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Abstract
An initially two-dimensional grid of elastic rods may be actuated into a three-dimensional shell-like structure, through
buckling, when the end-points of the rods are constrained to a shrunk boundary. The shape of the 3D gridshell is a joint
result of elasticity and geometric constraint. We develop a discrete differential geometry-based model of elastic gridshell to
investigate their form-finding process. Even though the forward process from 2D footprint to 3D gridshell can be captured
by physics-based simulation, the inverse problem of obtaining the original footprint given the 3D deformed shape still lacks
a generalized method. In this paper, we propose a genetic algorithm (GA)-based inverse design method to explore the planar
footprint of an elastic gridshell as well as the corresponding geometric constraints. Geometric features extracted from the
original planar form are encoded into various chromosomes to constitute a population in every generation. With the fitness
function constructed based on the deviation of the candidate solution from the 3D target shape, the population evolves
gradually until the individual of the smallest fitness value representing the optimal footprint and final boundary constraints
is found under seven predefined geometric constraints. Given a series of representative target shapes, e.g., hemispherical
cap, paraboloid structure, Gaussian curve shape, and semi-ellipsoid, their original footprints are quantified using a network
of 10 elastic rods. Excellent agreement is obtained between the prescribed 3D shape and the simulated buckled structures
as small fitness value is obtained and little difference between them is observed, which validates the effectiveness of the
proposed GA-based inverse design method.

Keywords Elastic gridshell · Buckling instability · Form finding · Numerical simulation · Genetic algorithm

1 Introduction

Elastic gridshell refers to a network of elastic rods linked
by joints (Pai 2002; Spillmann and Teschner 2009). Pla-
nar gridshells would buckle and deform into a three-
dimensional (3D) shell-like structure when their extremities
are loaded, which is a synthetic result of geometric con-
straints and elasticity. Spanning from microscopic to macro-
scopic scale, a variety of researches have been conducted
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focusing on elastic gridshells involved in abundant appli-
cations, such as assembly of micro nanomaterial (Xu et al.
2015), performance optimization of gridshell structures
(Richardson et al. 2013; Jiang et al. 2018), and construction
of gridshell buildings (Quagliaroli andMalerba 2013; Tayeb
et al. 2013; Lefevre et al. 2015).

The compressive buckling process suggests that a
functional mapping relationship exists between the planar
footprint and the actuated 3D structure. To simulate this
process, plenty of methods have been developed falling into
3 categories: stiffness matrix method, geometric stiffness
method, and dynamic equilibrium method (Veenendaal
and Block 2012). Given an initial geometric boundary
and certain stress state, these methods tend to update the
system configuration in small steps, which iterates until
a steady state of force equilibrium is obtained. Based
on these methods, a number of prior works addressed
the problem of form finding with different optimization
objectives. A numerical form-finding method was proposed
to find the minimal surface of membrane structures,
in which a gradient method in the Hilbert space was
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applied (Shimoda and Yamane 2015). Su et al. (2019)
established structural analysis model and conducted finite
element analysis in order to solve the problem of form-
finding problem of reciprocal structure, a special structural
system, whose shape was then optimized by minimizing
the total strain energy under static loads. With the
objective of material minimization and improved structural
performance, dynamic relaxation method with kinetic
damping was used to determine the global grid shell form
and up to 50% of material mass was reduced (Richardson
et al. 2013). Achieving the maximum stiffness or improving
the load carrying behavior was used as an optimization goal
in similar form-finding problems (Shimoda et al. 2018; Firl
and Bletzinger 2012). In the field of discrete differential
geometry (DDG) (Grinspun et al. 2006), numerical tools
for geometry processing and physical simulation have
been used in numerous applications related to form-
finding, e.g., finding the appropriate architectural and
structural shape (Coenders and Bosia 2006). Promising in
animating knots, sutures, plants, and kinematic skeletons,
the mechanical model of elastic rods is ideal for modeling
deformations induced by stretching, bending, or twisting
(Bergou et al. 2008; Bergou et al. 2010; Jawed et al.
2018). Rod-based models are, therefore, a natural choice
to simulate gridshells. Discrete elastic rods (DER), based
on Kirchhoff’s rod theory (Kirchhoff 1859), is a DDG-
based computationally efficient simulation tool, which has
been validated against experiments. Excellent agreement
was found between numerical simulation and physical
experiment when DER was applied to model the coiling
of elastic rod onto a moving substrate (Jawed et al. 2014),
flexible helical rod rotating in a viscous fluid (Jawed et al.
2015), and the buckling process of elastic gridshell (Baek
et al. 2018).

The forward process for an elastic gridshell to be
actuated from a planar footprint to a 3D structure can
be simulated with the aforementioned simulation tools
including DER. However, most researches on form-finding
problems are aimed at seeking an optimal shape in a state
of static equilibrium (Veenendaal and Block 2012). Only a
small portion of the prior works in this field focused on
the inverse process, i.e., how to determine the original
footprint when the 3D structure is given as a target. A
functional mapping relationship, GO(x, y) ∈ R

2 −→
GF (x, y, z) ∈ R

3, exists due to the interaction of elasticity
and geometric constraints. This is difficult to be modeled
using classical methods because of the geometrically
nonlinear deformation of the elastic rods constituting
the gridshell. For example, the household strainer is a
gridshell of hemispherical shape, whose planar form before
deformation resembles a rounded diamond instead of a
circle. Baek et al. (2018) utilized the continuum theory

of smooth Chebyshev net (Chebyshev 1946) to find the
original form, GO , and the theoretical result was compared
against DER simulations and experimental prototypes.
Considering the complexity from buckled structures to
original footprints and shrunk constraint boundaries, an
evolutionary computational method, genetic algorithm
(GA), is introduced, which is able to find a global solution in
a space consisting of candidate solutions inspired by natural
genetic variation and natural selection (Mitchell 1998).
Therein a fitness function of low-cost evaluation is critical
and will facilitate GA to be efficient in processing multiple-
variable optimization problems. Compared with purely local
methods (e.g., gradient descent), genetic algorithms have
the advantage that they do not necessarily remain trapped
in a suboptimal local maximum or minimum of the target
function (Rojas 2013). Moreover, GA has shown good
performance in similar fields, such as truss topological
optimization (Hajela and Lee 1995), form finding of
tensegrity structures (Koohestani 2012), inverse design of
ribbon-shaped structures (Xu et al. 2019), and generation
of initial pre-stress forces to maximize elastic buckling
load (Dini et al. 2013). It is also capable of facilitating
multi-objective optimization of free-form grid structures
(Winslow et al. 2010) and determination of bar orientation
for gridshells to minimize the stresses (Bouhaya et al. 2014).
As the fitness of every individual is required to be calculated
in real-time during the evolution process, it, thus, raises
the need for a computationally efficient mechanics-based
simulation that maps 2D footprints to 3D buckled structures.

