is a promising low temperature combustion (LTC) regime
that offers lower nitrogen oxides (NOx), soot and particulate
matter (PM) emissions along with higher combustion efficiency
compared to conventional diesel engines. It is critical to control
maximum pressure rise rate (MPRR) in RCCI engines in order
to safely and efficiently operate at varying engine loads. In
this paper, a data-driven modeling (DDM) approach using
support vector machines (SVM) is adapted to develop a linear
parameter-varying (LPV) representation of MPRR for RCCI
combustion. This LPV representation is then used in the design
of a model predictive controller (MPC) to control crank angle
of 50% of fuel mass fraction burn (CA50) and indicated mean
effective pressure (IMEP) while limiting the MPRR. The results
show that the LPV-MPC control strategy can track CA50
and IMEP with mean tracking errors of 0.9 CAD and 4.7
kPa, respectively, while limiting the MPRR to the maximum
allowable value of 5.8 bar/CAD.

I. INTRODUCTION

RCCI combustion is an LTC regime that uses a blend
of two fuels with different reactivity levels to control the
combustion inside the combustion chamber. The low reac-
tivity fuel is injected via the port fuel injectors (PFI) while
the high reactivity fuel is injected via the direct injectors
(DI) which forms reactivity gradient inside the combustion
chamber. Ignition in RCCI occurs at high reactive regions
and expands to low reactive regions inside the combus-
tion chamber. This form of combustion initiation makes
it difficult to control RCCI combustion and reach its low
emission and high thermal efficiency benefits while avoiding
its drawbacks including high carbon monoxide (CO) and
unburned hydrocarbon emissions and high cyclic variability
(COVIMEP ) at certain operating regions [1]. Moreover, it
is known that RCCI operation is difficult at high loads due
to premixed form of RCCI combustion which results in
auto-ignition at multiple regions inside combustion chamber
and consequently high heat release rates. This limits RCCI
operation at higher loads and results in high combustion
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noise which is linked with high maximum pressure rise rate
(MPRR) and is characterized by high ringing intensity (RI).
Allowable MPRR in RCCI engines changes from one engine
to another and depends on engine applications (e.g., heavy
duty vs light duty applications). It is necessary to control
engine load (IMEP) and MPRR to allow RCCI operation at
varying engine load conditions.

Researchers have conducted studies to devise strategies to
expand high load limitations in RCCI engines by finding
effective parameters to reduce MPRR. Zoldak et. al [2]
performed a computational fluid dynamics (CFD) study and
concluded that in-cylinder reactivity gradient is enough to
reduce MPRR in RCCI engines. However, high reactivity
gradient may cause incomplete combustion [3]. In another
study by Hanson et. al [4], it was found that MPRR in
RCCI engines is dependent on temperature and pressure at
intake valve closing (IVC), port fuel injected fuel mass, direct
injected fuel mass, exhaust gas re-circulation (EGR) rate and
in-cylinder temperature.

Zoldak et. al [2] studied the effects of double fuel injection
strategy on MPRR thoroughly. Their research showed that
retarding second injection reduces MPRR in RCCI engines.
These studies provided strategies to control MPRR in RCCI
engines which would help to expand high load operation in
RCCI engines. However, all these studies were conducted
under steady state engine operations. The developed MPRR
controllers for RCCI engines only control MPRR passively
by avoiding high MPRR regions of operation. MPRR in
RCCI engines can be actively controlled by implementing
a closed-loop control strategy. There are limited studies on
closed-loop control of RCCI engines in literature. The prior
studies can broadly be split into two categories, simulation
studies and experimental studies. Simulation studies used
validated RCCI engine model to verify designed RCCI con-
troller performance while experimental studies implemented
the developed RCCI controller on a real RCCI engine.

A study was undertaken by Kannan [5] and later by Arora
et al. [6] to understand the effect of different control knobs
on the combustion of an RCCI engine and to develop a PI
controller to adjust CA50 and IMEP and to enable mode
switching between RCCI and SI combustion. The implemen-
tation showed that there is a high cyclic variability which has
to be addressed for smooth operation and consistent control.
Kondipati et al. [7] further explored different control knobs
for the control of CA50. A sensitivity map was generated
for CA50 versus start of injection (SOI) and Premixed Ratio



(PR). This map was proposed for selecting SOI or PR to
control CA50 depending on the operating condition. Some
model-based controllers have been developed in the recent
years for RCCI engines. Sadabadi et al. [8] created a control-
oriented model (COM) based on physical modeling which
was validated with an experimentally verified CFD model.
This COM was used as the plant model for an RCCI engine
to build a linear quadratic regulator (LQR) to control CA50
with PR. This COM was later augmented with a model
for fuel transport during transient operations developed by
Raut et al. [10] based on the work of Shahbkahti et al. [9].
The augmented COM was then used to develop an MPC to
control CA50 and IMEP and was validated experimentally
on an RCCI engine. Feedforward values from experimental
data were used to keep the COVIMEP below 5% and limit
cyclic variability.

