
THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope

Avery E. Broderick1,2,3 , Roman Gold1,4 , Mansour Karami1,2 , Jorge A. Preciado-López1 , Paul Tiede1,2,3 ,
Hung-Yi Pu1 , Kazunori Akiyama5,6,7,8 , Antxon Alberdi9 , Walter Alef10, Keiichi Asada11, Rebecca Azulay10,12,13 ,

Anne-Kathrin Baczko10 , Mislav Baloković8,14 , John Barrett6 , Dan Bintley15, Lindy Blackburn8,14 , Wilfred Boland16,
Katherine L. Bouman8,14,17 , Geoffrey C. Bower18 , Michael Bremer19, Christiaan D. Brinkerink20 , Roger Brissenden8,14 ,

Silke Britzen10 , Dominique Broguiere19, Thomas Bronzwaer20 , Do-Young Byun21,22 , John E. Carlstrom23,24,25,26 ,
Andrew Chael8,14 , Shami Chatterjee27 , Koushik Chatterjee28 , Ming-Tang Chen18 , Yongjun Chen (陈永军)29,30 ,
Ilje Cho21,22 , John E. Conway31 , James M. Cordes27 , Geoffrey B. Crew6 , Yuzhu Cui32,33 , Jordy Davelaar20 ,

Mariafelicia De Laurentis4,34,35 , Roger Deane36,37 , Jessica Dempsey15 , Gregory Desvignes38,10 ,
Sheperd S. Doeleman8,14 , Ralph P. Eatough10 , Heino Falcke20 , Vincent L. Fish6 , Ed Fomalont5 ,

Raquel Fraga-Encinas20 , Per Friberg15 , Christian M. Fromm4 , Peter Galison8,39,40 , Charles F. Gammie41,42 ,
Roberto García19 , Olivier Gentaz19, Boris Georgiev1,2,3 , Ciriaco Goddi20,43 , José L. Gómez9 ,

Minfeng Gu (顾敏峰)29,44 , Mark Gurwell14 , Kazuhiro Hada32,33 , Michael H. Hecht6, Ronald Hesper45 ,
Luis C. Ho (何子山)46,47 , Paul Ho11 , Mareki Honma32,33 , Chih-Wei L. Huang11, Lei Huang (黄磊)29,44 ,

David H. Hughes48, Makoto Inoue11 , Sara Issaoun20 , David J. James8,14 , Michael Janssen20 , Britton Jeter1,2,3 ,
Wu Jiang (江悟)29 , Alejandra Jiménez-Rosales49 , Michael D. Johnson8,14 , Svetlana Jorstad64,51 , Taehyun Jung21,22 ,

Ramesh Karuppusamy10 , Tomohisa Kawashima7 , Garrett K. Keating14 , Mark Kettenis52 , Jae-Young Kim10 ,
Jongsoo Kim21 , Motoki Kino7,53 , Jun Yi Koay11 , Patrick M. Koch11 , Shoko Koyama11 , Michael Kramer10 ,
Carsten Kramer19 , Thomas P. Krichbaum10 , Cheng-Yu Kuo54 , Sang-Sung Lee21 , Yan-Rong Li (李彦荣)55 ,

Zhiyuan Li (李志远)56,57 , Michael Lindqvist31 , Rocco Lico10 , Kuo Liu10 , Elisabetta Liuzzo58 , Wen-Ping Lo11,59 ,
Andrei P. Lobanov10 , Laurent Loinard60,61 , Colin Lonsdale6 , Ru-Sen Lu (路如森)10,29 , Nicholas R. MacDonald10 ,
Jirong Mao (毛基荣)62,50,63 , Alan P. Marscher64 , Iván Martí-Vidal12,13 , Satoki Matsushita11, Lynn D. Matthews6 ,

Karl M. Menten10 , Yosuke Mizuno4 , Izumi Mizuno15 , James M. Moran8,14 , Kotaro Moriyama6,32 ,
Monika Moscibrodzka20 , Cornelia Müller10,20 , Hiroshi Nagai7,33 , Neil M. Nagar65 , Masanori Nakamura11 ,

Ramesh Narayan8,14 , Gopal Narayanan66 , Iniyan Natarajan37 , Roberto Neri19 , Chunchong Ni1,2,3 , Aristeidis Noutsos10,
Hiroki Okino32,67 , Héctor Olivares4 , Gisela N. Ortiz-León10 , Tomoaki Oyama32 , Daniel C. M. Palumbo8,14 ,

Jongho Park11 , Ue-Li Pen1,68,69,70 , Dominic W. Pesce8,14 , Vincent Piétu19, Richard Plambeck71 ,
Aleksandar PopStefanija66, Oliver Porth4,28 , Ben Prather41 , Venkatessh Ramakrishnan65 , Ramprasad Rao18 ,

Mark G. Rawlings15 , Alexander W. Raymond8,14 , Luciano Rezzolla4 , Bart Ripperda4,72,73 , Freek Roelofs20 ,
Alan Rogers6 , Eduardo Ros10 , Mel Rose74 , Helge Rottmann10 , Chet Ruszczyk6 , Benjamin R. Ryan75,76 ,

Kazi L. J. Rygl58 , Salvador Sánchez77 , David Sánchez-Arguelles48,78 , Mahito Sasada32,79 , Tuomas Savolainen10,80,81 ,
F. Peter Schloerb66, Karl-Friedrich Schuster19 , Lijing Shao10,47 , Zhiqiang Shen (沈志强)29,30 , Des Small52 ,
Bong Won Sohn21,22,82 , Jason SooHoo6 , Fumie Tazaki32 , Remo P. J. Tilanus20,43,83 , Michael Titus6 ,

Kenji Toma84,85 , Pablo Torne10,77 , Efthalia Traianou10 , Sascha Trippe86 , Shuichiro Tsuda32, Ilse van Bemmel52 ,
Huib Jan van Langevelde52,87 , Daniel R. van Rossum20 , Jan Wagner10 , John Wardle88 , Jonathan Weintroub8,14 ,

Norbert Wex10 , Robert Wharton10 , Maciek Wielgus8,14 , George N. Wong41 , Qingwen Wu (吴庆文)89 ,
Doosoo Yoon28 , André Young20 , Ken Young14 , Ziri Younsi4,90 , Feng Yuan (袁峰)29,44,91 , Ye-Fei Yuan (袁业飞)92 ,

J. Anton Zensus10 , Guangyao Zhao9,21 , Shan-Shan Zhao20,56 , and Ziyan Zhu40

(The Event Horizon Telescope Collaboration)
1 Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5, Canada; abroderick@perimeterinstitute.ca

2 Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
3 Waterloo Centre for Astrophysics, University of Waterloo, Waterloo, ON N2L 3G1, Canada

4 Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, D-60438 Frankfurt am Main, Germany
5 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA

6Massachusetts Institute of Technology Haystack Observatory, 99 Millstone Road, Westford, MA 01886, USA
7 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
8 Black Hole Initiative at Harvard University, 20 Garden Street, Cambridge, MA 02138, USA

9 Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, E-18008 Granada, Spain
10 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany

11 Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astronomy-Mathematics Building, AS/NTU No. 1, Sec. 4, Roosevelt Road, Taipei 10617,
Taiwan, R.O.C

12 Departament d’Astronomia i Astrofísica, Universitat de València, C. Dr. Moliner 50, E-46100 Burjassot, València, Spain
13 Observatori Astronòmic, Universitat de València, C. Catedrático José Beltrán 2, E-46980 Paterna, València, Spain

14 Center for Astrophysics, Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
15 East Asian Observatory, 660 N. A’ohoku Place, Hilo, HI 96720, USA

16 Nederlandse Onderzoekschool voor Astronomie (NOVA), P.O. Box 9513, 2300 RA Leiden, The Netherlands
17 California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA

18 Institute of Astronomy and Astrophysics, Academia Sinica, 645 N. A’ohoku Place, Hilo, HI 96720, USA

The Astrophysical Journal, 897:139 (38pp), 2020 July 10 https://doi.org/10.3847/1538-4357/ab91a4
© 2020. The Author(s). Published by the American Astronomical Society.

