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Abstract—Directionality in millimeter-wave (mmW) systems
make link establishment and maintenance challenging, due to
the search-time overhead of beam scanning and the vulnerability
of directional links to blockages. In this paper, we propose a
communication protocol called SmartLink, which exploits the
clustering phenomenon at mmW frequencies to establish a multi-
beam link between a base station and a user. By utilizing
multiple clusters, SmartLink enables efficient link maintenance
and sustained throughput. We develop a logarithmic-time search
algorithm called multi-lobe beam search (MLBS), which is used
in SmartLink to discover the clusters. MLBS probes several
directions simultaneously, using multi-lobe beam patterns. The
number of simultaneous lobes is selected to minimize the search
time of the clusters. We provide detailed analysis of the false
alarm and misdetection probabilities for the designed beam pat-
terns. Following cluster discovery, SmartLink divides antennas
into sub-arrays to generate the optimal multi-lobe beam pattern
that maximizes the average data rate under blockage. Extensive
simulations using actual channel traces obtained by utilizing
phased-array antennas at 29 GHz are used to verify the efficiency
of SmartLink. MLBS decreases the discovery time by up to 88%
compared to common existing search schemes, and exploiting
multiple clusters improves the average data rate by 10%.

Index Terms—Millimeter-wave; initial access; analog beam-
forming; blockage; multi-lobe beams; beam scanning.

I. INTRODUCTION

The rapid growth in mobile data is forcing next-generation
wireless systems like 5G NR [1] and WiGig [2] to explore RF
communications at millimeter-wave (mmW) bands. Unlike the
heavily congested and fragmented sub-6 GHz spectrum, mmW
bands provide abundant spectrum (about 1.3 GHz in the 28
GHz band, 2.1 GHz in the 39 GHz band, and 14 GHz in
the 60 GHz band) [1]. This allows mmW systems to achieve
very-high-throughput and ultra-low-latency communications,
and to support a diverse set of applications [3]. However,
mmW signals experience much higher propagation and pene-
tration losses compared to their sub-6 GHz counterparts (e.g.,
up to 40 dB through glass and brick walls), making them
very vulnerable to blockage [4]-[6]. Fortunately, the smaller
wavelengths of mmW signals allow large antenna arrays to
be implemented into small form-factor radios. With proper
analog and/or digital processing of the signals fed to/received
from these antenna elements, transmissions/receptions can be
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beamed towards desired directions. The high beamforming
gain can then compensate for the severe signal degradation
and provide adequate link margin [7].

There are several ways to apply beamforming at mmW
frequencies. Analog beamforming can be used with only one
RF chain and multiple phase shifters that feed an antenna array
and steer the beam. In contrast, digital beamforming relies on
several RF chains and multiplies a particular precoding matrix
by the modulated baseband signals from these chains. Despite
its superior performance, pure digital beamforming is less
favored due to its higher complexity and energy consumption.
As a good tradeoff, hybrid beamforming, in which the signal
processing is divided between the analog and digital domains,
has been proposed [8]. In this paper, we consider analog
beamforming, whose low power consumption and simple
hardware make it a desirable architecture, especially for user
equipment (UE) radios.

While beamforming allows for high gains, establishing and
maintaining network connectivity based on directional links
can be quite challenging [9], [10]. Due to the limited scattering
at mmW frequencies, the channel matrix between the base
station (BS) and the UE is typically sparse [7], [11]. The
transmitted signal reaches the receiver along a few (typically
less than 5) distinct angular clusters. Identifying the directions
of these clusters takes a considerable amount of time.

In this paper, we propose an efficient and reliable com-
munication protocol for mmW systems. Our protocol, called
SmartLink, utilizes multiple clusters between the BS and the
UE to provide an effective mechanism for maintaining com-
munications under random blockage. It uses a unique beam
scanning technique called multi-lobe beam search (MLBS).
Implementing shortest-depth decision trees, MLBS utilizes
beam patterns with multiple lobes to simultaneously discover
multiple channel clusters. The decision tree indicates the
next beam pattern that should be scanned, based on previous
measurement results. As the worst-case beam scanning time
depends on the depth of the decision tree, the number of
simultaneous lobes to be used by MLBS is optimized to
minimize the depth. Through rigorous analysis, we show that
MLBS reduces the search time from linear to logarithmic with
respect to the total number of beam directions. The creation of
multiple main lobes naturally reduces the beamforming gain,
leading to higher false alarm and misdetection probabilities.
Here, misdetection is defined as the inability to discover the
UE due to low received power. False alarm refers to the event
when a channel cluster is aligned with an undesired side lobe
of the transmitter (Tx) and/or the receiver (Rx) antenna array
(resulting in sub-optimal communication). We provide detailed



analyses of both probabilities. Depending on the discovered
channel clusters and their relative gains, we virtually divide
the Tx and the Rx antenna arrays into several sub-arrays. Each
sub-array generates a beam towards one of the inferred channel
clusters, so as to maximize the average data rate in a blockage-
prone environment.

The main contributions of this paper are as follows:

e We develop a logarithmic-time search scheme called
MLBS for the discovery of multiple channel clusters in
a directional mmW system. MLBS utilizes decision trees
whose nodes indicate the sequence of beam directions
that need to be scanned. As the worst-case beam scanning
time depends on the depth of the decision tree, the
number of simultaneous lobes to be used by MLBS is
selected in a way to minimize the depth. Upper and lower
bounds on the depth of the resulting tree are derived.

o We provide detailed analysis of the misdetection and false
alarm probabilities under MLBS.

e We present a technique for splitting the antenna array
into sub-arrays to generate an optimal multi-lobe pattern.
This splitting depends on the discovered channel clusters,
their relative strengths, their blockage probabilities, and
the data transmission duration.

o We introduce the SmartLink protocol, which defines the
required message exchange between the BS and the UE
to establish the multi-directional link.

o Through experimental channel measurements at 29 GHz
frequency using 4 x 4 uniform planar arrays (UPAs), we
verify the efficiency of SmartLink in terms of the reduc-
tion in search time and the increase in data rate. With
a proper number of main lobes, SmartLink reduces the
search latency by up to 88% compared to 5G NR and 65%
compared to 802.11ad-like beam scanning approaches.
Our results also show that utilizing multiple clusters
provides an efficient mechanism against blockages, and
improves the average data rate by 10%.

II. RELATED WORK

Several previous works on mmW communications focused
on determining the best channel cluster and communicating
through a single beam [2], [12]-[15]. Maintaining an active
link over a relatively long period of time may not be feasible
in this case, due to the dynamic nature of mmW channels and
their susceptibility to frequent blockage events [6], [16].

To identify one cluster, three main approaches have been
discussed in the literature: Exhaustive search [12], two-stage
hierarchical search [2], and context-information-based (CI-
based) search [17]. Exhaustive search is a sequential brute-
force approach and it is considered for 5G NR [17]. It comes
at a significant cost in terms of discovery time, as each pair of
transmit/receive directions must be probed sequentially. On the
other hand, the two-stage beam search used in the 802.11ad
standard for WiGig devices employs a hierarchical multi-
resolution beamforming codebook to reduce the overhead of
exhaustive search. In the first stage, the access point (AP)
sequentially transmits synchronization signals over relatively
wide (quasi-omnidirectional) sectors and tries to determine the

best coarse direction. In the second stage (beam refinement),
the AP refines its search within the selected coarse sector
by switching to narrow beams [2]. Although this approach
reduces the initial access (IA) delay, the search time still scales
linearly with the total number of narrow beams. Note that
when multiple clusters are to be found, the performance of
hierarchical beam search approaches that of the exhaustive
search. This is due to the fact that multiple quasi-omni sectors
that received relatively strong signals in the first stage needs
to be scanned with narrow beams in the second stage. Finally,
the Cl-based search relies on location information, where the
UE simply selects the closest BS based on location and steers
its beam towards that BS [17].

