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Propagation of microwave photons along a synthetic dimension
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The evenly spaced modes of an electromagnetic resonator are coupled to each other by appropriate time
modulation, leading to dynamics analogous to those of particles hopping between different sites of a lattice.
This substitution of a real spatial dimension of a lattice with a “synthetic” dimension in frequency space greatly
reduces the hardware complexity of an analog quantum simulator. Complex control and readout of a highly
multimoded structure can thus be accomplished with very few physical control lines. We demonstrate this
concept with microwave photons in a superconducting transmission line resonator by modulating the system
parameters at frequencies near the resonator’s free spectral range and observing propagation of photon wave
packets in time domain. The linear propagation dynamics are equivalent to a tight-binding model, which we
probe by measuring scattering parameters between frequency sites. We extract an approximate tight-binding
dispersion relation for the synthetic lattice and initialize photon wave packets with well-defined quasimomenta
and group velocities. As an example application of this platform in simulating a physical system, we demonstrate
Bloch oscillations associated with a particle in a periodic potential and subject to a constant external field. The
simulated field strongly affects the photon dynamics despite photons having zero charge. Our observation of
photon dynamics along a synthetic frequency dimension generalizes immediately to topological photonics and
single-photon power levels, and expands the range of physical systems addressable by quantum simulation.
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I. INTRODUCTION

Light does not have charge. Accordingly, electric and mag-
netic fields do not strongly affect the propagation of photons.
Moreover, photons interact very weakly with one another.
Because of this, experimental studies of the dynamics of many
photons have lacked the rich complexity found in the many-
body quantum physics of condensed matter. Recent progress
has led to the development of photonic-matter devices that
imbue light with the properties of matter, including mass,
charge, and many-body interactions [1–3]. These devices
have attracted increasing attention over the past decade for
their ability to simulate topological and disordered many-
body physics with single-site resolution, which is difficult to
measure for individual atoms or electrons in a condensed-
matter system [4,5]. A common first step in realizing pho-
tonic matter is engineering a lattice Hamiltonian that allows
photons to propagate between sites; the lattice may include
both spatial dimensions (such as islands of superconducting
metal or atomic positions in an optical trap) and synthetic
dimensions along internal degrees of freedom (such as modes
of a resonator or spin states of an atom [6]). Synthetic di-
mensions allow the observation of higher-dimensional physics
in structures with fewer spatial dimensions which are often
easier to construct [7], motivating theoretical proposals across
a wide variety of physical systems [8–22]. While synthetic
dimensions have been studied experimentally in ultracold
atoms [23–26], fiber-optical systems [27–29], and optical
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waveguide arrays [30,31], they have received limited exper-
imental attention in superconducting circuits [32,33] despite
the rapid development of circuit quantum electrodynamics
(“circuit QED”) [34] as a platform for quantum science.
Lattice simulation experiments in circuit QED have focused
on spatial dimensions defined by multiple transmon qubits
[35–37], coplanar waveguide resonators [38–40], or other
microwave cavities [41], requiring either a large number of
control lines or an inability to directly access the internal
lattice sites. Moreover, as the dimensionality of the problems
increases, synthetic lattices become an attractive route to
realizing full control and readout in a hardware-efficient way,
as they allow for nearly arbitrary connectivity [42–45].

We experimentally demonstrate an approach to realizing a
synthetic lattice in the modes of a multimode superconducting
resonator and observe coupled-mode dynamics of coherent
states under parametric modulation. Similar devices have been
proposed [48–50] and experimentally realized [33,51] to im-
plement degenerate and nondegenerate parametric oscillators;
however, the coherent coupling of a large number of modes
has not previously been observed in these systems to the best
of our knowledge.

The resonator, depicted schematically in Fig. 1, is a copla-
nar waveguide (CPW) of length d ≈ 38 cm terminated at one
end by an array of NSQ = 8 superconducting interference de-
vices (SQUIDs) that functions approximately as an LC circuit
with tunable inductance. The resonant frequencies within the
experimentally accessible band (4–8 GHz) are nearly equally
spaced by �ω/2π ≈ 155 MHz according to the condition for
round-trip constructive interference given by

ωn

ωRT
= n − θSQ[ωn]/2π. (1)
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FIG. 1. Coplanar waveguide resonator with modulated SQUID
termination. (a) Schematic of resonator including external coupling
and flux line. Standing waves depict the local amplitude of five
adjacent modes; the lowest five modes are displayed for visual clarity
though not directly accessed in this work. (b) Schematic of lattice
sites along the synthetic dimension when the flux bias is modulated
at frequency � near the average free spectral range. Coupling to the
next higher (lower) frequency site can be envisioned as absorbing
(emitting) a photon from (to) the modulating field. (c) Three lowest-
energy eigenfunctions of a five-site tight-binding Hamiltonian with
uniform nearest-neighbor coupling. The narrow-band input signal
shown excites only eigenfunctions with nonzero amplitude at site
0 (solid red and evenly dashed blue lines), and subsequent output
signals at other sites are emitted only from these two eigenfunctions.
(d) Optical micrograph of the resonator, fabricated with aluminum
on a 14 × 14 mm chip of high-resistivity silicon. The device lay-
out is similar to that in Refs. [46,47]. Key features are shown in
scanning electron micrographs: (e) external-coupling capacitor, (f)
superconducting air bridges to suppress parasitic slotline resonances,
and (g) SQUID array termination and flux line. The scale bars are,
respectively, 50, 20, and 50 μm. The inward crimping of the airbridge
span in (f) is a systematic fabrication defect and is discussed in
Appendix A

Here θSQ is the phase of the reflection coefficient off the LC
equivalent circuit into a CPW with constant wave impedance
given by [52] Z0 = √

l/c, and ωRT ≡ πvp/d ≈ �ω is the
round-trip frequency at constant phase velocity vp = 1/

√
lc.

θSQ[ω] ∈ (−π, π ) increases monotonically [53] with ω and
defines the tuning range of each resonance. External coupling
occurs at the end opposite the SQUID array through a capaci-
tance Cκ ≈ 15 fF, designed to achieve near-critical coupling
to modes between 4 and 6 GHz. Each resonant frequency

ωn/2π can be tuned over a 17 MHz range using an on-chip
flux line, enabling simultaneous parametric modulation of
all resonant frequencies. As we will see below, modulation
at frequencies � = m�ω + δ near integer multiples of the
average free spectral range introduces tight-binding coupling
between mth nearest-neighbor modes, and in the lossless limit
the resonances of the modulated Hamiltonian form a Floquet
quasi-energy spectrum given by [29,54] ωk,l = ωk + l�.

We organize our work below as follows. In Sec. II we
derive expressions for the tight-binding matrix elements using
standard input-output theory. The derivation is analogous to
Refs. [29,55,56]; however, we present it here to emphasize
that the tight-binding sites {m} may be accessed individually
in experiments. In the remainder of Sec. II we present steady-
state measurements of the sites near 5 GHz with modulation
both off and on. In Sec. III we describe a strategy for tran-
sient measurement of tight-binding dynamics and present data
showing the propagation of a single-site coherent state into
neighboring sites. Finally, in Sec. IV we provide a method
for initializing wave packets on the tight-binding lattice with
arbitrary phase and amplitude distributions, and utilize this
method to observe directional Bloch oscillations of a five-site
wave packet.

II. TIGHT-BINDING MODEL FROM PARAMETRIC
MODULATION

A. Expressions for the matrix elements

We describe the modulated Hamiltonian with a formal-
ism previously used to describe parametric amplification in
tunable superconducting cavities [49,50,57]. Setting h̄ = 1
unless otherwise indicated, the Hamiltonian of the waveguide
resonator is given by

Ĥ (t ) =
∑
n

ωnâ
†
nân + D(t )φ̂2

d , (2)

where ân (â†n) is the annihilation (creation) operator for pho-
tons in mode number n, φ̂d is the phase difference across
the SQUID array, D(t ) is a periodic drive with fundamental
frequency �, and each ωn is fixed to its value when D(t ) =
0. The interaction term φ̂2

d = ∑
mn φ

zp
m φ

zp
n (âm + â†m)(ân + â†n )

is the modulated inductive energy in the SQUID array
arising from a quadratic approximation to its Hamiltonian
which is proportional to cos(φd ), and where we neglect
the quartic and higher-order terms at sufficiently low mean
photon numbers. Given an �-periodic modulation D(t ) =∑∞

k=0 D[k] cos(k�t + θk ) and choosing ω0 as the center fre-
quencies of one of the modes, we write input-output equations
for the mode spaced n lattice sites away from the one at ω0, in
a rotating frame as ân(t ) = b̂n(t )e−i(ω0+n�)t :

˙̂bm =
(
−i�m − κm

2

)
b̂m · · ·

− iφzp
m D(t )

∑
n

φzp
n (b̂ne

−i(n−m)�t + b̂†ne
i(n+m)�t )

+ √
κe
mb̂

in
me

−i(ωin
m−ω0−m�)t (3)

with the boundary condition

b̂out
m = b̂in

m − √
κe
mb̂me

i(ωin
m−ω0−m�)t . (4)
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Here κm = κe
m + κ i

m is the sum of loss rates to measurement
coupling (e) and internal degrees of freedom (i). The rotating-
frame frequencies are equally spaced at the modulation fre-
quency, and we choose ω0 to be the center frequency of
the resonator’s 32nd harmonic at 4.989 GHz, for reasons
outlined in Secs. II C and III B. The input frequencies ωin

m can
be set equal to the comb frequencies such that ωin

m − ω0 −
m� = 0. We next expand D(t ) = ∑∞

k=0 D[k] cos(k�t + θk )
and use the rotating wave approximation to remove all non-
constant terms in the Hamiltonian [58]; this requires � �
(�m, κm, φ

zp
m φ

zp
n D[k]), which is satisfied for all m accessed

in this work:
˙̂bm =

(
−i�m − κm

2

)
b̂m − i

∑
k

Jm,m+k b̂m+k + √
κe
mb̂

in
m

= −i
∑
n

(
Hmn − i

κm

2
δmn

)
b̂n + √

κe
mb̂

in
m. (5)

The elements of the matrix H contain the on-site energies �m

as well as the kth nearest-neighbor couplings Jm,m+k . We focus
here on nearest-neighbor coupling (k = 1), and investigate
more general couplings in Appendices E and J. In the limit
where all junctions in the SQUID array are identical, the
nearest-neighbor coupling rates can be expressed as

Jm,m+1 = −EJ0 φzp
m φ

zp
m+1 sin(F )J1(δ f )e−iθ1 , (6)

where EJ0 is the maximum Josephson energy of the array,
J1 is a Bessel function of the first kind, and the modu-
lated flux threading each SQUID is given by π


0

(t ) = F +

δ f cos(�t + θ1) (see Appendix D).

B. Characterizing flux tunability

The superconducting circuit is shielded from external os-
cillating fields and cooled to Tbase � 10 mK at the base plate
of a dilution refrigerator; the full experimental setup is dis-
cussed in Appendix B. Before performing a flux-modulation
experiment, the flux line must be calibrated to offset stray DC
magnetic fields and extract the mutual inductance between the
flux line and SQUID loops, which then provides an estimate
of the parametric modulation amplitude.

We perform single-port reflection measurements using a
vector network analyzer (VNA) to locate resonant frequencies
and measure their tunability. We bias the flux line with an
isolated DC source across an RC low-pass filter with Rtot ≈
4 k�, which determines the current sent to the chip. To extract
approximate tuning parameters, we sweep the bias voltage
over several volts and fit the extracted resonant frequencies to
the following model [49,59,60], which is equivalent to Eq. (1):

tan(yn) + yn
B

= · · · A
yn

√
cos2[G(V −Vss )] + d2

sq sin2[G(V −Vss )],

(7)
where

yn ≡ πωn

ωRT
. (8)

Fitted parameters using a least-squares cost function are given
in Table I. We find empirically that values B and d2

sq are not
well constrained by this fitting method in the sense that the
cost function takes similar values for a wide range of (B, d2

sq)
with only small deviations in other parameters. However, the

TABLE I. Fit parameters extracted from flux bias tuning, with
equivalent expressions in terms of circuit parameters. M is the
mutual inductance between the on-chip flux line and a single SQUID
loop, and Ls0 = ϕ2

0/EJ0 is the minimum Josephson inductance of the
SQUID array. The average defining d2

sq is taken over all SQUIDs in
the array; the distribution for this average is given in Appendix F.
ωs/2π is the Josephson plasma frequency of the SQUID array
and provides an upper bound for modulation frequencies. Although
not explicitly included in the tuning model, the Josephson plasma
frequency is related by ωs = ωRT

√
AB/π .