1

https://orcid.org/0000-0002-3351-760X
https://orcid.org/0000-0002-3351-760X
https://orcid.org/0000-0002-3351-760X
https://orcid.org/0000-0003-2492-1966
https://orcid.org/0000-0003-2492-1966
https://orcid.org/0000-0003-2492-1966
https://orcid.org/0000-0001-7387-9333
https://orcid.org/0000-0001-7387-9333
https://orcid.org/0000-0001-7387-9333
https://orcid.org/0000-0002-4146-0113
https://orcid.org/0000-0002-4146-0113
https://orcid.org/0000-0002-4146-0113
https://orcid.org/0000-0003-3826-5648
https://orcid.org/0000-0003-3826-5648
https://orcid.org/0000-0003-3826-5648
https://orcid.org/0000-0001-9270-8812
https://orcid.org/0000-0001-9270-8812
https://orcid.org/0000-0001-9270-8812
https://orcid.org/0000-0002-9475-4254
https://orcid.org/0000-0002-9475-4254
https://orcid.org/0000-0002-9475-4254
https://orcid.org/0000-0002-9371-1033
https://orcid.org/0000-0002-9371-1033
https://orcid.org/0000-0002-9371-1033
https://orcid.org/0000-0002-2200-5393
https://orcid.org/0000-0002-2200-5393
https://orcid.org/0000-0002-2200-5393
https://orcid.org/0000-0003-3090-3975
https://orcid.org/0000-0003-3090-3975
https://orcid.org/0000-0003-3090-3975
https://orcid.org/0000-0003-0476-6647
https://orcid.org/0000-0003-0476-6647
https://orcid.org/0000-0003-0476-6647
https://orcid.org/0000-0002-9290-0764
https://orcid.org/0000-0002-9290-0764
https://orcid.org/0000-0002-9290-0764
https://orcid.org/0000-0002-9030-642X
https://orcid.org/0000-0002-9030-642X
https://orcid.org/0000-0002-9030-642X
https://orcid.org/0000-0003-0077-4367
https://orcid.org/0000-0003-0077-4367
https://orcid.org/0000-0003-0077-4367
https://orcid.org/0000-0003-4056-9982
https://orcid.org/0000-0003-4056-9982
https://orcid.org/0000-0003-4056-9982
https://orcid.org/0000-0002-2322-0749
https://orcid.org/0000-0002-2322-0749
https://orcid.org/0000-0002-2322-0749
https://orcid.org/0000-0002-2556-0894
https://orcid.org/0000-0002-2556-0894
https://orcid.org/0000-0002-2556-0894
https://orcid.org/0000-0001-9240-6734
https://orcid.org/0000-0001-9240-6734
https://orcid.org/0000-0001-9240-6734
https://orcid.org/0000-0003-1151-3971
https://orcid.org/0000-0003-1151-3971
https://orcid.org/0000-0003-1151-3971
https://orcid.org/0000-0003-1157-4109
https://orcid.org/0000-0003-1157-4109
https://orcid.org/0000-0003-1157-4109
https://orcid.org/0000-0002-2044-7665
https://orcid.org/0000-0002-2044-7665
https://orcid.org/0000-0002-2044-7665
https://orcid.org/0000-0003-2966-6220
https://orcid.org/0000-0003-2966-6220
https://orcid.org/0000-0003-2966-6220
https://orcid.org/0000-0002-2878-1502
https://orcid.org/0000-0002-2878-1502
https://orcid.org/0000-0002-2878-1502
https://orcid.org/0000-0002-2825-3590
https://orcid.org/0000-0002-2825-3590
https://orcid.org/0000-0002-2825-3590
https://orcid.org/0000-0001-6573-3318
https://orcid.org/0000-0001-6573-3318
https://orcid.org/0000-0001-6573-3318
https://orcid.org/0000-0001-5650-6770
https://orcid.org/0000-0001-5650-6770
https://orcid.org/0000-0001-5650-6770
https://orcid.org/0000-0001-6083-7521
https://orcid.org/0000-0001-6083-7521
https://orcid.org/0000-0001-6083-7521
https://orcid.org/0000-0003-2448-9181
https://orcid.org/0000-0003-2448-9181
https://orcid.org/0000-0003-2448-9181
https://orcid.org/0000-0002-4049-1882
https://orcid.org/0000-0002-4049-1882
https://orcid.org/0000-0002-4049-1882
https://orcid.org/0000-0002-2079-3189
https://orcid.org/0000-0002-2079-3189
https://orcid.org/0000-0002-2079-3189
https://orcid.org/0000-0001-6311-4345
https://orcid.org/0000-0001-6311-4345
https://orcid.org/0000-0001-6311-4345
https://orcid.org/0000-0002-2685-2434
https://orcid.org/0000-0002-2685-2434
https://orcid.org/0000-0002-2685-2434
https://orcid.org/0000-0002-9945-682X
https://orcid.org/0000-0002-9945-682X
https://orcid.org/0000-0002-9945-682X
https://orcid.org/0000-0003-1027-5043
https://orcid.org/0000-0003-1027-5043
https://orcid.org/0000-0003-1027-5043
https://orcid.org/0000-0003-1269-9667
https://orcid.org/0000-0003-1269-9667
https://orcid.org/0000-0003-1269-9667
https://orcid.org/0000-0003-3922-4055
https://orcid.org/0000-0003-3922-4055
https://orcid.org/0000-0003-3922-4055
https://orcid.org/0000-0002-9031-0904
https://orcid.org/0000-0002-9031-0904
https://orcid.org/0000-0002-9031-0904
https://orcid.org/0000-0001-6196-4135
https://orcid.org/0000-0001-6196-4135
https://orcid.org/0000-0001-6196-4135
https://orcid.org/0000-0002-2526-6724
https://orcid.org/0000-0002-2526-6724
https://orcid.org/0000-0002-2526-6724
https://orcid.org/0000-0002-7128-9345
https://orcid.org/0000-0002-7128-9345
https://orcid.org/0000-0002-7128-9345
https://orcid.org/0000-0002-9036-2747
https://orcid.org/0000-0002-9036-2747
https://orcid.org/0000-0002-9036-2747
https://orcid.org/0000-0002-5222-1361
https://orcid.org/0000-0002-5222-1361
https://orcid.org/0000-0002-5222-1361
https://orcid.org/0000-0002-8010-8454
https://orcid.org/0000-0002-8010-8454
https://orcid.org/0000-0002-8010-8454
https://orcid.org/0000-0002-1827-1656
https://orcid.org/0000-0002-1827-1656
https://orcid.org/0000-0002-1827-1656
https://orcid.org/0000-0002-6429-3872
https://orcid.org/0000-0002-6429-3872
https://orcid.org/0000-0002-6429-3872
https://orcid.org/0000-0001-7451-8935
https://orcid.org/0000-0001-7451-8935
https://orcid.org/0000-0001-7451-8935
https://orcid.org/0000-0002-6584-7443
https://orcid.org/0000-0002-6584-7443
https://orcid.org/0000-0002-6584-7443
https://orcid.org/0000-0002-3586-6424
https://orcid.org/0000-0002-3586-6424
https://orcid.org/0000-0002-3586-6424
https://orcid.org/0000-0002-2542-7743
https://orcid.org/0000-0002-2542-7743
https://orcid.org/0000-0002-2542-7743
https://orcid.org/0000-0003-4190-7613
https://orcid.org/0000-0003-4190-7613
https://orcid.org/0000-0003-4190-7613
https://orcid.org/0000-0002-4455-6946
https://orcid.org/0000-0002-4455-6946
https://orcid.org/0000-0002-4455-6946
https://orcid.org/0000-0003-0685-3621
https://orcid.org/0000-0003-0685-3621
https://orcid.org/0000-0003-0685-3621
https://orcid.org/0000-0001-6906-772X
https://orcid.org/0000-0001-6906-772X
https://orcid.org/0000-0001-6906-772X
https://orcid.org/0000-0003-1918-6098
https://orcid.org/0000-0003-1918-6098
https://orcid.org/0000-0003-1918-6098
https://orcid.org/0000-0001-6947-5846
https://orcid.org/0000-0001-6947-5846
https://orcid.org/0000-0001-6947-5846
https://orcid.org/0000-0002-3412-4306
https://orcid.org/0000-0002-3412-4306
https://orcid.org/0000-0002-3412-4306
https://orcid.org/0000-0003-4058-9000
https://orcid.org/0000-0003-4058-9000
https://orcid.org/0000-0003-4058-9000
https://orcid.org/0000-0002-1923-227X
https://orcid.org/0000-0002-1923-227X
https://orcid.org/0000-0002-1923-227X
https://orcid.org/0000-0001-5037-3989
https://orcid.org/0000-0001-5037-3989
https://orcid.org/0000-0001-5037-3989
https://orcid.org/0000-0002-5297-921X
https://orcid.org/0000-0002-5297-921X
https://orcid.org/0000-0002-5297-921X
https://orcid.org/0000-0001-5160-4486
https://orcid.org/0000-0001-5160-4486
https://orcid.org/0000-0001-5160-4486
https://orcid.org/0000-0001-8685-6544
https://orcid.org/0000-0001-8685-6544
https://orcid.org/0000-0001-8685-6544
https://orcid.org/0000-0003-2847-1712
https://orcid.org/0000-0003-2847-1712
https://orcid.org/0000-0003-2847-1712
https://orcid.org/0000-0001-7369-3539
https://orcid.org/0000-0001-7369-3539
https://orcid.org/0000-0001-7369-3539
https://orcid.org/0000-0002-2662-3754
https://orcid.org/0000-0002-2662-3754
https://orcid.org/0000-0002-2662-3754
https://orcid.org/0000-0002-4120-3029
https://orcid.org/0000-0002-4120-3029
https://orcid.org/0000-0002-4120-3029
https://orcid.org/0000-0001-6158-1708
https://orcid.org/0000-0001-6158-1708
https://orcid.org/0000-0001-6158-1708
https://orcid.org/0000-0001-7003-8643
https://orcid.org/0000-0001-7003-8643
https://orcid.org/0000-0001-7003-8643
https://orcid.org/0000-0002-5307-2919
https://orcid.org/0000-0002-5307-2919
https://orcid.org/0000-0002-5307-2919
https://orcid.org/0000-0001-8527-0496
https://orcid.org/0000-0001-8527-0496
https://orcid.org/0000-0001-8527-0496
https://orcid.org/0000-0002-3490-146X
https://orcid.org/0000-0002-3490-146X
https://orcid.org/0000-0002-3490-146X
https://orcid.org/0000-0002-6156-5617
https://orcid.org/0000-0002-6156-5617
https://orcid.org/0000-0002-6156-5617
https://orcid.org/0000-0001-8229-7183
https://orcid.org/0000-0001-8229-7183
https://orcid.org/0000-0001-8229-7183
https://orcid.org/0000-0002-1229-0426
https://orcid.org/0000-0002-1229-0426
https://orcid.org/0000-0002-1229-0426
https://orcid.org/0000-0002-2709-7338
https://orcid.org/0000-0002-2709-7338
https://orcid.org/0000-0002-2709-7338
https://orcid.org/0000-0002-7029-6658
https://orcid.org/0000-0002-7029-6658
https://orcid.org/0000-0002-7029-6658
https://orcid.org/0000-0003-2777-5861
https://orcid.org/0000-0003-2777-5861
https://orcid.org/0000-0003-2777-5861
https://orcid.org/0000-0002-3723-3372
https://orcid.org/0000-0002-3723-3372
https://orcid.org/0000-0002-3723-3372
https://orcid.org/0000-0002-4175-2271
https://orcid.org/0000-0002-4175-2271
https://orcid.org/0000-0002-4175-2271
https://orcid.org/0000-0002-4908-4925
https://orcid.org/0000-0002-4908-4925
https://orcid.org/0000-0002-4908-4925
https://orcid.org/0000-0002-4892-9586
https://orcid.org/0000-0002-4892-9586
https://orcid.org/0000-0002-4892-9586
https://orcid.org/0000-0001-6211-5581
https://orcid.org/0000-0001-6211-5581
https://orcid.org/0000-0001-6211-5581
https://orcid.org/0000-0002-6269-594X
https://orcid.org/0000-0002-6269-594X
https://orcid.org/0000-0002-6269-594X
https://orcid.org/0000-0001-5841-9179
https://orcid.org/0000-0001-5841-9179
https://orcid.org/0000-0001-5841-9179
https://orcid.org/0000-0003-0355-6437
https://orcid.org/0000-0003-0355-6437
https://orcid.org/0000-0003-0355-6437
https://orcid.org/0000-0002-3669-0715
https://orcid.org/0000-0002-3669-0715
https://orcid.org/0000-0002-3669-0715
https://orcid.org/0000-0001-7361-2460
https://orcid.org/0000-0001-7361-2460
https://orcid.org/0000-0001-7361-2460
https://orcid.org/0000-0002-2953-7376
https://orcid.org/0000-0002-2953-7376
https://orcid.org/0000-0002-2953-7376
https://orcid.org/0000-0003-0995-5201
https://orcid.org/0000-0003-0995-5201
https://orcid.org/0000-0003-0995-5201
https://orcid.org/0000-0003-1869-2503
https://orcid.org/0000-0003-1869-2503
https://orcid.org/0000-0003-1869-2503
https://orcid.org/0000-0003-1622-1484
https://orcid.org/0000-0003-1622-1484
https://orcid.org/0000-0003-1622-1484
https://orcid.org/0000-0002-5635-3345
https://orcid.org/0000-0002-5635-3345
https://orcid.org/0000-0002-5635-3345
https://orcid.org/0000-0003-4062-4654
https://orcid.org/0000-0003-4062-4654
https://orcid.org/0000-0003-4062-4654
https://orcid.org/0000-0002-7692-7967
https://orcid.org/0000-0002-7692-7967
https://orcid.org/0000-0002-7692-7967
https://orcid.org/0000-0002-6684-8691
https://orcid.org/0000-0002-6684-8691
https://orcid.org/0000-0002-6684-8691
https://orcid.org/0000-0002-7077-7195
https://orcid.org/0000-0002-7077-7195
https://orcid.org/0000-0002-7077-7195
https://orcid.org/0000-0001-7396-3332
https://orcid.org/0000-0001-7396-3332
https://orcid.org/0000-0001-7396-3332
https://orcid.org/0000-0003-3708-9611
https://orcid.org/0000-0003-3708-9611
https://orcid.org/0000-0003-3708-9611
https://orcid.org/0000-0002-3728-8082
https://orcid.org/0000-0002-3728-8082
https://orcid.org/0000-0002-3728-8082
https://orcid.org/0000-0001-6459-0669
https://orcid.org/0000-0001-6459-0669
https://orcid.org/0000-0001-6459-0669
https://orcid.org/0000-0002-8131-6730
https://orcid.org/0000-0002-8131-6730
https://orcid.org/0000-0002-8131-6730
https://orcid.org/0000-0002-7210-6264
https://orcid.org/0000-0002-7210-6264
https://orcid.org/0000-0002-7210-6264
https://orcid.org/0000-0002-3882-4414
https://orcid.org/0000-0002-3882-4414
https://orcid.org/0000-0002-3882-4414
https://orcid.org/0000-0003-1364-3761
https://orcid.org/0000-0003-1364-3761
https://orcid.org/0000-0003-1364-3761
https://orcid.org/0000-0002-4661-6332
https://orcid.org/0000-0002-4661-6332
https://orcid.org/0000-0002-4661-6332
https://orcid.org/0000-0002-2739-2994
https://orcid.org/0000-0002-2739-2994
https://orcid.org/0000-0002-2739-2994
https://orcid.org/0000-0003-0292-3645
https://orcid.org/0000-0003-0292-3645
https://orcid.org/0000-0003-0292-3645
https://orcid.org/0000-0001-6920-662X
https://orcid.org/0000-0001-6920-662X
https://orcid.org/0000-0001-6920-662X
https://orcid.org/0000-0001-6081-2420
https://orcid.org/0000-0001-6081-2420
https://orcid.org/0000-0001-6081-2420
https://orcid.org/0000-0002-1919-2730
https://orcid.org/0000-0002-1919-2730
https://orcid.org/0000-0002-1919-2730
https://orcid.org/0000-0002-4723-6569
https://orcid.org/0000-0002-4723-6569
https://orcid.org/0000-0002-4723-6569
https://orcid.org/0000-0001-8242-4373
https://orcid.org/0000-0001-8242-4373
https://orcid.org/0000-0001-8242-4373
https://orcid.org/0000-0002-7176-4046
https://orcid.org/0000-0002-7176-4046
https://orcid.org/0000-0002-7176-4046
https://orcid.org/0000-0003-1361-5699
https://orcid.org/0000-0003-1361-5699
https://orcid.org/0000-0003-1361-5699
https://orcid.org/0000-0003-3779-2016
https://orcid.org/0000-0003-3779-2016
https://orcid.org/0000-0003-3779-2016
https://orcid.org/0000-0001-6833-7580
https://orcid.org/0000-0001-6833-7580
https://orcid.org/0000-0001-6833-7580
https://orcid.org/0000-0002-2863-676X
https://orcid.org/0000-0002-2863-676X
https://orcid.org/0000-0002-2863-676X
https://orcid.org/0000-0003-4046-2923
https://orcid.org/0000-0003-4046-2923
https://orcid.org/0000-0003-4046-2923
https://orcid.org/0000-0002-7179-3816
https://orcid.org/0000-0002-7179-3816
https://orcid.org/0000-0002-7179-3816
https://orcid.org/0000-0001-6558-9053
https://orcid.org/0000-0001-6558-9053
https://orcid.org/0000-0001-6558-9053
https://orcid.org/0000-0003-2155-9578
https://orcid.org/0000-0003-2155-9578
https://orcid.org/0000-0003-2155-9578
https://orcid.org/0000-0002-5278-9221
https://orcid.org/0000-0002-5278-9221
https://orcid.org/0000-0002-5278-9221
https://orcid.org/0000-0001-6765-9609
https://orcid.org/0000-0001-6765-9609
https://orcid.org/0000-0001-6765-9609
https://orcid.org/0000-0002-4584-2557
https://orcid.org/0000-0002-4584-2557
https://orcid.org/0000-0002-4584-2557
https://orcid.org/0000-0002-0393-7734
https://orcid.org/0000-0002-0393-7734
https://orcid.org/0000-0002-0393-7734
https://orcid.org/0000-0002-9248-086X
https://orcid.org/0000-0002-9248-086X
https://orcid.org/0000-0002-9248-086X
https://orcid.org/0000-0002-1407-7944
https://orcid.org/0000-0002-1407-7944
https://orcid.org/0000-0002-1407-7944
https://orcid.org/0000-0002-6529-202X
https://orcid.org/0000-0002-6529-202X
https://orcid.org/0000-0002-6529-202X
https://orcid.org/0000-0002-5779-4767
https://orcid.org/0000-0002-5779-4767
https://orcid.org/0000-0002-5779-4767
https://orcid.org/0000-0002-1330-7103
https://orcid.org/0000-0002-1330-7103
https://orcid.org/0000-0002-1330-7103
https://orcid.org/0000-0002-7301-3908
https://orcid.org/0000-0002-7301-3908
https://orcid.org/0000-0002-7301-3908
https://orcid.org/0000-0001-5461-3687
https://orcid.org/0000-0001-5461-3687
https://orcid.org/0000-0001-5461-3687
https://orcid.org/0000-0003-1941-7458
https://orcid.org/0000-0003-1941-7458
https://orcid.org/0000-0003-1941-7458
https://orcid.org/0000-0001-9503-4892
https://orcid.org/0000-0001-9503-4892
https://orcid.org/0000-0001-9503-4892
https://orcid.org/0000-0002-2016-8746
https://orcid.org/0000-0002-2016-8746
https://orcid.org/0000-0002-2016-8746
https://orcid.org/0000-0003-1799-8228
https://orcid.org/0000-0003-1799-8228
https://orcid.org/0000-0003-1799-8228
https://orcid.org/0000-0001-7278-9707
https://orcid.org/0000-0001-7278-9707
https://orcid.org/0000-0001-7278-9707
https://orcid.org/0000-0001-8939-4461
https://orcid.org/0000-0001-8939-4461
https://orcid.org/0000-0001-8939-4461
https://orcid.org/0000-0003-4146-9043
https://orcid.org/0000-0003-4146-9043
https://orcid.org/0000-0003-4146-9043
https://orcid.org/0000-0002-8042-5951
https://orcid.org/0000-0002-8042-5951
https://orcid.org/0000-0002-8042-5951
https://orcid.org/0000-0002-7344-9920
https://orcid.org/0000-0002-7344-9920
https://orcid.org/0000-0002-7344-9920
https://orcid.org/0000-0001-5946-9960
https://orcid.org/0000-0001-5946-9960
https://orcid.org/0000-0001-5946-9960
https://orcid.org/0000-0001-6214-1085
https://orcid.org/0000-0001-6214-1085
https://orcid.org/0000-0001-6214-1085
https://orcid.org/0000-0003-2890-9454
https://orcid.org/0000-0003-2890-9454
https://orcid.org/0000-0003-2890-9454
https://orcid.org/0000-0002-1334-8853
https://orcid.org/0000-0002-1334-8853
https://orcid.org/0000-0002-1334-8853
https://orcid.org/0000-0003-3540-8746
https://orcid.org/0000-0003-3540-8746
https://orcid.org/0000-0003-3540-8746
https://orcid.org/0000-0003-3723-5404
https://orcid.org/0000-0003-3723-5404
https://orcid.org/0000-0003-3723-5404
https://orcid.org/0000-0002-4148-8378
https://orcid.org/0000-0002-4148-8378
https://orcid.org/0000-0002-4148-8378
https://orcid.org/0000-0003-1938-0720
https://orcid.org/0000-0003-1938-0720
https://orcid.org/0000-0003-1938-0720
https://orcid.org/0000-0003-0236-0600
https://orcid.org/0000-0003-0236-0600
https://orcid.org/0000-0003-0236-0600
https://orcid.org/0000-0002-6514-553X
https://orcid.org/0000-0002-6514-553X
https://orcid.org/0000-0002-6514-553X
https://orcid.org/0000-0002-3423-4505
https://orcid.org/0000-0002-3423-4505
https://orcid.org/0000-0002-3423-4505
https://orcid.org/0000-0002-7114-6010
https://orcid.org/0000-0002-7114-6010
https://orcid.org/0000-0002-7114-6010
https://orcid.org/0000-0001-8700-6058
https://orcid.org/0000-0001-8700-6058
https://orcid.org/0000-0001-8700-6058
https://orcid.org/0000-0002-1209-6500
https://orcid.org/0000-0002-1209-6500
https://orcid.org/0000-0002-1209-6500
https://orcid.org/0000-0003-0465-1559
https://orcid.org/0000-0003-0465-1559
https://orcid.org/0000-0003-0465-1559
https://orcid.org/0000-0001-5473-2950
https://orcid.org/0000-0001-5473-2950
https://orcid.org/0000-0001-5473-2950
https://orcid.org/0000-0002-0230-5946
https://orcid.org/0000-0002-0230-5946
https://orcid.org/0000-0002-0230-5946
https://orcid.org/0000-0001-7772-6131
https://orcid.org/0000-0001-7772-6131
https://orcid.org/0000-0001-7772-6131
https://orcid.org/0000-0003-1105-6109
https://orcid.org/0000-0003-1105-6109
https://orcid.org/0000-0003-1105-6109
https://orcid.org/0000-0002-8960-2942
https://orcid.org/0000-0002-8960-2942
https://orcid.org/0000-0002-8960-2942
https://orcid.org/0000-0002-4603-5204
https://orcid.org/0000-0002-4603-5204
https://orcid.org/0000-0002-4603-5204
https://orcid.org/0000-0003-4058-2837
https://orcid.org/0000-0003-4058-2837
https://orcid.org/0000-0003-4058-2837
https://orcid.org/0000-0002-7416-5209
https://orcid.org/0000-0002-7416-5209
https://orcid.org/0000-0002-7416-5209
https://orcid.org/0000-0002-8635-4242
https://orcid.org/0000-0002-8635-4242
https://orcid.org/0000-0002-8635-4242
https://orcid.org/0000-0001-6952-2147
https://orcid.org/0000-0001-6952-2147
https://orcid.org/0000-0001-6952-2147
https://orcid.org/0000-0003-4773-4987
https://orcid.org/0000-0003-4773-4987
https://orcid.org/0000-0003-4773-4987
https://orcid.org/0000-0001-8694-8166
https://orcid.org/0000-0001-8694-8166
https://orcid.org/0000-0001-8694-8166
https://orcid.org/0000-0003-0000-2682
https://orcid.org/0000-0003-0000-2682
https://orcid.org/0000-0003-0000-2682
https://orcid.org/0000-0002-3666-4920
https://orcid.org/0000-0002-3666-4920
https://orcid.org/0000-0002-3666-4920
https://orcid.org/0000-0001-9283-1191
https://orcid.org/0000-0001-9283-1191
https://orcid.org/0000-0001-9283-1191
https://orcid.org/0000-0003-3564-6437
https://orcid.org/0000-0003-3564-6437
https://orcid.org/0000-0003-3564-6437
https://orcid.org/0000-0002-7330-4756
https://orcid.org/0000-0002-7330-4756
https://orcid.org/0000-0002-7330-4756
https://orcid.org/0000-0001-7470-3321
https://orcid.org/0000-0001-7470-3321
https://orcid.org/0000-0001-7470-3321
https://orcid.org/0000-0002-4417-1659
https://orcid.org/0000-0002-4417-1659
https://orcid.org/0000-0002-4417-1659
https://orcid.org/0000-0002-9774-3606
https://orcid.org/0000-0002-9774-3606
https://orcid.org/0000-0002-9774-3606
https://orcid.org/0000-0003-4463-5828
https://orcid.org/0000-0003-4463-5828
https://orcid.org/0000-0003-4463-5828
mailto:abroderick@perimeterinstitute.ca
https://doi.org/10.3847/1538-4357/ab91a4
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab91a4&domain=pdf&date_stamp=2020-07-10
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab91a4&domain=pdf&date_stamp=2020-07-10


