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between the analytical solution and the numerical results in the geometrically linear regime indicates
the accuracy of our discrete model. Our simulation can seamlessly handle the nonlinearity from both

geometric and material sides, which is often not amenable to an analytical approach.
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1. Introduction

Rods are structures with length much larger than the width
and thickness. Due to the slenderness of the geometry, this class
of structures often undergo geometrically nonlinear deformation,
as manifested in both natural (e.g. bacterial flagella) [1] and
engineering (ropes, cables, and pipelines) [2] systems. The recent
trend of exploiting large deformation in slender structures to
design and fabricate metamaterials [3] indicates the need for
computationally efficient simulation tools for slender structures.
While an extensive amount of work has been done in modeling
purely elastic rods in both mechanics [4] and computer graph-
ics [5] communities, computational tools for rods with nonlinear
constitutive relations, e.g. hyperelasticity [6], rate-dependent vis-
coelasticity [7,8], and elasto-plasticity [9], are relatively scarce. A
commonly used nonlinear constitutive relation is elasto-plasticity
that manifests itself in both simple materials [10-13] and ad-
vanced structures [14-16]. In this paper, we focus on modeling
the elasto-plastic behavior in rod-like structures.

The first scholarly work on plasticity dates back to at least
1868, when Tresca [17] proposed an assumption that metals
would flow when shear stress exceeds a threshold on basis of
experimental observation. In rod-like structures, the deformation
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can be decomposed into three components — bending, twist-
ing, and stretching. The latter mode is negligible since geomet-
ric slenderness makes stretching energetically expensive. How-
ever, bending and twisting often appear simultaneously to pose
a coupled problem. Prior works on elasto-plastic deformation
of rods typically consider only bending [18,19] or twisting [20-
22]. The few studies that consider combined bending and torsion
restricted themselves to simplified material behavior, e.g. rigid-
plastic [23-28], elastic-perfectly plastic [29-31], and Ramberg-
Osgood stress—strain law [32]. This motivates us to develop a
simulation algorithm for elasto-plastic rods that can account for
combined bending, twisting, and stretching for an infinite number
of loading and unloading cycles.

With the development of computational capability in the past
few decades, Finite Element Method (FEM) [33-36] has become
the preferred means for researchers and engineers in structural
analysis involving elasto-plasticity. However, 3D simulations of
slender rods undergoing bending and torsion with elasto-plastic
constitutive law typically require volumetric mesh of small size.
This can lead to computationally expensive simulations, espe-
cially when combining the nonlinearity from both geometric
and material side. Recently, another type of numerical tools —
Discrete Differential Geometry (DDG)-based methods [37] - are
becoming increasingly popular in the computer graphics com-
munity for the simulation of thin elastic structures, e.g. hair
and clothes, due to computational efficiency and robustness in
handling geometric nonlinearity. The DDG-based approach starts
with discretization of the smooth structure into a mass-spring-
type system, while preserving the key geometric properties of
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actual physical objects [37]. Previous DDG-based methods have
shown surprisingly successful performance in simulating slender
structures, e.g. rods [5,38-41], ribbons [42], plates/shells [43-45],
and gridshells [46]. On the other hand, previous DDG-based nu-
merical frameworks of filamentary rods usually assume that the
structure is in linear elastic regime. Even though a more general
model - rate-dependent viscoelastic constitutive law - has been
considered in a recent study [7], it cannot be directly used for the
investigation of elasto-plastic behavior of rods. Elasto-plasticity
requires discretization of rod cross section such that the boundary
between the elastic and the plastic regimes can be tracked.

Here, we propose a numerical method - Discrete Elasto-Plastic
Rods (DEPR) - that combines a geometrically nonlinear descrip-
tion of a rod following Discrete Elastic Rods (DER) [5,38] method,
with aa increment-based plasticity flow model [9] to simulate
the elasto-plastic behavior of rod-like structures during large
deflection. DER is based on the classical Kirchhoff rod model. The
rod centerline is first discretized into a number of nodes and the
cross-section of each node is later divided into multiple fiber-
like elements. The kinematics of the centerline is formulated in
a manner similar to the DER method and the strain tensor at any
point in the solid body is assumed to be a function of the defor-
mation (bending, twisting, stretching) of the centerline. Next, an
implicit returning mapping algorithm is used to update the stress
tensor of each element on the basis of the increment of strain
tensor — computed from the deformation of the rod centerline
- together with its current von Mises equivalent stress [47,48];
The internal force vector, required by the equations of motion
of rod system, is then computed from the increment of strain
energies. In parallel with numerical investigation, we analytically
obtain the force-displacement relations for some simple cases to
quantitatively check the accuracy of our simulator. A good match
between numerical simulation and analytical results in the linear
phase indicates the correctness of the numerical scheme. While
the analytical solutions do not hold for geometrically nonlinear
deformation, the DDG-based simulation can robustly capture the
nonlinearity from both geometric and material sides. Nonethe-
less, if the rod is undergoing pure bending (i.e. a beam) or torsion,
several analytical and numerical methods discussed earlier in
this section should be preferred due to low computational cost.
DEPR is particularly useful when the slender rod is undergo-
ing combined bending and twisting with repeated loading and
unloading.