In addition to the above works, others in the literature
considered transmissions through multiple antenna lobes. The
authors in [18] used a unique approach based on hashing
functions to identify the best beam. Although the multi-beam
hash functions reduce the search time, they were not used to
identify multiple channel clusters. [19] improves on [18] and
reduces beam alignment delay by orders of magnitude. Similar
to [19], the authors in [20] and [21] also aimed at scanning the
environment with multi-lobe beam patterns and establishing
communications through multiple lobes. However, they did
not optimize their search scheme and simply rotated a pre-
designed multi-lobe pattern to decide the best Rx pattern. As
a result, their scheme does not guarantee discovering multiple
clusters and combating blockage. On a different perspective,
[22] introduced a heterogeneous multi-beam cloud radio ac-
cess network architecture, with the goal of providing seamless
mobility and coverage, rather than exploiting multiple channel
clusters. However, none of the above works considered the
tradeoff between simultaneously searching multiple directions
and the reduced beamforming gain for a system that utilizes
analog beamforming. Such tradeoff was studied in [23], but
the evaluation was done through antenna patterns with a fixed
number of lobes. As a result, the search time is not minimized.

Our proposed MLBS approach computes the optimum num-
ber of simultaneous beams to be used, given the number of
channel clusters and beam directions. As a result, we guar-
antee the minimum search time. We also provide a detailed
analysis of the misdetection and false alarm probabilities under
MLBS. After the clusters are discovered, they are used to
simultaneously receive copies of the same signal arriving from
multiple directions. The phases of these signals are adjusted
for coherent combination. Because the probability that all
channel clusters are blocked at the same time is small, our
proposed scheme provides an effective mechanism to combat
blockage and maintain communications at high link rates.

Our contributions in this paper show the potential benefits of
discovering multiple clusters/links between two communicat-
ing nodes in mmW systems and encourage further research on
developing multi-beam transmission methods. Even though we
focus on dealing with dynamic blockage at the mmW bands
through the usage of multiple clusters and analog beamforming
(i.e., higher diversity gain), our method can be applied in a
hybrid beamforming architecture for multiplexing gain and
can also be integrated into coordinated multipoint (CoMP)
techniques for the 5G networks.



III. SYSTEM MODEL

In this paper, we consider the IA process at a BS that wishes
to discover the UEs in its range. Electronically steerable
phased-array antennas are used by the BS and the UEs. In
addition, we assume analog beamforming, as it is currently the
most energy-efficient beamforming solution available. In par-
ticular, a beamforming architecture with a much lower number
of transceivers than the total antenna number is more practical
and cost effective to deploy, especially in the UE side [24].
For that reason, UEs operating on mmW bands are typically
envisioned to exploit analog beamforming. The use of digital
and hybrid beamforming architectures can reduce the IA time
to meet the low-latency 5G requirements, but at the expense
of much higher energy consumption. As described in [9], low-
resolution digital architectures can also be a viable solution in
digital/hybrid architectures. Still, even low resolution digital
beamforming is suitable for the BS side, due to stringent power
requirements at the UE [25].

Following the IA process, the BS and any discovered
UE can communicate over multiple beams. Without loss of
generality, we let the BS be the Tx and one arbitrary UE be
the Rx, i.e., the downlink.

A. Preliminaries - Antenna Arrays

In this section, we demonstrate how multi-lobe patterns are
created. To do so, we first explain the calculation of the array
factor! (AF) at a UE antenna array. Extension to the BS is
straightforward. Consider a UPA that consists of N antenna
elements with a horizontal inter-element distance d, and a ver-
tical inter-element distance d,. Suppose that the incident wave
of the received signal arrives at zenith angle ¢ and azimuthal
angle o, and the antennas are placed on an N, x N, 2D grid
(i.e., N = N, N,). The phase of the received signal at element
(ng,ny), ny € {1,---,N,} and n, € {1,---,N,}, leads
the phase at element (n, — 1,1, — 1) by 27 (d, cos asin§ +
dy sinasin @) /A, where X is the wavelength of the signal. Let
Kk £ dyny cos asin 0+ dyn,, sin acsin 0. The received signal at
antenna (n,,n,) can then be written as:

Sng.ny (97 0[) =R InT7ny €j2T7rH (1)

where [, ,, is the amplitude excitation of the element
(ng, ny) and R is the individual gain of each antenna element.
Since I, n, does not affect the analog beamforming weights,
for simplicity, we let I, ,, = 1. Let wy, ,, be a complex
phase shifter weight associated with s, ;. The total received
signal is given by:

N, Ny
$6.0)=R > S wn X =RFum @

Ng=1mn,=1

where Fi;, is the AF of the UPA. The signal power can then
be maximized by maximizing |R Fip|. Assuming the same
signal magnitude at each antenna, |F,,| is maximum when
Wn, n, 18 selected in a way to ensure that the received signals

The AF is the factor by which the element factor of an individual antenna
is multiplied to get the total firing pattern of the entire array.

Main lobes

Fig. 1. Normalized directivity pattern of a 16 x 16 UPA divided into two
sub-arrays, beaming along (61,1) = (0°,0°) and (02, a2) = (30°,0°)
(antennas placed on the Y-Z plane).

are in phase, i.e., by setting wy,, », = e~I%° % This way, the
UE beam can be steered along the direction (6, ).

To create a pattern with multiple lobes, the antenna array
is divided into several sub-arrays. The elements in each sub-
array are then assigned weights for different steering angles.
An example of a two-lobe beam pattern with uniform sub-
array division is illustrated in Fig. 1, where the steering angles
are (61,a1) = (0°,0°) and (02, ) = (30°,0°).

B. Channel and Beamforming

To develop a multi-lobe beamforming design, we must
express the channel between a BS and a UE, when both are
equipped with UPAs. We use the notation x X y to denote a
matrix of z rows and y columns. Let the total number of
antennas at the BS and UE be Ny = Ny, X Ny, and
Ny = Nygw X Nygy, respectively. Denote the Nyz X Ny
channel matrix between the BS and the UE by H.

To express the received signal, Tx and Rx beamforming
should be applied to channel H. In practice, the beamforming
vectors are computed offline for a set of directions and stored
in the codebooks at the Tx and the Rx. During directional com-
munications, if the BS uses the transmit beamforming vector
f; € CNes*! and the UE uses the receive beamforming vector
q; € CNx1 (j and j are the indices of the beamforming
vectors in their respective codebooks), then the received signal
yi; can be written as

vij = q;Hfiz + qjn 3)

where (.)* denotes conjugate transpose operation, x is the
transmitted signal and the entries of n € CMeX1 are complex
circularly symmetric white Gaussian noise. Here, f; and q;
consist of the complex antenna weights w,,, , (computed as
discussed in Section III-A) to construct Tx beam 7 and Rx
beam j, respectively. Note that patterns generated by f; and
q; can have single or multiple main lobes. Let us define the
codebook at the Rx side as Q, where Q consists of L single-
lobe beams, (é) two-lobe beams, and so on. Here, L is the
maximum number of single-lobe beam patterns that can be
generated at the Rx, which is a function of the resolution of
the phase shifters.

Our aim is to find the optimum Rx beamformer that
maximizes the average data rate within a given time period,
for a given Tx beamformer. Because mmW channel clusters
experience significant blockages, utilizing several channel



clusters simultaneously prevents the Tx and the Rx from losing
communication, and hence improves the average data rate.