Fit parameter Equivalent expression Value

G/π M/
0Rtot 0.0796 V−1

Vss −π
stray/G
0 4.481 V
ωRT/2π vp/2d 155.52 MHz
A ld/Ls0 40.11
B cd/Cs 4479

d2
sq 〈( EJ1−EJ2

EJ1+EJ2
)
2〉 <0.01

ωs/2π (2π
√
Ls0Cs )−1 21.0 GHz

primary experimental goal is to calibrate G, the voltage sensi-
tivity, and Vss, the voltage offset, which are well constrained
by the period and phase of the tuning function. An example of
parallel flux tuning for three modes is given in Fig. 2(a).

C. Measuring scattering parameters of the lattice

We measure the spectrum of our device using two tech-
niques. First, we drive the resonator and flux line with con-
tinuous signals and measure the steady-state voltage reflected
from the resonator to obtain reflection coefficients. Next, we
drive the resonator and flux line with pulses and measure
the emitted voltage over time. For large coherent states in
each site (|β|2 ≈ 10 to 1000 in experiments), we replace the
operators b̂m with their classical averages βm and solve the
input-output equations in the Fourier domain. We measure
emitted voltages both with [Eq. (9)] and without [Eq. (10)]
the directly reflected input field:

βout[ω] =
[
I + i

√
κe

(
H − i

κ

2
− ωI

)−1√
κe

]
β in[ω], (9)

βout[ω] = i
√

κe
(
H − i

κ

2
− ωI

)−1√
κeβ̃(t = 0+), (10)

where β ≡ (β0, . . . , βm, . . . )T are vectors of coherent-state
amplitudes and κ(e) ≡ diag({κ (e)

m }). Equation (9) describes a
steady-state scattering matrix Sβα[ω] between lattice sites,
whose diagonal elements can be measured experimentally
with a standard VNA. Equation (10) describes transient scat-
tering following the preparation of a known initial state β̃(t =
0+) = (

√
κe)

−1
β(t = 0+), independent of the way the known

state was prepared. This allows the known state to be prepared
by an arbitrary input signal so long as the output signal is
recorded only after the input is turned off. The two scattering
matrices differ only by the identity; the real parts of the
scattering-matrix poles appear as dips for Eq. (9) and peaks
for Eq. (10). The equations presented above capture how
coherent states of the electromagnetic field are modified by
the dynamics of the lattice and therefore all the experimental
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(a) (b) (c)

FIG. 2. Experimental spectra demonstrating flux tunability and tight-binding coupling. (a) Parallel tuning of modes 31, 32, and 33 (n =
−1, 0, 1) over 17 MHz as the flux line voltage bias is swept (the frequency axis is collapsed between each mode). The thin vertical line
denotes the DC bias used for modulation experiments; the blue rectangular overlay displays a typical flux modulation amplitude equivalent to
0.062
0. (b) Continuous-wave (CW) reflection spectra at site n = 0, measured as a VNA reflection coefficient as the modulation frequency is
swept from 153.9 to 156 MHz. VNA spectra correspond to Eq. (9). The dashed line and corresponding line trace at 155.1 MHz correspond to
“resonant modulation” at �/2π = 155.1 MHz used in subsequent experiments. (c) Transient spectra for scattering between input site n = 0
and output sites (−1, 0, 1), corresponding to Eq. (10). Traces for S00 (green, middle) and S10 (blue, upper) are vertically shifted by 0.1 and 0.2,
respectively. The (green, middle) trace may be compared to the VNA trace in (b) as they represent the same scattering parameter with (b) and
without (c) direct reflection.

results presented here. This approach can be readily extended
to arbitrary states by promoting the coherent state amplitudes
to operators and including the noise operators injected by the
intrinsic decay channels in the scattering relation.

Measured spectra corresponding to Equations (9) and (10)
are displayed in Fig. 2. Spectra in Fig. 2(b) are obtained by
continuous driving and flux modulation, and are measured
with a VNA over an 8 MHz bandwidth about site nabs =
32, corresponding to n = 0. As the modulation frequency is
tuned through the average FSR, Floquet quasi-energy peaks
associated with nearby sites approach the center of site 32,
where couplings can be inferred from avoided crossings. The
distortion of mirror symmetry in the plot is due to both
on-site frequency disorder and the systematic variation of
coupling rates with mode number. This variation is smaller
at larger mode numbers but is still appreciable at nabs = 32.
The magnitude of the coupling rates peaks far below site 32
and decreases as 1/nabs for larger nabs (see Appendix E); larger
coupling-to-loss ratios favor the appearance of Floquet peaks
from lower sites which appear as diagonal streaks across
the detuning plot from bottom-left to top-right. Site 32 was
chosen for this measurement because it lies in the center of a
12-site sublattice that contains no “barrier sites,” or sites with
severe loss and disorder that act as barriers to the propagation
of tight-binding photons.

Figure 2(c) contains scattering parameters between a com-
mon input site and three neighboring output sites, calculated
in the rotating frame. Spectra were measured by first exciting
site n = 0 with a long pulse from one AWG channel while no
modulation is applied, switching on the modulation shortly
after the excitation pulse ends, and then detecting the output
field from each site (this scheme is described in more detail
in Sec. III and the Appendix). The Fourier transform of the
time series at site j is then proportional to the scattering

parameter S j,0[ω] − δ j,0, where the direct-reflection term is
automatically subtracted because the incident field is turned
off during data collection.

III. SITE-RESOLVED TRANSIENT MEASUREMENTS

A. Rotating-frame measurements

We observe lattice-coupling dynamics in the time domain
by exciting a single initial site and measuring the slowly
varying voltage envelope at an array of adjacent sites. The
general scheme of the measurement is shown in Fig. 3(a). A
long monochromatic pulse (τexc = 30 μs) drives mode 0 of
the unmodulated lattice to steady state, exciting site n = 0
of the lattice. The excitation is switched off and mode 0
begins to ring down during a short gap τgap ∼ 150 ns. At this
point the parametric modulation is turned on, resulting in
dynamics for a duration τmod ∼ 4–32 ns. The gap between the
excitation and modulation ensures that the modulation arrives
at the chip after the excitation pulse cuts off. Data collection
begins just before the end of the excitation pulse and continues
until just before the modulation ends, allowing observation of
the steady-state, gap, and modulated regimes so t = 0 when
modulation arrives at the chip can be easily identified.

We measure the output voltage from each frequency site
in the rotating frame of Eqs. (3) and (4) using ân(t ) =
b̂n(t )e−i(ω0+n�)t , where ω0/2π ≈ 4.9892 GHz is the cen-
ter frequency of the uncoupled mode labeled n = 0. For
each site the corresponding carrier frequency is converted
to 125 MHz using a custom downconversion board [61,62],
and data are collected at the ADC and digitally downcon-
verted to generate a signal at DC. Voltage traces for each
site are collected in a raster fashion by shifting the analog
downconversion frequency, and the traces are concatenated to
form the colormaps in Figs. 3(c) and 3(f). All experimental
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FIG. 3. Transient propagation from a single-site initial state.
(a) Pulse schematic for exciting a single mode to steady state,
applying flux modulation and measuring the output voltage while
the excitation propagates and rings down. All voltage traces in
(c)–(h) are displayed from the arrival of the modulation pulse to
an intermediate time before the end of the modulation pulse and
smoothed with a 16-point moving average. The numerical values
are the voltage amplitudes |VADC|, normalized so that each colormap
has a maximum value of 1. (b) Schematic of on-site energies in the
rotating frame, for modulation resonant with the free spectral range
(top) and detuned by an amount � (bottom). We show the ideal case
with no on-site disorder. (c), (f) Experimental magnitude of slowly
varying voltage envelopes with flux modulation at (155.1, 152.1)
MHz, respectively, compare the theory calculations in (d) and (g)
and the overlaid traces at n = 0 in (e) and (h).

traces shown are smoothed with a 16-point moving average
before taking the magnitude, equivalent to multiplication by
sinc[πω/(ωsamp/16)] in the Fourier domain.

B. Resonant modulation

Figures 3(c) and 3(d) display experiment and theory for
propagation driven by resonant modulation at 155.1 MHz. The
envelope spreads out in a light cone for the first 0.5 μs, at
a rate bounded by the maximum local group velocity [63]:
|vmax

g,n | ≈ 2|Jn| sites per unit time. The light cone tilts slightly
to the left due to the systematic variation in coupling rates,
which scale as 1/nabs. Near t = 0.5 μs the envelope reaches
two “barrier sites” at n = −6 and 7 whose large on-site

disorder and loss cause reflections; little signal is emitted be-
yond the barriers. The theory calculation in Fig. 3(d) simulates
Eq. (5) using {�m, κm} extracted from fitting uncoupled-mode
peaks and {Jm,m+k} predicted from the flux-tuning parameters
in Table I. The modulation amplitude in flux quanta is the only
free parameter and was chosen as 0.062
0 to best match the
trace at n = 0 [Fig. 3(e)]. The main uncertainty in the model
is due to reflections at the barrier sites, which are not well
modeled due to greater uncertainty in fitting the parameters of
the barrier modes. Data are displayed up to t = 1.0 μs after
which reflections from these barriers interfere at the center
and the experimental result diverges significantly from theory.

C. Detuned modulation: Bloch oscillations

We next implement the synthetic-dimension Bloch oscilla-
tions proposed in [18]. Figures 3(f)–3(h) display analogous
experimental and theory traces for detuned modulation at
152.1 MHz. In the rotating frame this detuning becomes a
linear gradient in on-site energy, �n ≈ n�, which simulates
a charged particle moving on a lattice in the presence of
a spatially uniform field [Fig. 3(b)]. This field drives the
frequency-space quasimomentum k f according to the Bloch
acceleration theorem [64–66]:

∂t k f = F = −δ�n

δωn
≈ −�

�
. (11)

For compactness we define a dimensionless quasimomentum
k ≡ k f � that evolves according to k(t ) − k(0) = −�t . Due
to the periodicity of extended Brillouin zones, an equivalent k
is reached after a time TB = 2π/|�|, and lattice dynamics are
periodic with frequency fB = 1/TB = |�|/2π .

We observe symmetric Bloch oscillations about site n = 0,
with recurrences at the detuning frequency |�|/2π ≈ 3 MHz.
The single-site initial excitation ensures symmetric oscilla-
tions as its spatial Fourier transform has uniform amplitude for
all k and therefore has no preferred group velocity. Comparing
Fig. 3(e) to 3(h), we see a better agreement between theory
and experimental voltage traces in the Bloch oscillation case.
This is because the field amplitudes in the Bloch oscillation
case are confined to sites n ∈ [−3, 3] where calculation pa-
rameters come from more reliable fits.

IV. DYNAMICS OF WAVE PACKETS

Single-site excitation leads to the initial condition of a
photon localized to a single lattice site without a well-defined
momentum. The spatially symmetric character of such a state,
as well as the approximate translational and reflection sym-
metries of the lattice, causes the photon to spread out in both
directions. Directional propagation requires the state of the
field to be confined in k-space so that it samples only a small
range of group velocities. It is possible to initialize the electro-
magnetic field in a wave packet with well-defined momentum
in a particular direction. In this section, we first measure the
dispersion of the lattice and then outline and demonstrate a
scheme for generating and observing propagation of photon
wave packets in the synthetic lattice.
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A. Tight-binding dispersion

In order to excite wave packets with well-defined propa-
gation characteristics, we need to better understand the dis-
persion properties of the synthetic lattice. In an infinite and
disorder-free lattice, diagonalizing the Hamiltonian leads to
a series of spatially extended and periodic Bloch function
eigenstates [β (k)

j (t ) = eik j−iω(k)t ] with corresponding wave
vectors k and natural frequencies ω(k). Despite the differences
between such a lattice and the experimentally realized one,
in particular the finite extent of the experimentally realized
lattice as well as the presence of disorder and loss, the same
picture approximately holds, and a dispersion relation ω(k)
can be extracted. We first initialize the lattice at t = 0 with an
excitation βm(0) = δm,n0 . Note that this state overlaps with all
of the Bloch functions in the infinite perfect lattice case, and
that all of the wave vectors play a role in the time evolution of
this state.