Our paper is organized as follows. In Section 2, we discuss
the proposed DEPR simulator. Next, in Section 3, we conduct
both numerical data and analytical results for several demonstra-
tive examples. Finally, conclusive remarks and potential research
avenues are presented in Section 4.

2. Methods

In this section, we introduce the numerical framework for
simulating the mechanical response of elasto-plastic rods. We
first discuss the kinematics of one dimensional rod-like structures
in a discrete format, followed by a general rate-independent,
increment-based nonlinear constitutive relation. Finally, we
present the time marching scheme and the return mapping
algorithm used in our simulator.

2.1. Discrete kinematics of rod

As shown schematically in Fig. 1(a), we discretize the cen-
terline of a one dimensional rod-like structure into N nodes,
[Xo, X1, ..., Xn_1], which correspond to N — 1 edge vectors,
[e, e!, ..., eN2]. We use subscripts to denote quantities asso-
ciated with the nodes, e.g. x;, and superscripts when associated

with edges, e.g. e'. Each edge, e/, has an orthonormal adapted
reference frame {d|,d},t'} and a material frame {m}, mj, t'};
both the frames share the tangent t = e/|e!| as one of the
directors [5,38]. The scalar twist angle, 6, on an edge €' is the
angle from d| to m} about the tangent t' (see Fig. 1(b)). An
intriguing feature of DER is the choice of reference frame. During
the time marching scheme (Section 2.3), the reference frame
on each edge at time t = t,.q (the (n + 1)th time step) is
parallel transported from the reference frame at t = t, (the nth
time step). Parallel transport [38] is a method of moving di(t,)
(perpendicular to tangent ti(t,)), without any tangential angular
velocity (i.e. rotation about the tangent), to get d"l(tnﬂ) that
remains perpendicular to tangent t'(t,,). Positions of N nodes
(corresponding to 3N degrees of freedom) together with the twist
angle at N — 1 edges constitute the 4N — 1 sized degrees of
freedom (DOF) vector, q = [Xo, 0%, X1, ..., Xy_2, 0N "2, Xy_1], of
the discrete rod centerline [40,49].

The deformation of a rod centerline at the ith node can be
decomposed into three types of strains: uniaxial stretching (e}'),
bending curvatures (Kil, Kl-z), and twist (7;). We next discretize
the rod circular cross section into M rectangular elements. For
the jth element at the ith node in Fig. 1(b), we construct its
center coordinates [X‘i*f), Y("'f)] on the basis of its material frame,
{m! , m?, t;}, and denotes its area as AS‘"). Note that the material
frame is an edge-based quantity while our strains are calculated
at the nodes. Therefore, we use the average of the material
directors at the (i — 1)th edge and the ith edge as the node-based
material directors, e.g. the first material director at the ith edge
is (mll_1 +m))/2. Moreover, uniaxial stretching is conventionally
used as an edge-based quantity [38]. In our case, we define this
stretching as €' = (Ali—Aly)/ Al;, where Al; = (||~ 1||+]le%])/2 is
the Voronoi length of the ith node, ||€’| is the undeformed length
of the ith edge, and Al; is the Voronoi length in undeformed state.
Based on the kinematics of Kirchhoff rod model, the strain tensor
at the jth element of the ith node is given by