Numerical analysis has been also used to develop lin-
earized models for RCCI control. Indrajauna et al. [11]
created a multi-zone combustion model that was capable
of predicting the pressure trace. This model was then ex-
perimentally validated and used for developing a linearized
model for controlling ignition delay and IMEP. However,
the implemented controllers only control CA50 and IMEP
but not pressure rise rate.

The development of physics based combustion controller
takes considerable amount of time and effort. An alternative
approach is to utilize DDM to develop RCCI models. In
particular, DDM methods that can generate dynamic state-
space models that can be used for controller design are of
interest. Khoshbakht Irdmousa et al. [12] presented a support
vector machine (SVM) based DDM approach to develop an
LPV state space representation of an RCCI engine that was
used by an MPC to control combustion phasing of an RCCI
engine. Building on our prior work [12] this work generates
an LPV representation of an RCCI engine that predicts the
MPRR and uses it to develop an MPC to actively limit the
MPRR in RCCI engines.

To the best of author’s knowledge, this paper presents
the first study undertaken to develop a model-based RCCI
controller to adjust MPRR, while controlling IMEP and
CA50. The contributions of this work are two folds. First,
it creates the first data-driven LPV model for predicting
MPRR in RCCI engines. Second, it designs a new closed-
loop control framework that controls cycle-by-cycle MPRR,
IMEP and CA50 for RCCI engine transient operations.

This paper is organized as follows. The dynamic RCCI
model is explained in Section II. Next, generation of LPV
state-space model is discussed in Section III. At Section IV,
development of model predictive controller and results will
be presented. Finally, summary of obtained knowledge from
this research is presented in Section V.

II. CYCLE BY CYCLE PHYSICS BASED DYNAMIC RCCI
ENGINE MODEL

This work uses a cycle by cycle RCCI engine model from
our prior work [13] which was validated at a wide range
of steady-state and transient conditions against experimental

data. The model is capable of predicting CA50, IMEP,
MPRR, Psoc, Tsoc along with other parameters of interest at
every engine cycle. The model is parametrized for a 2-liter
RCCI engine. Details about engine and experimental setup
are found in reference [10].

A sample transient validation of the RCCI dynamic model
for predicting cycle by cycle MPRR is shown in Fig. 1. The
results in Fig. 1 show that the RCCI model predicts MPRR
with an average error of 0.6 bar/CAD. The data from this
experimentally validated RCCI model is used in this study
to illustrate the development of an SVM based data-driven
model for predicting and control of MPRR in RCCI engines.

Fig. 1. Transient validation of the dynamic physics-based MPRR model
[13]. Engine speed = 1000 RPM, Tin = 60◦C, FQ = 22 mg/cycle, and
SOI = 40 CAD bTDC.

III. LINEAR PARAMETER-VARYING MODEL
DEVELOPMENT

A. Data Driven Modeling (DDM)

An SVM based DDM is adapted in this work from Rizvi
et al. [14] to develop state-space LPV representation for an
RCCI engine. Eq. (1) and (2) present a discrete time LPV
model:

xk+1 = A(pk)xk +B(pk)uk +K(pk)ek, (1)

yk = C(pk)xk + ek, (2)

where x, y and u are the states, measurable outputs, and the
inputs to the plant, respectively. p represents the scheduling
parameter, e represents stochastic white noise and k is the
discrete time step. The matrices A(pk), B(pk), C(pk) and
K(pk) are the state-space matrices of the plant as a function
of the scheduling parameter p. The Eq. (1) and Eq. (2) can
be rewritten as shown in Eq. (3) and (4):

xk+1 = (A(pk)−K(pk)C(pk))︸ ︷︷ ︸
Ã(pk)

xk +B(pk)uk +K(pk)yk,

(3)
yk = C(pk)xk + ek. (4)