In this paper, to explore the original footprint of the
actuated shell-like structures, we develop an improved
discrete gridshell simulation and propose a GA-based
inverse design method under a set of geometric constraints.
A fully implicit algorithm is developed to characterize the
mechanical behavior of the gridshell comprised of multiple
elastic rods. Compared with the semi-explicit algorithm
used in previous works (Baek et al. 2018), the improved
discrete gridshell model is more robust, shows better
convergence behavior, and allows us to take larger time
steps. Combination of the improved gridshell model and GA
is used to solve the inverse problem associated with form-
finding. Moreover, an area-approximation-based method is
used to produce an efficient initial chromosome. A series
of examples are presented. Hemispherical, paraboloid, and
Gaussian surfaces are used as target 3D structures that
are symmetric about x = y and x = −y axis. Semi-
ellipsoid is taken as a case where the boundary constraints
are asymmetric about x = y and x = −y axis. Geometric
parameters of the planar footprint as well as the final
positions of the end-points of the rods, based on a network
of 10 elastic rods (5 along the x-axis and 5 along the y-
axis), are unknown and encoded into a chromosome. Based
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on the fitness values of the solution obtained from GA,
apparent comparison in 3D surface, and 2D outline of cross-
sections, good agreements are found between the theoretical
surfaces and the 3D structures actuated from the optimal
2D footprints under certain boundary constraints, which
are solved by the proposed method. In addition, examples
are presented where the number of elastic rods in the
gridshell is increased to 26. Results show that the proposed
inverse design method is still applicable to the gridshells
constructed with more elastic rods.

2 Problem description

Figure 1 shows a planar gridshell consisting of 10 elastic
rods located on the x − y plane. Among them, 5 rods are
parallel to the x-axis while the other 5 are parallel to the
y-axis. Therein, the length and position of every elastic rod
is unknown, i.e., positions of every rod end (xi , yi) are to
be determined. To simplify the problem, the definition of
an elastic gridshell in this paper is assumed to follow two
conditions: (1) Every rod is symmetric about both the x- and
y-axis. (2) Spacing between every two adjacent elastic rods
(either in x or y direction) is equal to dx or dy. With this
definition, a footprint will be regarded as the same when
it rotates about the vertical z-axis. In Fig. 1b, when the
extremities of all the elastic rods (i.e., the first and last nodes
on each rod) are moved to the circular points, the footprint
will buckle and deform into a 3D shell-like structure. In
this example, the outermost form of both the footprint in
Fig. 1a and the final constraint boundary in Fig. 1b are set
to be circular as an example. Therein the curve connecting
the ends of all elastic rods as shown in Fig. 1b is the
shrunk constraint boundary. The mapping relationship can
be represented by GO(x, y) ∈ R

2 −→ GF (x, y, z) ∈ R
3.

Considering that the footprint and the final shape of
interest are symmetric about the x- and the y-axes, a
quarter of the structure is taken to study the geometries of
the original footprints and the final boundaries. Instead of
Cartesian coordinates (xi , yi), polar coordinates (Rxi , θxi)
and (Ryi , θyi) are used, as it makes geometric constraints
easier to be defined and visualized. The original and final
geometries are shown in Fig. 1c and d, respectively. Since
the final constraint boundary is known in advance from the
given target shape, only the polar angles (θxi , θyi) of the
rod’s ends are the unknowns. The final constraint boundary
connected all the end-points of the rods is a circular shape in
cases I–III: hemisphere, paraboloid, and Gaussian surface.
In case IV, i.e., semi-ellipsoid, the boundary is an ellipse.
The variable θFxi (and θFyi) denotes the orientation angle
of the ith rod end on the final constraint boundary if the rod
was parallel to the x-axis (and the y-axis) in undeformed

Fig. 1 Geometries of original footprint and its boundary constraint.
a Elastic gridshell consisting of 10 crossed elastic rods. b 3D
structure buckled via DER with blue circle denoting the final boundary
constraint. c A quarter of geometry of the elastic gridshell, which can
be determined by parameter pairs (Rxi , θxi ) and (Ryi , θyi ). dx and dy

are the distance between adjacent rods along x- and y-axis. dA quarter
of geometry of final boundary constraint, in which only angles of every
rods end need to be determined for given boundary form

2D shape. For the first three cases, hemisphere (case I),
paraboloid (case II), and Gaussian surface (case III), the
final constraint boundary is a circle. In the last case of a
semi-ellipsoid (case IV), the boundary outline is an ellipse.
Analytical expressions defining these four surfaces are

Γ (x, y, z) : x2 + y2 + z2 − r2F = 0, (1)

Γ (x, y, z) : x2

r2F

+ y2

r2F

+ z

hP

− 1 = 0, (2)

Γ (x, y, z) : AG · e− x2+y2

2σ2 − AG · e
− r2

F

2σ2 − z = 0, and (3)

Γ (x, y, z) : x2

a2E

+ y2

b2E

+ z2

c2E

− 1 = 0, (4)

where rF is the radius of the final circular boundary (in
this paper rF = 0.5); hP characterizes the height of the
paraboloid (set to be 0.25); AG = 0.5 and σ = 0.3 are
respectively the height of the Gaussian curve’s peak and
the standard deviation controlling its width; aE = 0.5 and
bE = 0.3 are respectively the length of the semi-major axis
and semi-minor axis of the final constraint boundary of the
ellipse; and cE defines its height (cE = 0.2 in this paper).