. €11 €12 €13

i,

) = €21 €22 €23 (1
€31 €32 €33

where €12 = €21 = 0, €13 = €31 = —%‘L','Y(i‘j), €23 = €3 = %‘L’,‘X(i‘j),
€33 = € + KI-ZX(U) + KilY(i’j). and €11 = €y = —vess, and v
is the Poisson ratio. Here, we ignored the effect of warping. The
expressions for €/, /cl.l, /ciz, and t; in terms of the DOFs of the rod

can be found in Refs. [38,40].
2.2. Constitutive laws

With the strain discussed above, we next formulate the elasto-
plastic constitutive relation by an increment flow plasticity the-
ory. We consider a plastic flow model with isotropic hardening, as
shown in Fig. 1(c), when the von Mises stress at an element, o,
goes beyond the threshold of the material, oeq ¢ (i.€. 0eg > Teq.c),
the material is in the plastic domain and its modulus switches
from E to E; = EH/(E + H). Here, E is the Young’'s modulus of
material, H is its hardening modulus, and the von Mises stress is
defined as

)1 2 2 2
Oeq(0) —{ 5 [ (011 — 022)" + (022 — 033)” + (033 — O11)
1/2 (2)
ot rah ot ]}

In the current study, we use the plastic flow rule described in
Ref. [9]. The relation between the increment of stress tensor §o
and strain tensor e is given by

66 = (S(e —+ SGP (33)



X. Li, W. Huang and M.K. Jawed / Extreme Mechanics Letters 38 (2020) 100767 3

d:
AT t-th node
I J-th element

/ ; d hﬁ X,y @) |
{ ] N 1

v 0,,1,€ =0
f(o‘n, Ep’n) -0 f( n+1, ©p, n+1)

Fig. 1. (a) Schematic and relevant notations used in our discrete model. (b) Mesh of cross section. (¢) Nonlinear constitutive relation. (d) Illustration of return-mapping
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where D is the elastic stiffness tensor, de, is the increment of
elastic strain, d¢, is the increment of plastic strain, d\ is the
hardening parameter, and f is a criterion function defined by the
outer surface of stress space,

f(o, fp) = Uep(a) — Oeq,c — erq(ep)’ (4)

where €.4(€,) is the equivalent plastic strain and can be computed
using Eq. (2) upon replacing the stress quantities with strain
quantities. This criterion implies that the real stress should not
go beyond the surface defined above, f(o,€,) < 0. Also, the
associated flow rule indicates that the increment of the plastic
strain should always be normal to the criterion function surface,
df /0. Note that Eq. (3b) can be written using the Voigt notation
as

O€e 11 do11
8€e 22 8022
8€e 33 8033
’ =S s 5
8€e 23 8023 (5)
dee31 8031
Oé€e 12 do12
where
1 -V -V
—v 1 —v
11—y —v 1
S=+¢ 2(1 4 v) - (6

2(14v)
2(1+v)

2.3. Time marching scheme

At nth time step, t,, we know the DOF vector qp, its velocity

V;, stress tensor 051"]), and strain tensor eg,l

9. we need to solve

the equations of motion and update all the quantities from time
t =t,tot =ty 1+ h (his the time step size) on the basis of the
statement of force equilibrium; see Appendix A for an algorithm
of the time marching scheme. The equations of motion for the
4N — 1 sized discrete rod system is [49]

Eny1 = Mdquyy — hMv, — h? (X, + F2 ) =0 (7a)
o1 = Qqn + 0Qqnt1 (7b)

1
Vip1 = —-0qny1, (7¢)

h

where F™ is the internal force vector (e.g sum of stretching,
bending and twisting forces), F®* is the external force vector
(e.g. gravity and damping force), M is the diagonal mass matrix
comprised of the lumped masses, and, hereafter, superscript n+ 1
(and n) denotes evaluation of the quantity at time t,,; (and t,).
The internal force is derived by the increment of total strain
energy,

. U
= — (8)
éq
where §U is given by
SU = ///(a 1 8e)dV (9a)
N-1 [M-1
= Z Z [a(i*j) : 8e(i'j)AS(i’j)] Al; (9b)

i=0 | j=0
Note that without considering plastic deformation, the increment
of strain energy can be simplified as
N—-1
U =) " [EA€!'S€! + EI (i 8k, + k?8k7) + Glidi]
i=0
where I is the second moment of inertia of cross section, and
J is its polar moment of inertia. In this case, discretization of

(10)
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Fig. 2. Diagram of boundary and load conditions for (al) uniaxial stretching and (a2) simply supported beam. Normalized force-displacement curve in one loading-
unloading cycle for (b1) uniaxial stretching and (b2) simply supported beam. Evolution of plastic domain for (c1) uniaxial stretching and (c2) simply supported beam.
When the portion of plastic domain is 1, all the elements through the cross-section has experienced yielding.

the cross-section into M fibers is not necessary and our method
reduces to the DER method. On the other hand, there is no general
analytical formulation for strain energy in nonlinear phase, such
that the internal force and related strain energy can only be
numerically computed from Eq. (9). Appendix B provides details
on computation of the internal force.