IV. CLUSTER DISCOVERY AND MULTI-LOBE
COMMUNICATIONS

In this section, we explain the main aspects of the proposed
multi-directional communications scheme. Specifically, the
proposed scheme consists of three main parts: identifying
cluster directions, aligning the phases of the signals coming
from different paths, and optimally allocating antennas/power
to different clusters while taking blockages into account. We
then explain the protocol design that specifies the steps taken
at the BS and the UE to execute these parts.

A. MLBS Algorithm

For a given Tx direction, the MLBS algorithm aims at
identifying the directions of the dominant channel clusters at
the Rx. Recall that L is the total number of available narrow
beam directions. We assume that the number of clusters P
is unknown. To infer the P cluster directions, we propose
to take multiple measurements using beam patterns with B
lobes, B > 1, generated using B sub-arrays. This problem
is similar to the game Mastermind, with L colors (directions)
and B pegs (simultaneous beams). The outcome of taking a
measurement with a pattern at each round will either be a
1 if the power of the received signal is above a threshold
T or a 0 if the power of the received signal is below 7.
In general, the solution to Mastermind can be found in a
relatively small number of rounds using the minimax method,
i.e., choosing a test pattern that minimizes the maximum
number of remaining possibilities at each round. However,
finding the optimal solution for the overall problem is NP-hard
[26]. As a result, online computation of the optimal sequence
of test patterns is not feasible. Thankfully, the optimal strategy
can be computed offline, considering all possible responses,
and stored in a binary decision tree. Then, at each round, the
receiver measures the channel with a given antenna pattern.
Based on the received power and the decision tree, it can select
the next test pattern optimally.

To build the decision tree, we first initialize an (JLD) X ( JLB)
matrix D, whose rows correspond to all possible cluster
combinations in the environment and its columns correspond
to all possible B-lobe beam patterns. For example, consider
the row labeled as (m,n) and the column labeled as (i, 7).
Their intersection represents the scenario where the Rx uses a
beam pattern with two main lobes pointing along directions @
and j to measure the channel that has two clusters along the
directions m and n. If the Rx pattern captures at least one
cluster, the corresponding matrix entry is set to 1; otherwise
it is set to 0. The selection of the threshold 7' for this binary
decision will be discussed in the next section.

Recall that P is not known before any channel measure-
ments are taken. However, statistical channel models can
be utilized to determine an appropriate value for P at the
frequency of interest. MLBS can then be executed with that
value. In case that the channel exhibits fewer clusters than
initially assumed, the algorithm will still return P output

Algorithm 1 MLBS Algorithm
1: procedure MAIN(L, P, B)

rows < (1) direction combinations
global columns < (%) direction combinations
global D « zeros((5), (é))
for 7 in rows do

for j in columns do

if 7 and j have a common direction then
D[i][j] + 1

root + (1,2,---, B)
10: MLBS(rows, root)
11: procedure MLBS(REMAININGROWS, PARENT)

R U o

12: if size(remainingRows)> 2 then

13: remainingleft + remainingRows - {rows whose
intersection with parent is 0 in D}

14: remainingRight < remainingRows - {rows whose
intersection with parent is 1 in D}

15: Il - column that divides remainingLeft as evenly
as possible, in terms of 1s and Os

16: 1T <— column that divides remainingRight as evenly
as possible, in terms of 1s and 0s

17: parent.leftchild « 11

18: parent.rightchild < rr

19: MLBS(remainingLeft, 11)

20: MLBS(remainingRight, rr)

21: else

22: remainingLeft +— remainingRows - {rows whose
intersection with parent is 0 in D}

23: remainingRight <— remainingRows - {rows whose
intersection with parent is 1 in D}

24: parent.leftchild <— remainingleft

25: parent.rightchild < remainingRight

directions, but no antenna/power will be allocated to weaker
clusters. Antenna allocation will be explained in detail in
Section IV-D.

The MLBS algorithm is summarized in Algorithm 1. The
output of the algorithm is the resulting decision tree, which
is defined by its root and the left and right children of
each node. The nodes of the tree correspond to multi-lobe
measurement patterns and the leaves correspond to identified
cluster directions. The root of the decision tree does not affect
the performance of the MLBS. Specifically, an optimal tree
can be constructed with any arbitrary pattern selected as the
root. Without loss of generality, we select the root as the
pattern (1,2,--- | B), i.e., the pattern with B main lobes in the
directions 1, - - - , B. Once a measurement result for this initial
pattern is obtained, the next pattern is selected in a way to
divide the remaining cluster directions as evenly as possible,
so as to minimize the maximum remaining possibilities. In
other words, the next test pattern should have even (or close
to even) number of 1s and Os in the corresponding column
of D, for the remaining possible cluster directions. This way,
the remaining candidate directions are halved at each round,
until the unique cluster directions are identified. As a result,
although the complexity of constructing the decision tree from



TABLE I
DECISION MATRIX FOR L =5 AND P = B = 2.

(L2 (1,3 (14 (15 (23) (24 (25 G4 (5 (45
T2 1 1 1 T T T 1 0 0 0
(1,3) 1 1 1 1 1 0 0 1 1 0
(1,4) 1 1 1 1 0 1 0 1 0 1
(1,5) 1 1 1 1 0 0 1 0 1 1
(2,3) 1 1 0 0 1 1 1 1 1 0
(2,4) 1 0 1 0 1 1 1 1 0 1
(2,5) 1 0 0 1 1 1 1 0 1 1
(3,4)| o0 1 1 0 1 1 0 1 1 1
(3,5 | 0 1 0 1 1 0 1 1 1 1
(4,5) ] 0 0 1 1 0 1 1 1 1 1

Fig. 2. Decision tree for matrix D. Path traversed in the example is shown
with dashed lines. Identified cluster pair is shown in the red box.

matrix D is exponential, it could be done once and offline.
Once the tree is constructed, traversing it and identifying
the cluster directions take logarithmic time, as the remaining
possibilities are reduced approximately by half after testing an
antenna pattern. On the other hand, exhaustive 5G beam search
scales linearly with L, regardless of how many clusters the BS
and the UE aim at finding, as they probe each beam direction
sequentially. Finally, 802.11ad search also scales linearly with
L. Even though its search time may be relatively low when
the aim is to find a single cluster, the search time approaches
that of exhaustive search when the algorithm aims at finding
multiple clusters.

Example: We illustrate the execution of MLBS algorithm
with L = 5 and P = B = 2. For this case, the matrix D can be
constructed as in Table I. Notice that when the row and column
tuples overlap by at least one entry, i.e., one or more clusters
can be captured with the given pattern, the corresponding entry
in D is set to 1.

Using D, the decision tree can be constructed as in Fig.
2. Specifically, after taking a measurement with the root
(first column), either the first seven or the last three rows
will be eliminated, depending on the measurement outcome.
Afterwards, if the first seven rows remain, the next pattern can
be chosen as (4, 5), i.e., the last row, as it divides the remaining
rows as evenly as possible in terms of 1s and Os. Similarly, if
the last three rows remain, the next pattern can be chosen

s (1,3), i.e., second column. The rest of the tree can be
constructed in the same manner. Note that the decision tree is
not unique. Fig. 2 depicts one of the optimal (minimum depth)
decision trees for the given L, P, and B. In the decision tree,
rectangles correspond to nodes (i.e., antenna patterns to be
tested), ellipses correspond to leaves (i.e., inferred directions),
and left and right branches correspond to strong or weak signal
relative to 7" (1 or 0, respectively).