Two geometric constraints (GCs) can be constructed
from the above discussion for an elastic gridshell consisting
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of total Nx + Ny rods, where Nx rods are initially oriented
along the x-axis and Ny rods positioned along the y-axis.

θx1 = 0andθy1 = π/2, (GC1a)

θFx1 = 0andθFy1 = π/2, (GC1b)

(j − 1) Rxi sin θxi = (i − 1) Rxj sin θxj ,

i, j = 2, . . . , (Nx + 1)/2, (GC2a)

(m − 1) Ryk cos θyk = (k − 1) Rym cos θym,

k, m = 2, . . . , (Ny + 1)/2. (GC2b)

Equation (GC1aa) is applies to the original footprint
while (GC1ab) stands for the final constraint boundary.
Combined, they indicate that both the boundaries before and
after deformation are symmetric about the x- and y-axis.
Equation (GC2a) is a statement of equidistance between
two adjacent rods along the x- and the y-axis in the initial
2D shape. In addition, the original and final boundaries are
symmetric about x = y and x = −y axes for cases I to III.
With (GC2a), the input dimension can be further reduced.
After all, the geometric parameters to be determined are
(Rx1, Rx2, θx2, θx3, θFx2, θFx3) for cases I to III when
Nx = Ny = 5. However, 12 parameters (Rx1, Rx2, Ry1,
Ry2, θx2, θx3, θy2, θy3, θFx2, θFx3, θFy2, θFy3) need to be
determined for semi-ellipsoid since it is asymmetric about
x = y and x = −y axis. It should be noted, due to
multiple possible modes of buckling, the same footprint can
lead to two different 3D shapes. However, in practice, such
possibility is rare and is not addressed in this paper.

3Mechanical model of the discrete gridshell

Different from traditional 2D plates and shells, gridshell
consists of a network of 1D elastic rods, and, therefore,
classical plate and shell theories cannot be directly applied
to explore the mechanical properties of this special
structure. In prior numerical investigations (Baek et al.
2018), the DER algorithm (Bergou et al. 2008; Bergou et al.
2010) was extended to discrete gridshell model, where the
cross points between two elastic rods are modeled by a stiff
spring and the spring force was applied explicitly (Euler
forward). In this section, we comparatively describe two
methods of simulating such structures—(1) a spring-based
method and (2) a mapping method that does not require
any springs. In case of the spring-based method, the spring
force is handled in two different ways—(1) explicitly and
(2) implicitly.

3.1 DER algorithm

As a key component of gridshell structure, the forward
physics-based simulation of a single elastic rod will

be described first. DER algorithm was first introduced
in the computer graphics community for simulating the
dynamic behavior of hair and other filamentary structures
in the animation industry, which then solved plenty of
engineering problems successfully. In Kirchhoff’s theory
of elastic rods (Kirchhoff 1859), the rod centerline is
represented by an arc-length parameterized curve, γ (s), and
the angular evolution of the tangent aligned orthonormal
material director is described by θ(s). The deformation of
Kirchhoff’s rod can be characterized with three quantities:
bending curvature κ(s), twist τ(s), and axial stretch ε(s).
Referring to Fig. 2, we discretize the continuous rod
centerline into N nodes,

[
x0, x1, ..., xN−1

]
, and N − 1

edges,
[
e0, e1, ..., eN−2

]
, with ei = xi+1 − xi . We

follow the convention of using subscripts for node-based
quantities and superscripts for edge-related parameters.
Associated with each of N − 1 edges are the reference
frame

{
di
1,d

i
2, t

i
}
, the orthonormal material frame {mi

1,m
i
2,

ti}, and the turning angle between these two frames θi .
The discretized elastic rod can be regarded as a system
containing 4N − 1 degrees of freedom (DOF), q =[
x0, θ0, x1, θ1..., xN−2, θ

N−2, xN−1
]
(Bergou et al. 2008;

Bergou et al. 2010). These DOFs are updated with time
based on the equations of motion, as described next.

Stretching Uniaxial deformation along each edge can be
easily formulated by its original length |ēi | and deformed
length |ei | through

εi = |ei − ēi |
|ēi | . (5)

Fig. 2 a Geometric discretization of 1D elastic rod model; b
Schematic of the relevant quantities of elastic rod deformation
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The elastic energy related to uniaxial strain can be written as

Es =
N−2∑

i=0

1

2
EA

(
εi

)2 |ēi |, (6)

where EA is the stretching stiffness of elastic rod.

Bending The material curvatures associated with node xi

are

κ
(1)
i = 1

2

(
mi−1

2 + mi
2

)
· (κb)i , (7a)

κ
(2)
i = − 1

2

(
mi−1

1 + mi
1

)
· (κb)i , (7b)

where mi
1,m

i
2,m

i−1
1 and mi−1

2 are directors of the material
frame, and (κb)i is the curvature binormal,

(κb)i = 2ei−1 × ei

|ei−1||ei | + ei−1 · ei
. (8)

Note that the magnitude of (κb)i is related to the turning
angle φi ,

|(κb)i | = 2 tan
φi

2
. (9)

The bending energy of elastic rod can be written as

Eb =
N−1∑

i=0

1

2

EI

li

[(
κ

(1)
i − κ̄

(1)
i

)2 +
(
κ

(2)
i − κ̄

(2)
i

)2]
, (10)

where κ̄
(1)
i and κ̄

(2)
i are the undeformed curvatures at the i-

th node, and li = 1
2 (|ei |+|ei+1|) is the vertex-based Voronoi

length, and EI is the bending stiffness. Here, it is assumed
that material properties of our rod model is isotropic.

Twisting The twisting curvature associated with each node
xi is

τi = θi − θi−1 + mi, (11)

where mi is the reference twist of the reference frame.
Details behind its computation can be found in Jawed et al.
(2018). The twisting energy, similar to previous stretching
and bending energy, can be written as a quadratic term,

Et =
N−1∑

i=0

1

2

GJ

li
(τi − τ̄i )

2 , (12)

where τ̄i is undeformed twist and GJ is the twisting
stiffness of elastic rod.