With a prescribed increment of DOF vector, §q,1, the incre-
ment of strain tensor on the (i, j)th element, 865,';{)1, can be derived
from Eq. (1); next, the increment of stress tensor should satisfy
the following equations on the basis of constitutive law,

f(("n+17€p,n+1)= 0 (11a)

(11b)

0 ,
80ni1 —D: |:(;€n+] _ d)Lf(G"Jrlep'"m] =0,

00n+1

where €, 11 = €pn+ €, ny1 and 6,41 = 0, +060,41. Here, we ig-
nore the superscript (i, j) for simplification. Referring to Fig. 1(d),
the implicit return mapping algorithm is used to iteratively solve
the increment of stress tensor, 80,1, as well as the hardening
parameter, dA, based on the prescribed strain increment, e, 1,
and the current stress state, o,. See Appendix C for details on this
algorithm. Once the new stress tensor is obtained, the total strain

energy and its gradient (i.e. negative value of the internal force)
can be numerically derived from Egs. (9) and (8).
The Jacobian associated with Eq. (7a) necessary for Newton’s
iteration can be expressed as
int ext
J:M—h2<i+&>,
q q
and the Hessian matrix of strain energy, F"/8q, is numerically
evaluated in a manner similar to the formulation of internal force;
see Appendix B. Once the statement of force balance in Eq. (7a)
is within the tolerance (i.e. computing §q,1), we update all the
information, i.e. qu1 from Eq. (7b), v, 1 from Eq. (7¢), € from

(12)

g n+1
Eq. (1), and af:fl from Eq. (11), and move forward to the next
time step.

3. Results

In this section, we use several examples in increasing com-
plexity to demonstrate our newly introduced increment-based
discrete elasto-plastic rod model; also, analytical solutions are
derived for some simple cases to show the accuracy of our nu-
merical framework. Appendix D shows the convergence of the
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algorithm with the number of nodes and elements, using the
second example discussed in this section.

3.1. Uniaxial stretching of a rod

We first consider a straight rod under uniaxial stretching
shown schematically in Fig. 2(a1). Here, the geometric and phys-
ical parameters are: rod length L = 1.0m, radius of circular
cross section rg = 1mm, Young’'s modulus E = 10 GPa, tangent
modulus E; = 5 GPa, Poisson’s ratio is v = 0.3, and critical yield
stress oeqc = 10 MPa. The maximum uniaxial strain is less than
1%. We discretize the one dimensional rod into N = 20 nodes and
M = 80 elements at each vertex.

In Fig. 2(b1), we plot the normalized tip displacement,
Aend/ Ag,g versus the normalized external stretching force, P =
P/(0eq,cA), during one loading-unloading cycle, where A = rrrg is
the area of cross section and Ag ; = 0eqL/E is the maximum
stretching displacement of rod in its elastic regime. When the
structure is in the elastic domain, i.e. P < 0 A, the slope
of loading process is 1; when the normalized stretching force
exceeds 1, the material undergoes plastic deformation, such that
the slope of the loading curve decreases to E;/E = 0.5. The
evolution of plastic domain during the loading process is in
Fig. 2(c1). During the unloading process, the rate of the curves
is 1, and the elastic strain recovers to zero when the external
force is absent. On the other hand, because of the irreversible
plastic strain, the end displacement is non-zero after one loading-
unloading cycle. A good match between analytical result and
numerical data indicates the correctness of our discrete model.

3.2. Bending of a simply supported beam

We next consider a simply supported beam under a concen-
trated force located at its midpoint, as shown in Fig. 2(a2). Here,
we model a square cross section with side width w = 1 mm
(cross section area A = 1 mm?); also, the Young’s modulus is E =
100 GPa, and the tangent modulus E; is set to be zero, such that
the analytical solution can be easily obtained. Even though our
discrete model can seamlessly handle the geometrically nonlinear
deformation (a validation case in fully nonlinear geometry could
be found in Appendix E), we want to remain in linear regime
where analytical solution (described next) is valid. As such, we
define the critical yield stress as oeq = 1 MPa and this results
in a deflection that is always in linear regime (~ 0.01L). We
discretize the rod centerline into N = 51 nodes and M = 10 x
10 elements after a convergence study, details can be found in
Appendix A.