In this work, least-squared SVM (LS-SVM) is used to
compute Ã(pk), B(pk) and C(pk) matrices based on training
data [xk, uk, pk, yk]Nk=1. Matrices Ã(pk), B(pk), C(pk) and



K(pk) can be determined using Eq. (5) to (8):

Ã(pk) = W1Φ1(pk), (5)

B(pk) = W2Φ2(pk), (6)

K(pk) = W3Φ3(pk), (7)

C(pk) = W4Φ4(pk), (8)

where W1,W2,W3 and W4 are support vector weighting
matrices and Φ1,Φ2,Φ3 and Φ4 are feature maps. All of
these parameters are unknown and need to be determined.
Eq. (3) and (4) can be rewritten as shown in Eq. (9) and
(10):

xk+1 = W1Φ1(pk)xk +W2Φ2(pk)uk +W3Φ3(pk)yk, (9)

yk = W4Φ4(pk)xk. (10)

The least squares optimization method proposed by Suykens
et. al [15] is used to compute the support vector weighing
matrices using the cost function in Eq. (11):

J =
1

2

3∑
i=1

||Wi||2F +
1

2

N∑
k=1

ETk ΓEk, (11)

where Γ is a diagonal matrix of the weighing factors for
the estimation error known as the regularization matrix,
and ||.||F is the Frobenius norm. The method of lagrange
multipliers is used for minimizing the cost function shown
in Eq. (11) as represented in Eq. (12):

L(W1,W2,W3,W4, α, β, e) =

J −
N∑
j=1

αTj {W1Φ1(pj)xj +W2Φ2(pj)uj+

W3Φ3(pj)yj − xj+1} −
N∑
j=1

βTj {W4Φ4(pj)xj

− yj+1},

(12)

where j is discrete time and αj and βj are the lagrange
multipliers.

yk =
N∑
j=1

βjx
T
j ΦT4 (pj)︸ ︷︷ ︸
W4

Φ4(pk)xk + Γ−1βk︸ ︷︷ ︸
ek

. (13)

xk+1 =
N∑
j=1

αjx
T
j ΦT1 (pj)︸ ︷︷ ︸
W1

Φ1(pk)xk

+
N∑
j=1

αju
T
j ΦT2 (pj)︸ ︷︷ ︸
W2

Φ2(pk)uk

+
N∑
j=1

αjy
T
j ΦT3 (pj)︸ ︷︷ ︸
W3

Φ3(pk)yk

, (14)

The global optimum of the lagrangian is found when the
derivative is equal to zero, as it has a convex shape. The
solution of the global optimum of lagrangian can be used to
calculate W1,W2,W3 and W4. Using that, Eq. (9) and (10)
can be rewritten as shown in Eq. (13) and (14). The inner
product ΦT4 (pj)W4Φ4(pk) can be replaced with a kernel
matrix as shown in Eq. (15) and (16):

[Ω]j,k =
3∑
i=1

zTi (j)k̄i(pj , pk)zi(k), (15)

[Ξ]j,k = xTj k̄
4(pj , pk)xk, (16)

where z1(k) = xk, z2(k) = uk and z3(k) = yk. In this work,
a Gaussian kernel is used to perform kernel trick which is
defined in Eq. (17):

k̄i(pj , pk) = exp(−||pj − pk||
2
2

2σ2
i

), (17)

where σi is the standard deviation for the Gaussian function
and ||.||2 is the l2 norm. Using the Eq. (15) and (16), state
space form in Eq. (14) and (13) can be rewritten as Eq. (18)
and (19):

Xk+1 = αΩ, (18)

Y = βΞ + Γ−1β, (19)

where Xk+1 and Y are the states and the outputs used in
the training process. Thus, α and β can be solved using the
following equations:

α = Xk+1Ω−1, (20)

vec(β) = (IN
⊗

Γ−1 + ΞT
⊗

Iny )−1vec(Y ), (21)

where
⊗

represents the Kronecker product and vec(.) rep-
resents vectorization function. Iny

and IN are identity matri-
ces. The classical Sylvester equation can be used to solve Eq.
(21). Once α and β have been computed, Ã(.), B(.),K(.)
and C(.) are computed using the following equations:

Ã(·) = W1Φ1(·) =
N∑
k=1

αkx
T
k k̄

1(pk, ·), (22)

B(·) = W2Φ2(·) =
N∑
k=1

αku
T
k k̄

2(pk, ·), (23)