19 Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, F-38406 Saint Martin d’Hères, France
20 Department of Astrophysics, Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud University, P.O. Box 9010, 6500 GL Nijmegen, The

Netherlands
21 Korea Astronomy and Space Science Institute, Daedeok-daero 776, Yuseong-gu, Daejeon 34055, Republic of Korea

22 University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113, Republic of Korea
23 Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA

24 Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
25 Department of Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
26 Enrico Fermi Institute, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
27 Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853, USA

28 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
29 Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, Peopleʼs Republic of China

30 Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Nanjing 210008, Peopleʼs Republic of China
31 Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala, Sweden
32 Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, 2-12 Hoshigaoka, Mizusawa, Oshu, Iwate 023-0861, Japan

33 Department of Astronomical Science, The Graduate University for Advanced Studies (SOKENDAI), 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
34 Dipartimento di Fisica “E. Pancini,” Universitá di Napoli “Federico II,” Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli, Italy

35 INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli, Italy
36 Department of Physics, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0083, South Africa

37 Centre for Radio Astronomy Techniques and Technologies, Department of Physics and Electronics, Rhodes University, Grahamstown 6140, South Africa
38 LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France

39 Department of History of Science, Harvard University, Cambridge, MA 02138, USA
40 Department of Physics, Harvard University, Cambridge, MA 02138, USA

41 Department of Physics, University of Illinois, 1110 West Green Street, Urbana, IL 61801, USA
42 Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801, USA

43 Leiden Observatory—Allegro, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands
44 Key Laboratory for Research in Galaxies and Cosmology, Chinese Academy of Sciences, Shanghai 200030, Peopleʼs Republic of China

45 NOVA Sub-mm Instrumentation Group, Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen, The Netherlands
46 Department of Astronomy, School of Physics, Peking University, Beijing 100871, Peopleʼs Republic of China
47 Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, Peopleʼs Republic of China
48 Instituto Nacional de Astrofísica, Óptica y Electrónica. Apartado Postal 51 y 216, 72000. Puebla Pue., México

49 Max-Planck-Institut fu r Extraterrestrische Physik, Giessenbachstr. 1, D-85748 Garching, Germany
50 Center for Astronomical Mega-Science, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, 100012, Peopleʼs Republic of China