The analytical solution of elasto-plastic Euler-Bernoulli beam
is given by [19]

Amax _ [P

A (5 —(P+ 3)@) /p?

max
where P = PwL/(80¢q,I) is the normalized external force and
Al = o.1?/(6Ew) is the critical midpoint displacement when
the beam transforms from pure elastic to elasto-plastic state.

In Fig. 2(b2), we display the normalized concentrated force, P,
as a function of the normalized maximum deflection, Amax/A% ..,
during one loading-unloading cycle. The external force first lin-
early increases as the deflection goes up; while a nonlinear phase
moderately appears and the structure undergoes plastic deforma-
tion when the normalized concentrated force goes beyond the
critical, P > 1. Importantly, the transformation from elastic phase
to elasto-plastic phase is not a sudden change discussed in pre-
vious uniaxial stretching case, because the non-uniformed stress

distribution along beam cross section implies that the plastic

P<1

1<13<%,

(13)
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Fig. 3. (a) Diagram of the coupling between stretching and twisting of a rod.
(b) Loading sequence as a function of time step number: solid line is stretching
first (P — T), and dashed line is twisting first (T — P). (c) Portion of the plastic
region during the loading process.

domain would gradually enlarge. The evolution of plastic domain
at the beam midpoint during the loading process is in Fig. 2(c2).
The unloading process, similarly, follows a linear elastic path,
and the residual deflection is from the plastic strain. The plastic
regime remains fixed during the unloading phase. Again, the
agreement between analytical result and numerical data proves
the accuracy of our newly introduced increment-based discrete
elasto-plastic rod simulation.

3.3. Stretching and twisting coupling

In this section, we use our discrete model to reveal the fact
that the elasto-plastic response in structure is path dependent.
Fig. 3(a) shows a diagram of the stretching and twisting coupling
of a rod. The geometric and physical parameters are exactly the
same as the uniaxial pulling case, except the tangent modulus E;
is set to be zero here. Similarly, the rod is discretized into N = 20
nodes and M = 80 elements.

In Fig. 3(b), we display two cases: stretching first then twisting
(red solid line), and twisting first then stretching (blue dashed
line). Then Fig. 3(c) shows the proportion of the plastic domain
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Fig. 4. (a) Configurations of a helical rod in stress-free and deformed conditions. (b) Normalized force-displacement curve during multiple loading-unloading loops.
(c1)-(c4) The diagram of the development of plasticity area for a representative cross section during multiple loading-unloading loops.

for these two different cases during the loading process. The
unloading process for these two cases are the same, i.e. we
simultaneously release the stretching and torsion at the 250th
loading step. Due to plastic strain, the rod would experience an
irreversible deformation. The rods remain in different equilibrium
configurations by changing the loading paths: the irreversible
extension will be larger when stretching force is exerted first,
compared with the case when torque is applied first. A qualitative
explanation is as follows. The increment of plastic strain, dep, is
always normal to the criterion stress surface and parallel to of /0o
such that for the stretching first case, the major stress component
is 033 and de, will mainly go along the direction of o33.

3.4. Pulling of a helical rod

Finally, we consider a helical rod under an axial pulling force.
We limited ourselves in geometrically linear regime for quanti-
tative comparison between analytical results and numerical data
in the previous demonstrations; here, we use a helical filament,
referring to Fig. 4(a), to demonstrate that DEPR model can effec-
tively capture both geometric nonlinearity and material nonlin-
earity. The geometric parameters are: circular cross section rop =
1.0 mm, helical pitch A, = 22.0 cm, helical radius R, = 6.1 cm,
helical axis length L = 1.0 m (resulting in a rod arclength s = 2.0
m); the physical parameters are: Young's Modulus E = 100 GPa,
tangent modulus E;, = 0.1E, Poisson’s ratio is v = 0.3, the critical
stress oeqc = 0.001E. We discretize the helical rod into N = 81
nodes and M = 316 elements at each vertex.