The total elastic energy of the rod is

Eint = Es + Eb + Et . (13)

Equation of motion At each time step, with the DOF vector
q and its velocity q̇ known, we need to solve the equation of

motion to obtain the DOF vector and its velocity at the next
time step,

fj ≡ mj

qj (t + �t) − qj (t)

�t2
−mj

q̇j (t)

�t
−f int

j −f ext
j = 0,

(14)

where qj is the j -th element of q, 0 ≤ j ≤ 4N − 2, mj is
the mass associated with each DOF, the elastic internal force
f int

j on the j -th DOF can be evaluated by the gradient of

elastic energy, f int
j = − ∂Eint

∂qj
, and f ext

j is the external force,
e.g., gravity. The linear system of equations can be solved
fully implicitly by Newton-Raphson method,

qn+1(t + �t) = qn(t + �t) − Jn/fn, (15)

where the superscript n denotes the number of iteration, the
elements of the vector f can be evaluated using (14), and Jn

is the Jacobian matrix whose elements are

Jjk = mj

�t2
δjk + ∂2

∂qj ∂qk

Eint − ∂

∂qk

f ext
j , (16)

where δjk is the Kronecker delta. Note that the Jacobian
matrix of rod-like structure is a banded matrix, as shown in
Fig. 3. The computational complexity of this simulation is,
therefore, O(N).

3.2 Interaction between two elastic rods

The DERmodel is insufficient to simulate elastic gridshells,
without considering the joint between two elastic rods at
the intersection point. As shown in Fig. 4a, the simplest
method to model the intersection point is a stiff spring, i.e.,
a penalty energy. Here, we only consider the translational
constraints between two rods at the joint point and ignore
the rotational constraints, i.e., the coupled rods can rotate
freely at the joint. The non-trivial bending and twisting

Fig. 3 Jacobian matrix of elastic rod structure. As the bending and
twisting energy at node xi is only related to xi−1, xi+1, θi−1, and θi ,
the Jacobian matrix is a banded matrix
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Fig. 4 aModeling of elastic
gridshells with two separate rods
connected by a stiffed spring. b
Modeling of elastic gridshells
with mapping method

coupling between two rods at joints can be found in Pérez
et al. (2015) and Panetta et al. (2019). Previous numerical
investigation of elastic gridshells adopted the spring-based
method (Baek et al. 2018), in which a gridshell is modeled
by multiple independent rods coupled with springs and the
spring force is treated in an explicit approach. However,
the value of the spring stiffness in this method is crucial: it
can be neither too large nor too small. In the former case,
there will be a deviation between two rods at the intersection
point, while the simulator may not converge in the latter case
at any reasonable size of time step.

Implicit spring method We build a new DOF vector q̃ that
contains DOF vectors of all m ≡ (Nx + Ny) rods in
gridshells,

q̃ = [q0,q1, . . . ,qr , . . . ,qm] , (17)

where qr is the DOF vector of the r − th rod with size
(4N − 1) and N is the total number of nodes of the r − th
rod. Referring to Fig. 4a, if a node x2 on one rod is very
close to another node x′

2 on another rod, a linear spring
between the two is introduced. The energy of the spring,

Econs = 1
2ks

|x2−x′
2|2

|x̄2−x̄′
2| , is added to the expression for elastic

energies in (13), where |x̄2 − x̄′
2| is the distance between

x2 and x′
2 in the undeformed configuration. If the initial

distance is zero, we use a small length of 1 × 10−6m in the
denominator to avoid numerical singularity. The gradient
and Hessian corresponding to the spring energy can be
trivially computed. All the free DOFs of all the rods in (17)
are solved together using Newton-Raphson and the spring
forces, similar to the elastic forces, are treated implicitly.
Figure 5b shows the non-zero elements of the Jacobian
matrix for the simple structure in Fig. 4a. As shown in
Fig. 5b, the Jacobian matrix is no longer banded; the
interaction between x2 and x′

2 contributes to the non-zero

entries, ∂2Econs

∂x2x′
2
, outside the diagonal band.

Mappingmethod If the spring stiffness is not large enough,
implicit method may suffer from inaccuracies where the two
nodes at the intersection points are not perfectly coincident.
Rather than treating the two nodes from two different rods
at the crossing point separately, a single node is used
in the mapping method to represent the crossing point.
The discretization of the rods is slightly changed so that
x2 and x′

2 coincide in the undeformed configuration. As
shown in Fig. 4b, x2 is assumed to be part of both the
elastic rods and the elastic force on this node is the sum
of elastic forces computed from two separate rods. With
this method, the spring is not necessary any more and
the problem of choosing an appropriate spring stiffness
is naturally resolved. The number of DOF of the whole

Fig. 5 Non-zero entries of the Jacobian matrix in three different methods for the simplest element of a gridshell structure. a Jacobian matrix of
explicit method. b Jacobian matrix of implicit method. c Jacobian matrix of mapping method
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system is reduced by T × 3, where T is the number of
crossing points. Figure 5c shows the Jacobian matrix in this
method.

3.3 Simulation loop

In case of the explicit spring method, the system of
equations in (14) is independently solved for each rod, with
the spring forces at the joints treated as the external forces,
to update the DOFs. At the end of the time step, the spring
forces are calculated using these DOFs and applied in the
subsequent time step. The Jacobian matrix corresponding
to the spring forces is zero, i.e., the term ∂

∂qk
f ext

j in (16) is
ignored. In the simulation, we applied a Dirichlet boundary
condition such that the positions of the first and the last
nodes on each rod are constrained to move from the original
footprint to the final boundary. The velocity associated with
these boundary conditions are slow enough that the process
can be treated as quasi-static and the role of inertia is
negligible. All other DOFs are free and evolves based on the
equations of motion.

For the implicit spring method, all the DOFs of all
the rods in (17) are updated by solving the equations of
motion. The configuration of one rod may be coupled with
another one due to the spring forces at the joints. Unlike the
explicit spring method, the Jacobian matrix for the spring
forces are not ignored. In case of the mapping method,
no spring force is used and the DOFs of the gridshell
evolve based on the balance of elastic forces. The boundary
conditions remain the same as in the explicit spring
method.