Suppose that the strongest clusters that the algorithm aims
at discovering are along the directions 2 and 4 (i.e., the
row labeled as (2,4)). The algorithm starts at the root by
applying the initial pattern (1,2). Since pattern (1,2) will
capture cluster 2, the outcome of this measurement will be
1. As a result, the algorithm proceeds with the left branch that
originates from the root, eliminating the cluster pairs (3,4),
(3,5) and (4, 5). The next measurement pattern to be selected
according to the decision tree is (4, 5). Since this pattern also
captures a cluster (direction 4), the result will again be 1. After
this step, only four possible cluster pairs remain: (1,4), (1,5),
(2,4) and (2,5). Next, pattern (3,5) is chosen according to
the tree, and the outcome of this measurement is 0. This
leaves only two possible cluster pairs: (1,4) and (2,4). The
algorithm then proceeds with the final measurement using
pattern (2,5), and using its outcome, cluster directions can
be uniquely identified as (2,4), in just four steps. 5G beam
search, on the other hand, requires measuring all five directions
to find these clusters. Finally, 802.11ad search will initially
take two measurements using quasi-omni beams (say, (1,2, 3)
and (4, 5)), and then will do beam refinement in both of these
quasi-omni beams. As a result, it requires seven test trials.
Clearly, the reduction in discovery time that MLBS provides
is more significant when L > 5, which is typical for a mmW
system.

Complexity Analysis: In this section, we compute the time
complexity of MLBS. We also derive upper and lower bounds
on the depth of the decision tree. Let ( be the probability of
capturing a cluster using a B-lobe pattern. This probability
can be computed as:

L—P—j

=— |1+ 4
¢ ZO jHO A )
where the first term, %, corresponds to capturing a cluster with
the first main lobe, the second term, £ LP LP T corresponds to
not capturing a cluster with the first lobe but capturing it with
the second lobe, and so on. Capturing at least one cluster with
a pattern results in a measurement outcome of 1. As explained
before, the aim of the algorithm is to find a pattern at each
round such that it divides the remaining rows as evenly as

possible, in terms of measurement outcomes of 1s and 0Os.

In each round, the algorithm finds a pattern that reduces the
number of remaining rows by at least a fraction f of the rows
from the previous round. Note that since we want to analyze
the worst-case complexity, the number of rows can never be
reduced by more than half. Specifically,

if .
f:{g if (<05 )

1 — (¢ otherwise.

In the best-case scenario, the remaining rows are halved at
each round, i.e., f = 0.5, which results in the following
complexity:

(’)<log2 (;)) O(logQLP) O(Plog, L) =0(log, L)
(6)
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Fig. 3. Numerical analysis of Equation (7). (a) The value of the objective
function in (7) vs. B (P = 5 and L = 50), (b) minimum achievable value
of the objective function at the optimum B vs. P/L.

where (II;) is the number of rows in the first round and the
last equality comes from the fact that P < L. For the best
performance, B should be selected properly, ensuring that f
is as close to 0.5 as possible. Thus, the optimum B can be
found by solving

minig’nize |¢ — 0.5
st. 1<B<UL, P/LBcl. @)

For the algorithm to achieve logarithmic complexity, we
must ensure that a suitable pattern can be found in each round.
Theorem 1: At each round of the algorithm, a pattern can
be found such that it reduces the number of remaining rows
by at least a fraction f of the rows from the previous round.
Proof: Let us use proof by induction. In step 1 of the
algorithm, the optimal B can be found by solving (7). The
resulting B reduces the number of rows at least by a fraction
f and at most by 0.5. Although (7) does not have a closed-
form solution, it can be solved via gradient descent since the
objective function is unimodal, i.e., guaranteed to have a single
global minimum. Note that if P/L > 0.5, then the objective
function is monotonically increasing, as all the terms in the
sum are positive. In that case, the optimum B = 1. On the
other hand, if P/L < 0.5, then the objective function first de-
creases until the sum exceeds 0.5; afterwards, it monotonically
increases, which results in an optimum B > 1. An example
graph of the objective function versus B is shown in Fig. 3(a)
for P =5 and L = 50.
Suppose now that at step s, we select B = By and the
theorem holds. Then, we can write

P " L-P—j
<4 1+2Hﬁ_j <0.5. (8)

To complete the proof, we must show that at step s+ 1, we
can find a Bsy; such that

Bsy1—2 4

f<——1+ Z:IILif:j <05 (9

=0 j=0

To satisfy (9), we can simply select B, = B, as that would
make (8) and (9) equivalent. Thus, by selecting the same B
at each round, the remaining number of rows can be reduced
by at least the fraction f at each round, leaving 1 — f fraction
of rows. Denote the depth of the decision tree by 7. Then,

n <log_1_ (%) when the same B is selected at each round.
Accordlng{y, the worst-case complexity of the algorithm is

@ <logﬁ ) = O(log, L). [ ]
Note that this is an upper bound on 7, and f approaches 0.5
at each round (f = 0.5 at the last round). Thus, log, () <
n<log o (p).

If P < L, one can conclude that P/L < 0.5. In this
case, we can numerically show that the value of the objective
function in (7) gets arbitrarily close to 0 with the optimal
selection of B. Fig. 3(b) depicts the minimum achievable
value of the objective function vs. P/L. The figure shows
that this value is at most 0.12 (at P/L = 0.4). A typical
P/L in a real system is likely to be much smaller, given that
the environment typically exhibits P < 5 clusters and the
number of directions L > 50. When P/L < 0.1, the minimum
value of the objective function is less than 0.03, meaning that
n = log, ¢ () ~ log, (%). Note that the sawtooth shape in
Fig. 3(b) is due to B being an integer.

So far, we discuss the time complexity of MLBS, which is
O(log, L). However, this logarithmic-time complexity comes
at the expense of higher memory requirement. The Rx needs
to store the decision tree (nodes and leaves) to execute MLBS.
As the depth of the decision tree scales logarithmically with
L, the number of nodes and leaves of the decision tree also
increases with L. In particular, a binary tree with a depth of
O(logy L) has at most 2L — 1 nodes and 2L leaves, leading
to O(L) memory complexity.

Discussion: The first-null beamwidth (FNBW) of an an-
tenna pattern and the beam scanning resolution are typically
not the same. Therefore, the neighboring beams usually over-
lap (see the lined region in Fig. 4(a)). When a channel cluster is
captured by the overlapping region as in Fig. 4(a), it may cause
the measurement outcomes of both patterns to be interpreted
as 1, as shown in 4(b). We eliminate these duplicate channel
clusters during the phase alignment stage, as explained in
Section IV-C. Because this will potentially eliminate some
duplicates during phase alignment, it is a good idea to aim at
identifying more than P clusters with MLBS, if beam overlaps
are significant. Even if MLBS identifies some weak clusters
that remain after phase alignment, these clusters will not be
utilized during data communication, thanks to our optimal
antenna allocation scheme, explained in Section IV-D.

B. Threshold Selection

MLBS utilizes the received signal power, PRy, to determine
whether a cluster is captured or not by a given antenna
pattern. In particular, if Prxy > T (Prx < T), the binary
outcome of the measurement is set to 1 (0). However, due
to multipath effects and the side-lobes of Tx and Rx beams,
wrong decisions may be made, depending on the value of
T. For example, if T is too small, an outcome of 1 may
be observed even when Tx and Rx beams are not perfectly
aligned. On the other hand, if 7" is too large, the measurement
outcome may be 0 even though it should be 1, due to
the incoherent combining of signals arriving from different
clusters or insufficient beamforming gain. Therefore, 7" must
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Fig. 4. Visualization of the overlapping beams in an 8-element uniform linear
array (FNBW= 28.6°). Blue curve corresponds to the beam pattern when
the antenna steers towards 0°, the red curve corresponds to the beam pattern
when the antenna steers towards 15°, and the green lines show the overlapping
region. Cluster in (a) can be interpreted as in (b), due to the measurement
outcome of both beams being 1.

be selected in a way that accounts for false positives (false
alarm) and false negatives (misdetection).