In Fig. 4(b), we quantify the normalized pulling force, P =
PIL? /(EI), by measuring the normalized tip displacement, Aeyq/L,
during multiple loading-unloading loops (the path is illustrated
by the arrows). The stretching force first slowly increases as
the enlarge of the tip displacement, and a good match can be
found between previous DER method and newly developed DEPR
model in elastic regime. In the fully elastic case, the pulling
force predicted by elastic model increases faster as the helical
rod increases in axial length. On the other hand, the elasto-
model shows that the rate of increase of pulling force (with end
displacement), i.e. the slope of the curve in Fig. 4(b), decreases at
Aend/L =~ 0.2 where the material starts to transition from elastic
to elasto-plastic domain. Eventually, the pulling force measured
by DEPR model also presents a rapidly increasing trend as a
function of end displacement when the helical rod becomes more
and more straight.

In addition, the configuration of the rod in unloaded state
at four points during the loading-unloading process, marked by
red dots in Fig. 4(b), are shown in Fig. 4(a). The elastic and
plastic domains on the cross section at mid-point along the rod
arc-length are illustrated in Fig. 4(c1)-(c4), from which we can
clearly see the growth of the plastic domain. As the shape of
elasto-plastic boundary for other nodes along rod arclength can
be easily obtained by rotating the material frames to a certain
angle, we only display a representative cross section for each
state. The ellipse-like boundaries indicate the coupling between
the twisting and bending when stretching a helical rod.
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4. Conclusion

We have developed a discrete numerical framework for the
simulation of geometrically nonlinear deformation of one di-
mensional elasto-plastic structures. For this purpose, we first
discretized the rod centerline into a number of nodes and edges,
and formulated its geometrically nonlinear deformation following
the well-established DER method. Next, the cross section of a rod
at each node was meshed into multiple fiber-like elements, and
the strain tensor at each fiber was related to the deformation of
rod centerline. The stress tensor of each element, importantly,
was then updated through a nonlinear increment-based return
mapping algorithm during the time marching scheme; the inter-
nal forces, required to solving the equations of motion, were later
numerically derived from the variation of strain energy. Several
special cases - uniaxial stretching, bending of simply supported
beam, stretching-twisting coupling, and pulling of a helical rod
- were used to demonstrate the effectiveness and robustness of
our newly introduced simulator. Moreover, the good agreements
between analytical results and numerical data in some simple
conditions indicated the correctness and accuracy of our numer-
ical framework. We hope that the numerical tool can motivate
further research in areas of computational plasticity as well as the
design of plasticity-related advanced manufacturing processes,
e.g. paper clip manufacturing.
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Appendix A. Discrete Elasto-Plastic Rods algorithm

In this section, we provide the pseudo code of Discrete Elastico-
Plastic Rods method. At nth time step, t;, we know the DOF
vector (p, its veloc1ty v, and the stress and strain tensor of each
element, o7, €' where i € [0,N — 1], j € [0, M — 1]. Here N
is the number of nodes and M is the element number on each
vertex. We need to solve the equations of motion and update all
the information from time ¢, to time t,.; = t, + h. This time
marching scheme is in Algorithm 1.

Appendix B. Gradient vector and Hessian matrix of strain en-
ergy

In this section, we provide a detailed formulation of the inter-
nal force vector in Eq. (8) (negative gradient of strain energy) as
well as the Jacobian matrix in Eq. (12) (related to Hessian matrix
of strain energy). First of all, we define the nabla operator V,

0
V() = ens — 0 (B.1a)
qm
d
OV = Fr Oen (B.1b)
qm

where we used Einstein notation (i.e. repeated indices imply
summation over all values of the index), q = gne, is the DOF
of the system, and e, is a vector with zeros everywhere except
at the mth position.

Algorithm 1 Discrete Elasto-Plastic Rods Algorithm
Input: tol, qu, G, 07, €1

Guess: q,41(0) < q, + hv,

k<0

error < 10 x tol

while error > tol do

SU <0
fori=0toi=N—1do
forj—Otoj_ M —1do y
Calculate € i)](k) from Eq. (1), such that (Sesfl(k) =
(11) k) 1])
n+1
(22alculate o' (k) = a%” + 867 (k) based on Algorithm
U < 8U + ol (k) : 8 (k) ASE) Al
end for
end for

Compute FI'* (k) from Eq. (8)
Compute E,; 1(k) from Eq. (7a) and J,41(k) from Eq. (12)

Qo 1(k + 1) = qny1(k) = Jnr1(K)\Enp1(k)
tol = |[Eq41(K)||
k< k+1
end while
Qnt1 = qua(k)
Update Vy1, 0%y}, €47 from a1
(i) (i)