51 Astronomical Institute, St. Petersburg University, Universitetskij pr., 28, Petrodvorets,198504 St.Petersburg, Russia
52 Joint Institute for VLBI ERIC (JIVE), Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands

53 Kogakuin University of Technology & Engineering, Academic Support Center, 2665-1 Nakano, Hachioji, Tokyo 192-0015, Japan
54 Physics Department, National Sun Yat-Sen University, No. 70, Lien-Hai Road, Kaosiung City 80424, Taiwan, R.O.C

55 Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing,
Peopleʼs Republic of China

56 School of Astronomy and Space Science, Nanjing University, Nanjing 210023, Peopleʼs Republic of China
57 Key Laboratory of Modern Astronomy and Astrophysics, Nanjing University, Nanjing 210023, Peopleʼs Republic of China

58 Italian ALMA Regional Centre, INAF-Istituto di Radioastronomia, Via P. Gobetti 101, I-40129 Bologna, Italy
59 Department of Physics, National Taiwan University, No.1, Sect. 4, Roosevelt Road, Taipei 10617, Taiwan, R.O.C
60 Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58089, México

61 Instituto de Astronomía, Universidad Nacional Autónoma de México, CdMx 04510, México
62 Yunnan Observatories, Chinese Academy of Sciences, 650011 Kunming, Yunnan Province, Peopleʼs Republic of China

63 Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, 650011 Kunming, Peopleʼs Republic of China
64 Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215, USA

65 Astronomy Department, Universidad de Concepción, Casilla 160-C, Concepción, Chile
66 Department of Astronomy, University of Massachusetts, 01003, Amherst, MA, USA

67 Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
68 Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8, Canada

69 Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada
70 Canadian Institute for Advanced Research, 180 Dundas Street West, Toronto, ON M5G 1Z8, Canada

71 Radio Astronomy Laboratory, University of California, Berkeley, CA 94720, USA
72 Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA

73 Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA
74 Steward Observatory and Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA

75 CCS-2, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA
76 Center for Theoretical Astrophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA

77 Instituto de Radioastronomía Milimétrica, IRAM, Avenida Divina Pastora 7, Local 20, E-18012, Granada, Spain
78 Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, 03940, Ciudad de México, México

79 Hiroshima Astrophysical Science Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
80 Aalto University, Department of Electronics and Nanoengineering, PL 15500, FI-00076 Aalto, Finland

81 Aalto University Metsähovi Radio Observatory, Metsähovintie 114, FI-02540 Kylmälä, Finland
82 Department of Astronomy, Yonsei University, Yonsei-ro 50, Seodaemun-gu, 03722 Seoul, Republic of Korea

83 Netherlands Organisation for Scientific Research (NWO), Postbus 93138, 2509 AC Den Haag, The Netherlands
84 Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan

85 Astronomical Institute, Tohoku University, Sendai 980-8578, Japan
86 Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea

87 Leiden Observatory, Leiden University, Postbus 2300, 9513 RA Leiden, The Netherlands
88 Physics Department, Brandeis University, 415 South Street, Waltham, MA 02453, USA

89 School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, Peopleʼs Republic of China
90 Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UK

91 School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, Peopleʼs Republic of China

2

The Astrophysical Journal, 897:139 (38pp), 2020 July 10 Broderick et al.



92 Astronomy Department, University of Science and Technology of China, Hefei 230026, Peopleʼs Republic of China
Received 2019 September 12; revised 2020 April 29; accepted 2020 May 7; published 2020 July 10

Abstract

The Event Horizon Telescope (EHT) provides the unprecedented ability to directly resolve the structure and
dynamics of black hole emission regions on scales smaller than their horizons. This has the potential to critically
probe the mechanisms by which black holes accrete and launch outflows, and the structure of supermassive black
hole spacetimes. However, accessing this information is a formidable analysis challenge for two reasons. First, the
EHT natively produces a variety of data types that encode information about the image structure in nontrivial ways;
these are subject to a variety of systematic effects associated with very long baseline interferometry and are
supplemented by a wide variety of auxiliary data on the primary EHT targets from decades of other observations.
Second, models of the emission regions and their interaction with the black hole are complex, highly uncertain, and
computationally expensive to construct. As a result, the scientific utilization of EHT observations requires a
flexible, extensible, and powerful analysis framework. We present such a framework, THEMIS, which defines a set
of interfaces between models, data, and sampling algorithms that facilitates future development. We describe the
design and currently existing components of THEMIS, how THEMIS has been validated thus far, and present
additional analyses made possible by THEMIS that illustrate its capabilities. Importantly, we demonstrate that
THEMIS is able to reproduce prior EHT analyses, extend these, and do so in a computationally efficient manner that
can efficiently exploit modern high-performance computing facilities. THEMIS has already been used extensively in
the scientific analysis and interpretation of the first EHT observations of M87.

Unified Astronomy Thesaurus concepts: Astrophysical black holes (98); Galactic center (565); Astronomy data
analysis (1858); Very long baseline interferometry (1769); Submillimeter astronomy (1647)

1. Introduction

The Event Horizon Telescope (EHT), a global array of
millimeter and submillimeter radio telescopes, has resolved the
horizons of at least two black holes (Doeleman et al.
2008, 2009, 2012; Doeleman 2010; Event Horizon Telescope
Collaboration et al. 2019a). This provides a unique window on the
high-energy astrophysical processes responsible for the substantial
growth and inordinate influence of supermassive black holes
(Fabian 2012; Heckman & Best 2014), the dynamics and
thermodynamics of material in the strong gravity regime (Narayan
et al. 1998; Yuan & Narayan 2014), and the fundamental nature of
black holes (Broderick et al. 2014; Psaltis et al. 2016). However,
efficiently and accurately extracting this information from the
observational data presents numerous challenges, requiring the
development of novel analysis tools tailored to the EHT data
products, EHT-target properties, and auxiliary information.

The EHT achieves an extraordinary resolution of 13μas, making
it the highest resolution imaging instrument in the history of
astronomy. It does this via very long baseline interferometry
(VLBI), in which information from pairs of individual stations
separated by Earth-size distances are combined to measure small-
scale structure on the sky. The resulting data take the form of
complex visibilities, directly related to the Fourier transform of the
image. This can be performed in all four Stokes parameters,
yielding complete information about the resolved polarization
structures (e.g., Johnson et al. 2015). In the near future, this will be
extended to multiple wavelengths (1.3 and 0.87mm; Falcke 2017).
Millimeter-VLBI observations of the primary EHT targets have
already been carried out at multiple epochs, covering times ranging
from 10 s to 10 yr (Doeleman et al. 2008; Fish et al. 2011, 2016;
Johnson et al. 2015).

The first horizon-resolving images have been published,
with ancillary scientific analyses (Event Horizon Telescope

Collaboration et al. 2019a, 2019b, 2019c, 2019d, 2019e, 2019f,
hereafter Papers I, II, III, IV, V, and VI, respectively). These have
revealed a resolved shadow with brightness maximum offset
from the direction of the large-scale jet, broadly consistent with
the model predictions in Broderick & Loeb (2009a), Dexter et al.
(2012), and Mościbrodzka et al. (2016). Extracting quantitative
information about these has required detailed model comparisons
directly with the complex visibilities (see, e.g., Papers V, VI).
Difficulties in the phase calibration, and lesser—though still

significant—complications in the amplitude calibration of these
visibilities, have motivated the construction of a set of VLBI
observables (e.g., visibility amplitudes and closure phases:
Jennison 1958; closure amplitudes: Twiss et al. 1960, 1962;
visibility polarization fractions: Wardle 1971, Roberts et al.
1994, Fish et al. 2009. Johnson et al. 2015, etc.) that probe the
underlying image structure in nonintuitive ways. These have
traditionally been interpreted within the context of a simple set
of phenomenological models, e.g., multicomponent Gaussians.
However, the substantial structure anticipated on horizon scales
exhibited by the primary EHT targets has given rise to a
broader modeling effort, which includes a variety of physical
processes (Narayan et al. 1998; Falcke & Markoff 2000; Yuan
et al. 2002; Broderick & Loeb 2006a; Chan et al. 2009, 2015;
Dexter et al. 2009; Mościbrodzka et al. 2009, 2014; Broderick
et al. 2011, 2016; Dolence et al. 2012; Yuan & Narayan 2014;
Gold et al. 2017; Shiokawa et al. 2017; Chael et al. 2018a).
This modeling effort is further motivated by the large

amount of ancillary data that exists for EHT targets. All EHT
targets are necessarily bright radio sources and thus have been
the object of substantial astronomical scrutiny. Both the
Galactic center (SgrA*) and M87 have been studied across
the electromagnetic spectrum, from decameter wavelengths (de
Gasperin et al. 2012) to very high-energy gamma-rays
(>1 TeV; Eckart et al. 2006). Moreover, due to the close
proximity to their central black holes, both are empirically
highly variable, providing statistical information about the
dynamics within the millimeter-wavelength emission regions
and creating opportunities to probe this dynamics directly at

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.
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multiple wavelengths (Eckart et al. 2008). Physical modeling of
these sources provides the unique ability to synthesize all of
these observations, which when combined with EHT data can
provide a detailed description of the conditions and dynamics
of material near black hole horizons.

There are substantial challenges to such a broad modeling
effort. First and foremost, models of the near-horizon region are
necessarily complicated, invoking multiple emission components
(nonthermal and thermal emission regions with uncertain and
potentially distinct locations; Özel et al. 2000; Dexter et al. 2010;
Shcherbakov et al. 2012; Chandra et al. 2015; Ressler et al.
2015, 2017; Mao et al. 2017; Chael et al. 2018a; Davelaar et al.
2018), a variety of dynamical processes (orbital motion, accretion
flow height, winds, jets, explosive events, etc.; Broderick &
Loeb 2006a; Dexter et al. 2009; Dolence et al. 2012; Dexter &
Fragile 2013; Fraga-Encinas et al. 2016; Pu et al. 2016a; Roelofs
et al. 2017; Medeiros et al. 2018; Pu & Broderick 2018; Jeter
et al. 2020), strong lensing in a potentially uncertain spacetime
(Kerr or beyond; Bambi & Freese 2009; Johannsen & Psaltis
2010; Johannsen 2013; Broderick et al. 2014; Johannsen et al.
2016; Mizuno et al. 2018), polarization transfer effects (e.g.,
Faraday rotation and conversion; Huang & Shcherbakov
2011; Shcherbakov & Huang 2011; Shcherbakov et al. 2012;
Mościbrodzka et al. 2017; Jiménez-Rosales & Dexter 2018), and
propagation effects (e.g., interstellar scattering; Johnson & Gwinn
2015; Johnson et al. 2018; Issaoun et al. 2019). To add to the
complexity of this comparison, only Fourier modes along specific
tracks in the two-dimensional Fourier domain are probed via
Earth–aperture synthesis on timescales that can be comparable to
intrinsic source variability (Lu et al. 2016). Thus, any tools
constructed to make comparisons between physical models of
EHT targets and the collection of EHT and auxiliary data must be
extremely flexible.

Second, there are clear emission-model independent features
in many images that arise from the structure of the underlying
spacetime. These include the black hole shadow—the silhouette
of the black hole determined by its photon orbits, first described
by Hilbert (1917) and simulated by Luminet (1979). This is
bounded by the photon ring, a bright ring arising from the
stacking of multiple images, in which the gross features of the
spacetime are encoded. Thus, there is substantial motivation to
directly extract these generic features from the EHT data alone.
Again, this is complicated by the indirect relationship between
the VLBI observables and the image, resulting in frequently
counterintuitive conclusions. Hence, ideally, any tools for
assessing the presence and properties of image structures should
be able to extend to phenomenological models as well.

Third, the nature of EHT data has evolved rapidly over the
past decade, growing as the sensitivity and baseline coverage
improved. It is far from clear that any particular set of EHT data
types is optimal for a given astrophysical or gravitational
question. In some cases, new data types have been developed
based on both instrumental and observational limitations (e.g.,
visibility polarization fractions). Similarly, intrinsic source
variability has motivated the development of sophisticated
statistical descriptions of observable quantities (Kim et al.
2016). Given the broad range of EHT and ancillary data types,
any model comparison effort must maintain substantial
flexibility in the kinds of information that it can utilize.