We perform a 2D Fourier transform on the full state β j (t )
to obtain β[k, ω]. This is equivalent to taking the overlap
in both time and space of the resulting state with the Bloch
functions. For an infinite disorder-free lattice, the result would
tend to β[k, ω] → ∑

k0
Ak0δ(k − k0)δ[ω − ω(k0)], i.e., a func-

tion that is peaked along the dispersion relation ω(k) and
zero elsewhere. Figure 4(a) displays the Fourier transform of
a transient propagation measurement with nearest-neighbor
coupling, following the schematic of Fig. 3. Traces were
collected for sites n ∈ [−8, 18] with a modulation duration
of 15.934μs. The peak Fourier amplitudes cluster around the
cosine dispersion of an ideal lattice with nearest-neighbor
coupling,

ω(k) = 2|J| cos(k + θmod), (12)

where θmod ≡ arg(J ). Comparing the experimental result to
the dispersion relation of a perfect lattice, we find that fi-
nite length and disorder smears the band diagram in the
k dimension, while the finite lifetime of the modes causes
blurring in the ω direction. Fitting the positions of the peak
amplitudes to Eq. (12) extracts a representative local coupling
rate |Jfit/2π | = 1.25 MHz.

Furthermore, we adjust the measured output field to com-
pensate for output coupling and propagation through the
measurement channel:

βmeas
n = −√

κe
nG

out(ωn)eiωnT out
βn. (13)

We correct for the output couplings κe
n using fitted parameters

from VNA spectra, recorded with modulation turned off. The
output gain Gout contains the insertion losses and amplifier
gains of all components between the chip and ADC as a
function of laboratory-frame frequency ωn. We neglect the fre-
quency dependence of Gout as the lattice disorder appears to be
the limiting factor when approximating dispersion in this way.
The linear phase shift assumes a uniform propagation delay
T out and superimposes a phase gradient of δθ/δn = −�T out

on the chip output phases, effectively shifting the k axis of
the Fourier transform so the ideal dispersion is measured as
2|J| cos(k + θmod + �T out). Figure 4(a) absorbs �T out and
θmod into k because the former is a measurement artifact, and

(a)

(b)

(c)

(d) (e)

FIG. 4. Calibration and propagation of an initial wave packet.
Color online. (a) Approximate dispersion along the frequency dimen-
sion, extracted from peaks in the 2D Fourier transform of transient
propagation data as in Fig. 3(b). Data are arbitrarily normalized to
a maximum of 1. Dashed vertical lines indicate target k values for
the initial states in (d) (yellow, leftmost) and (e) (cyan, rightmost).
(b) Schematic of the nearest-neighbor interference experiment used
to calibrate the on-chip amplitudes β(0). Interference occurs in the
triangular overlap between light cones emanating from neighboring
sites. (c) Representative calibration data, with r ≈ 1 for maximum in-
terference amplitude. Sites −1 and 0 are excited by a two-frequency
pulse with phase offset θAWG defined at the start of the pulse. Output
voltage amplitude from site −1 is plotted for short modulation times
as the phase offset is swept. (d) Propagation of a five-site wave
packet with initial keff ≈ 0.5π , showing negative group velocity and
coherent reflection of the wave packet at the n = −6 barrier site. (e)
Directional Bloch oscillation of a five-site wave packet with initial
keff ≈ 0.78π .

the latter can be removed by a unitary transformation [67]
when there is only one modulation frequency. Crucially, both
the excitation and modulation phases must be stable over the
duration of the entire experiment or the Fourier transform will
be additionally blurred along the k axis. We correct for phase
drifts using a reference signal from the AWG, sent to a second
ADC channel as described in Appendix B. In Eq. (13) we have
ignored the dispersion (frequency-dependent group delay) in
the measurement channel.
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B. Calibrating phases for multifrequency pulses

To realize initial states with a well-defined momentum, we
engineer precise phase relationships between the excitation
amplitudes at different sites. This requires us to calibrate
the gain and phase response of the input lines. Here we
describe a calibration procedure that involves a sequence of
two-site phase measurements and provides the information
required to generate driving signals that result in multisite
excitations with a well-defined momentum. We model the
driving signals as superpositions of monochromatic voltage
waveforms emitted from the AWG, where each component
has the form

vn(t ) = 2
∣∣βAWG

n

∣∣ cos
(
ωnt + θAWG

n

)
. (14)

The driving frequencies ωn are chosen as the fitted center fre-
quencies of the unmodulated modes n, such that the resulting
field in mode n becomes

βn(t = 0) = √
κe
nG

in(ωn)e−iθn
∣∣βAWG

n

∣∣ (15)

when the modes n are spectrally well resolved. The phase θn
equals θAWG

n plus an unknown n-dependent offset arising from
propagation delays and detunings from resonant driving. The
detuning phases represent experimental error and are typically
small, whereas the propagation phases are much larger than
2π . It is therefore necessary to calibrate the unknown phase
offset for each n.

To perform this calibration, we excite pairs of adjacent sites
with different relative phases, then turn on nearest-neighbor
coupling and measure the interference between fields in the
two sites as represented schematically in Fig. 4(b). For each
pair we set θAWG

n = 0, and sweep θAWG
n+1 from −π to π . The

known phase difference at the AWG results in an unknown
phase difference �θn ≡ θn − θn+1 between the on-chip fields,
following Eq. (15). We then turn on a resonant modulation
signal at 155.1 MHz and measure the voltage amplitude emit-
ted from the lower site n. At small modulation times t � 1 μs
we observe a sinusoidal interference pattern in the voltage
amplitude as θAWG

n+1 is swept; a representative measurement of
this type is shown for n = −1 in Fig. 4(c).

We perform the following calculation to understand the
interference pattern. For general initial amplitudes β(0)
and quadratic-form Hamiltonian H the amplitude at site n
evolves as

βn(t ) = u†ne
−iHtβ(0), (16)

where vectors un form an orthonormal frequency-site
basis and function analogously to Dirac kets |n〉 ≡
| · · · 0n−11n0n+1 · · · 〉 in a single-photon manifold. For a two-
site interference experiment we let βn(0) = 1 and βn+1(0) =
rei�θn with all other βm(0) = 0; the arbitrary overall scaling
does not affect the shape of the interference pattern. The field
amplitude in the lower site n can then be expressed as

|βn(t )|2 = |Un(t )|2 + r2|Un+1(t )|2

− 2Re[irUn(t )∗Un+1(t )ei(�θn+θmod )], (17)

where the functions Un and Un+1 are real-valued when on-
site detuning and loss are negligible (�nt � 1, κnt � 1);
see discussion in Appendix I. In this limit the interference

term becomes 2rUn(t )Un+1(t ) sin(�θn + θmod). We absorb the
modulation phase into the unknown n-dependent offset to
obtain a calibration equation:

|βn(t )|2 = |Un(t )|2 + r2|Un+1(t )|2

+ 2rUn(t )Un+1(t ) sin
( − θAWG

n+1 + θ calib
n

)
. (18)

The calibration therefore amounts to determining the phases
{θ calib

n }. The measured output field βmeas
n (t ) is proportional

to βn(t ) according to Eq. (13), so the sinusoidal dependence
on θAWG

n+1 can be directly observed in voltage traces as in
Fig. 4(c), which displays |βmeas

n (t )| during the first 0.25 μs
of modulation time for different values of the phase θAWG

n+1 .
Fitting the amplitude along a vertical slice at sufficiently small
t , e.g., t = 0.1 μs, yields θ calib

n for each pair of sites.
We need N − 1 such pairwise calibrations to excite N adja-

cent modes with an arbitrary phase distribution, thus creating
a wave packet with tunable momentum. We are particularly
interested in states localized in k-space about a target value

keff ≡ k + θmod = �θn

�n
+ θmod. (19)

The Fourier transform in Fig. 4(a) is plotted with respect to
this keff, and we define the localized k as a discrete phase
gradient in analogy to the Bloch wave functions β (k)

n (t =
0) = eikn. But �n = 1 for adjacent sites, and we recognize
�θn + θmod = −(θAWG

n+1 − θAWG
n ) + θ calib

n , which was used to
obtain Eq. (17) from Eq. (18) for the special case where
θAWG
n = 0. By setting this expression constant for all excited

sites n, we create states localized about

keff = −(
θAWG
n+1 − θAWG

n

) + θ calib
n . (20)

Finally, we estimate the value of r by comparing experimental
interference patterns with solutions of the time evolution
Eq. (16). As r ∝ |βAWG

n+1 /βAWG
n |, determining the proportion-

ality constant allows us to initialize arbitrary amplitude distri-
butions for N-site wave packets.

C. Wave packet propagation

We initialize five-site wave-packet states with approxi-
mately uniform phase gradients and observe directional prop-
agation for both resonant and detuned modulation. In both
cases the target amplitudes for the initial wave packet form
a truncated Gaussian distribution with mean μ = 0:

|βn(t = 0)| =
{
N0e

− n2

2σ2 , |n| � 2

0, |n| > 2
. (21)

Resonant and detuned propagation are shown in Figs. 4(d)
and 4(e), respectively. In Fig. 4(d) the target wave packet
has σ = 2.5 and keff = 0.5π , with modulation at �/2π =
155.1 MHz The expected negative group velocity is observed
for t � 0.7 μs at which point the wave packet reflects off the
barrier site at n = −6 and the group velocity becomes posi-
tive. Predictions for reflection and transmission coefficients at
a barrier site are discussed in Appendix L. The modulation
amplitude was reduced by half (0.031
0) to increase the
number of samples taken before the wave packet reflects;
dividing the value of Jfit from Sec. IV A by 2 predicts a group
velocity of −7.85 sites/μs. At this group velocity the center of
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a wave packet would take 0.6 μs to reach the lowest prebarrier
site (n = −5), consistent with Fig. 4(d).

In Fig. 4(e) the target wave packet has σ = 2 and keff =
0.78π , with modulation �/2π = 153.1 MHz. This initial keff

was chosen such that the wave packet avoids barrier sites
throughout a Bloch period. Slightly fewer than six Bloch
periods are observed in 3 μs, indicating an effective detuning
slightly smaller than 2 MHz. The maximum modulation am-
plitude of 0.062
0 was used, so the maximum group velocity
during a Bloch period is twice that of Fig. 4(d) at roughly
15.7 sites/μs. In both Figs. 4(d) and 4(e) a small amount of
bidirectional propagation is observed starting immediately af-
ter t = 0, suggesting the initial wave packets have components
in k-space far from the target keff. We attribute these parasitic
components to the limited spatial extent of the wave packet;
we have truncated the Gaussian envelope to zero outside the
initial five sites. Bidirectional propagation can be reduced
by initializing a wave packet with larger spatial extent and
smoother decay to zero.

V. DISCUSSION

We have demonstrated tight-binding coupling along a syn-
thetic dimension in the upper modes of a superconducting
circuit and observed the propagation of classical site am-
plitudes both bidirectionally and with a strongly directional
group velocity. In addition to the low losses and large hopping
rates demonstrated, the advantage of this platform is its com-
patibility with strongly nonlinear superconducting qubits, and
tailorable parametric interactions, both of which provide an
avenue to implementing hardware-efficient analog quantum
simulation. For our multimode resonator, dynamics in the
synthetic dimension are driven through a single flux-control
channel and observed through a single external-coupling
channel which simplifies the hardware requirements of pack-
aging and wiring the device in a dilution refrigerator. The
main performance-limiting factors in this work are the typical
loss rates at each site (κn/2π ∼ 100 kHz) and the presence
of high-loss, high-disorder “barrier sites” that confine well-
controlled dynamics to a smaller number of sites. Improved
design and fabrication methods are the primary avenues for
reducing disorder and loss.