Output: g1, Vo1, 0,77, €,

According to Egs. (8) and (9b), the internal force vector is given
by

au
Bq

Fint _

M- 1 (B.2)
- Z o) : (7] asi b Al
j=

where (e%))V is a geometry-related third-order tensor and can
be expanded as

0 0 —1y®h
@Mv= o 0o 0 |(@V)
_1lyGn o 0
1) 0 0
+ 0 —vIX@ 0 | (k'V)
1x(ij)
L 0 0 XM (B.3)
YU 0 0
+ 0 —viy@ 0 | (k'V)
L O 0 7Y@ |
—v 0 O
+[ 0 —v 0](e'V).
L0 0 1

The terms 7;V, k; 1y, K 2v, and €'V are gradients of the strain-
related quantities with respect to the DOFs and can be found in
standard DER method [38,40]. The size of these gradient vectors is
4N — 1 (N is the number of nodes) and only, at most, 11 elements
(corresponding to three nodes and two edges) are non-zero.
This significantly simplifies the programming implementation.
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Eq. (B.2) for the internal force can now be re-written as

N—1 M—1 0 0 —%Y(i*j)
Fint - _ Z (1] 0 0 0
i=0 j=0 —%Y )0 0
x ASUD) L AL
N—1 M-1 —v%X(i'j) 0 0
_ Z(Kizv) JECH) 0 Ix@ g
i=0 j=0 0 0 %X(i,j)
x ASED & AL
N—1 M—1 —v3yld 0 0
= *!'V) ol 0 —viy@ o
i=0 j=0 0 0 %y(i,j)
x ASUD L AL
N-1 M-1 —v 0O o N
- Z(e;‘v ol . —v 0] |as ¥ Ay,
i=0 j=0 0 1
(B.4)

where the first term on the right hand side is the twisting force,
the second and third terms represent bending force, and the last
term is the stretching force.

Similarly, the Hessian matrix of internal strain energy is

82U

) s (€Y 4 0 ; [(e(i.j))v]v} As(i‘j)> Al

(i.5)
: aol'{ ] : (v

i) [(e(w’))v]v ] ASH) > Al

Il
o
/\
[
Il
o
e e,
| —
<
—~
LN
~—

(B5)
where [())V]V can be expanded to write
N 0 0 —v()
[("NV]V = 0 0 0 (V) V]
_1lyG@p) o 0
2
BUC 0 0 |
+ 0 —vix@) o | [(k*V)V]
| 0 0 X (B6)
BEE 0 0 |
|0 @ o |[Y)V]
0 0 1y
—v 0 O
+{0 —v o] [(¢!'V) V],
L0 0 1

and the terms [(z;V) V], [(x!'V) V], [(x2V) V], and [(!'V) V]
are Hessians of the strain-related quantities with respect to the
degrees of freedom [38,40]. Similar to the decomposition of the
internal force into twisting, bending, and stretching terms in Eq.
(B.4), the Hessian matrix can also be decomposed into four terms.
For brevity, the details are not presented here. Importantly, when
the element is in elastic domain, the term 2"((, & is the elastic
stiffness tensor D. When plasticity occurs, on the other hand,
the increment of stress tensor cannot be evaluated by analytical

)
formulation and the general expression of "”(, 7 is unobtainable.

Here, we assume that the gradient of the criterion function f’; is

constant, such that the analytical formulation is given by,

do (0 5) (g : D)

3¢ =P~ 7 T (B.7)
Tip:L+H'

again, we ignore the superscript (i, j) for simplification. Note that
the approximation of the Jacobian matrix only influences the
convergence speed, while has no effect on the final solution.

Appendix C. Implicit return-mapping algorithm

One of the important process in Algorithm 1 is to update
the increment of stress tensor on the basis of the nonlinear
constitutive law formulated in Eq. (11). For each element, (i, j),
we use R, to represent Eq. (11),

f(0n+1» fp.n+1) =0

[8€n+1

Rn—H

50'n+1 —D d)\rH—l 7(” Ini1:€p n+1)] = 0,

00741

(C1)
where €, 11 = €pn+8€p 141, Ony1 = 05 +380,41, and R, q repre-
sents a total of 7 equations. Here, we ignore the superscript (i, j)

for simplicity. Also, we use X, (vector of size 7) to represent
the variables in these equations,

da
Xny1 = [Un’fl‘} , (C.2)

here, we re-write 0,1 as a vector of size 6. The Jacobian matrix
is

afn 1
—H aanirﬂ
Ii=| : (C3)
. Ofat1 . a1
D: ﬁ ]I+d)\.n+] <]D). Y g:])

where I is the identity matrix in size of 6 x 6. Newton's iteration
is used to update dA, 1 as well as 6,11 by solving the 7 equations
in Eq. (C.1), details are in Algorithm 2.