To decide whether the current measurement outcome should
be set to 1 or 0, we apply a likelihood-ratio test based on Pry.
In particular, our hypothesis testing includes the following two
events:

o I;: At least one cluster is captured by the main lobes of
a given pattern

e Hy: No cluster is captured by the main lobes of a given
pattern

To select an appropriate value for 7', we employ the Neyman-
Pearson hypothesis test and evaluate the misdetection prob-
ability, Pr{MD} = Pr{Prx < T|H;}, and the false alarm
probability, Pr{FA} = Pr{Prx > T|Hy}. This test can be
expressed by the following optimization problem:

miniTmize Pr{MD}

st.  Pr{FA} < ypa (10)

where yrpa is a given maximum tolerable false alarm prob-
ability. From the definition, it is easy to see that Pr{MD}
(Pr{FA}) is monotonically increasing (decreasing) in 7.
Therefore, to minimize Pr{MD}, the smallest 7" should be
chosen while satisfying the constraint in (10). Hence, the
optimal 7" value is obtained when (10) holds with equality.
Let T,y denote the optimal threshold value, i.e., Pr{FA} =
Pr{Prx > Topt|Ho} = Yra. To find T,,¢, we need to evaluate
Prx.

For analytical tractability, we approximate the actual an-
tenna patterns by a sectored antenna model, as commonly done
in the literature [27]-[29]. Specifically, let G(6, «) be the an-
tenna gain of the Rx antenna array, where {6, a} € [0, 27] are
the zenith and azimuthal angles, respectively. Let 6 € [0, 27]
and ap € [0,27], Vb € {1,---, B}, denote the zenith and
azimuthal directions of the bth main lobe, respectively. Then,

Gmaxa if |9 - 9b| S wy/2,
la — ap| <w,/2, be{l,---,B}
Gin, otherwise

G,a)=

(1)

where w, and w, are the beamwidths of a main lobe in the
zenith and azimuthal coordinates, respectively. Furthermore,
Gmax and Gy, are the antenna gains of the main and side
lobes, respectively.

Let rpej #»r be the received signal from the pth cluster, where
r, and ¢, represent its magnitude and phase, respectively. Let
‘P denote the set of clusters. Then, Pry is then given by:

*

Je
E rpe’ 7P

pEP

+ Py (12)

Pry = E rpej“’P
pEP

where Py = nn* and n ~ CN(0,0%) is the additive white
Gaussian noise. In our analysis, we rely on the 3GPP channel
model [30]. Based on this model, the phase of a received signal
from a particular cluster is a uniformly distributed random
variable between 0 to 2, i.e., U(0,27). Let us evaluate the
received signal power from the pth cluster, i.e., r;. Let P,
Pry, and Py, denote the pth cluster power, the transmit power
of BS (including the Tx antenna array gain), and the path loss
of the channel between BS and UE, respectively. Based on the
assumed sectored antenna model, H is the event in which all
the dominant channel clusters between the BS and the UE are
captured by the side lobe. Therefore, given that H, occurs, 7’1%
is given by:

72 = Gmin Pp Pry Pp. (13)

In dB scale, the path loss can be written as —101log,(Pr) =
a + 10Blogio(d) + &, where d is the distance between the
BS and the UE, « and ( are frequency- and environment-
dependent constants, and & ~ N(0, 0% 1) is the shadow fading.
IA is performed when a new UE enters the range of a BS, or
a UE attempts to change its status from idle to connected.
Therefore, instead of relying on specific distributions for UE
locations, the maximum possible distance between a BS and a
UE, Dpax, can be considered in the path-loss. In that case, d
can be replaced by D,,.x. Alternatively, one can assume that
UEs are randomly and uniformly located on a ring around
the BS. Hence, the CDF of the distance between a BS and

2 2
a UE is given by Pr[D < d] = %, where Dyin is

the minimum distance between a BS ancximfhe UE, and d €
[DmiIn Dmax]~

According to [30], the cluster powers are calculated as fol-
lows. Let X, ~ U(0,1), Vp € P. Let P, £ X7~ 1107017,
where Z, ~ N(0,¢%), V¥p € P. 7, and ( are given
environment-dependent constants. Finally, the cluster power
P, is given by:
B
ZnG'P P’I’/L

The CDF of Pgy under Hy, i.e., Pr{Prx < T'|Hy}, can then
be calculated numerically. In particular, Pr{Prx < T|Ho} =
Pr{Pn < T — (3 ,epmpe’) (D cp rp€’??)"|Ho}, where
Py is a random variable with chi-square distribution. Let
fx(x) and Fx(x) denote the PDF and CDF of an arbi-
trary random variable x, respectively. Hence, for a given

T, Pr{Pn < T — (3 ,cpmp’??) (X pep rpel?r)*|Hy} can
be computed by utilizing the PDF of random variables ¢,

B, = (14)



d, & Xy, Zp, Vp € P, and the CDF of Py. Note that
from the above discussion, the PDF and CDF of these
random variables are known. More formally, Pr{Pr, <
T|Hy} is given in (15). The integral in (15) is taken over
the set A, where A = {¢,,d,§{, Xp,Z, Vp € P|T >
(X ,ep €797 ) (X ep Tp€7¥7)*| Ho }. In other words, the val-
ues of ¢,,d, &, X, Z, Vp € P that satisfy the condition
T > (3 ,epmpe?7) (X cp Tpe’#r)* are considered in (15).
In Fig. 5, we numerically evaluate this integral by exploiting
the midpoint rule. We use the channel model parameters as
given in [30], where Ppy = 46 dBm, center frequency is 28
GHz, signal bandwidth is 57.6 MHz, and the cell radius is
200 m. P and Gy, are set to 2 and 1, respectively. Note that
determination process of the threshold value T, is performed
offline, i.e., no online calculation is required.

C. Phase Alignment

After cluster directions have been discovered, we need to
determine the phases and magnitudes of the signals arriving
at the Rx through each cluster, in order to add the multipath
components coherently. This process is similar to how Rake
receivers work [31]. Rake receivers use several sub-receivers
called fingers to cope with multipath fading. In particular,
each finger is assigned to a different multipath component,
and independently performs decoding. Then, the contribution
of all fingers are coherently combined. However, this method
requires multiple fingers and results in a significantly more
complex system compared to a single-RF-chain receiver. Here,
as the cluster directions are already determined previously, in-
stead of employing a separate finger per multipath component,
each cluster is probed with the optimal single-lobe beam for
that direction, in a different time slot. The received signals are
then decoded, and the phases and magnitudes of the signals
coming from each cluster are computed.

To coherently add the signals, consider the P clusters
identified with MLBS. The phase alignment problem with P
clusters can be formally written as:

maximize |cir1e?¥t + -+ cprpel?P|

{e1,ep

s.t. leil =1, Vie {1,---, P}

(16)

where r; and ; represent the magnitude and phase of the
signal arriving from cluster i, respectively, Vi € {1,--- , P}.
Here, the objective function is the magnitude of the superim-
posed signals received from all clusters, decision variable is the
vector of unit-modulus complex weights, and the constraint is
a result of analog beamforming (having only phase shifters and
no amplifiers). Note that 7;e/%¢ already accounts for transmit
and receive beamformers, i.e., ¢; are selected to coherently
add the signals, not to steer the beams. By setting the first
cluster as reference (e.g., ¢c; = 1), we can easily compute c;,
Vi € {2,---,P}. In particular, ¢; = el (P1=9i) 5o that the
phases of two signals coming from the first and ith clusters
are aligned. Specifically, this corresponds to adding a phase
offset ¢; to all antennas in the sub-array that beams towards
the cluster 7. As all antennas in the sub-array are exposed to
the same phase offset, ¢; does not affect the beam directions.