4 GA-based inverse designmethod

In order to find out the initial footprint mentioned in
Section 2, GA is combined with the discrete gridshell
simulation described in the last section. Figure 6 shows a
flowchart of the GA-based inverse design method. After
population initialization, geometric parameters and the final
constraint boundary are assigned by a set of guessed values,
which are entered into the discrete gridshell model. Then the
3D buckled structure is simulated and the fitness function
is calculated from the simulation. In the diamond-shaped
block in Fig. 6, whether the stopping criteria have been met
is judged. These criteria include the maximum generation
number threshold, fitness function value, variation of the
best fitness, etc. The population will evolve via three GA
operators—selection, crossover, and mutation—until the
stopping criteria are met. Thus the whole process will iterate
until one of the stopping criteria is reached, when optimal
geometries of the original footprint and final constraint
boundary are outputted.

Fig. 6 Flowchart of the GA-based inverse design method

4.1 Geometric constraints

In addition to (GC1a) and (GC2a), five additional geometric
constraints as shown in Fig. 7 are defined next in (GC3a) to
(GC7) for a realizable solution. The first constraint as shown
in Fig. 7a is

Lxb ≤ Rxi � Uxb, (GC3a)

Lyb ≤ Ryj � Uyb, (GC3b)

Lθx ≤ θxi, θFxi � Uθx, (GC3c)

Lθy ≤ θyj , θFyj � Uθy, (GC3d)

where Lxb and Uxb are the lower and upper bounds
on the rod length along the x-axis while Lyb and Uyb

are those along the y-axis; Lθx , Uθx , Lθy and Uθy are
the lower and upper bounds on the angles. Based on
(GC3a), Rxi, Ryi (i = 1, 2), and θxj , θFxj , θyk, θyk (j =
2, 3, ..., Nx, k = 2, 3, ..., Ny), are generated first. Then the
other radii are calculated according to (GC2a) to meet the
equidistance requirement. Especially, θx1, θy1, θFx1, and
θFy1 are zeros in order to maintain these two rods on x
and y-axis before and after actuation. The radii calculated
from (GC2a) should be checked to ensure that they satisfy
(GC3a).

The next constraint in (GC4a) is used to ensure that
at least one joint exists between every elastic rod and
the gridshell. Otherwise, one or more elastic rods may be
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Fig. 7 Five geometric constraints (a) ∼ (e) corresponding to (GC3a)∼(GC7) respectively. (b1) is a possible gridshell if (GC4a) is not met. (c1)
and (c2) are two possible gridshells if (GC5a) is not met

independent from the whole network, such as the gridshell
given in Fig. 7b1.

Rxi · sin θxi � Ry1, (GC4a)

Ryi · cos θyj � Rx1. (GC4b)

In order to favor an even distribution of rods, an optional
constraint is

|θi − θi′ | � Lθ, (GC5a)

|θF i − θF i′ | � LFθ , (GC5b)

where Lθ and LFθ are threshold values set by the user
to protect any two rods from getting too close to each
other in the original footprint and final constraint boundary,
respectively; | · | denotes the absolute value operator; θi and
θi′ represent two distinct angles from the set of angles θxi

with i = 1, . . . , (Nx + 1)/2 (or θyj with j = 1, . . . , (Ny +
1)/2); and θF i and θF i′ are two distinct angles from θFxi

(or θFyj ). Possible footprints if (GC5a) is not satisfied are
shown in Fig. 7c1, where the distance between two adjacent
elastic rods is too small, and Fig. 7c2, where the end-points
of two rods are located too close to one another.

Moreover, it should be avoided that an elastic rod
overlaps with another one at a point near the ends. This
condition can be enforced with (GC6):

θF i � θFj (GC6)

if θi � θj , where 1 ≤ i, j ≤ (Nx +Ny)/2+1 The geometric
representation can be found in Fig. 7d.

The last constraint is the exclusion of solutions involving
3D gridshells with part of the structure under ground.
Assuming that the outward normal to the ground is the
positive z-axis, any node xi ≡ (xi, yi, zi) on the gridshell
after deformation should satisfy (GC7) as shown in Fig. 7e.

zi � 0 (GC7)

It is worth noting that (GC3a) to (GC6) should be
checked before the candidate solutions are inputted into
the simulation, which will help exclude invalid solutions in
advance to reduce the computational cost. Equation (GC7)
can only be checked after the 3D buckled structure is
outputted from the simulation.
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Based on these geometric constraints, the problem of
interest in this paper can be expressed as:

Given �(x, y, z) ∈ R
3,

find GO(x, y) ∈ R
2, and CF (x, y),

that minimizes |�(x, y, z) − �̂(x, y, z)|,
subject to
�̂(x, y, z) = f (GO(x, y)|CF (x, y)), and GC1 ∼ GC7

(18)

where CF (x, y) is the final shrunk constraint boundary
consisting of all rod ends and f (GO(x, y)|CF (x, y))

denotes the buckling process, via which the original
footprint GO(x, y) will be actuated to the 3D surface
�̂(x, y, z) under CF (x, y).

4.2 GA configuration

To start with GA, the variables to be determined are first
encoded into an individual, i.e., chromosome. As described
in Section 2, six variables need to be evaluated for cases I to
III. They can be encoded as {Rx1, Rx2, θx2, θx3, θFx2, θFx3}.
Twelve variables for case IV will be encoded as {Rx1, Rx2,
Ry1, Ry2, θx2, θx3, θy2, θy3, θFx2, θFx3, θFy2, θFy3}.