Fourth, there are many facets of the intrinsic data calibration
that are potentially degenerate with modeling efforts. Examples
include the calibration of the complex station gains and full

instrument polarization response. Often these are obtained via
fitting models of the instrument while assuming simplified
source structures and/or iterative procedures in which the
calibration is performed between attempts at source reconstruc-
tion (e.g., self-calibration). However, both of these impact the
accuracy and precision of model parameter reconstructions.
Thus, ideally, these calibration steps would be incorporated
directly into the model-fitting effort.
Finally, in many cases, the construction of physically realistic

models is computationally expensive, requiring ray tracing
(relatively cheap) and radiative transfer (often expensive) through
model structures. This difficulty is compounded by the often
multimodal nature of the reconstructed posterior parameter
distributions (see, e.g., Broderick et al. 2016). As a result, any
analysis tools must be both computationally efficient and be able
to exploit the large investment in high-performance computing
resources.
It is to address these challenges that we have begun the

development of an analysis framework for EHT and ancillary
data: THEMIS. THEMIS is designed to be modular, extensible, and
highly parallel, enabling the extraction of increasingly detailed
information from EHT observing campaigns, both individually
and in aggregate. Here we present the underlying design
philosophy, structure, and validation tests of THEMIS, including
the reproduction of a variety of published analyses. We then
demonstrate the ability of THEMIS to extend these, presenting new
analyses of phenomenological models that include the full set of
published EHT observations. THEMIS has already been employed
in the analysis of the first horizon-resolving imaging observations
of M87 by the EHT (Papers V, VI).
In Section 2, we summarize the algorithms, components, and

implementation details of THEMIS. Individual features are described
in Sections 3–7. Various tests used to validate THEMIS features are
presented in Section 8. A handful of novel results enabled by
THEMIS are collected in Section 9. The computational performance
of THEMIS and its key components, including the implications for
high-performance computing (HPC) systems, is addressed in
Section 10. Finally, conclusions are summarized in Section 11.

2. Summary of THEMIS

2.1. Structure

The driving motivation for THEMIS is to produce a modular
and easily extensible framework for unifying existing and
developing future analyses of EHT and auxiliary data.
Modularity reduces the practical bars to significant contribution
substantially: would-be developers need only understand the
relevant elements of the interfaces between modules. In the
presence of rapidly evolving data sets and model types, this is
critical to ensuring the longevity of prior development efforts.

THEMIS consists of five distinct collections of components,
each of which is designed to be interchangeable:

Data Structures: Management and standardization of observa-
tional data throughout THEMIS. These facilitate the rapid
introduction of new data products, expand the capability of
existing data products, and define the objects for which
predictions are ultimately made.

Models: Any algorithm that produces a prediction for some
data object given a list of parameters. Models may be
physically motivated or purely phenomenological. They
are directly tied to underlying data structures via the
declaration of those for which predictions can be made.
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Priors: Priors encapsulate preexisting information about
parameter values.

Likelihoods: Likelihoods provide a method for directly
comparing model and data objects. Note that in many
cases elements of the underlying model may be subsumed
into a likelihood (e.g., nuisance parameters that can be
analytically marginalized over).

Samplers: Samplers provide methods for efficiently exploring
the model parameter space, providing information about
the model parameters.

In practice, there is some overlap between component classes
(e.g., Models, Priors, and Likelihoods), which may be
implemented in more than one way. Nevertheless, this has
proven sufficiently modular to enable rapid and significant
model development already.

All THEMIS-based analyses are structured in the follow-
ing way:

1. Generate the desired data objects, e.g., by reading in
existing data sets.

2. Create an appropriate model object, i.e., declare a model
capable of making predictions for the data selected.

3. Specify prior probability distributions for each model
parameter.

4. Construct the relevant likelihood objects, combining data
sets as desired.

5. Execute a sampler, reporting sampler-specific parameter
information (e.g., generate chains for Markov Chain
Monte Carlo (MCMC) samplers).

With the execution of the analysis now conceptually
modularized, variations in each stage may be made with little
practical effort.

2.2. Implementation

The main function is kept concise and is the only element of
THEMIS a user that is simply running THEMIS needs to modify.
The user may choose interchangeably different EHT data set(s),
theoretical model(s), priors, likelihoods, and samplers to
employ. Conceptually, this function is organized in a fashion
that closely follows the analysis pipeline listed at the end of the
previous section to improve usability.

THEMIS also allows users to add a whole new functionality,
such as additional models, which can be included easily into a
clear and well-established structure. An object-oriented pro-
gramming framework, along with inheritance, permits a clear
and concise definition of component interfaces. Examples of
how these are propagated through various THEMIS components
are explicitly illustrated in the inheritance diagrams shown in
Figures 1 and 2. Of practical importance, as seen in Figure 1,
are the various classes of predictions enabled by a particular
model class propagated to subsequent child classes (in this
case, image-based models, see Section 4.1); for more details,
see Section 4.

THEMIS is under version control provided by git with a
modern, state-of-the-art branching strategy including master,
development, and feature branches. Users are encouraged to
generate new code branches, develop, and contribute to the
code in the form of a pull request that will be reviewed by the
THEMIS core development team.

A suite of tests is run regularly via a script in an effort to
identify bugs or regressions as early as possible. The script

performs these tests and sends a report to the THEMIS core
development team. These include short tests using EHT data as
well as full-scale parameter estimation validation tests similar
to the ones presented in Section 8.
The code is written in C++, making it maximally portable,

and has been tested on a variety of systems. THEMIS is
designed with minimal dependency on external libraries to
avoid installation conflicts; currently, the only required external
libraries are FFTW (Frigo & Johnson 2005) and the Message
Passing Interface (MPI).93 Up-to-date documentation is critical
in a rapid development environment. To meet this challenge,
THEMIS has integrated documentation comments which may be
optionally rendered via Doxygen94 to produce a comprehen-
sive, cross-linked HTML and/or PDF document.
We now turn to describing each component collection

independently.

3. THEMIS Data Structures

Within THEMIS, observational data are collected in type-
specific data structures. Each has a singular data element
defined (a datum object) and an associated plural data structure
(a data object) that provide additional input/output facilities
and element access functions. At a minimum, these provide
access to the values and their uncertainties. Typically, they

Figure 1. Inheritance diagram for the model_image object within THEMIS
generated via Doxygen. These are models whose primary output is a raster
image. Note that a number of models that are either analytically tractable or
extend beyond a single, raster image are not shown. A full listing of THEMIS
models can be found in the THEMIS documentation.

93 Information on the MPI 3.1 standard can be found at www.mpi-forum.org.
94 Information on Doxygen features, directives, and on how to obtain and
install it may be found at www.doxygen.org.
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include a variety of additional “accoutrements,” i.e., informa-
tion necessary or useful in modeling the data. Importantly,
these accoutrements are both data-type specific and extensible:
information that only becomes useful in subsequent observa-
tions or analyses can be added without modifying the data–
model interface. For example, observed fluxes may initially
include frequency as an accoutrement and later expand to
include time, observation facility, etc.

Organizing data this way within THEMIS permits evolution
in how data are employed in model comparisons and presents a
simple way in which to include additional types of data that are
currently unforeseen. This is especially important given the
wide variety of auxiliary data that exist for EHT targets, most
of which have yet to be fully utilized. This has already been
implemented for a number of existing data types, including all
for which EHT data have already been reported (see Table 1).
We summarize each of these below.

3.1. Visibility Amplitudes

The primary product of VLBI observations is complex
visibilities, corresponding to the Fourier modes of the image on

the sky at spatial frequencies given by the projected baseline
presented by pairs of VLBI stations. Specifically, in the
absence of confounding effects, the complex visibility is given
by

( ) ( )( )ò= p- +V dldmI l m e, , 1ij
i lu mv2

where (u, v) is the two-dimensional projected baseline length
between the ith and jth stations expressed in units of the
observed wavelength, and I(l, m) is the spatial intensity
distribution at angular position (l, m) (for a comprehensive
introduction to radio interferometry, see, e.g., Thompson et al.
2017).95

In practice, these are modified by a variety of observational
complications, chief among which are atmospheric absorption
and phase delays at individual stations, which impact the
amplitude and complex phase of Vij. Of these, the latter is
especially problematic, resulting in phase shifts of the Vij by
many times 2π, appearing to randomize the phase on every
baseline. As a result, often the magnitudes of the visibilities,
∣ ∣Vij , are employed, which are subject only to a comparably
modest uncertainty, 1%–20%, depending on station and
atmospheric conditions (see, e.g., Johnson et al. 2015; Lu
et al. 2018), albeit containing less information on the structure
of the image. The number of visibility amplitudes generated by
an interferometer grows quadratically with the number of
stations, N, scaling as ( )µ -N N 1 2. Throughout an

Figure 2. Inheritance diagram for the likelihood object within THEMIS
generated via Doxygen.

Table 1
Published Flux and EHT Data

Target Typea Obs.Campaign Nb Referencesc

yr Day(s)

SgrA* F 1998–2006 11 Y04, M06
L VA 2007 100–101 19 D08
L VA 2009 95–97 51 F11
L CP 2009 93, 96–97 24 F16
L CP 2011 88, 90–91,94 31 F16
L CP 2012 81 25 F16
L CP 2013 80–82, 85–86 101 F16
L VA 2013 80–82, 85–86 128 J15
L LP 2013 80–82, 85–86 662 J15
L VA 2013 80–82, 85–86 861 L18
L CP 2013 80–82, 85–86 267 L18

M87 VA 2009 95–97 104 D12
L VA 2012 81 56 A15
L CP 2012 81 17 A15
L V 2017 95, 96, 100, 101 51,119 E19

Notes.
a Data types include visibility amplitudes (VA), closure phases (CP), complex
visibilities without phase calibration (V), interferometric linear polarization
fraction (LP), and fluxes (F).
b Number of data points, including detections only.
c Y04=Yuan et al. (2004; taken from Falcke et al. 1998; Zhao et al. 2003),
M06=Marrone (2006), D08=Doeleman et al. (2008), F11=Fish et al.
(2011), F16=Fish et al. (2016), J15=Johnson et al. (2015), L18=Lu et al.
(2018), D12=Doeleman et al. (2012), A15=Akiyama et al. (2015),
E19=Paper III. The data set listed in bold is used for reproducing previous
results as part of the validation tests (see Section 6.3).

95 Note that the default definition within the EHT following 2017 returns the
complex conjugate of the complex visibilities, i.e., the sign in the exponent of
Equation (1) is positive. Within THEMIS, this is corrected at the data input/
output stage.
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observing campaign, the rotation of Earth produces a large
number of independent measurements at different projected
baselines.

A large number of EHT visibility amplitudes have already
been published for the primary EHT targets, including SgrA*

(Doeleman et al. 2008; Fish et al. 2011; Johnson et al. 2015; Lu
et al. 2018) and M87 (Doeleman et al. 2012; Akiyama et al.
2015). We list these in Table 1.

3.2. Closure Phases

The atmospheric phase delays introduce random station-
specific phase errors that complicate the reconstruction of the
phase of the complex visibilities. While strategies exist to
model the phase errors, including self-calibration and phase
referencing,96 a simple and efficient way in which to obtain
some information about these phases is via the closure phase,

( ) ( )F = V V Varg , 2ijk ij jk ki

i.e., the sum of the phases of a triplet of visibilities measured on
the baselines between some triplet of stations.97 Because the
baselines “close,” i.e., ( ) ( ) ( )+ + =u v u v u v, , , 0ij jk ki , all
station-specific phase errors vanish identically, leaving a
quantity that is subject only to nonclosing errors and dominated
by the image structure (Paper III). Of particular importance is
the fact that closure phases are also insensitive to the image
blurring induced by the diffractive component of the interstellar
scattering. Closure phases are not unique—for an array with N
stations only ( )( )- -N N1 2 2 are independent—a result that
is presaged by their independence from the phase delays.

Closure phases have been reported for a number of years by
the EHT for SgrA* in Fish et al. (2011) and Lu et al. (2018),
and for M87 in Akiyama et al. (2015), as summarized in
Table 1. More recently, a large set of closure phases has been
reported for the 2017 April EHT observations of M87
(Paper III).