Note that the phase alignment is only required after the
signal directions are found. Thus, (16) needs to be solved
only once, after the clusters are determined. The alignment
of phases is not possible with 802.11ad search as all antennas
are used to create a single wide beam, which can capture more
than one signal adding destructively [32].

As explained in Section IV-A, MLBS can misidentify some
clusters due to the partial overlap of neighboring beams. These
duplicate clusters can be eliminated as follows: If the phases
of the signals captured by neighboring beams are exactly the
same, we can determine that they are in fact the same cluster.
Then, the cluster with less power can be eliminated, since less
received power indicates that the cluster direction is further
away from the boresight of the beam. This way, even if the
MLBS is set to discover more than P clusters, the excessive
clusters can be eliminated at this stage.

D. Optimal Antenna Allocation

Without loss of generality, the optimal antenna allocation at
the Rx is studied in this section. Note that, MLBS identifies P
cluster directions using B-lobe beams. After MLBS is com-
pleted and the cluster directions are found, here the antenna
array will be divided up to P sub-arrays to beam towards the
discovered clusters. If the environment exhibits fewer clusters
than we expect and MLBS returns some eminently weak
clusters, they will not be assigned any antennas thanks to our
optimization problem presented below.

A UPA steers a beam towards a direction with a gain
that is directly proportional to its number of antennas under
half-wavelength spacing (which is the recommended value by
the 3GPP standards [30]), thanks to “array gain” [33]. Let
Ny, and Ny, denote the number of columns and number
of rows, respectively, in the Rx antenna array, where N, =
Nye,z X Nuyg,y is the total number of Rx antenna elements.
During phase alignment (see Section IV-C), the Rx acquires
the SNR from each inferred cluster by allocating all its antenna
elements to a single beam and measuring the corresponding
received power. Let K, denote the measured SNR during this
process when the Rx beam is directed towards pth inferred
cluster, Vp € P £ {1,---, P}. Note that K,, includes the
effects of Tx and Rx antenna gains, Tx transmission power,
cluster powers, and the path-loss.

Here, we propose to dynamically divide the Rx antenna
array into sub-arrays during the data transmission phase such
that each sub-array forms a beam towards the direction of a
different cluster. In particular, let the array be divided into
P sub-arrays, and let IV, denote the number of antennas of
the pth sub-array, Vp € P. Further suppose that the pth sub-
array is beamforming towards the direction of the pth cluster.
By coherently combining signals from multiple directions as
explained in Section IV-C, the SNR at the Rx during the dat2a
transmission is given by SNR = (ZPEP NPJE/NUE) .
Note that existing approaches find the strongest cluster and
allocate all antennas to its direction, i.e., SNR = K;; if
max(Ky,---,Kp) = K.

By exploiting different beam directions, we aim at achieving
higher average transmission rate between the Tx and the Rx
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Fig. 5. False alarm probability under various threshold values.

under dynamic blockage. This way, even when one or more
beams are blocked, the Tx-Rx link will remain operational.
Dynamic blockage is commonly modeled in time by a Poisson
process [5], [6]. Thus, the arrival time of a blocker is expo-
nentially distributed. Here, we assume that the blockers are
impenetrable, and the blockage processes of various directions
are independent and identically distributed. Let p denote the
blockage rate, i.e., the rate parameter of the exponential distri-
bution. The exact formulation of the associated optimization
problem depends on P, i.e., the size of P. Therefore, for
simplicity, here we focus on the special case P = 2. The
problem formulation for other P values is straightforward. To
generate 2 lobes, the antenna array is horizontally divided into
two, meaning that the decision parameter of the optimization
problem is the number of rows allocated to a sub-array. Let
Ni = Ny » ><N§E17)y and No = Ny o xNéé)y denote the number
of antennas of the first and second sub-arrays, respectively,
where Né,sl)y and Né,f )y represent the numbers of rows allocated
to the two directions, respectively. Let ¢; denote the time
that passes until the one of the beams is blocked since the
start of data transmission. Similarly, let ¢t denote the time
that passes until the blockage of the second beam, starting
from when the first direction was blocked. Note that due to
the merging and memoryless properties of Poisson process,
E[t1] = (2p)~! and E[ts] = p~ 1. Let T, denote the duration
of data transmission phase. Accordingly, the optimization
problem that maximizes the total transmitted data over the
period of time that starts with the data transmission phase and
lasts until all the beams are blocked or the data transmission
duration expires (whichever occurs first) is formulated as:

maximize E [min{Ty, t1}1og, (1 4+ Ug) +

(1 2
{NUE)y’NI(JE)y}

max{min{Ty — t1,t2},0} log, (1 + Ul)] 17
s.t. NLEEl’)y + N(E]?’)y - NUE,y; NIEEl,)ya ngli)y € {0} U Z+

Here, Ug 2 ( LEEUy\/ /NUEerNés)y\/ /NUEy) and

U £ (Néé)y\/E/NUhy) where the [th beam represents
the last blocked beam, I € {1,2}. The expectation in (17)
is taken with respect to ¢; and ¢, as they represent the
random blockage. Up is the SNR at the Rx when both
directions are used for data transmission. Therefore, the term
min{Ty, t1 } log, (1 + Ug) is the amount of transmitted data
until the one of the beams is blocked since the start of
data transmission or the data transmission duration expires
(whichever occurs first). Similarly, U; is the SNR at the Rx
when only the Ith direction is used for data transmission, so
the second term in the objective function is the amount of
transmitted data until the blockage of the /th beam (¢5) or the
data transmission duration expires (T — t1), i.e., whichever
occurs first after the first blockage event. Finally, the objective
function in (17) can also be written as E[min{T}, ¢; }] log,(1+
Ug) + Emax{min{7Ty — t1,t2}, 0}](logy(1 + U1 ) + log, (1 +
Us))/2. Note that the probability of the first cluster being
blocked before the other one is 0.5 (and vice versa) due to
the equiprobable events. The closed-form expressions for the
expected values in this expression can be given by:

1 — e 20Tu
E [miH{Td7t1}] = T (18)
1 — e 2rTa
E [max{min{Ty — t1,t,},0}] = ————
P
2 —pTy 1— —pTa
(& ( ; € ) (19)

Hence, expectation in the objective function can be eliminated.
The final optimization problem is still a nonlinear integer
programming problem, which is NP-hard. However, it can
be converted to a convex optimization problem if the integer
restrictions of (17) are relaxed such that Ng; () »s are allowed
to take any nonnegative real number, i.e., Néf z >0,VpeP.
Particularly, the objective and constraint functions of this
relaxed problem are concave and convex with respect to Néﬁ )y
Vp € P, respectively. Hence, this problem can be numerically
and efficiently solved usm% existing methods, such as the
gradient descend. Let NU Vp € P denote the optimal
solutions of the relaxed problem. That solution can be used
to determine Nék)y s of the original problem. Even though it
does not guarantee the optimal solution, Né,f )y s can be set to
[NSEY T or [Ny | Wp € P, such that 32, cp Ny = Nug,y
([.] and |.] are ceiling and floor functions, respectively). This
way, the integer restrictions can be satisfied. Note that the
solution of the relaxed problem provides an upper-bound for
the original problem. We can compare the performance gap be-



tween this upper-bound and the one obtained by using ceiling
and floor functions. If the gap is relatively small, this efficient
solution can be considered good enough. Alternatively, we can
apply branch and bound algorithm, which is one of the most
common methods to solve integer programming problems.
This method exploits the solution of the relaxed problem to
add certain bounding constraints to the original one. Although
these extra constraints lead to the optimal solution, which
is purely integer, the complexity of the algorithm is high.
Thankfully, given that P is typically a small number, the size
of our problem in (17) is not large, meaning that branch and
bound method can also be efficiently applied here.