500 such individuals consist a population, which evolves
for at least 50 generations and at most 150 generations. The
related GA parameters are provided in Table 1. Therein,
RLB (and θLB ) and RUB (and θLB ) denote the lower bound
and upper bound on radius (and polar angle), respectively.
Maximum and minimum numbers of generation are Gmax

and Gmin, respectively. Number of individuals contained in
a population is NP . The fractions rse, rcr and rmu represent
the rate of selection, crossover, and mutation, respectively;
note that rse + rcr + rmu = 1. rse = 0.05 is the portion
of individuals among the parent population that will be
selected and passed on to the child population according
to the stochastic universal sampling (SUS) method (Baker
1987). rcr = 0.65 indicates that most children are produced
via combining the chromosomes of their parents. Child
is formed in a way that it is more similar to the parent
of better fitness. It can be formulated as child = “ratio ·
(parent1 − parent2) + parent2, where ratio is set to be 1.4.
The remaining rmu = 0.3 portion of individuals produce
their children in an adaptive feasible way of mutation.

Table 1 Parameter configuration of GA

RLB RUB θLB θLB Gmax

1.0 3.0 0 π/2 150

Gmin NP rse rcr rmu

50 500 0.05 0.65 0.3

4.3 Population initialization

The evolution process will be time-consuming and unpre-
dictable if every produced individual must meet all the geo-
metric constraints. In order to save time, fitness computation
of the individuals unsatisfying the geometric constraints will
be skipped and assigned a fitness value of infinity. How-
ever, in this way, the GA process may quickly run out of the
threshold value of 150 generations without an optimal solu-
tion. To avoid this situation, a valid and relatively feasible
solution, as outlined next, should be provided to initialize
the chromosome at the beginning.

After deformation, the 3D buckled structure has a surface
area approximately equal to the original footprint. For cases
I to III, a 2D circular shape of the same surface area as
the deformed structure is regarded as a guess of the initial
solution. The radius of the guessed initial circle is

RI =

√√
√
√√

∫∫

S

√
f 2

x + f 2
y + 1dA

π
, (19)

where z = f (x, y) is the formula of the 3D surface in (1)
to (4), and fx and fy are the partial derivatives of f (x, y)

with respect to x and y, respectively. For case IV, an ellipse
with the same surface area as the target 3D shape is taken
as the initial guess shown. The semi-major axis, RIa , and
semi-minor axis, RIb, of this guessed ellipse are

RIa =

√√
√
√√

∫∫

S

√
f 2

x + f 2
y + 1dA · aE

πbE

, (20a)

RIb =

√√
√√
√

∫∫

S

√
f 2

x + f 2
y + 1dA · bE

πaE

. (20b)

Although it is difficult to give a formulation for a general
structure, two criteria could provide a direction to construct
such an initial chromosome: (1) The initial footprint shares
an approximately equal surface area with the buckled 3D
surface. (2) A shape of the initial footprint that is similar to
the final constraint boundary may be a possible initial guess.

4.4 Fitness function

Fitness function in GA guides the whole evolution process.
Figure 8 shows the flowchart of this function. The
aforementioned geometric constraints as well as whether
the simulation will converge in certain solutions will be
checked in the fitness function. Those violating the required
conditions will be assigned a fitness value of infinity. GA
will always facilitate the whole population evolve along the
direction in which a smaller fitness value is achieved.
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Fig. 8 Flowchart of the fitness function

The nodal positions from the 3D buckled surface, which
are outputted from the discrete gridshell simulation, are
inputted into the formula of the target surface Γ (x, y, z) to
be built. The notion of equivalent radius is introduced next
in (21) to help evaluate the fitness.

REq =
(
3

2
π · V

)1/3

(21)

where V is the volume underneath the 3D buckled surface
defined in (1) to (4). Physically, REq is the radius of a
hemisphere whose volume is equal to the 3D structure
surrounded by the elastic gridshell to be built. Based on it,
the fitness criterion can be calculated using the following
expression,

fitness = 1

Np · REq

Np∑

i=1

|Γ (x′, y′, z′)| (22)

where Np is the total number of nodes (P(x′, y′, z′)) in the
elastic gridshell. A smaller fitness value indicates a better
match between the buckled structure and the target surface.

It should be noted that the fitness value is the average
difference of all nodes in the target shape and the actuated
3D surface, normalized by the equivalent radius REq . It is
different than the error between the equivalent radius of the
target shape and that of the actuated 3D surface.

5 Results and discussions

In this section, geometries of original footprints and final
constraint boundary found by the proposed method will be
presented. Via a comparison with theoretical surfaces, the
fitness of solution will be also analyzed and discussed.

5.1 Performance of the discrete gridshell model

To compare performance of the three methods mentioned in
Section 3, they are applied to model the process of shrinking

Fig. 9 Comparison among explicit method, implicit method, and
mapping method. a DOF = 896 (for mapping method, DOF = 800);
b DOF = 2144 (for mapping method, DOF = 2048). The four bars in
each of the first three clusters represent the computation time at four
different values of spring stiffness—0.1EI, 1EI, 10EI and 100EI—
from left to right. The computation time when there is numerical issue
is ∞
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Fig. 10 Design of hemispherical gridshell based on GA. a Variation
of fitness value with generation index. The marked points indicate
the initial fitness value and the total generation number of evolve-
ment process as well as the final fitness. b Original footprint and the
final constraint boundary. Dashed line indicates the original footprint
before deformation. Vertical and horizontal solid lines represent elas-
tic rods with the diamond symbols denoting the two ends of each rod.

The arrows indicate the imposed displacement on the extremities of
the rods to transform the initially planar shape to the target shape. c
Deformed 3D structure and the target hemisphere (semi transparent
surface). Solid circles represent the nodes after deformation in the dis-
crete gridshell model. Therein the red points are the discrete nodes in
simulation. d Comparison of the buckled elastic rod in the plane y = 0
and the target circular shape

an initially planar circular gridshell with radius ρ0 = 0.5 m
to a 3D buckled structure constrained by a circle of radius
ρ = 0.4 m. The physical parameters used in the simulation
are: Young’s modulus E = 1 GPa, Poisson’s ratio ν = 0.5
(incompressible material), rod radius r0 = 1 cm, number
of rods m = 10 (5 rods along the x-axis and 5 along the
y-axis), boundary velocity v = 0.01 m/s, and total time
T = 12 s, which is larger than (ρ0 − ρ) /v. The boundary
velocity is slow enough and the total time is long enough

that the overall process is quasi-static. Figure 9 shows
a comparison of the computation time and convergence
performance among the three methods. The only difference
between Fig. 9a and b is the number of degrees of freedom.
As indicated in the caption, Fig. 9a uses a more coarsely
discretized elastic gridshell and, therefore, requires smaller
computation time.