In addition to the nearest-neighbor coupling presented in
this work, a rich array of additional experiments are immedi-
ately accessible in this platform. Customizable band structure
and synthetic gauge fields can be implemented by multiplex-
ing the flux modulation with signals near integer multiples
of the free spectral range, as observed experimentally in
Ref. [29]. The coupling dynamics of the Hamiltonian can
be effectively time-reversed by a sudden shift of π in the
modulation phase [68] allowing revival of an initial state
(limited by on-site disorder and loss rates); a preliminary
experimental investigation is reported in Appendix K. De-
generate or nondegenerate parametric oscillation [49,50,62]
can be implemented in any mode(s) ân and âm by modulating
at frequencies near ωn + ωm, where the degenerate case cor-
responds to m = n. Such a multimode parametric oscillator
could be utilized to generate continuous-variable cluster states
as proposed in Refs. [69,70], which provide a starting point
for one-way quantum computation. The resonator may also

be operated in the nonlinear regime by increasing the mean in-
tracavity photon number and/or fabricating a shorter SQUID
array. Further applications arise from coupling multimode
resonators to each other to provide a spatial dimension, or
coupling a qubit to a multimode resonator at one frequency
site to simulate an electronic system coupled to a bath with
tunable density of states.
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APPENDIX A: DEVICE FABRICATION

The 14 mm × 14 mm device was fabricated with a six-
mask lithography process on a 500-μm high-resistivity Si sub-
strate (ρ > 20k�cm). Mask 1 defines the aluminum ground
planes, CPW resonator, and feedlines (all 150 nm thick), pat-
terned by image-reversal photolithography and liftoff. Mask 2
adds palladium alignment marks by the same image-reversal
method, in preparation for aligning the electron-beam lithog-
raphy mask that will later create the SQUID array. Masks 3
and 4 create superconducting aluminum airbridges (300 nm
thick) using the procedure of Ref. [71]. Mask 3 defines bridge
feet and spans using reflowed thick photoresist, 300 nm Al is
evaporated, and mask 4 protects the metal bridge spans while
a wet etch removes the rest of the aluminum. Mask 5 patterns
the SQUID array using a Dolan-bridge, double-angle tech-
nique for growing Al/AlOx/Al junctions via in situ oxidation
[72,73]; this technique is the only use of electron-beam lithog-
raphy in the process. Mask 6 uses a bandage process to form
superconducting aluminum connections between the SQUID
array, CPW resonator, and ground plane [74]. Test arrays with
SQUID numbers between 0 and 10 are fabricated elsewhere
on the chip in Mask 5 and connected to bond pads from
Mask 1 by the bandage process. This allows measurement
of normal-state resistances (which extracts the approximate
Josephson inductance via the Ambegaokar-Baratoff equation
[75]), and scanning electron microscopy of the arrays without
damaging the experimental device.

Fabricating the 3-μm-high airbridges before the
SQUID arrays leads to systematic distortion of the
bridge spans. The electron-beam resist forms a bilayer
approximately 1 μm thick, which spreads part way up the
bridge spans but does not cover the maximum height. The
sides of the bridge spans crimp inward during the subsequent
lithography steps, perhaps due to strain in the resist that affects
only the lower portion of the spans. The center of each span
is parasitically exposed to aluminum evaporation from the
double-angle process, which is thin enough (30 nm + 50 nm)
that it tears away from the bridge spans during liftoff without
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destroying the span. However, both crimping and parasitic
deposition add disorder to the bridge shapes and create small
crevasses where resist can become trapped, increasing both
on-site disorder and loss in the device Hamiltonian. This
distortion can be minimized in future devices by rearranging
the fabrication process such that airbridges are patterned last,
as their shapes typically survive the thick photoresist used in
the final dicing process.

APPENDIX B: EXPERIMENTAL DETAILS

1. Resonator excitation

The experimental setup is shown in Fig. 5. For all pulsed
experiments in this work, we generate resonator excitation and
flux modulation using a 5 GS/s arbitrary waveform generator
(AWG) (Tektronix series 5200). The target resonances of the
device lie between 4.5 and 5.5 GHz, which we produce using
difference-frequency upconversion with a dedicated local os-
cillator (Keysight E8257D) and triple-balanced mixer (Marki
T3-20). Long square-pulse envelopes (typically 30 μs) are
used to drive resonances to steady state before the modulation
signal arrives. We operate the AWG in real-waveform mode,
in which waveforms are directly synthesized by sampling at
5 GS/s and the built-in digital IQ mixers are not used. While
the digital IQ mixers can be used to output frequencies above
the 2.5 GHz Nyquist limit, we found empirically that the
numerical local oscillators (NCOs) of two different channels
acquire a relative time delay when the output frequency of
one channel is reset, creating a new and unpredictable phase
relationship between the channel outputs which negates the
effect of the phase-reference channel discussed in Sec. B 4.
Directly synthesized waveforms do not experience this prob-
lem but exhibit strong Nyquist images that become difficult
to separate from the desired signal if the target frequency
is too close to 2.5 GHz. The AWG output is low-pass fil-
tered before the mixer to remove Nyquist images and clock
feedthrough, and band-pass filtered after the mixer to remove
spurious intermodulation signals and feedthrough from the
upconversion LO. In addition to the AWG, a vector network
analyzer (VNA) (Rohde & Schwarz ZNB20) is connected
in parallel using 50� resistive power splitters (Mini-Circuits
ZFRSC-123+), with insertion losses of approximately 10 dB
between the common port and either split port. The VNA is
used to collect continuous-wave modulation spectra and to
calibrate the frequencies and widths of uncoupled resonances.

2. Resonator readout

The resonator is driven and read out through a single
capacitively coupled port with Cκ ≈ 15 fF and corresponding
coupling rates κe

n/2π increasing from approximately 30 to
120 kHz across the experimentally accessible band of 4 to
8 GHz. The output signal is separated from the input using
a three-port circulator at 7 mK (Quinstar QCY-060400C000)
and passes through a second circulator functioning as an
isolator; the 4–8 GHz circulator bandwidth defines the ob-
servable frequency sites. The signal is amplified at 3 mK
with a high electron mobility transistor (HEMT) ampli-
fier (Caltech CITCRYO1-12A) and at room temperature by
two low-noise amplifiers (Miteq AFS4-02001800-24-10P-4

and AFS4-00100800-14-10P-4). Next, the signal is down-
converted to an intermediate frequency (IF) of 125 MHz
using a separate local oscillator (Keysight E8257D) and a
double-balanced mixer (Marki ML1-0220I). Finally, the IF
signal is amplified, low-pass filtered, and digitized by channel
A of an acquisition card (AlazarTech ATS9350) with 12-bit
resolution and a 500 MS/s sampling rate. The data are stored
first on-board and then transferred to a GPU for real-time
processing.

The key readout technique used in this work is a raster
scan of the downconversion frequency across equally spaced
frequency sites separated by the fundamental modulation
frequency �. To measure the slowly varying envelope of the
output signal at site n, the site is assigned a center frequency
ω′
n = ω0 + n�, and the Keysight local oscillator is adjusted to

down-convert ω′
n/2π to 125 MHz. After data are transferred

to the GPU, the data are digitally down-converted to place one
of ±125 MHz at DC, and a smoothing filter is applied after all
real-time processing to isolate a single-site envelope within a
bandwidth of <10 MHz. Experiments are repeated with the
same excitation pulses as the readout site n is varied, providing
single-site readout resolution.

3. Flux control

The flux threading the SQUID array is controlled by an
on-chip flux line, for which DC and RF currents are combined
in a bias tee at 7 mK (Anritsu K250). DC biasing is performed
using a programmable voltage source (SRS SIM928), which
is low-pass filtered at the 3 K stage (Aivon Therma-24G). RF
modulation pulses are generated by the AWG and amplified at
room temperature (Mini-Circuits ZX60-P103LN+); attenua-
tion before the amplifier is chosen such that the input power is
just below the 1 dB compression point. The signal is low-pass
filtered before the amplifier to remove clock feedthrough and
Nyquist images, and band-pass filtered after the amplifier to
remove harmonics from nonlinear amplification and reduce
flux noise.

4. Phase-reference channel

In order to estimate lattice dispersion using a Fourier trans-
form across frequency sites as in Sec. IV, the data collected
at each site n in the downconversion raster scan must be
representative of the same experiment and therefore have a
consistent phase reference for the carrier frequency. However,
this phase is not typically stable between measurements. The
phase of the downconversion LO is effectively randomized
every time the frequency is changed, both LOs experience
a gradual phase drift even when nominally locked to an
external clock, and we anticipate some jitter in the timing
of AWG playback and ADC data collection from experiment
to experiment. We summarize the carrier phase of the signal
emitted from site n and collected at ADC Channel A as

θn
A (t ) = −ωCh1TCh1(t ) + ωUCTUC(t ) + θn

chip(t )

+ n�TCh2(t ) − ωDCTDC(t ) + θ rand
DC

+ ωADCTADC(t ) + const. (B1)
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FIG. 5. Experimental setup. The sample is located at the mixing-chamber plate of a dilution refrigerator, packaged in a microwave PCB
and copper enclosure, and surrounded by cryogenic magnetic shielding. All instruments are phase-locked by a 10 MHz rubidium frequency
standard (SRS SIM940); the output of both local oscillator sources is high-pass filtered to remove feedthrough from the 10 MHz clock. Notation
follows Refs. [61,62].

Here TX (t ) is a reference time for signal generator or de-
tector X , and we have written only the terms which we expect
to jump or drift between measurements at different sites.

Stable phases are lumped into the constant term, including the
n-dependent delay from linear cable dispersion. We need to
provide a reference signal to ADC Channel B that contains the
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drifting phases such that only the on-chip dynamics remain:

θn(t ) ≡ θn
A (t ) − θn

B (t ) = θn
chip(t ) + const. (B2)

To accomplish this we note that TChX(t ) = TAWG(t ) for all
AWG channels when no digital IQ upconversion is used,
{TUC(t ),TDC(t ), θ rand

DC } can be replicated up to a constant by
splitting the respective LOs between two different mixers,
and TADC(t ) is the same for both ADC channels (capture
starts simultaneously). The phase of the signal collected by
the “phase reference” portion of Fig. 5, and the resulting
“corrected” carrier phase is then

θn
B (t ) = −ωCh3TAWG(t ) + ωUCTUC(t ) − ωDCTDC(t )

+ θ rand
DC + ωADCTADC(t ) + const, (B3)

θn
A (t ) − θn

B (t ) = (ωCh3 − ωCh1 + n�)TAWG(t )

+ θn
chip(t ) + const. (B4)

This corrected phase is then stable for measurements at differ-
ent sites if when measuring site n the AWG Channel 3 output
frequency is set to ωCh1 − n�. We set the reference channel to
continuous-wave operation. After each pair of voltage traces
is collected, an overall phase θB is calculated from the time
average of vB(t ) and a corrected trace for A is calculated as
vA(t )e−iθB . We emphasize that this correction is made only to
facilitate the Fourier transform over frequency sites and does
not affect the physics being measured, as any distribution of
overall phases θn can be removed by a unitary transformation
of type Unm = e−iθnδnm (in the quantum case the exponential
would include the operator b̂†nb̂n).

A primary caveat is that the reference signal can leak
into the resonator excitation line if the RF/LO isolation of
the mixers and the isolation between the LO splitter ports
are not sufficiently high. The leaked signal can become up-
converted in the process and then coincides with frequency
site n, meaning it is likely to fall within the 4.5–5.5 GHz
passband and parasitically excite the device. We observed
such parasitic excitations when the full Channel 3 output
amplitude was used, motivating the use of 40 dB attenuation
before upconversion to reduce leakage magnitude. The low
(6dB) isolation of the upconversion splitter (Mini-Circuits
ZFRSC-183+) contributes to the leakage, though we contin-
ued to use the splitter because its low insertion loss enables
the LO to provide ∼17 dB of power to both mixers. Improved
implementation can be achieved using a nonresistive power
splitter for better isolation, a LO source with greater output
power, and/or mixers requiring lower LO power.