The problem formulation in the case where P > 2 is
straightforward and omitted here for brevity. For example, in
the case of P = 3, one more decision variable, which is Nés )y,
is added to the problem. Furthermore, ¢3 that denotes the time
that passes until the blockage of the third beam (since the
blockage of the second beam) needs to be incorporated.

Note that in a given problem instance, the utilization of
more than P clusters may result in a higher average data
rate than utilizing only P of them. However, it is not pos-
sible to obtain this optimal value before running our beam-
search algorithm MLBS to infer the cluster directions and
their associated powers. As discussed before, due to fewer
reflections in mmW spectrum, only a few channel clusters
are present in mmW channels. In fact, a typical number
of clusters is less than five [7]. Therefore, using the mmW
channel statistics, an appropriate number for P can be selected,
i.e., five. Furthermore, the initial selection of P may depend
on some system requirements. In particular, as P increases,
the discovery time of the clusters increases as well, see Fig.
9(c). For example, if the maximum allowable discovery time
for a specific system is 20 slots, at most four clusters can
be discovered within that duration (according to Fig. 9(c)),
leading to a condition of P < 4.

E. Protocol Design

In this section, we present the SmartLink protocol for the
IA process in mmW systems. SmartLink utilizes the afore-
mentioned steps and defines the required message exchange
between the BS and the UE to establish the multi-directional
link. We first briefly explain the IA process in LTE and current
5G standard, and then discuss our proposed protocol.

In LTE systems, the IA procedure utilizes an omnidirec-
tional signal called the Cell Reference Signal (CRS), which is
regularly monitored by each UE to create a wideband channel
estimate that can be used both for demodulating downlink
transmissions and for estimating the channel quality [17].
However, IA needs to be done directionally in 5G mmW
systems, to achieve full coverage potential. As a result, when
the Tx and the Rx beams are not aligned, the directional link
cannot be established.

To find a suitable directional link, recent 5G specifications
require that the BS periodically broadcasts synchronization
signal (SS) blocks towards pre-defined number of beam
directions in a sequential manner [12]. These SS blocks
carry primary synchronization signals (PSS), secondary syn-
chronization signals (SSS), and physical broadcast channel

(PBCH) information [34]. PSS is mainly used for initial
symbol boundary synchronization to the NR cell and the
SSS is used for detection of cell and beam IDs. When the
UE enters the coverage area of a BS, it listens to an SS
burst (consisting of multiple SS blocks) and measures the
signal quality of different beams. It then determines the beam
for which the received power is maximum (and above a
predefined threshold). This beam will be chosen for subsequent
transmissions/receptions. After determining the best BS beam,
the UE has to wait for the BS to schedule the random
access channel (RACH) opportunity for the beam direction
that the UE has selected [17]. During a RACH opportunity,
UE performs random access, implicitly informing the BS of
its selected beam direction. Note that current 5G specifications
do not standardize how beam sweeping will be performed at
the UE.

Our MLBS algorithm can be directly applied at the UE
side, without changing the default 5G IA process. This reduces
the search time at the UE side and combats blockage to
a certain extend, if the BS beam is relatively large. With
some small changes in the 5G IA structure, MLBS can be
employed at both the BS and the UE, as shown in Fig. 6. In
SmartLink, the BS first selects a quasi-omnidirectional beam
and transmits multiple copies of the same SS block over that
beam. A relatively large quasi-omnidirectional beam spans
multiple channel clusters. During this transmission, the UE
constantly measures the received power, while steering its
receive beams according to the MLBS algorithm. This way,
the UE identifies the best Rx beam directions corresponding
to the current quasi-omnidirectional beam of the BS. This
process is repeated for all quasi-omnidirectional beams at the
BS. The UE compares each BS quasi-omnidirectinal beam
in terms of maximizing (17), i.e., average data rate. Similar
to 5G, after the BS finishes transmitting the SS blocks, the
UE waits for the BS to switch to Rx mode, i.e., waits for
RACH opportunities. There is a separate RACH resource in
time and frequency dedicated to each BS quasi-omni beam.
The information of these resources is obtained at the UE via
PBCH and system information block (SIB) transmitted by the
BS. The UE then sends its RACH preamble on the RACH
resources corresponding to the selected quasi-omnidirectional
BS beam. Note that the UE transmits the preamble along the
best beam directions it found via MLBS, while the BS receives
it using a single-lobe beam, which is the selected quasi-
omnidirectional beam. After receiving the RACH preamble,
the BS runs MLBS algorithm to find the best narrow beam
directions for the subsequent transmissions. To do that, the UE
transmits consecutive uplink reference signals, i.e., sounding
reference signals (SRS), on scheduled resources specific to the
UE (see Fig. 6(b)).

Because the BS and the UE operate on the same frequency,
the number of clusters they expect to observe will be the same.
Thus, they will aim at identifying the same number of clusters
when running MLBS. Therefore, the BS can compute the
depth of UEs decision tree 7, without prior communication
with the UE. This allows the BS to know how many each
SS block should be transmitted for (UE to run MLBS).
Specifically, BS sends 7; consecutive SS blocks through



(b)

Fig. 6. SmartLink protocol, where squared blue shows the transmitting beams
and solid green shows the receiving beams. (a) Step 1, where the BS sends
consecutive SS blocks over the same quasi-omnidirectional beam for the UE
to run MLBS. (b) Step 2, where the UE sends the uplink reference signals to
the BS over the best beam directions found in Step 1 and the BS runs MLBS.

a selected quasi-omnidirectional beam, where 7,; = 7y 1
the maximum required number of SS blocks for the UE to
run the MLBS algorithm. This is repeated L., times where
L, is the number of quasi-omnidirectional beams at the BS
(Lo < L). Following that, the UE determines the best receive
beams for the best quasi-omnidirectional BS transmit beam
and sends 735 = 735 SRS messages to the BS for BS beam
training, where 7, is the depth of the BSs decision tree. After
collecting SRS messages from the UE, the BS finally selects
the best transmit beams corresponding to the best UE receive
beams. Note that as the UE has already selected its best beam
directions previously, the BS training is performed only one
time. This way, the multi-directional link can be established
in Tys + Loy Toe Signal transmissions.

After the narrow beam directions are identified, either the
BS or the UE proceeds with the phase alignment to ensure that
the signals are in phase. Note that the party that does the phase
alignment will continue to do so for the subsequent uplink and
downlink transmissions. Finally, the BS solves the optimal
antenna allocation problem in (17) for the identified cluster
directions, while the UE is already transmitting optimally.
Solving the joint optimization problem is left for future work.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed scheme through extensive trace-driven emulations. We
compare our scheme with 802.11ad-like and 5G beam search
approaches, in which the search time scales linearly with L.

A. Experimental Results

We first conduct extensive experiments to obtain the mmW
channel characteristics to be used in our simulations. 4 x 4
UPAs are used in our experiments with d, = 0.5\ and

Fig. 7. Test setup using 4 x 4 UPAs both at the Tx and the Rx side, signal
generator, and vector signal analyzer.

d, = 0.6A. The antenna gain at the broadside of the array
is 12 dB. For the sake of measuring the received power, a
continuous wave with 5 dBm amplitude is transmitted over
the 29 GHz band, which is a candidate band for 5G commu-
nications. Keysight E§257D-ATO-8384 PSG signal generator
is used to generate the waveform. At the Rx side, the array
is connected to Keysight PXA-550-MY55002004 vector signal
analyzer (VSA). To steer the transmit/receive beams to desired
directions, antenna arrays are connected to microcontrollers,
which are interfaced with the PC through serial port. The
whole setup with the Tx, Rx, PSG, and the VSA can be seen
in Fig. 7.