In this bar chart, the first cluster of four bars represents
the computation time using the explicit spring method at

Fig. 11 Buckling process to get
a hemisphere using the discrete
gridshell model. Snapshots at
(a) t = 0 s, b t = 1 s, c t = 2 s,
and d t = 10 s. The final
constraint boundary is shown by
the circle at z = 0
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Fig. 12 Design of paraboloid
gridshell based on GA. a
Variation of fitness value with
respect of generation index. b
Original footprint and final
constraint points. c Deformed
3D structure and the target
paraboloid. d Comparison of
buckled elastic rod in the plane
y = 0 and the target parabola

four different stiffness numbers—ks ∈ {0.1EI , 1EI, 10EI ,
100EI }—at a time step size of �t = 10−3s. The simulation
converges to the correct solution only when ks is 1EI or
10EI . If the spring stiffness is lower, the simulation reaches
a solution that is incorrect due to the excessive softness of
the spring. If the spring stiffness is greater, the simulation
fails to converge at this time step. The next cluster of four
bars shows the computation time with a larger time step
size of �t = 10−2s. In this case, the simulation only
converges to the correct solution if ks = 1EI . However, the

computation time is noticeably smaller, compared with the
previous case of �t = 10−3. In contrast with the explicit
spring method that mostly fails to converge at �t = 10−2,
the implicit spring method—represented by the third cluster
of bars in Fig. 9—can reach the correct solution at all
values of spring stiffness except at ks = 0.1EI . There is
no noticeable difference in computation time between the
explicit and implicit spring method. In short, implicit spring
method typically allows larger time step size and does not
strongly depend on the value of the spring stiffness.

Fig. 13 Design of Gaussian
gridshell based on GA. a
Variation of fitness value with
respect of generation index. b
Original footprint and final
constraint points. c Deformed
3D structure and the target
Gaussian surface. d Comparison
of buckled elastic rod in the
plane y = 0 and the target
Gaussian curve
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The last bar in Fig. 9 shows the computation time for the
mapping method. The simulation converges at �t = 10−2s
and, as discussed earlier, the springs at the joints are no
longer necessary. We no longer run into the problem of
picking the value of the spring stiffness that can influence
the simulation results. The computation time is slightly
lower than the one with implicit spring method.

5.2 Symmetric cases (cases I to III)

In cases I to III, the footprints, final boundaries, and deformed
3D structures after buckling are symmetric about the x-axis,
the y-axis, x = y, and x = −y. After simplification, only
6 parameters need to be evaluated to determine the original
footprint as well as the final constraint boundary.

Result of case I—hemisphere—is shown in Fig. 10.
As shown in Fig. 10a, the initial fitness value in the
first generation is 0.346 and the initial guess is described
in (19). The evolution process stopped after running 95
generations since the fitness value had remained unchanged
for many generations and the final fitness value is 0.068.
The variation curve indicates that our initial guess provides
a valid candidate chromosome in finding the original form
and final constraint position, based on which the population
evolves fast from the first to the 23rd generation. It is
a rough searching period, which is followed by a finer
searching period. In Fig. 10b, the vertical and horizontal
elastic rods constitute an elastic gridshell, within which the

distance between two adjacent vertical or horizontal rods
is dx = dy = 0.2279 m. A piecewise cubic interpolation
method was used to fit the extremities of the elastic
rods to construct the outermost boundary. The original
footprint resembles a rounded rectangular shape and is
almost identical to the analytical solution using the theory of
smooth Chebyshev nets (Baek et al. 2018). Then,the rod’s
extremities (first and last nodes) displaced along the arrows
to finally reach the circular final constraint boundary.

The buckled 3D structure is shown in Fig. 10c. Circle
symbols are the discrete nodes in the simulation. In
comparison with the theoretical hemisphere, excellent
agreement is obtained between the target and the simulated
3D structure. For an even closer comparison, Fig. 10 d
shows the elastic rod located in the plane y = 0 and its
desired shape (circular) upon buckling. Almost all the nodes
are in good agreement with the perfect semicircle.

The actuation process is shown in Fig. 11, where the
state of gridshell at four time instants (a) t = 0s, (b)
t = 1s, (c) t = 2s and (d) t = 10s are displayed. In
Fig. 11a, the gridshell is in the state of a 2D network of
elastic rods. Then the rod’s ends begin to move towards
the final circular boundary. At t = 10s in Fig. 11d, the
deformation process is complete and the original footprint
has buckled into a 3D hemispherical structure. It should be
noted that a gravity-like force is applied at the beginning
(first 3 seconds) to avoid higher order buckling modes. This
jittering force essentially works as an imperfection.

Fig. 14 Design of semi-ellipsoid
gridshell based on GA. a
Variation of fitness value with
respect of generation index. b
Original footprint and final
constraint points. c Deformed
3D structure and theoretical
semi-ellipsoid. d Comparison of
buckled elastic rod in the plane
y = 0 and the target
semi-ellipsoid. e Comparison of
buckled elastic rod in the plane
x = 0 and the target semi-ellipse
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Figure 12 presents the form-finding process in case
II, paraboloid. As shown in Fig. 12a, the fast and rough
searching process requires only 11 generations and after
the 20th generation, the whole population evolves very
slowly. The search stops when the fitness value decreases
to 0.110 after the 117th generation. Figure 12b shows the
original footprint and the final constraint boundary, where
the distance between two adjacent and parallel elastic rods
is 0.1944 m. According to the comparison in Fig. 12c and
d between the deformed 3D structure and the target surface,
the footprint and the final constraint boundary found in
Fig. 12b are satisfactory.

Figure 13 shows the results of the bell-shaped structure,
Gaussian surface. In Fig. 13a, the smallest fitness value
obtained is 0.128. The footprint and the final constraint
boundary are shown in Fig. 13b. Although the final fitness

value is higher than the ones achieved in case I and II,
the agreement between the 3D buckled structure and the
theoretical Gaussian surface is still satisfactory as shown in
Fig. 13c. Comparison between the simulated rod at y = 0
and the target line in Fig. 13d also shows that the gridshell
is able to rebuild a Gaussian surface when appropriate
footprint and final boundary constraint are given.