3.3. Closure Amplitudes

Station-specific amplitude calibration errors can also be
mitigated by combining visibilities measured on multiple
baselines. The closure amplitude is constructed from combina-
tions of visibilities measured on four stations,

∣ ∣∣ ∣
∣ ∣∣ ∣

( )=
V V

V V
, 3ijkm

ij km

ik jm

and is insensitive to variations in the flux calibration and phase
delays. Again, closure amplitudes are also insensitive to the
image blurring induced by the diffractive component of the
interstellar scattering. As with the closure phase, this comes at
the price of uniqueness; there are only ( )-N N 3 2 indepen-
dent closure amplitudes.

Closure amplitudes constructed from EHT data have not yet
been published, primarily due to the limited number of stations
participating in early observations. However, recent observa-
tions have generated a number of trivial closure amplitudes,

i.e., amplitudes for which one baseline is very short (10 km),
as part of the calibration process (see, e.g., Johnson et al. 2015).
More recently, a large set of closure amplitudes have been
reported for the 2017 April EHT observations of M87
(Paper III).

3.4. Interferometric Polarization Fractions

All EHT sites observe simultaneously in two polarization
states (Paper II). From these, it is possible to construct complex
visibilities in all four Stokes parameters, (I, Q, U, V ) (see, e.g.,
Johnson et al. 2015). Independently, these can be used to
construct visibility amplitudes, closure phases, and closure
amplitudes. However, additional information may be obtained
by combining observations made in different Stokes para-
meters. The interferometric polarization fraction,

∣ ∣ ∣ ∣

∣ ∣
( ) =

+
m

V V

V
, 4ij

ij
Q

ij
U

ij

2 2

where Vij
Q U, are the visibilities associated with Stokes Q and U,

and Vij is the visibility defined in Equation (1), is the extension
of the familiar polarization fraction to the individual Fourier
modes of the image. m is not to be mistaken with the Fourier
transform of the linear polarization fraction as measured in the
image domain. Unlike the standard polarization fraction, mij

may be larger than unity and can exhibit counterintuitive
pathologies for even simple source models (see the discussion
surrounding Figure S6 in the supplemental material in Johnson
et al. 2015). If the circular polarization vanishes, like closure
amplitudes, the interferometric polarization fractions are
insensitive to station-specific flux calibration uncertainties
and the diffractive component of the interstellar scattering.
This approximation is frequently quite good: for the astronom-
ical sources of primary interest to the EHT, the integrated
circular polarization fraction is typically 1% (see, e.g., Muñoz
et al. 2012; Bower et al. 2018).
Interferometric polarization fractions have been reported for

SgrA* and indicate the presence of ordered horizon-scale
polarization structures (Johnson et al. 2015). We summarize
these in Table 1.

3.5. Flux Measurements

A key auxiliary set of observations is the spectral energy
density distributions (SED) for primary EHT targets, which
typically place strong limits on the emitting particle distribu-
tions, which are otherwise uncertain. In addition, multi-
wavelength light curves are a key probe of the nature and
origin of variability in the emission regions of the source. Both
empirical constraints are intrinsically encoded in measurements
of the unresolved source flux, Fν, effectively equivalent to the
visibility amplitudes measured at “zero baseline,” i.e.,a single
dish. The distinction between these arises in the accoutrements
associated with the data, e.g., the origin of the observation,
wavelength, time, etc.
Multiple sets of flux measurement data for SgrA* and M87

exist. For SgrA*, one set is summarized in Table 1.

4. THEMIS Models

Within THEMIS, a model is any algorithm capable of
generating a prediction for any THEMIS data type. Thus,

96 These may include extragalactic background sources (see, e.g., Broderick
et al. 2011; Thompson et al. 2017), simultaneous observations at other
wavelengths or in alternative Stokes parameters (Middelberg et al. 2005;
Johnson et al. 2014), or strong spectral lines (Herrnstein et al. 1998;
Reid 1999).
97 This is the argument of the bispectrum.
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THEMIS models are closely aligned with THEMIS data structures
—for each data type, there is a corresponding base model type.
Models can be based on multiple base model types, i.e., they
are capable of generating predictions for more than one type of
data. This enables a broad, easily extensible, and backwards
compatible framework for defining models that permits
incrementally increasing sophistication. Importantly, it pro-
vides a uniform interface for both phenomenological models,
which are designed to make predictions for a handful of data
types, and physically motivated models, which can simulta-
neously make predictions for a wide variety of data types.

The manner in which predictions are made is not prescribed.
That is, where analytical expressions for the relevant data type
exist (e.g., visibilities from simple geometric models), models
are capable of employing these. For more complex models,
numerical computations are often required. In anticipation of
numerically produced predictions, THEMIS permits the passing
of an accuracy parameter for each value that specifies the
accuracy with which these must be generated; typically, setting
this to 25% of the measurement uncertainty is sufficient to
generate accurate parameter estimates (see Appendix A).

4.1. Image-based Models

Because the EHT directly probes the structure of horizon-
scale images, THEMIS contains an image-based model type;
how this depends on the underlying data-based model types
and some examples are shown in Figure 1. This provides a set
of utilities for generating and manipulating visibility-based data
from models that primarily generate images.

Because image generation is frequently computationally
intensive, the image-based model introduces an additional
position angle parameter, permitting the specific model
implementations to dispense with trivial image rotations,
leading to a substantial potential reduction in the time required
to sample a broad range of parameters.

Once generated, images are padded with zeros by a factor of
8 by default to sinc-interpolate in the numerically computed
complex visibilities. The complex visibilities are computed on
a two-dimensional grid of (u, v) values via a two-dimensional
fast Fourier transform (FFT) using the FFTW library (Frigo &
Johnson 2005). There are no restrictions on the image
dimensions, though it is expected that the image is computed
on a rectilinear grid with uniform pixel size; dimensions that
factor into small primes will be marginally faster.

Complex visibilities are then estimated at arbitrary (u, v) via
interpolation. By default, THEMIS employs bicubic interpola-
tion, though a user may specify bicubic spline interpolation if
desired. From these, the closure phases are constructed via
Equation (2). While visibility magnitudes may also be
constructed from the interpolated complex visibilities, it is
considerably more accurate to interpolate the visibility
magnitudes directly.98 These are then used directly or to
compute closure amplitudes via Equation (3). The accuracy of
this interpolation depends on the degree to which image
features are captured by the image resolution and field of view.
Ultimately, this must be empirically assessed on a model-by-

model basis. For the compact radio sources like those
anticipated to be relevant for EHT targets, these interpolation
errors are typically a significantly subdominant source of
uncertainty in model evaluation and parameter estimation.

4.2. Phenomenological Geometric Models

Within THEMIS, a number of phenomenological geometric
models have been implemented. These are models for which no
underlying physical emission mechanism is identified for the
origin of the image structures. However, such models are
capable of extracting signatures of geometric features asso-
ciated with underlying physical processes of interest, e.g., black
hole shadows. Currently implemented phenomenological
models include the following.

4.2.1. Symmetric Gaussian

Historically, the first shadow size estimates from millimeter-
VLBI observations of SgrA* and M87 arose from fitting
symmetric Gaussians to visibility amplitude measurements
(Doeleman et al. 2008). Therefore, we have implemented
within THEMIS a model consisting of a single symmetric
Gaussian component, characterized by a size, σ; and an
amplitude, V0. This makes predictions for visibility amplitudes,
closure phases (trivially zero), and closure amplitudes.

4.2.2. Asymmetric Gaussian

The introduction of asymmetry in millimeter-VLBI images
was initially characterized by an asymmetric Gaussian. Within
THEMIS, we have implemented such a Gaussian model
parameterized as in Broderick et al. (2011), and characterized
by a size, σ; an asymmetry parameter, A; the amplitude, V0; and
the position angle, ξ.

4.2.3. Multiple Symmetric Gaussians

THEMIS also includes a model consisting of an arbitrary
number of symmetric Gaussian components, each characterized
by a size, σj; location, (xj, yj); and amplitude, Vj.

4.2.4. Crescent Model

THEMIS includes an implementation of the crescent model
described in Kamruddin & Dexter (2013), for which the image
is obtained by subtracting two nonconcentric disks, with the
smaller disk lying completely inside the larger one. The
complex visibilities for this model can be obtained analytically
and are given by Equation (3) of Kamruddin & Dexter (2013).
As in Kamruddin & Dexter (2013), we reparameterize this in
terms of an amplitude, V0; overall size, R; relative thickness, ψ;
degree of symmetry, τ; and the position angle, ξ. Both ψ and τ
are defined on the unit interval.

4.2.5. The “Xsringauss” Model

THEMIS also contains an implementation of the nine-
parameter xsringauss model proposed in Benkevitch et al.
(2016). This model was constructed in an effort to mimic a
more realistic black hole accretion image like the ones
commonly obtained from physically motivated models. The
xringaus image is the combination of an eccentric slashed ring
(i.e., with a linear brightness gradient) and an elliptical
Gaussian located in the thicker side of the ring.

98 The magnitude of the gradient of the complex visibility and the visibility
amplitude are related via ∣ ∣ ( ∣ ∣) ∣ ∣ ( ) ( ∣ ∣)f =  +  V V V V2 2 2 2 2, and thus
the former is generally smaller than the latter. As a result, the errors in
interpolation at any order are typically smaller when interpolating visibility
amplitudes directly. Alternatively, this permits considerably smaller image
sizes when only amplitudes are required.
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This model is then described by nine parameters: the zero-
spacing flux, V0; the external radius, Rex; the internal radius, Rin;
the distance between the centers of the circles, d; the “fading”
parameter controlling the minimum brightness; the Gaussian axis
sizes, a and b; the fraction of the total flux in the Gaussian, gq; and
the position angle, ξ. The complex visibilities for this model, in
terms of these parameters, can be also obtained analytically. The
reader is referred to Section 2 of Benkevitch et al. (2016) for a
more detailed description.

4.2.6. Visual Binary

THEMIS also features a model of two radio emitting
symmetric Gaussian components in orbit around each other.
The model is characterized by 13 parameters including the total
flux Fi, size σi, and spectral index αi of each component; the
total mass of the system M, the binary mass ratio q�1, the
orbital separation R, the source distance d, the phase offset Φ0,
the cosine of the inclination angle ( )icos of the orbital angular
momentum vector, and the position angle in the sky ξ. This
model includes (and therefore also takes advantage of)
relativistic effects such as Doppler boost and relativistic
aberration. It is explicitly time dependent while being fully
analytic and thus fast to evaluate.

This model is to be compared to long-timescale monitoring
campaigns of sources such as OJ 287 or other binary
candidates. Details will be published in a separate paper that
focuses on this topic.

4.3. Interstellar Scattering Models

Interstellar scattering modifies the intrinsic images of SgrA*

by both blurring the image (diffractive component) and adding
small-scale structures associated with a random realization of
refractive modes that vary slowly throughout the night
(refractive component; see, e.g., Johnson & Narayan 2016).
These significantly modify visibilities on long baselines and
must be included in analyses of EHT observations of SgrA*.

In the ensemble-average limit, i.e., when many realizations
of the fluctuations in the scattering screen may be averaged
over, only the diffractive component is relevant. This appears
as an image smoothing via convolution with a Gaussian kernel
whose parameters depend on the details of the intervening
scattering screen(s). THEMIS has implemented two models for
addressing interstellar scattering, both in the ensemble-average
limit, which we list below. In both, the impact of scattering is
imposed directly on the visibilities, for which the convolution
in image space reduces to a multiplicative factor. Within
THEMIS, each is implemented as a model that modifies an
existing intrinsic model, with the latter introducing additional
parameters. Hence, scattering provides an explicit example of
how the modular structure of THEMIS enables the rapid
construction of new models.

While only a very simple set of scattering models has been
implemented in THEMIS thus far, more complex models are
available in the literature. Physically motivated models that
exhibit a smooth transition from a quadratic to a general power-
law wavelength dependence for the size of the scattering kernel
may be found in Psaltis et al. (2018). In these, the wavelength
at which the transition occurs is determined by the underlying
physical parameters of the screen. Updated values of the
scattering kernel size from long-wavelength measurements
within the context of these models may be found in Johnson

et al. (2018). Implementing these updated models is left for
future development.