We test several LOS and NLOS scenarios with a Tx-Rx
separation of 3 m, where the NLOS path is created by a 1.2
m x 1.2 m metal reflector. The effective beam scanning range
of the UPAs in our experiments are £60° from broadside, in
both azimuth and elevation (effective FOV = ~ 120° in each
direction). Beyond that, the antenna gain drops significantly
as a result of the non-ideal behavior of the antenna elements.
To experimentally obtain the AoA profile, we exhaustively
scanned the 3D space within the effective beam scanning range
of the antenna arrays under different scenarios and collected
RSS measurements from the 3D space.

In Fig. 8, we evaluate the effect of the detection threshold 7',
the improvement in data-rate via using a multi-directional link,
and the performance of the MLBS algorithm using trace-driven
simulations. We take the average values obtained from all LOS
and NLOS scenarios. In Fig. 8(a), when T increases, Pr{MD}
increases and Pr{FA} decreases, as expected. Thus, for this
experimental environment, when 7' is approximately equal to
—68 dBm, both Pr{MD} and Pr{FA} stay below 0.2. We then
compare the throughput performances of a benchmark scheme
(single-beam) that allocates all antennas to form a beam
towards the strongest cluster and the proposed multi-beam
scheme, under certain blockage probabilities of the underlying
links. In Fig. 8(b), we set the data transmission duration T}
to 10 ms. The results indicate that when the blockage rate
is low, benchmark scheme performs as good as the proposed
scheme. In that case, there is no benefit of using multiple
beams. However, when blockage rate is above 5 bl/s, the
multi-directional scheme outperforms the single-beam scheme
up to 10%. Note that when we allocate the antennas to form
multiple beams, the instantaneous transmission rate decreases.
However, under the dynamic blockage, the proposed scheme
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allows an uninterrupted transmission due to the utilization
of multiple beams, leading to higher data rates on average.
Fig. 8(c) shows the discovery time comparison of MLBS
with 5G and 802.11ad-like beam searching schemes, when
all algorithms aim at identifying three channel clusters. 5G
beam search corresponds to the traditional exhaustive beam
scan and 802.11ad-like search represents the hierarchical beam
search with the goal of identifying multiple channel clusters.
For computational efficiency, the comparison is done over a
subsampled version of the original channel, where the new
channel matrix is 5 x 5 with 25 total directions. The results
indicate that MBS offers significant reduction in search time
(54% compared to 5G and 43% compared to 802.11ad-like
beam searches). On the other hand, it experiences a slightly
higher misdetection probability compared to 802.11ad-like
search, as observed in 8(d). This 0.065 increase in the misde-
tection probability is due to a higher detection threshold (7)
selection for limiting the false alarm probability. Specifically,
MLBS uses a detection threshold of T' = —68 dBm (as found
in Fig. 8(a)), whereas the 802.11ad-like scheme uses 7' = —80
dBm. Finally, note that the misdetection probability in Fig. 8(a)
is the misdetection of a single measurement taken with a multi-
lobe beam, while the misdetection probability in Fig. 8(d) is
the overall misdetection of MLBS. Deviating from 7" = —68
dBm found in Fig. 8(a) results in a higher overall misdetection.

B. Simulation Results

In our simulation, we use 3GPP channel models [30] where
Pry = 46 dBm, the operating frequency is 29 GHz, the
bandwidth is 57.6 MHz, and the cell radius is 200 m. A UPA of
half-wavelength antenna spacing is implemented with various
numbers of antennas.

A numerical comparison of MLBS with 5G, 802.11ad-like,
and Rapid-Link [19] beam searching schemes are shown in
Fig. 9. For the first stage of the 802.11ad-like scheme, we
used 6 quasi-omnidirectional beams with 60° beamwidth each.
In addition, we used 4 bins within Rapid-Link, as in [19].
Fig. 9(a) depicts the performances of the algorithms, when
they aim at identifying 2 channel clusters. Clearly, discovery
times of all schemes increase with increasing L. However, the
increase is linear for 5G and 802.11ad-like scheme, whereas
it is logarithmic for MLBS and Rapid-Link. MLBS decreases
the discovery time by 88% compared to 5G beam scan, 65%
compared to 802.11ad-like scheme, and 56% compared to

Rapid-Link. In Fig. 9(b), the algorithms aim at identifying
6 channel clusters. Note that compared to Fig. 9(a), curves
in Fig. 9(b) are closer to each other. The search time of 5G
and Rapid-Link remains the same, whereas the search time of
the 802.11ad-like scheme is higher, as more clusters means
more quasi-omnidirectional regions to search in the second
stage. Similarly, the search time of MLBS is also higher, since
the number of rows in the decision matrix, (ILD), increases
with increasing P (when P < L/2). As a result, the gap
between the curves shrink when P is larger. Notice that when
P = 6, the Rapid-Link and MLBS perform almost identically.
As the clusters to be discovered increases, the performance
of both MLBS and 802.11ad-like gets closer to that of the
exhaustive beam scan, as we can observe in Fig. 9(c). For
discovering more than 6 clusters, Rapid-Link outperforms
MLBS. However, due to fewer reflections in mmW spectrum,
P is typically less than 5 [7].

In Fig. 10(a), the comparison of Pr{MD} and Pr{FA} for
various number of Rx beams is provided when Nyg = 256
and L = 60. The results are obtained for various ypa values
that is used to determine the threshold 7' as explained in
Section IV-B. When B = 2 and ypa = 0.04, both Pr{MD}
and Pr{FA} are roughly equal to 0.04. Fig. 10(a) also shows
that when the antenna gain per cluster increases, Pr{MD}
decreases. (The case of B = 15 is shown here to present the
misdetection and false alarm probabilities of Rapid-Link per
measurement when 4 bins are used.) Note that Pr{FA} = ~ypa
for all cases, which shows that our analysis on 7" is valid. Fig.
10(b) demonstrates the effect of blockage rate on the data rate
when Ty = 10 ms and Nyg = 256. The results here verify the
ones obtained via experiments, which are shown in Fig. 8(b).
We note that T}; also has the same impact as p on the data rate.
In Fig. 10(c), we investigate the outage performance of single-
beam and multi-beam schemes when Nyg = 256 and T,; = 10
ms. Especially for the wireless systems that require very-high
reliability, outage duration is an important performance metric.
Even when p = 80 bl/s, the average outage duration of 3-beam
scheme is almost zero. On the other hand, single-beam scheme
leads to 3 ms outage duration, meaning that on average 30%
of the transmission time is wasted.

VI. CONCLUSIONS

In this paper, we proposed an efficient communication
protocol for mmW systems called SmartLink. SmartLink
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utilizes multiple channel clusters in the mmW channel between
the BS and the UE to combat blockage. It uses a novel
search scheme called MLBS, which discovers multiple clusters
in logarithmic time with respect to the number of beam
directions. Discovered clusters are then simultaneously used
for transmission/reception, and the signals coming from dif-
ferent directions are coherently combined. As the probability
of all channel clusters being blocked at the same time is
low, SmartLink provides an effective mechanism to maintain
communications and improve the data rate by up to 10%.

In our experiments, we were limited by the capabilities of
our setup, such as analog-only beamforming and short Tx-
Rx separation. Our future work will focus on multi-lobe beam
search methods under hybrid beamforming. With hybrid beam-
forming, inferred clusters can be exploited for multiplexing
gain, to transmit a separate independent data stream from
each one of the inferred clusters. We will also investigate
applications of SmartLink to other network architectures such
as coordinated multipoint (CoMP).
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