5.3 Asymmetric case (case IV)

Different from the cases discussed in Section 5.2, semi-
ellipsoid is asymmetric about x = y and x = −y.
Therefore, the number of geometric parameters to be
determined has to be increased to 12. For this more complex
case, the evolution process correspondingly becomes slow
as shown in Fig. 14a. The initial fitness value is 0.562

Fig. 15 Original footprints and
final constraint boundary of
Guassian gridshell consisting of
14 elastic rods in (a1), 18 elastic
rods in (a2), 22 elastic rods in
(a3), and 26 elastic rods in (a4).
(b1)∼(b4) give their
corresponding 3D buckled
structure and theoretical surfaces
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using the guessed solution from (20a). The whole evolution
process stopped after the 150th generation, reaching the
maximum threshold of generation number. The final fitness
is 0.069. Figure 14b shows the original footprint and the
final constraint boundary. Distance between every two
adjacent elastic rods is 0.1451 and 0.2337 for rods parallel
to the x- and the y -axis, respectively. Unlike the symmetric
cases, grids separated by the elastic rods are rectangles
instead of squares. Referring to the simulated 3D structure
in Fig. 14c, the 3D semi-ellipsoid matches well with the
target surface. In Fig. 14 d and e, two buckled elastic rods
respectively parallel to the x- and y-axes are displayed to
compare with the target curve over the semi-major and the
semi-minor axes. It is interesting to note that, as illustrated
in Fig. 14b, the original form is not a convex polygon.

5.4 Gridshells consisting of more elastic rods

In the cases above, all the inverse design problems are
addressed on the basis of gridshells consisting of 10 elastic
rods (5x + 5y, i.e., 5 rods along the x-axis and 5 along the
y-axis). However, the proposed GA-based inverse design
method is not restricted to the number of elastic rods. To
design a gridshell consisting of more elastic rods, only a
chromosome of larger length is needed to include more
geometric parameters. Two genes (and four genes) need
to be added when four more elastic rods are added in the
symmetric (and asymmetric) cases.

In Fig. 15a1∼a4, the footprint and final constraint points
of Gaussian surface are evaluated with the GA-based inverse
design method for gridshell consisting of 14 (7x + 7y), 18
(9x + 9y), 22 (11x + 11y), and 26 (13x + 13y) elastic
rods. Their length of chromosome is 8, 10, 12, and 14,
respectively. Compared with the footprint in Fig. 13b, the
outermost form noticeably changes as more and more elastic
rods are added. They are similar to a diamond-like shape and
resembles the footprint of a hemisphere. Grid size decreases

from 0.1734 to 0.0650 m as the number of elastic rods
increases from 14 to 26.

The 3D buckled structures are shown in Fig. 15b1∼b4
when the rods end of footprints are fixed at the constraint
points given in Fig. 15a1∼a4. All the final fitness values
with 10, 14, 18, and 22 elastic rods are around 0.12, but it
increases to 0.15 for the 26-rods gridshell. The difference
between the simulated shape and the analytical surface is
very small and our solution can almost exactly achieve the
target shape.

6 Conclusion

In this paper, an improved discrete gridshell model was
developed, based on which we proposed a GA-based
inverse design method of elastic gridshells. Seven geometric
constraints are defined to reduce the input dimension
and play a critical role in producing satisfying results.
By creating an interface between GA and the discrete
gridshell model, online simulation is realized to calculate
the fitness value in real-time. Initialized by a feasible
guess of individuals, the whole population evolves gradually
within 150 generations guided by the fitness function.
All these methods and procedures work together to help
not only find out the optimal solution but also expedite
the optimization process. Three symmetric cases including
hemisphere, paraboloid, and Gaussian surface are taken
as target structures while another case, semi-ellipsoid, is
used as an asymmetric target. With the proposed GA
based inverse design method, original footprints and final
constraint points are explored to rebuild these shell-like
structures. Excellent agreement is achieved between the
simulated 3D buckled structure and theoretical surfaces in
the above four cases. In the end, the inverse design problem
for elastic gridshell consisting of a larger number of rods
is explored. The proposed method achieved satisfactory

Table 2 Optimal chromosomes of cases I IV found by the GA-based inverse design method

Target surface Rx1 Rx2 θx2 θx3 θFx2 θFx3

Hemisphere 0.782100 0.741047 0.312622 0.695296 0.514617 0.658162

Paraboloid 0.573400 0.552713 0.359345 0.730644 0.433962 0.661161

Gaussian 0.637002 0.639332 0.273912 0.677430 0.105175 0.735382

Semi-ellipsoid Rx1 Rx2 θx2 θx3 θFx2 θFx3

0.568762 0.594331 0.246594 0.542388 0.105817 0.412450

Ry1 Ry2 θy2 θy3 θFy2 θFy3

0.391665 0.442937 1.014903 0.577575 1.055465 0.592478
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results even with an increased number of rods and,
therefore, a greater number of variables. While the examples
in this work were restricted to convex target shapes, future
research direction can include more complex shapes and
non-planar constraint boundary.

Funding information This work received financial support from the
National Science Foundation (Award No. IIS-1925360) and the Henry
Samueli School of Engineering and Applied Science, University of
California, Los Angeles.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Replication of results Details of the GA-based inverse design method
of elastic gridshells have been described in Section 4, including the
geometric constraints, configuration of GA, population initialization,
and the definition of fitness function. The corresponding flowcharts
can be found in Figs. 6 and 8. Parameters of the designed surfaces in
this paper are available in Section 2. As for the forward deformation
process, the DER code could be provided upon request. In order to
provide more convenient validation and replication of our findings,
the optimal chromosomes corresponding to cases I to IV found by the
proposed method are provided in Table 2 that encode the geometry
information about the 2D footprint and final shrunk boundary. With
these data, the footprint, final shrunk constraint boundary, and the
corresponding 3D buckled structures can be replicated.
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