APPENDIX C: A RECENT SIMILARWORK IN BAND
STRUCTURE SPECTROSCOPY

A robust procedure for measuring band structure along a
synthetic dimension was recently demonstrated by Dutt et al.
in a fiber ring resonator with electro-optic phase modulation
[29]. The procedure derives the identification of k f with a
time coordinate within a single modulation period and extracts
k f (ω) from the timing of transmission peaks when the ring is
driven at frequency ω. In principle this strategy is immediately
adaptable to superconducting circuits; however, it requires

a large number of data samples per modulation period, or
equivalently ωsamp/� � 1. This ratio exceeds 300 for the
optical experiment but is only ( 500 MHz

155 MHz ≈ 3.2) for our device,
too small to measure band structure directly from peak timing.
We increase the resolution of k f above three samples per
Brillouin zone by recording traces at 27 discrete frequency
sites, which samples the output spectrum only in the intervals
where signal is expected. The “spatial” Fourier transform
over these sites then approximates a time-domain trace of
the output field filtered by the band containing the 27 sites,
approximately 3.7–8.1 GHz. The measurement shift k f � →
(k f + T out)� due to output delay is also consistent with the
interpretation of k f as a time. Further mathematical details
of parametrically coupled oscillator systems may be found in
Ref. [76].

APPENDIX D: ROTATING FRAME

We explicitly define the quantities in Sec. II A in terms
of circuit parameters and complete the derivation of cou-
pling matrix elements. The modulated coefficient D(t ) is
given by the effective Josephson energy of the SQUID array
at normalized flux f (t ), minus its value at the DC flux
bias F :

H (t ) =
∑
n

ωnâ
†
nân + D(t )φ̂2(x = d ), (D1)

D(t ) ≡ EJ ( f (t )) − EJ (F )

2
, (D2)

EJ ( f ) = EJ0

√
cos2 ( f ) + d2

sq sin2 ( f ), (D3)

f (t ) ≡ F + δ f (t ) = π


0
[
DC + 
AC(t )], (D4)

where f (t ) is proportional to the flux threading each SQUID
loop including DC bias F , EJ is the effective Josephson energy
of the SQUID array at flux bias f , and each ωn = ωn(F ) is
fixed to its value at the DC bias F . Parameter dsq describes the
asymmetry between junctions on either side of the SQUID
array; conditions for the validity of Eq. (D3) for NSQ > 1 are
discussed in Appendix F. Collecting the uncoupled oscillator
terms as H0, expanding φ̂(x = d ) in the unmodulated normal-
mode basis [77], and expressing D(t ) as a Fourier cosine
series:

H (t ) = H0 +
∑
kmn

Dk cos(k�t + θk )φzp
m φzp

n (âm+ â†m)(ân+ â†n ).

(D5)

Writing Heisenberg-Langevin equations for weak input-
output coupling:

˙̂am = −i[âm,H] − κm

2
âm + √

κe
mâ

in
m (D6)
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and evaluating the commutators:

˙̂am =
(
−iωm − κm

2

)
âm

− 2iφzp
m

[∑
kn

Dk cos(k�t + θk )φzp
n (ân + â†n )

]

+ √
κe
mâ

in
m . (D7)

Authors often use different conventions for the explicit phase
in front of âin

m ; see, for example, the seminal development in
Ref. [78] and later use in Ref. [67].

We next define a rotating frame by ân(t ) = b̂n(t )e−iω′
nt

where ω′
n ≡ ω0 + n�. Here is it crucial to distinguish be-

tween the equally spaced rotation frequencies {ω′
n} and the

uncoupled mode frequencies {ωn} which are not in general
equally spaced; disorder is incorporated in the on-site energies
�n ≡ ωn − ω′

n. If the input spectrum is similarly localized,
we can write âin

n (t ) = b̂in
n (t )e−iωin

n t (this anticipates classical
treatment in which the quantum noise spectrum is neglected).
Differentiating the envelope equation, substituting into
Eq. (D7):

˙̂an = ( ˙̂bn − iω′
n)e−iω′

nt , (D8)

( ˙̂bm − iω′
m)e−iω′

mt =
(
−iωm − κm

2

)
b̂me

−iω′
mt − 2iφzp

m

[∑
kn

Dk cos(k�t + θk )φzp
n (b̂ne

−iω′
nt + b̂†ne

iω′
nt )

]
+ √

κe
mb̂

in
me

−iωin
m t , (D9)

˙̂bm =
(
−i�m − κm

2

)
b̂m − iφzp

m

∑
kn

Dkφ
zp
n b̂n(e−i[(n−m+k)�+θk ]t + e−i[(n−m−k)�−θk ]t ) · · ·

+ b̂†n(e−i{[(−n−m+k)�−2ω0]t+θk} + e−i{[(−n−m−k)�−2ω0]t−θk}) + √
κe
mb̂

in
me

−i(ωin
m−ω′

m )t , (D10)

Equation (D10) simplifies greatly under the rotating wave
approximation (RWA), which discards all time-dependent
terms at frequencies much greater than the other charac-
teristic rates in the system. Here by design we have � �
(|�m|, κm, |Dkφ

zp
m φ

zp
n |), so the RWA can be applied to the b̂n

terms as e−i(n+m+k)�t → δn,−m−k . The b̂†n terms correspond
to one- and two-mode squeezing and are negligible when
k� � (ω′

m + ω′
n). In this work we always have Dk>2 ≈ 0

and � � ω′
m for all experimentally accessed sites m, so we

ignore the squeezing terms. However, it is straightforward to
drive squeezing with higher modulation frequencies (as in
Ref. [62]), and there exist values of �/2π < 1 GHz which
are resonant with squeezing in the lowest modes of the
device and must be accounted for or avoided in an optimized
experiment. Finally we can set ωin

m = ω′
m in the input signal to

generate the experimental model:

˙̂bm ≈
(
−i�m − κm

2

)
b̂m · · ·

− iφzp
m

∑
k�0

Dk
(
φ

zp
m−ke

−iθk b̂m−k + φ
zp
m+ke

−θk b̂m+k
)

+ · · · √κe
mb̂

in
m, (D11)

which is equivalent to Eq. (5) if we redefine the index k over
all integers and write the coupling rates as

Jm,m+k = Dkφ
zp
m φ

zp
m+ke

iθ|k|sgn(k). (D12)

For k = 0 we obtain a shift in the on-site frequencies: �m →
�m + D0(φzp

m )2, where D0 = 〈D(t )〉t may be nonzero due
to the curvature of EJ ( f ) and is negative for a symmetric
SQUID array. Given the flux-tuning parameters in Sec. II B
we estimate a nearly uniform redshift of 200 kHz for the sites
accessed in this work.

Measured on-site parameters {�n, κe,n, κi,n} are plotted in
Fig. 6, where κi ≡ κ − κe describes the total loss rate to

internal degrees of freedom (not accessed in measurements).
The parameters were extracted by fitting the complex reflec-
tion coefficient for each of 29 modes, with flux modulation
turned off. Values of “frequency disorder” {�n} were obtained
from the mode center frequencies {ωn} as defined above. In
the absence of frequency disorder, all points in Fig. 6(b)
corresponding to a fixed modulation frequency would fall on
a line.

The experiments presented in the main text were per-
formed assuming that modulation at 155.1 MHz was the best
approximation to a resonant modulation with the local free
spectral range. This value was obtained from earlier fits that
considered fewer modes than plotted in Fig. 6; after carefully
fitting 29 modes we discovered that modulation at 155.0 MHz
provides a better approximation near the 32nd harmonic (the
mode labeled “n = 0”). This only changes the slope of the
line, and we do not count this as disorder. We expect to have
added a systematic gradient of roughly −100 kHz per site,
consistent with a Bloch oscillation period of about 10 μs.
Since the lifetime of a typical resonator mode is about 2 μs,
we observe little of this period, though we account for the
systematic gradient in our numerical predictions. Data in
Fig. 6 were used in the “theory” calculations of Fig. 3.

APPENDIX E: ZERO-POINT AMPLITUDES

Equation (D12) indicates that the zero-point phase ampli-
tudes φ

zp
m determine the distribution of coupling rates along

the synthetic lattice, with overall scaling and phase given by
the modulation signal. Zero-point amplitudes are proportional
to the square root of the characteristic impedance of each
resonance [67]:

φzp
m = 1

ϕ0

√
h̄Zm

2
cos(ym), (E1)
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(a)

(b)

FIG. 6. On-site Hamiltonian parameters extracted by fitting mea-
sured reflection coefficients of 29 modes. (a) Frequency disorder
in two different rotating frames corresponding to flux modula-
tion at 155.1 MHz (black circles) and 155.0 MHz (green squares).
155.1 MHz was used to approximate “resonant” modulation, where
in the ideal case all points would fall on a horizontal line at � = 0.
After carefully refitting the reflection coefficients, this “resonant”
description applies more accurately to modulation at 155.0 MHz;
however, a systematic detuning of about 100 kHz per site has a
minimal effect for modulation times t � 1 μs. The range of fre-
quency sites accessed in the experiments of this paper is highlighted
with a light-blue background between two vertical dashed lines,
representing “barrier sites” with high loss rates. (b) Loss rates to
external coupling (κe, blue circles) and internal degrees of freedom
(κi, red squares). Internal loss rates at relative mode numbers n =
{−6, 7, 10} fall in the range κi/2π ∼ 0.52 MHz, outside the vertical
bounds of the plot. In particular, the high loss rates at n = {−6, 7}
determine the “barrier sites” reported in this paper.

where Zm ≡ √
Lm/Cm and ym = kmd . Following Ref. [57] we

obtain

Cm = cd

2

[
1 + sin(2ym)

2ym

]
+Cs cos2(ym), (E2)

L−1
m = y2

m

2ld

[
1 − sin(2ym)

2ym

]
+ EJ (F )

ϕ2
0

cos2(ym). (E3)

Here EJ (F ) is evaluated at the DC flux bias. Using Eq. (7) and
with some algebra, φ

zp
m can be expressed as

φzp
m =

√
h̄Z0 cos(ym)

ϕ0

√
ym +

[
Ã(F )
ym

+ ym
B

]
cos(ym)

, (E4)

where Ã(F ) ≡ A
√

cos2(F ) + d2
sq sin2(F ). Equation (E4) de-

termines the relative size of all parametric modulation terms
in the Hamiltonian and offers some insight for device design.
Z0 ≡ √

l/c is the wave impedance of the CPW; while typi-
cally set to 50 � to minimize reflections at the input coupler,
Z0 can in principle be increased for larger modulation ampli-
tude. All factors in φ

zp
m are positive except cos(ym), which

(a) (b)

(c) (d)

FIG. 7. Zero-point phase distribution and related quantities.
(a) Predicted phase magnitudes for the first 60 modes of the device
using Eq. (E4), with a maximum at n = 9 followed by decay at higher
n. All modes satisfy |φzp

n | � 1. (b) Variation in free spectral range
(FSR) in the absence of fabrication disorder, plotted as a discrete
second derivative of the mode frequencies. The FSR increases mono-
tonically with n, stabilizing asymptotically for n � 30. (c) Predicted
single-hopping rates for single-tone modulation at 155.1 MHz, in-
creasing linearly with modulation amplitude. (d) Predicted double-
hopping rates for single-tone modulation at 155.1 MHz, increasing
quadratically with modulation amplitude. At the experimental value

 = 0.062
0, |Jn,n+2| < 0.05|Jn,n+1|; however, the double-hopping
rates are still used for theory comparisons as in Fig. 3. For plots
(b)–(d), the relative magnitude of the traces in each plot increases
with modulation amplitude, though in (b) this effect is negligible.

introduces a sign parity since ym = πωm
ωRT

increases in steps
of approximately π and therefore cos(ym+1) ≈ − cos(ym).
This parity is irrelevant for nearest-neighbor coupling because
φ

zp
m φ

zp
m+1 is always negative, but becomes important when

driving more than one type of coupling (e.g., when choosing
the relative phase between second- and first-nearest neighbor
coupling when both are implemented at once). The magni-
tudes |φzp

m | predicted for the device in the main text are plotted
in Fig. 7, along with nearest-neighbor and second-nearest-
neighbor coupling rates obtained from equation (D12).