4.3.1. Default Diffractive Screen

Multiwavelength observations have produced a model for
the scattering kernel that is asymmetric and wavelength
dependent, consistent with that anticipated by models of the
scattering screen that invoke Kolomogorov turbulence within a
plasma sheet (Bower et al. 2006; Johnson et al. 2018; Psaltis
et al. 2018). The associated semimajor and semiminor axis
sizes are given by
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and are oriented such that the major axis lies along the position
angle ξ=78° east of north.

4.3.2. Parameterized Diffractive Screen

Recently, it has been shown that even for thin scattering
screens, the wavelength dependence of anisotropic scattering
screens may be substantially more complicated (Psaltis et al.
2018). The main uncertainty is the inner scale of the turbulence
within the screen, corresponding to the dissipative scale within
the sheet. For some plausible values, the wavelength depend-
ence could depart from that found in Bower et al. (2006) near
1.3 mm. As a result, a second scattering model has been
implemented in which σmaj, σmin, and the position angle are all
parameterized as power laws of wavelength with unknown
coefficients and powers. That is,
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where the seven parameters, σA, σB, ξ0, ξ1, α, β, and γ, may be
varied. The pivot wavelength, λp, is not a parameter (being
fully degenerate with sA,B and set by the user to a convenient
value.

4.4. Native Physical Models

The past two decades have seen the development of a
number of physically motivated models that employ ray tracing
and radiative transfer in black hole spacetimes. These have two
main components: the construction of photon trajectories
within the spacetime under consideration and the radiative
transfer through some emitting plasma distribution. Both
elements are directly affected by variations in the spacetime
structure, with the emission also depending on a number of
astrophysical considerations.
While this class of models is substantially more complicated

than geometric models, their physical origin presents a number
of significant advantages. First, they are capable of making
predictions for a wide range of observations, making it possible
to bring far more empirical data to bear upon them. For
example, they necessarily make simultaneous, self-consistent
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predictions for images, fluxes, variability, and polarization
features of the EHT and auxiliary data (Bromley et al. 2001;
Broderick & Loeb 2006b; Dexter et al. 2009; Huang et al.
2009; Mościbrodzka et al. 2014; Chan et al. 2015; Pu et al.
2016a; Gold et al. 2017; Chael et al. 2018a). Hence, physical
modeling enables a concordance fitting effort that promises far
more power to constrain the nature of the emission region
(Chan et al. 2015; Broderick et al. 2016; Gold et al. 2017).
Second, the spacetime structure impacts the image in many
ways beyond gravitational lensing. The dynamics of the
material in the emission region modifies its optical depth and
therefore appearance (Broderick & Blandford 2003, 2004;
Broderick & Loeb 2005, 2006a, 2009b; Dexter et al. 2009;
Mościbrodzka et al. 2009; Pu et al. 2016a; Gold et al. 2017;
Bronzwaer et al. 2018; Chan et al. 2018; Mościbrodzka &
Gammie 2018; Jeter et al. 2020). Thus, in principle, modeling
the brightness distribution offers additional probes of gravity
(Broderick & Loeb 2006a; Johannsen 2013; Broderick et al.
2014; Johannsen et al. 2016; Mizuno et al. 2018). Third, it
provides direct information about the high-energy astrophysical
processes responsible for the growth of black holes and the
launching of jets (Broderick & Loeb 2009b; Dexter et al. 2009;
Levinson & Rieger 2011; Mościbrodzka et al. 2014; Broderick
& Tchekhovskoy 2015; Hirotani & Pu 2016; Gold et al. 2017).

Within THEMIS, two general relativistic ray-tracing and
radiative transfer packages are provided. The first of these is the
vacuum ray-tracing and radiative transfer package Vacuum
Ray Tracing and Radiative Transfer (VRT2). VRT2 is based on
the plasma radiative transfer package described in Broderick &
Blandford (2003, 2004) and provides a modular framework for
adding novel plasma distributions, radiative transfer mech-
anism, and spacetime structures. It was the basis for the images
generated in, e.g., Broderick et al. (2011) and used in the
analysis of Broderick et al. (2016). It also natively interfaces
with THEMIS, having been written in the same programming
language (C++), in a similar style. Models based on VRT2

within THEMIS include those listed below.
In addition, the vacuum ray-tracing and radiative transfer

package Odyssey described in Pu et al. (2016b) has also been
incorporated within THEMIS. Based on the ray-tracing
algorithm in Fuerst & Wu (2004) and the radiative transfer
formula presented in Younsi et al. (2012), Odyssey can exploit
graphics processing unit (GPU) cards to realize substantial
speed gains for models that employ it. It requires the compute
unified device architecture (CUDA)-enabled GPU cards and
the CUDA compiler nvcc. Again, like THEMIS, Odyssey is
implemented in C/C++ and CUDA C/C++, making its
integration straightforward.

4.4.1. SED-fitted RIAF

This is an image at a single wavelength associated with the
radiatively inefficient accretion flow (RIAF) models described
in Broderick & Loeb (2006b) and refined in Broderick et al.
(2011). This model employs a tabulated set of accretion flow
parameters, obtained at different black hole spins and
inclinations, that reproduce the observed compact radio SED
of SgrA*. The model parameters are the dimensionless spin
magnitude, a (in the range [0, 1]); the cosine of the inclination,

qcos , ([−1, 1]); and the position angle, ξ ([−180°, 180°], as
part of a model image). The accretion flow angular momentum
is assumed to be aligned with the black hole spin. The intensity
normalization may be included via the likelihood (see

Section 6.6). An example image from the THEMIS-integrated
VRT2 package is shown in Figure 3.

4.4.2. Extended RIAF

This is an extension of the SED-fitted RIAF model that
permits a wide range of structural parameters in the RIAF
model to vary. This consists of two populations of synchrotron-
emitting electrons, orbiting a Kerr black hole in the presence of
a toroidal magnetic field. Specifically, the proper number
density and temperature of a thermal population of electrons
are given by

( )= =h t-n n r e T T r, , 7e t
z h R

eth ,
2

tht t t
2 2 2

where q=z r cos and J=R r sin , where r is the standard
Boyer–Lindquist radius (measured in GM c2) and ϑ is the
Boyer–Lindquist polar angle. Similarly, the proper number
density of the nonthermal electrons is given by

( )= h -n n r e , 8e
z h R

nth ,nt
2nt

2
nt
2 2

and has a power-law distribution in microscopic Lorentz factor
above γmin with a power law corresponding to an optically thin
spectral index of α (i.e., 2α−1). These are emitting within a
toroidal magnetic field with comoving strength

( )
p

b= -B m c

r8 6
, 9

p
2

1
2

and orbiting with a four-velocity outside of the innermost stable
circular orbit (ISCO) given by

( ) ( )k=mu u ℓ1, 0, 0, , 10t K

where ℓK is the specific Keplerian angular momentum and ut is
determined by the standard normalization condition on uμ;
inside of the ISCO, the material plunges on ballistic orbits

Figure 3. Image produced by the radiative transfer module VRT2 showing the
resulting best-fit RIAF model after sampling the full parameter space. This
reproduces the result in Broderick et al. (2016). The X- and Y-axes show image
coordinates in units of the gravitational radius.
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(Cunningham 1975). Thus, there are 15 parameters: black hole
spin, a; cosine of the black hole spin inclination, qcos ; black
hole spin position angle, ξ; thermal electron density normal-
ization, ne t, , radial power law, ηt, and scale height, ht; electron
temperature normalization, Te; radial power law, τt; nonthermal
electron density normalization, ne,nt, radial power law, ηnt, and
scale height hnt; minimum microscopic Lorentz factor, γmin,
and spectral index, α; plasma beta, β, and sub-Keplerian
fraction κ. Note that subsets of these may be held fixed or
varied simultaneously via the definition of a wrapper model.

4.4.3. Orbiting Hot Spots

Major dissipative events within the accretion flow, such as
magnetic reconnection events and shocks, can generate initially
compact, orbiting, synchrotron-emitting hot spots. These may
increase the emission of SgrA* by orders of magnitude before
inducing any dynamical effects. Therefore, they may be
roughly modeled as orbiting, Gaussian nonthermal particle
overdensities that subsequently synchrotron emit in the radio
and infrared, restricted to the equatorial plane (Broderick &
Loeb 2005, 2006a). To model the velocity profile of the spot
we use a two-parameter, ( ) [ ]a k Î, 0, 1r , four-velocity given
by

( ) ( )= Wm
a ku u u u, , 0, . 11t r t
r

Here, ( )a= + -au u u ur r
r

r r
K ff Kr

and ( )kW = W + W - Wk ff K ff ,
where the ,K ff subscripts denote Keplerian and freefall motion
respectively, and W = fu ui i i

t (see also Pu et al. 2016a).
Equation (11) is a two-parameter description of the flow dynamics
and can also be applied to the extended RIAF model in
Section 4.4.2, thereby generalizing Equation (10). Thus, there are
10 parameters needed for this model: black hole spin, a; cosine of
the black hole spin inclination qcos ; black hole spin position angle,
ξ; central spot nonthermal electron density ne,spot; spot radial size
Rs; initial spot location in time, t0, radius, r0, and azimuthal angle
f ;0 the sub-Keplerian parameter, κ; and the radial infall parameter
αr.

4.4.4. Shearing Hot Spots

In practice, hot spots will subsequently shear and cool. Thus,
THEMIS also includes a shearing hot spot model (Jeter et al.
2020) that incorporates the expansion of the hot spots within a
background accretion flow. The parameters of this model are
identical to the orbiting spot model above.

4.5. External Physical Models

There is no intrinsic bar to including additional ray-tracing
and radiative transfer packages within THEMIS. Doing so offers
a number of benefits, including the ability to rapidly generate
new models within THEMIS itself, efficient parallelization, and
improved portability. However, native integration is not
necessary. It is often initially faster, and occasionally
necessary, to externally include modeling software. For
THEMIS, this has been done for a number of existing packages:

GRTRANS: A publicly available general relativistic, polarized
radiative transfer code written in FORTRAN, described in
Dexter (2016) and Dexter & Agol (2009). GRTRANS and
by extension also THEMIS are coupled to the HARM3D

general relativistic, magnetohydrodynamic (GRMHD)
code (Gammie et al. 2003; Noble et al. 2006; Dexter
et al. 2009; McKinney et al. 2014).

ASTRORAY: A significantly extended version of the general
relativistic polarized radiative transfer code written in C/C
++ based on Shcherbakov (2014) and substantially
extended in Gold et al. (2017). ASTRORAY and by
extension THEMIS are coupled to HARM3D (Gammie
et al. 2003; McKinney et al. 2012, 2014).

iPOLE: A publicly available general relativistic, polarized
radiative transfer code described in Mościbrodzka &
Gammie (2018) based on the covariant formulation
presented in Gammie & Leung (2012) and written in
standard C. iPOLE and by extension THEMIS are coupled
to HARM3D (Gammie et al. 2003; Dolence et al. 2009;
Mościbrodzka et al. 2009).

RAPTOR: A publicly available general relativistic radiative
transfer code described in Bronzwaer et al. (2018) written
in standard C. RAPTOR and by extension THEMIS are
coupled to the BHAC (Porth et al. 2017; Olivares et al.
2018) GRMHD code, HARM3D (Gammie et al. 2003;
Mościbrodzka et al. 2009) and is GPU capable.

BHOSS: A publicly available general relativistic radiative
transfer code described in Z. Younsi et al. (2019, in
preparation) written in Fortran 95/2003 (see also Fuerst &
Wu 2004; Younsi et al. 2012, 2016). BHOSS and by
extension THEMIS are coupled to the BHAC (Porth et al.
2017; Olivares et al. 2018), HARM3D GRMHD code
(Gammie et al. 2003; Dolence et al. 2009; Mościbrodzka
et al. 2009) and H-AMR (Liska et al. 2018; Chatterjee
et al. 2019).

Note that many of these are directly coupled to a variety of
existing GRMHD simulation codes such as HARM3D and
BHAC. As of now, THEMIS has successfully interfaced, in at
least a limited form, with the vast majority of the image-
generation tools employed by the EHT collaboration.