K(·) = W3Φ3(·) =
N∑
k=1

αky
T
k k̄

3(pk, ·), (24)

C(·) = W4Φ4(·) =
N∑
k=1

βkx
T
k k̄

3(pk, ·), (25)

B. MPRR Model Identification

The RCCI dynamic model from Section II is used to gen-
erate data to train the SVM based identification model. The
methodology explained in Section III-A is used to develop
a state-space representation for RCCI combustion using data
from the RCCI dynamic model. The data necessary for the



LPV identification has to be collected over the operating
range of interest and should capture the dynamic behavior
of the engine. The RCCI engine model is excited with a
combination of inputs (Fuel Quantity (FQ), SOI and PR), and
the output response (CA50, Psoc, Tsoc, IMEP and MPRR)
of the model is recorded. The recorded output of the RCCI
engine model is then used to identify the LPV representation.

The state-space representation for RCCI combustion is
shown below in Eq. (26) to (29):

X =
[
CA50 MPRR Tsoc Psoc IMEP

]T
, (26)

U =
[
SOI FQ

]T
, (27)

p =
[
PR
]
, (28)

Y =
[
CA50 MPRR IMEP

]T
. (29)

The RCCI engine model is excited with inputs as shown
in Fig. 2. The output response of the RCCI engine model is
recorded as shown in Fig. 3. The combination of the input
and output data generated from the RCCI engine model is
used to train the data-driven SVM based LPV identification
algorithm.

Fig. 2. Inputs to the RCCI dynamic model at N = 1000 RPM, Tin = 60
◦C

Simulation data at a total of 926 operating points have
been collected from the RCCI engine model. 65% of the
data is used for training required in the SVM based LPV
identification algorithm, while the remaining 35% of data
is used for testing the identified state-space model. Fig. 4
presents validation of the identified LPV state-space models.

It can be observed that the SVM based state-space model
can predict the MPRR with 0.4 bar/CAD mean error. The
state-space matrix A(pk) is plotted against the scheduling
parameter, PR in Fig. 5. It can be seen that the relationship
between the state-space matrices and the scheduling param-
eter is highly non-linear. This shows the advantage of using
an LPV representation for the plant as it allows the state-
space model to capture the plant’s behavior accurately at

Fig. 3. State outputs from the RCCI dynamic model at N = 1000 RPM,
Tin = 60◦ C
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Fig. 4. Validation of data driven SVM based LPV identification at N =
1000 RPM, Tin = 60 ◦C
every point of the scheduling parameter and not just a few
points of linearization.

IV. DESIGN AND IMPLEMENTATION

A. Controller Design

An MPC framework is employed to adapt a linear time
varying (LTV) representation of the RCCI engine using the
state-space representation, as shown in Eq. (30) and Eq. (31):

X(k + 1) = A(p(k)).X(k) +B(p(k)).U(k), (30)

Y (k) = C(p(k)).X(k) +D(p(k)).U(k), (31)

where k denotes the control time step and p(k) denotes the
scheduling parameter as a function of the time step.

Fig. 6 depicts the schematic of the designed LPV-MPC
controller. The SVM-based model learning approach gener-
ates LPV state-space representation of the plant based on PR
as a scheduling parameter. Then, MPC uses the developed
state-space representations to compute optimal control input.
This state-space representation is updated and fed into the
MPC at each time step which calculates the optimal control
input. The controller solves a quadratic programming (QP)
at each time step to optimize the manipulated variable ad-
justments. It solves the QP subject to the constraints defined



Fig. 5. Variation of A(pk) matrix elements in the LPV setup as a function
of the scheduling parameter (PR)

Fig. 6. Schematic of the designed LPV-MPC controller for the RCCI
engine

on the inputs and the outputs. The optimization problem is
only solved for the prediction horizon of 5 engine cycles.
During each optimization, only a fixed number of control
steps and control horizon are optimized. Invariably, the size
of the control and prediction horizons affects the run time
performance of the controller. The cost function used for the
QP is shown in Eq. (32):

J(zk) = Jy(zk) + J∆u(zk) + Jε(zk), (32)

where Jy(zk) is the cost function for reference tracking,
J∆u(zk) is the cost function for manipulated variable rate
of change and Jε(zk) is the cost function for constraint
violation. The cost functions are shown in the following
equations:

Jy(zk) =

ny∑
j=1

p∑
i=1

{W y
i,j

Syj
[rj(k+ i|k)− yj(k+ i|k)]