The dependence of φ
zp
m on m sets a theoretical limit on

the translational invariance of the Hamiltonian. Equation (E4)
has competing terms with nonperiodic dependence on ym, so
considering the limiting behavior at small and large mode
numbers:

φzp
m ∝ y1/2

m ym → 0

φzp
m ∝ y−1/2

m ym → ∞. (E5)

These limits follow from the impedance of the SQUID ar-
ray’s LC circuit model. The impedance is primarily (inductive,
capacitive) at (low, high) frequencies and approaches zero
in either case, shorting the CPW to the ground plane such
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that φ
zp
m across the SQUID array must also approach zero.

The switch in limiting behavior means |φzp
m | has a maximum,

which from Eq. (E4) occurs near ym ≈ Ã(F ). The device
measured in this work has A ≈ 40 and F ≈ −π/4, which
predicts a maximum zero-point phase near �ym(max)/π� = 9.
The nearest-neighbor coupling rate Jm,m+1 also has a max-
imum near m = 9 which explains the appearance of addi-
tional Floquet peaks from lower sites (and not upper sites) in
Fig. 2(b) and the slight leftward tilt of the light cones in Fig. 3.
Strictly this means the Hamiltonian depends systematically
on m and approaches translational invariance only near the
maximum and asymptotically as m → ∞, where coupling
rates decay as 1/m. This decay can be partially compensated
by increasing the flux modulation amplitude, constrained by

AC < 0.25
0.

APPENDIX F: MODEL FOR LOW-DISORDER
SQUID ARRAYS

The modulated multimode Hamiltonian in Eq. (2) was
derived in Ref. [49] for a single symmetric SQUID. Here
we derive assumptions justifying the treatment of an NSQ >

1 SQUID array as a single SQUID and suggest conditions
for which the definition of a single Josephson energy in
Eq. (D3) is no longer valid. The derivation uses classical
phase variables. A similar lumped-element model for arrays
of Josephson junction devices is derived in Ref. [79].

Given an arbitrary SQUID array, we ask how the phases φn

across each SQUID are distributed while satisfying a para-
metrically varying constraint g(t, {φn}) = ∑

n φn − φd (t ) =
0. Consider the classical Lagrangian for an array with para-
metric dependence on flux f , adapted from Refs. [57,59]:

Larray =
NSQ∑
n=1

ϕ2
0Cn

2
φ̇2
n + EJn( f ) cos[φn − ηn( f )], (F1)

where

ηn( f ) ≡ arctan[dn tan( f )] + η0n( f ). (F2)

The additional phase shift η0n( f ) can arise when the distri-
bution of external flux is asymmetric with respect to the axis
of the CPW containing the SQUID array, which is the case
for our device where the flux line is parallel to one side of
the CPW [see Fig 1(f)]. For simplicity we treat the full ηn( f )
as an unknown small correction. The equations of motion
can be derived from the “augmented Lagrangian” Lg ≡ L +
λ(t )g where λ(t ) is a Lagrange multiplier (see, for example,
Ref. [80]):

−ϕ2
0Cn

EJn
φ̈n − sin(φn − ηn) + λ(t )

EJn
= 0. (F3)

Equation (F3) is equivalent to motion of a particle along
the NSQ − 1 dimensional intersection of the sinusoidal po-
tential V = −∑

n EJn cos (φn − ηn) with the vertical plane
satisfying g(t, {φn}) = 0. We neglect the acceleration term by
noting that in the Fourier domain it equals ω2

ω2
s
φn[ω], while

for small arguments sin(φn − ηn) ≈ φn[ω] − ηn[ω]. ωs/2π

is the Josephson plasma frequency of a SQUID, estimated
as 21 GHz in Sec. II B. Assuming the phases follow φ̂d (t )

FIG. 8. Model for SQUID array. (a) Circuit diagram of a SQUID
array as a ladder of Josephson junctions and capacitors, in which the
twin junctions of each SQUID have been lumped into a single flux-
dependent EJn. (b) Distribution of phases for a randomly generated
array of eight SQUIDs as a function of flux bias, calculated in the
linear voltage-divider approximation in Eqs. (F4)–(F7). Large disor-
der is used to emphasize that larger phase drops occur across larger
inductances, which are designated by smaller EJn near zero flux,
and smaller dn near half-integer flux. (c) Geometric interpretation
of the dynamics in Eq. (F3) for a two-SQUID array. The phase
configuration lives on the intersection between the plane and cosine
surface, where the plane oscillates along the direction of the dashed
line. We approximate the intersection as a parabola confined to the
center well and assume the configuration adiabatically follows the
bottom of the parabola. (d) Comparison of EJ calculations for four
random eight-SQUID arrays. (Red, middle) curves represent the full
sum in Eq. (F12) (green, upper) curves represent the single-SQUID
approximation in Eq. (F13), and (black, lower) curves represent the
zero-disorder limit where both models coincide. Where these three
curves differ, the effective EJ is smallest for the zero-disorder limit
and largest for the single-SQUID approximation.

adiabatically, φn[ω] has support only near the populated fre-
quency sites of the resonator, typically ωn/2π ∼ 4 − 6 GHz
such that ω2/ω2

s < 0.1 (this no longer holds above 7 GHz).
We then write λ ≈ EJn sin(φn − ηn) for all n. This assumption
is equivalent to pinning the phase configuration to a minimum
in the “intersection potential” as φd oscillates; however, there
are an infinite number of such minima and phase slips can
occur [81] when the configuration moves between differ-
ent wells in the potential V . A schematic visualization of
the potential landscape for a two-SQUID array is shown in
Fig. 8(c). For simplicity we assume no phase slips occur
(|φd | � 1 is usually sufficient) and linearize the equations

053807-14



PROPAGATION OF MICROWAVE PHOTONS ALONG … PHYSICAL REVIEW A 101, 053807 (2020)

of motion in the potential well closest to φn = 0 for all n:
λ ≈ EJn[cos(ηn) φn − sin(ηn)]. Solving for the phases,

φn = xn + znφd , (F4)

zn ≡ LI,n∑
m LI,m

, (F5)

xn ≡ tan(ηn) − zn
∑
m

tan(ηm), (F6)

LI,n ≡ ϕ0

EJn cos(ηn)
. (F7)

The coefficients zn represent a voltage divider made of linear
inductors, and the xn represent equilibrium offsets to the
quadratic inductor energies due to the phase shifts ηn. All
coefficients are functions of flux bias f ≡ π
/
0, and an
example of the flux dependence zn( f ) for an arbitrarily disor-
dered eight-SQUID array is shown in Fig. 8(b). The Josephson
potential of the nth SQUID is

−Vn
EJn

= cos

{
tan(ηn) − ηn + zn

[
φd −

∑
m

tan(ηm)

]}
. (F8)

We can clean up Eq. (F8) by shifting coordinates to incorpo-
rate the DC flux bias F as suggested in Ref. [59]. Returning
to Eq. (F1), define ηn( f ) = ηn(F ) + �ηn( f ) where �ηn is
a small modulation and we redefine φn − ηn(F ) → φn such
that φd − ∑

m ηm(F ) → φd . The shift in φd is constant and
does not affect the Lagrangian of the coupled CPW as it
depends only on spatial and time derivatives of φ; see, for
example, Ref. [60]. Then ηn can be replaced with �ηn in all
the expressions of this section, and we have

−Vn
EJn

= cos

{
zn

[
φd −

∑
m

�ηm + O
(
�η3

m

)]}
, (F9)

−Vn
EJn(F )

= cos[zn(F )φd ]. (F10)

Equation (F10) neglects the modulated phase shifts �ηm

and applies when |dmδ f |
cos2(F ) � 1; in this work we estimate this

ratio to be at most 0.015. The leading-order effect of including
�ηm is a classical drive ∝ δ f (t )φd , with the same spectrum as
the original modulation signal and typically far off-resonant
from all sites.

An equivalent single-SQUID EJ can be defined using the
inductive current through the SQUID array:

ϕ0Iind = ∂φdLarray =
∑
n

EJnzn sin(znφd ) ≈
∑
n

EJnz
2
nφd

≡ EJφd . (F11)

Using the voltage-divider coefficients zn we can confirm LJ ≡
ϕ2

0/EJ = ∑
n LJn. Writing the explicit flux dependence of the

coefficients and using a series of Taylor expansions:

E−1
J ( f ) =

∑
n

[
EJ0,n| cos( f )|

√
1 + d2

n tan2( f )

]−1

≈ NSQ| cos( f )|−1 〈LJ0〉
ϕ0

[
1 − 1

2

〈LJ0d2〉
〈LJ0〉 tan2( f )

]
, (F12)

EJ ( f ) ≈ ϕ2
0

NSQ〈LJ0〉
√

cos2( f ) + d2
sq sin2( f ), (F13)

d2
sq ≡ 〈LJ0d2〉

〈LJ0〉 = 〈zn( f = 0)d2〉. (F14)

The effective asymmetry parameter d2
sq is obtained by averag-

ing over the voltage-divider distribution at zero applied flux,
i.e., the minimum Josephson inductances. Equation (F13) is
valid only where d2

n tan2( f ) � 1, which for our experimental
conditions |dn| < 0.1 and | f /π mod 1| < 0.33 is satisfied as
d2
n tan2( f ) < 0.03. The expansion cannot be used near the

tangent poles at | f /π mod 1| = 0.5, as seen in Fig. 8(d)
where the effective EJ of disordered arrays (red, middle curve)
dips below the single-SQUID approximation (green, upper
curve). A similar argument can be used to define a single-
SQUID, flux-independent capacitance using the approxima-
tions �ηm ≈ 0 and ∂t zn ≈ 0. To summarize, our treatment
of a SQUID array with the single-SQUID model requires
ω2/ω2

s � 1 (resonator excitation well below the Josephson
plasma frequency), no phase slips, and d2

n tan2( f ) � 1 (flux
bias kept within the range where disorder is perturbative).

APPENDIX G: EQUIVALENCE OF TRANSIENT SPECTRA
AND SCATTERING PARAMETERS

Scattering parameters between ports in frequency space
can be estimated from the Fourier transform of transient
data, equivalent to Eq. (10). Consider an initial vector of
coherent states β(t = 0+) that undergoes linear free evolution
β̇ = −iHβ (H is here a classical matrix which may have a
non-Hermitian part to describe loss). This linear evolution is
independent of the exact way β(t = 0+) was prepared, so we
can choose any convenient model for the input signal so long
as we only consider measurements after the input signal is
turned off (i.e., t > 0). Suppose our model excites site M with
an impulse at t = 0. The impulse must have finite duration to
confine its spectrum about site M; we revisit this point after a
simpler discussion using δ(t ):

β̇m = −i
∑
n

Hmnβn + √
κe
mBinδ(t )δmM . (G1)

Integrating over a symmetric interval about t = 0, taking
its width to zero, and assuming βm(t < 0) = 0:

βm(t = 0+) = lim
ε→0+

∫ ε

−ε

β̇m dt = √
κe
mBinδmM . (G2)

We can use Eq. (G2) to model any initial amplitude. To
model the collection of data for t > 0, consider a step filter
applied to the output signal:

βout(t )�+(t ) ≡
{

0 t <= 0

βout(t ) t > 0
, (G3)

(
βout
m �+

)
[ω] = 1√

2π

∫ ∞

0+
βout
m (t )eiωt dt

= −
√

κe
m

2π

∫ ∞

0+
βm(t )eiωt dt

= −√
κe
m(βm�+)[ω]. (G4)
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Multiplying Eq. (G1) by the step filter and integrating by parts
(essentially a Laplace transform with s = −iω):∫ ∞

0+
β̇m(t )eiωt dt = −iω

∫ ∞

0+
βm(t )e−ωt dt − βm(0+)

= −i
∑
n

Hmn

∫ ∞

0+
βn(t )eiωt dt . (G5)

Rewriting with filtered transforms and site vectors:

−i
∑
n

(ωδmn − Hmn)(βm�+)[ω] = βm(0+), (G6)

(β�+)[ω] = i(ωI − H )−1
√

κ in
MBinuM , (G7)

(βout�+)[ω] = −i
√

κe(ωI − H )−1
√

κeBinuM

= (S[ω] − I)BinuM . (G8)

The second line of Eq. (G8) follows from comparison to
the steady-state scattering matrix in Eq. (9), where loss is
incorporated into H . From this we find (Smn[ω] − δmn) ∝
(βout

m �+)[ω] when site n is initially excited, as in Figs. 2 and
3. While more general form of Eq. (G8) can be derived for
a multisite initial excitation, the given form is convenient for
measuring scattering parameters.