Appendix D. Convergence study

In this appendix, we discuss the convergence of both node
discretization and element discretization. We consider the simply
supported beam of Fig. 2(a2) as a demonstration. _

In Fig. D.5(a1), we plot the normalized external force, P, as
a function of normalized midpoint deflection, AmaX/Amax, by
varying the number of nodes, N € {5, 11, 31, 51}. As N increases,
the numerical result finally converges to the analytical solution.
Here, we keep the number of elements along the cross-section
M = 400 fixed.

On the other hand, we use a similar plot, shown in Fig. D.5(a2),
to show convergence with mesh number M. In this case, we keep
N = 31 fixed and switch the mesh number M € {25, 100, 400,
900}. When the number of elements on each vertex is larger than
100, the final results will converge to analytical solution.
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—
o
N—

—_
[¢)]

I
g 17 N=5
S
L N=11
é 05 4+ N=31
2 O N=51
—— Analytical
f', " s n n
0 0.5 1 1.5 2 2.5

Norm. max. deflection, Apax/Anax

(b)

15
I
o 17
O M=25
3
5] M=100
é 05 4+ M=400
= O M=900
—— Analytical
L L s L
0 0.5 1 15 2 25

Norm. max. deflection, Ayax/Anax

Fig. D.5. Normalized external force, P, as a function of normalized midpoint deflection, Amax/ Ay by (al) varying N € {5, 11, 31, 51} and fixing M = 400; and (a2)

varying M € {25, 100, 400, 900} and fixing N = 31.

Algorithm 2 Implicit Return-Mapping Method

Input: tol, €,, 6€,11, 04, D, and H
Guess: 60,11(0) =D : depyq1 and dr,11(0) =0
Calculate feasic = f(€n + S€ns1, 0 + 807341(0))
if feiastic < O then
80 nt1 = 8041(0)
else
<0
error < 10 x tol
while error > tol do
Compute R, 1(I) and J,.1(I) from Eqgs. (C.1) and (C.3)
Xnt1(l+ 1) = Xpa(l) = Tn1(D\Rp1 (1)
tol = [[Rp1 (D)l
[ <~1+1
end while
Get 011 from Xy ((l)
8011 = 0ny1 — Op
end if
Output: 60,41

Appendix E. Comparsion with finite element methods

In this appendix, we compare the DEPR framework with the
Finite Element Method (FEM). We consider a simply supported
beam in Fig. 2(a2). The width of the square cross section in this
case is changed to 20 mm to reduce the number of elements in
FEM. To demonstrate that DEPR method can handle the geomet-
rically nonlinear regime, we choose the critical yield stress to be
Oeqc = 2.5 GPa, and the critical midpoint displacement when
plastic state first occurs is A¢, , = 0.208. The maximum midpoint
deflection is Apge/L =~ 0.3.

We use the commercial software Abaqus to run the FEM
analysis. Both solid elements and beam elements are used in the
FEM analysis. Considering the mechanics of pure bending, we
simplified the model to a plane stress problem and used 5000
(10 x 500) four-node bilinear plane stress quadrilateral elements
(Abaqus type CPS4). In addition, a FEM model using 100 two-
node linear beam elements in space (Abaqus type B31) is also
constructed.

In Fig. E.6, we plot the normalized external force, P, as a
function of normalized midpoint deflection, Amax/ A, from four
different approaches: (i) FEM analysis with solid element, (ii) FEM
analysis with beam elements, (iii) DEPR method, and (iv) analyt-
ical solution from Euler beam theory. The good match between

2
—— FEM-solid

| . FEM-beam
Q'“ 1.5 + DEPR
8 —— Analytical
—~
=R
g
3
> 0.5

0 $

0 0.5 1 1.5

Norm. max. deflection, Ay ax/Amax

Fig. E.6. Normalized force-displacement curve in one loading-unloading cycle
for simply supported beam using both FEM and DEPR method.

FEM analysis and DEPR method indicates the accuracy of our
model in the geometrically nonlinear range.

Appendix F. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.eml1.2020.100767.
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