}2

(33)

J∆u(zk) =

nu∑
j=1

p−1∑
i=0

{W∆u
i,j

Suj
[uj(k+ i|k)−uj(k+ i−1|k)]

}2

(34)
Jε(zk) = ρεε

2
k (35)

Where zk is the QP decision variable as shown in Eq. (36), p
is the prediction horizon, ny is the number of output states,
nu is the number of manipulated variables, yj(k+ i|k) is the
predicted value of the jth plant output at the ith prediction
horizon step, rj(k+ i|K) is the reference value for jth plant
output at the ith prediction horizon step, Syj is the scale factor

for jth plant output, W y
i,j is the tuning weight of the jth plant

output at the ith prediction horizon step, Suj is the scale factor
for jth manipulated variable, Wu

i,j is the tuning weight for
jth manipulated variable at the ith prediction horizon step
and ρε is the constraint violation penalty weight.

zTk = [u(k|k)T u(k+1|k)T ...u(k+p−1|k)T εk] (36)

In Eq. (36) εk is the slack variable at control interval k.
The MPC evaluates the specified constraints at every

control step. The following constraints are imposed on the
MPC:
yj,min(i)

Syj
−εkV yj,min(i) ≤ yj(k + i|k)

Syj
≤ yj,max(i)

Syj
+

εkV
y
j,max(i), i = 1 : p, j = 1 : ny

(37)

uj,min(i)

Suj
−εkV uj,min(i) ≤ uj(k + i− 1|k)

Suj
≤ uj,max(i)

Suj
+

εkV
u
j,max(i), i = 1 : p, j = 1 : nu

(38)

∆uj,min(i)

Suj
− εkV ∆u

j,min(i) ≤ ∆uj(k + i− 1|k)

Suj

≤ ∆uj,max(i)

Suj
+ εkV

∆u
j,max(i), i = 1 : p, j = 1 : nu

(39)

where, yj,min(i) and yj,max(i) are the bounds on outputs,
uj,min(i) and uj,max(i) are the bounds on manipulated
variables and ∆uj,min(i) and ∆uj,max(i) are the bounds
on rate of change of manipulated variables.

B. Controller performance

The MPC is designed to track desired CA50 and IMEP
while limiting the MPRR. An MPRR limit of 5.8 bar/CAD is
selected as the constraint based on the experimental studies
[5] on the same engine. A measurement noise based on
experimental data [5] is also added into the CA50, IMEP and
MPRR measurements to test the controller’s performance.
The results of tracking are shown in Fig. 7. The MPC is
able to track the required CA50 and IMEP with mean error
of 0.9 CAD and 4.7 kPa, respectively, while keeping MPRR
below 5.8 bar/CAD.

However, we found out that increasing the reference IMEP
above 6.5 bar results in degradation in tracking performance
of the controller as shown in Fig. 8(a). Although the MPC is
able to restrict the MPRR to 5.8 bar/CAD, the performance
of CA50 is largely affected. This is because the main
control variable for both MPRR and CA50 is SOI. Since,
there is only one manipulated variable for two outputs, the
performance of CA50 tracking, is degraded.

V. CONCLUSIONS

A new control-oriented, data-driven state-space model was
developed in this paper to predict MPRR in RCCI engines.
The new model used an SVM method for representing RCCI
dynamics in an LPV form. The new model was able to pre-
dict the CA50, IMEP, and MPRR with accuracy of 0.7 CAD,
3.3 kPa, and 0.4 bar/CAD, respectively. The LPV model
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Fig. 7. CA50 and IMEP tracking with MPRR limitation

was integrated into an MPC framework to adjust MPRR,
CA50 and IMEP for the RCCI engine. The new structure
allows to cover broad engine load and PR conditions by
smoothly transitioning among LPV model representations.
The new RCCI controller is able to track the CA50 and IMEP
with accuracy of 0.9 CAD and 4.7 kPa, respectively, while
limiting the MPRR to 5.8 bar/CAD for engine loads below
6.5 bar. To cover broad engine load operation, another control
input (e.g., DI fuel split) is required to enable simultaneous
control of MPRR, CA50, and IMEP.

Our future work will include extending the current control
framework by including more control inputs to allow inde-
pendent control of CA50, IMEP while being able to inde-
pendently adjust MPRR and COVIMEP within desired limits.
In addition, the future work will include implementation of
the designed control framework on our engine experimental
setup.
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