Returning to a finite-impulse model, we need the pulse
bandwidth to be much larger than the site bandwidth
(Wpulse � Wsite) so the input spectrum is locally constant, but
smaller than the distance between neighboring sites (Wpulse <

2� −Wsite), where we take the sites to be well resolved
(Wsite � �). The corresponding pulse δτ (t ) is appreciable
for t ∈ (−τ/2, τ/2), with carrier frequency ωm centered on
the target site. To estimate the size of τ , take Wpulse = �

(pulse spectrum extends halfway to neighboring sites) and
use Wpulseτ > 2π such that τ > 7 ns, and we take τ+/2 as
the “initial” time instead of 0+. Because τ � J−1

typ , the system
dynamics are nearly stationary during the pulse and the finite
width has minimal effect on the model.

APPENDIX H: CALIBRATING TRANSIENT
SCATTERING GAIN

The spectra in Fig. 2(c) are normalized using a procedure
adapted from Ref. [82]. For a lattice system with linear
couplings, the normalized single-port reflection coefficients
satisfy

Pr
∫ ∞

−∞
Smm[ω] dω = πκe

m, (H1)

where Pr is the Cauchy principal value and Smn[ω] ≡
Sfull
mn [ω] − δmn are scattering parameters with the component

from direct reflection subtracted, as in Eq. (G8). As argued
above, we expect the Fourier transform of the transient output
voltage to be proportional to Smn[ω] when site n is initially
excited and output from site m is read out. However, we need
to account for the gain and loss in the components (cables,
filters, amplifiers, and mixers) on the input and output sides
of the device. We use a simple model with a constant initial
amplitude v0 and one frequency-dependent gain on each

side:

vmn
[
ωread
m + ω,ωex

n

] = Gout
m

[
ωread
m + ω

]
Smn[ω]Gin

n

[
ωex
n

]
v0.

(H2)

We need to be careful about how these frequencies are
defined. The readout frequencies specify the rotating frame
used throughout this work, ωread

m ≡ ω′
m ≡ ω0 + m�, where

the same ω0 and numbering convention for m are used for all
input and output sites. The excitation frequencies ωex

n ≡ ωn

are chosen as the center frequencies of the uncoupled modes
n, which differ from the readout frequencies by the disorder
�n. Equation (H2) is labeled with redundancy to illustrate
that the input and output gains are functions of laboratory-
frame frequency, ω is the frequency coordinate of the output
spectrum about site m, and the input signal is assumed to
be monochromatic while the output signal has a bandwidth
of a few MHz about each site. Explicitly moving to the
rotating frame and writing both off-diagonal and diagonal site
relations:

vmn[ω,�n] = v0G
out
m [ω]Smn[ω]Gin

n [�n], (H3)

vnm[ω,�m] = v0G
out
n [ω]Snm[ω]Gin

m[�m], (H4)

vnn[ω,�n] = v0G
out
n [ω]Snn[ω]Gin

n [�n]. (H5)

Combining Eqs. (H3)–(H5) we find an expected result:

Smn[ω]Snm[ω]

Smm[ω]Snn[ω]
= vmn[ω,�n]vnm[ω,�m]

vmm[ω,�m]vnn[ω,�n]
. (H6)

Next we define Gmm[ω] ≡ v0Gout
m [ω]Gin

m[�m] so that
Eq. (H1) can be written as (suppressing �m)

πκe
m = Pr

∫ ∞

−∞

vmm[ω]

Gmm[ω]
dω. (H7)

Our next simplifying assumption is that Gmm[ω] ≈ Gmm

can be treated as constant over the bandwidth of site m
(<10 MHz), in which case we can calculate

Gmm ≈ Pr
∫ ∞
−∞ vmm[ω] dω

πκe
m

. (H8)

The scattering amplitudes plotted in Fig. 2 are calculated
by assuming reciprocity in the synthetic dimension, i.e.,
Smn[ω] = Snm[ω], where there are no magnetic fields or other
gauge fields present [52]. This assumption is theoretically
valid when only one modulation frequency is used:

“Smn[ω]” ≡ |
√
Smn[ω]Snm[ω]| =

∣∣∣∣∣
√

vmn[ω]vnm[ω]

GmmGnn

∣∣∣∣∣. (H9)

The above assumptions imply that vmn[ω]/vnm[ω] should be
constant across a site bandwidth; however, this is not exactly
validated by the experimental spectra. The estimated “Smn[ω]”
is therefore more useful qualitatively, and a more robust
calibration of the input and output lines is needed to perform
calculations of matrix elements Hmn as proposed in Ref. [82].
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APPENDIX I: NEAREST-NEIGHBOR INTERFERENCE

This section derives Eq. (17) and provides an argument
for a sinusoidal interference pattern between two neighbor-
ing light cones at short modulation times. Starting from the
time evolution at site n and expanding the vector of initial
amplitudes,

βn(t ) = u†ne
−iHtβ(0) =

∑
m

βm(0)u†ne
−iHt um, (I1)

we expand the matrix element (e−iHt )nm as a Dyson series;
time ordering is trivial because H has no explicit time depen-
dence in the rotating-wave approximation:

u†ne
−iHt um =

∑
k

(−it )k

k!
u†nH

kum

=
∑
k

(−it )k

k!

∑
p,q,...,v

HnpH pq · · · Hvm. (I2)

The second line of Eq. (I2) motivates the use of diagrams to
understand propagation from site m to n as the sum of all
possible “hopping” trajectories on the lattice, as in Fig. 9(a).
For an ideal lattice-translation experiment there exists a set of
off-diagonal matrix elements which are much larger than the
diagonal elements, so we focus on “off-diagonal” diagrams
that contain only terms like Hn,p�=n. When only one mod-
ulation frequency is used, all off-diagonal elements satisfy
Hnp = |Hnp|e−i(n−p)θmod and therefore

u†ne
−iHt um |off-diag =

∑
k

(−it )k

k!

∑
p�=q �=...�=v

|Hnp|

× |H pq| · · · |Hvm|e−i(n−m)θmod . (I3)

We note that each term in Eq. (I3) equals a real coefficient
times ike−i(n−m)θmod . Focusing on the calibration experiment in
Fig. 4, we consider an initial state β(0) = un + rei�θnun+1 and
which allows us to probe the matrix elements (e−iHt )nn and
(e−iHt )n,n+1. For nearest-neighbor coupling all off-diagonal
diagrams connecting site n to itself contain an even number of
“hops,” i.e., even k, while all diagrams connecting n to n + 1
contain an odd number of hops [see illustration in Figs. 9(b)
and 9(c)]. Factoring out possibly complex quantities we obtain

(e−iHt )nn |off-diag = Un(t ),

(e−iHt )n,n+1 |off-diag = −ieiθmodUn+1(t ). (I4)

We can then write

βn(t ) |off-diag= Un(t ) − irei(�θn+θmod )Un+1(t ), (I5)

resulting in

|βn(t )|2 |off-diag = |Un(t )|2 + r2|Un+1(t )|2

− 2Re[irUn(t )∗Un+1(t )ei(�θn+θmod )], (I6)

which reproduces Eq. (17). At short modulation times when
Un and Un+1 are approximately real-valued, Eq. (I6) simplifies
to

|βn(t )|2 |off-diag = Un(t )2 + r2Un+1(t )2 + 2rUn(t )Un+1(t )

× sin(�θn + θmod). (I7)

(a)

(b) (c)

(d)

(e)

FIG. 9. Diagrams and extended-time behavior for nearest-
neighbor interference. (a) Example off-diagonal diagram satisfying
Eq. (I3), in which the product of all propagation phases depends
only on the distance between the initial and final sites. (b) Example
diagram connecting n = (0, 1) with only single hops such that the
total number of transitions is odd; this type of diagram is included in
deriving Eq. (I7). (c) Example diagram connecting n = (0, 0) with an
odd number of hops by using a diagonal matrix element; we ignore
such diagrams at short times. (d), (e) Experimental and calculated
voltage magnitudes over 1 μs for initial sites n = (−1, 0), with
output measured at n = −1. The first 0.25 μs of (d) are reproduced
in Fig. 4. The calculation in (e) assumes a uniform coupling rate
J/2π = 1.25 MHz, uniform loss κ/2π = 90 kHz, and a calibration
phase θ calib

n=−1 = −0.20π . This calibration phase absorbs the modula-
tion phase for simpler plot labeling.

At later times an additional time-dependent phase appears
in the sine. To first order in Ht we have Un(|Ht � 1|) ≈
1 and Un+1(|Ht � 1|) ≈ |Jn,n+1|t , so the coefficient of the
interference term is positive for all n at small t regardless of
whether the coupling rates are translationally invariant. We
therefore have an interference pattern for each pair of sites
(n, n + 1) that can be used to map the relative driving phase at
the AWG to the on-chip phase �θn + θmod.

In deriving Eq. (I7) we ignored diagrams with diagonal
matrix elements

Hnn = �n − iκn =
√

�2
n + κ2

n e
−i tan−1( κn

�n
), (I8)
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(b)(a) (b)

FIG. 10. Fourier transforms for second-nearest-neighbor cou-
pling. Color online. (a) Single-tone modulation at 310.2 MHz
showing two symmetric dispersion periods. White (solid) and blue
(dashed) curves are fits to models incorporating the lowest and two
lowest modulation harmonics, respectively. (b) Two-tone modulation
at 155.1 and 310.2 MHz showing asymmetric dispersion. The white
(solid) curve is a fit incorporating only the lowest harmonic of each
tone; the blue (dashed) curve includes the second harmonic of the 2�

tone as in (a). Dots (cyan) overlaid on both plots show the maximum
amplitude for each value of k f �.

which introduce phases unrelated to θmod and allow both
even and odd diagrams between sites (n, n + 1) and n,
with a net effect of adding a time-dependent phase to
the sine in Eq. (I7). This is easiest to justify for short
times such that

√
�2

n + κ2
n t � 1, which is compatible with

the off-diagonal calculation’s short-time limit |Jn,n+1|t < 1
when

√
�2

n + κ2
n � |Jn,n+1|. In this work a typical ratio is√

�2
n+κ2

n

|Jn,n+1| ∼ 0.1.
Figures 9(d) and 9(e) compare experimental interference

data with a theoretical calculation using uniform coupling and
loss rates. Voltage magnitudes are plotted without squaring
to show better contrast in the oscillations at later times. The
calculation shows a sinusoidal relationship with a fixed phase
along to the θ axis for at least 1 μs, while experimental data
show a sinusoid that drifts slowly upward for the first 0.6 μs
and then rapidly deviates from the calculation. This deviation
suggests that higher-order diagrams involving diagonal matrix
elements can no longer be neglected as t approaches 0.6 μs,
and we limit our phase-calibration analysis to t < 0.15 μs.

APPENDIX J: SECOND-NEAREST-NEIGHBOR COUPLING

Flux modulation at frequencies near twice the average FSR
drives coupling between second-nearest neighbors with rates
Jm,m+2. Using methods described in Secs. III and IV we ob-
serve coupling between second-nearest-neighbors and extract
approximate dispersion relations. For these experiments, 4 dB
of attenuation was removed from the AWG Channel 2 output,
providing additional amplitude for two-tone modulation. The
data in Fig. 10 display qualitative features of higher-order
coupling, though quantitative fits are poorer than for nearest-
neighbor coupling. Figure 10(a) contains experimental data
for single-tone modulation at 2�/2π = 310.2 MHz, with
least-squares fits to the following model:

ω(k) = 2|J2| cos(2k f �) + 2|J4| cos(4k f �), (J1)

where �/2π = 155.1 MHz and the J4 term arises from the
second modulation harmonic, assumed in-phase with the
first harmonic. The white (solid) curve assumes J4 = 0 and
fits |J2|/2π = 2.04 MHz, while the blue (dashed) curve fits
|J2|/2π = 2.04 MHz and |J4|/2π = 0.835 MHz. The two-
parameter for captures the main qualitative features (sym-
metry about k f � = 0, sharper peaks, wider troughs) better
than the one-parameter fit, suggesting the second harmonic
of the modulation tone is non-negligible. This is consistent
with reduced attenuation in the modulation line, since a larger
flux modulation ∼0.1
0 begins to access the curvature of the
SQUID array EJ in Eq. (D3).

Figure 10(b) contains data for two-tone modulation at
(1, 2)�/2π = (155.1, 310.2) MHz, with a least-squares fit to

ω(k) = 2|J1| cos(k f �) + 2|J2| cos(2k f � + θ2)

+ 2|J4| cos(4k f � + 2θ2). (J2)

The two-tone drive introduces a gauge-invariant phase
θ2 ≈ −0.08π and asymmetric dispersion about k f � = 0,
which can be interpreted in terms of a synthetic gauge field
as in Ref. [29]. White (solid) and blue (dashed) curves are
fits assuming zero and nonzero J4, respectively. In both cases
we find |J1|/2π = 0.659 MHz and |J2|/2π = 1.71 MHz; for
the blue curve |J4|/2π = 0.399 MHz, which leads to a better
qualitative fit. The second harmonic of the 155.1 MHz tone
contributes another J2-like term with a different phase, but is
neglected in the fits as we expect its coupling rate to be below
100 kHz.

APPENDIX K: TIME-REVERSED COUPLING
AND PARASITIC OSCILLATIONS

Consider the tight-binding Hamiltonian separated into di-
agonal and off-diagonal elements in the frequency-site basis:
Ĥ = Ĥ0 + Ĥ{J}. Time evolution is given by

Û (t ) = e−iĤt = e−i(−Ĥ )(−t ), (K1)

which suggests an equivalence between time-reversal and
instantaneously flipping the signs of every term in the Hamil-
tonian. Recalling that off-diagonal elements satisfy Hnp =
|Hnp|e−i(n−p)θmod for a single modulation frequency near the
FSR, we can introduce a time reversal for odd (n − p) by
applying a phase shift θmod → θmod ± π ; however, for even
(n − p) the matrix element is invariant. A typical situation
where this applies is nearest-neighbor coupling (|n − p| =
1, time-reversible) in the presence of on-site disorder and
loss (n − p = 0, not reversible). We observe this partial time
reversal and utilize it to create a tunable output delay in site
n = 0 as in Fig. 11. After driving site 0 to steady state, a short
modulation pulse spreads the excitation almost entirely into
the nearby sites. After a tunable delay time, a second mod-
ulation pulse with the same amplitude and duration causes
the excitation to return to the initial site. The key point in
this schematic is choosing the phase of the second modulation
pulse, which must be advanced by π with respect to the phase
the first pulse would have if it had been left on continuously.
We scale the pulse duration inversely with pulse amplitude, as
in Figs. 11(a) (half flux amplitude, 272 ns pulses) and 11(b)
(maximum flux amplitude, 136 ns pulses)
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(a) (b)

(c) (d)

(f)(e)

FIG. 11. Experimental data for time-reversed coupling and par-
asitic oscillations. Color online. (a), (b) Multisite output traces for
modulation pulses at amplitudes of 0.062
0 and 0.031
0 respec-
tively; all traces are smoothed by a 16-point moving average. Pulse
durations are chosen to minimize the amplitude remaining in site 0
during the delay between pulses (here 0.5 μs). (c) Single-site output
traces at n = 0 as the delay is swept from 0.05 to 1 μs, with flux
amplitude 0.031
0. (d) Single-site output traces at n = 0 for varying
resonator excitation amplitude and flux amplitude 0.062
0, showing
four periods of parasitic oscillation within the 1 μs pulse delay.
(e) Single-site reflection spectra at n = 0, sweeping modulation
frequency at larger detuning. Dashed lines indicate approximate
modulation frequencies that induce Bloch oscillations at 4 MHz.
(f) Single-site reflection spectra at n = 0, sweeping modulation
frequency near the expected lowest harmonic of the device. A large
redshift is seen for modulation at 75.5 MHz, which we attribute to a
cross-Kerr interaction when the lowest harmonic is directly excited
by the flux line.

Leakage of amplitudes into sites n �= 0 occurs during the
reversal pulse, which we anticipate even when the coupling
phases are exactly reversed. This is due to on-site disorder,
which distorts the distribution of phases on the lattice after
sufficient delay time and cannot be time-reversed by this
scheme. Empirically we find this leakage to be more severe
at larger modulation amplitudes and short pulse durations.
In these cases we also observe small oscillations in the
output amplitudes when the modulation is off, which is not

accounted for by the model presented in this work, even with a
disordered Hamiltonian. Oscillations at neighboring sites ap-
pear to be out of phase in Fig. 11(b), suggesting that excita-
tions are still exchanging between sites after the first modula-
tion pulse is off. The timescale of the oscillations appears to
be independent of the power in the resonator, as in Fig. 11(d)
where oscillations at ∼4 MHz occur for different amplitudes
of resonator excitation. The envelope of these oscillations
resembles Bloch oscillations more strongly than resonant cou-
pling [compare Figs. 3(g) and 3(d)], which implies parasitic
modulation near 155.1 ± 4 MHz. The modulation pulses in
this experiment have a sinc spectrum where the bandwidth of
the primary lobe is nearly 15 MHz, large enough to directly
excite resonances in the range 155.1 ± 4 MHz if they exist.
Parasitic modulation could then occur if the excited fields leak
into the SQUID array.

To investigate this parasitic modulation, we measure
single-site reflection spectra at n = 0 while sweeping the fre-
quency of a continuous modulation tone. The mode redshifts
and broadens as the modulation frequency approaches 151 or
159 MHz, and at 159 MHz disappears entirely [Fig. 11(e)].
We interpret these shifts as quartic-order nonlinear inter-
actions, possibly cross-Kerr terms of form −χmnb̂†mb̂mb̂

†
nb̂n,

which cause a redshift of mode m based on the Fock occu-
pation of mode n (or vice versa). Terms of this type survive
the rotating-wave approximation for all pairs (m, n). When
mode 0 is driven weakly as in Fig. 11(e), a cross-Kerr redshift
indicates large excitation of a different mode. We suspect the
shift at 151 MHz is related to parametric-oscillator pumping
in the lowest harmonic of the device, n = −32, which we
expect to lie near 75 MHz. This excitation scheme uses the
interaction b̂2

−32 + (b̂†−32)2, which excites pairs of photons. We
attempt to drive the lowest harmonic directly, and observe an-
other redshift in mode n = 0 when the modulation frequency
is 75.5 = 151/2 MHz [Fig. 11(f)]. The shift is consistent with
an interaction −χ (0,−32)b̂†0b̂0b̂

†
−32b̂−32 assuming the lowest

harmonic is excited through the mutual inductance of the flux
line and resonator. However, only the second harmonic of
the 75.5 MHz modulation tone would cause 4 MHz Bloch
oscillations, so leakage of the n = −32 field into the SQUID
array would need to be very large. The parasitic excitation at
159 MHz may provide a better explanation than 151 MHz,
though we have not identified a possible cause and we leave
rigorous characterization for a future work.

APPENDIX L: ELASTIC SCATTERING FROM A
FREQUENCY DEFECT

A major constraint in this work is the presence of “barrier
sites” where large detuning and/or loss causes reflection
of propagating lattice states. We derive a simple model for
scattering at a site with detuning �, on an otherwise transla-
tionally invariant 1D lattice. We neglect loss rates κ as a first
approximation in the strong-coupling limit where J � κ . In
analogy to standard 1D scattering problems [83] we postulate
solutions on either side of the defect that are separately
eigenstates of the defectless Hamiltonian, and stitch these
solutions together with a boundary condition at the defect.
We assume an incident and reflected wave to the left of the
defect (n < 0) and a transmitted wave to the right (n > 0) as
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(a)

(b)

FIG. 12. 1D scattering model. (a) Schematic for reflected and
transmitted waves when an incident wave approaches a single defect
from the left. Uniform nearest-neighbor coupling and zero on-site
energy outside the defect are assumed. (b) Amplitudes of reflected
and transmitted waves as a function of defect size and effective
wave vector keff ≡ ki + θJ . Overlaid plots display |Ar|2 (blue-to-
red gradient corresponding to widening downward peaks) and |At|2
(green-to-purple gradient corresponding to widening upward peaks)
as |keff| varies from 0.01π to 0.5π .

shown in Fig. 12(a); for a linear Hamiltonian the problem has
arbitrary scaling so the incident wave is assigned an amplitude
of 1 without loss of generality. We suppress operator hats
and focus on classical waves; quantization can be restored by
multiplying the final expression by the incident-wave operator
Âi:

an− = e−i(ω(ki )t−kin) + Are
−i(ω(kr )t−krn), (L1)

an+ = Ate
−i(ω(kt )t−ktn). (L2)

We assume a continuity-like boundary condition at the
defect site:

an−=0 = an+=0 ≡ a0, (L3)

e−iω(ki )t + Are
−iω(kr )t = Ate

−iω(kt )t . (L4)

For Eq. (L4) to hold at all times, we set ω(ki ) = ω(kr ) =
ω(kt ) ≡ ω so that 1 + Ar = At. The corresponding relation
between k’s depends on the dispersion; we consider uniform
nearest-neighbor coupling with ω(k) = 2|J| cos(k + θJ ) as it
is most relevant to this work. We then have ki + θJ = ±(kr +
θJ ) = ±(kt + θJ ), where any permutation of the signs is valid.
The assumption of reflected and transmitted waves implies
group velocities that are respectively antiparallel and parallel

to the incident wave, so we take

ki + θJ = kt + θJ = −(kr + θJ ). (L5)

Considering the equation of motion for a0 at the frequency
ω = ω(ki ) and substituting (L1) and (L2):

ȧ0 = −i(�a0 + Ja−1 + J∗a1), (L6)

−iωa0[ω] = −i(�a0[ω] + Ja−1[ω] + J∗a1[ω]), (L7)

−iJe jki − Ar(iJe
−ikr ) + At[−i(� − ω) + J∗eiki ] = 0. (L8)

Combining Eqs. (L8) and (L4) and solving, noting that the
resulting determinant is typically nonzero:(−iJe jkr −i(� − ω) − iJ∗eiki

1 −1

)(
Ar

At

)
=

(
iJe−iki

−1

)
, (L9)(

Ar

At

)
= 1

� − ω + Je−ikr + J∗eiki

×
(−(� − ω) − Je−iki − J∗eiki

−Je−iki + Je−ikr

)
. (L10)

To check the consistency of the postulated solution, con-
sider the equation of motion for a site outside the defect, e.g.,
a1, and substitute the assumed forms:

ȧ1 = ∂t
(
Ate

−i(ωt−ki )
) = −iωAte

−i(ωt−ki )

= −i(Ja0 + J∗a2) = −iAt
(
Je−iωt + J∗e−i(ωt−2ki )

)
. (L11)

Here Eq. (L1) has been used to write ȧ1 in terms of the
transmitted amplitude. Rearranging and using J = |J|e−iθJ

obtains

−iAte
iki [ω − 2|J| cos(ki + θJ )] = 0, (L12)

which indicates the postulated solution satisfies the correct
evolution for a1. Noting that ω(ki ) = Je−iki + J∗eiki we can
simplify Eq. (L10):(

Ar

At

)
= 1

� − ivg(ki )

( −�

−ivg(ki )

)
, (L13)

where vg(ki ) = ∂kiω = −2|J| sin(ki + θJ ). This equation pro-
vides a clear picture of the scattering: the reflected amplitude
arises from the detuning, and the transmitted amplitude is
determined by the ratio of group velocity to detuning. Equa-
tion (L13) is invalid only for the degenerate case with zero
detuning and group velocity, where no spatial defect or propa-
gation occurs. The magnitude-squared of both amplitudes are
plotted in Fig. 12(b) for representative values of keff ≡ ki +
θJ ; the transmitted amplitude approaches 1 symmetrically
as |�/J| → 0, with FWHM increasing from 0 at keff = 0
to 4 (zero group velocity) at |keff| = 0.5π (maximum group
velocity).
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