5. Priors

Preexisting information about parameters may be imposed
via priors. THEMIS provides a number of potential priors for
individual parameters. These may be imposed in two distinct
ways: as “priors” that modify the likelihood and “transforms”
that modify the parameter values. Within THEMIS, “priors” add
a term associated with a given prior distribution. These are
most easily implemented and understood. However, they can
be inefficient, assuming that the sampler will efficiently
incorporate the modified likelihood. In contrast, “transforms”
impose priors indirectly by mapping the variable being sampled
into the desired prior via a coordinate transformation. These are
more complicated to implement, typically requiring the
integration of the desired prior probability distribution.
However, they are optimally efficient, permitting the sampler
to apply a more natural distribution. Note that “transforms”
may be implemented intrinsically within models by choosing a
convenient set of parameters.
Likelihood evaluation is short-circuited on the evaluation of

priors, i.e., where the prior has zero probability (e.g., outside
the limits of a linear range), the likelihood is not evaluated but
rather returns the appropriate vanishing value. This achieves
two goals: first, THEMIS is made marginally more efficient by
avoiding unnecessary computation, and second, permits priors
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to be used to avoid unphysical parameter combinations, where
models may return nonsensical results, e.g., negative densities
passed to a radiative transfer code or black hole spin outside the
range permitted by general relativity.

Currently, THEMIS has only implemented priors and trans-
forms of a single variable. This is sufficient for most situations.
However, there are situations that may benefit from priors that
depend on many parameters, e.g., enforcing an ordering among
the intensities of multiple Gaussian components, thereby
eliminating the trivial degeneracy associated with swapping
components. Nevertheless, there is no reason that such a prior
cannot be implemented within THEMIS.

Implemented priors include:

1. None:a flat prior without a boundary.
2. Linear: a flat prior given two bounding values.
3. Logarithmic: a logarithmic prior given two bounding

values.
4. Gaussian: a Gaussian prior given a mean and standard

deviation.

And implemented transforms include:

1. None:no transformation (default).
2. Fixed: returns a single, user-defined value.
3. Logarithmic: effectively imposes a logarithmic prior.

6. Likelihoods

Models and data are systematically compared via likelihoods,
which express the probability that the data was obtained from the
model. Within THEMIS, a likelihood is any method for taking a
parameter vector, p, and constructing a log-likelihood, . When
this is generated using a THEMIS data object (consisting of a
number of individual values) and a THEMIS model object, the
log-likelihood is the probability of obtaining the data given the
model. Likelihoods can be combined with user-supplied weights,
enabling the combination of various data sets. However, when
doing so it is assumed that the model parameters are unchanged,
i.e., the same set of model parameters are to be supplied to each
likelihood being used. All likelihoods expect a matching data
type and model type, e.g., visibility amplitude data and a model
that generates visibility amplitude predictions.

The likelihood generally requires information about the
underlying error distribution of the data, which is typically
provided via an error estimate. It is not required within THEMIS
to assume Gaussian errors, i.e., likelihood classes that assume
alternative error distributions (e.g., Rice distributions, etc.) are
possible. In some instances, this flexibility is important, e.g.,
for quantities constructed from quotients (closure amplitudes,
Section 6.4, and interferometric polarization fractions,
Section 6.5). It is, however, often convenient numerically to
presume Gaussian errors when permissible, enabling analytical
simplifications that greatly improve the efficiency of THEMIS
(Sections 6.6 and 6.7). Similarly, all currently implemented
likelihoods assume the data values are independent—this, too,
may be relaxed in principle. An obvious example of both that is
of considerable interest is the covariance induced by the
refractive modes in the scattering screen, the implementation of
which is left for future development.

Likelihoods also can incorporate model features. In many
instances, a subset of model parameters may be analytically
marginalized over and in the process subsumed into the
likelihood itself. We have implemented a number of examples

of such “marginalized” likelihoods, i.e., likelihoods in which
sets of nuisance parameters have been treated analytically. It is
natural to include key systematic uncertainties of the EHT, e.g.,
the structure of the refractive scattering screen, in this fashion,
though this is left for future development.
The likelihoods currently implemented in THEMIS include

the following.

6.1. Test Cases

To facilitate testing samplers, THEMIS includes five artificial
likelihoods with given distributions. The first is a multi-
dimensional Gaussian, with user-specified mean and size, see
Section 8.1.3. The second, the egg box, is considerably more
complicated, producing a highly multimodal likelihood func-
tion in five dimensions:

( ) [ ( )] ( )= +
=

 p p2 cos . 12
i

i
0

4
5

The number of peaks can be set by the range over which the
priors permit the parameters, p, to vary. This is typically used
to assess the ability of a sampler to accurately find widely
separated, high-likelihood regions. The results of the egg box
are presented in Section 8.1.2.
The third artificial likelihood is the 2D Rosenbrock function:

( ) ( ) ( ) ( )= - + - p x x x100 1 . 131 0
2 2

0
2

The test results are presented in Section 8.1.4.
The fourth artificial likelihood is the five-dimensional

Griewank problem:

( ) ( ) ( )
⎡
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⎤
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It features an egg box component and a long-tailed parabolic
contribution. The test results are presented in Section 8.1.5.
The fifth artificial likelihood is a three-dimensional Cauchy/

Lorentz distribution:

( ) [ ( ) ] ( )a= -
+

S - += p
d

x m
1

2
log , 15i

d
i1

2 2

where d=3 is the chosen dimension and m=0.1 the width of
the line profile. It features heavy and long tails and has no well-
defined mean, and therefore makes for a challenging sampling
problem. The test results are presented in Section 8.1.6.

6.2. Visibility Amplitudes

THEMIS includes a log-likelihood that assumes Gaussian
errors for visibility amplitudes:

( )
[∣ ∣ ∣ ˆ∣ ( )]

( )å
s

= -
-

 p
pV V

2
, 16

j

j j

j

2

2

where ∣ ∣V j and σj are the observed visibility amplitudes and

their errors, and ∣ ˆ∣ ( )pV j are the model visibility amplitudes
given parameters p. Note that the true visibility amplitude error
distribution is given by the Rice distribution, and for low
signal-to-noise ratio (S/N) is both biased and non-Gaussian
(Thompson et al. 2017). However, when data are selected
such that S/N�2 and approximately debiased via

∣ ∣ ∣ ∣ s -V Vj j j
2 2 , the visibility amplitude error distribution
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is within 8% of an unbiased Gaussian distribution at all ∣ ∣V , and
reproduces the mode to better than 1% and the 68% and 95%
cumulative widths to better than 6% (see Appendix B).
Currently, the user is expected to independently implement
the debiasing procedure and S/N cut in the generation of the
data tables prior to reading them in THEMIS. These were made
for the THEMIS analyses in Papers V and VI.

6.3. Closure Phases

In principle, closure-phase errors are non-Gaussian and
correlated among station triangles. However, this is simplified
in practice for EHT observations by two facts. First, current and
future EHT data frequently have high S/Ns. For closure phases
constructed from complex visibility measurements with S/
N>2, the closure-phase errors are well approximated by
Gaussians (Rogers et al. 1984; Ricarte & Dexter 2015).
Second, existing and anticipated EHT observations are
performed with a highly heterogeneous array, in which a
nondegenerate set of closure phases may be selected such that a
single station dominates the sensitivity of each triangle. In this
case, the off-diagonal elements of the covariance become
subdominant, and the closure-phase measurements effectively
independent (Blackburn et al. 2020).

Therefore, THEMIS includes a log-likelihood that assumes
Gaussian errors for closure phases:

( )
( ˆ ( ))

( )å
s

= -
D F - F

 p
p

2
, 17

j

j j

j

2

2

where Φj and σj are the observed closure phases and their errors,
ˆ ( )F pj is the model closure phase given parameters p, andΔ(x) is
the angular difference in the range [−180°, 180°). This is similar
to, but distinct from, the visibility amplitude likelihood in that the
difference selects the branch that minimizes the angular
difference. In the limit of small σj, this is identical to the circular
dispersion in Medeiros et al. (2017) and the circular statistics in
Chael et al. (2018b); at large σj, all of these approximations
differ, though in this limit the closure phases become
uninformative. We adopt this simpler prescription as it facilitates
addressing scattering-induced closure-phase fluctuations later.

Again, the user is expected to independently implement the
S/N cut in the generation of the data tables prior to reading
them in THEMIS. These were made for the THEMIS analyses in
Papers V and VI.

6.4. Closure Amplitudes

Closure amplitudes provide an example of a non-Gaussian
likelihood within THEMIS. Because closure amplitudes are
constructed via taking ratios of visibility amplitudes, the likelihood
of a single value exhibits a significant asymmetry and extended tail
toward large values, characteristic of quotient distributions (see
Appendix B). For S/N�4, this is well approximated by a
Gaussian quotient distribution,99 given in Equation (B17). In
principle, this can make use of ancillary information in the form of
station system equivalent flux densities (SEFDs), though this is left
for future development. Thus, at present, we assume that the
parameter ρ, defined in Equation (B14), is fixed to unity, for which

the Gaussian quotient approximation is accurate at all  to better
than 13% for S/N�4. The associated log-likelihood is
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where the j and σj are the observed closure amplitudes, the
ˆ ( ) pj are the model visibility amplitudes given parameters p
(with the functional dependence suppressed for clarity), and erf(x)
is the error function. This differs from Equation (B17) by
constant normalization factors. In the limit of ˆs  0j j , the
third term vanishes. However, for j of order unity, Equation (18)
does not reduce to a Gaussian distribution in any S/N limit.
Finally, we note that this approximation is significantly

better when ̂j is small. Generally, the closure amplitudes can
be constructed such that < 1j , approximating this require-
ment. Currently, the user is expected to independently define
the set of closure amplitudes such that this is true prior to
reading them into THEMIS.

6.5. Interferometric Polarization Fractions

The interferometric polarization fraction provides a second
example of a non-Gaussian likelihood available in THEMIS. As
with the closure amplitude, the source of the non-Gaussianity is
the presence of the ratio in their definition. This leads to an
asymmetric likelihood with an extended tail toward large m
that is also well approximated by a Gaussian quotient
distribution for S/N�2, given in Equation (B10). That m is
defined by the ratio of visibilities constructed simultaneously
on the same baseline places an additional constraint on the
likelihood, permitting it to accurately be described by a single
noise parameter (Appendix B): for S/N�2, the Gaussian
quotient distribution is accurate at all m to 13% for S/N=2
and 6% for S/N�4. The associated log-likelihood is identical
in form to Equation (18):
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were mj and σj are the observed polarization fraction and its

uncertainty, and ˆ ( ) pmj are the model polarization fractions

99 In Appendix B, we note that the appropriate log-normal distribution is a
significantly worse approximation and biases image features reconstructed
from data with moderate S/N values (4<S/N18).
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associated with parameters p (with the functional dependence
suppressed for clarity). This differs from Equation (B10) by
constant normalization factors. As with the closure amplitudes,
this is non-Gaussian even in the limit of s m 0j j .

6.6. Norm-marginalized Visibility Amplitudes

Variations in the total source flux can be directly
incorporated into the likelihood. Assuming Gaussian errors
for visibility amplitudes, it is possible to introduce and
analytically marginalize over an over-all normalization, V00,
presuming a flat prior (Broderick et al. 2014). This provides the
maximum log-likelihood:
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More relevant for sampling is the marginalized log-likelihood:
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with the corresponding marginalized normalization, =V00,marg

V00,max. A similar procedure could be applied for a Gaussian
prior (see the following section) with very minor modifications.

By breaking the visibility amplitude data into epochs with
similar visibility normalizations, corresponding, e.g., to a variable
accretion rate, this can substantially increase the efficiency of
sampling the remaining parameter space.

6.7. Shift-marginalized Closure Phases

At lowest order, refractive scattering induces shifts in the
closure phase. These, again, may be incorporated into an
appropriately constructed likelihood. Assuming Gaussian
errors for closure phases, it is possible to analytically
marginalize over an over-all shift, f, presuming a user-supplied
Gaussian prior (Broderick et al. 2016). This provides both the
maximum log-likelihood,
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and again Δ(x) is taken on [−180°, 180°), minimizing the
magnitude of the angular difference. The maximum log-
likelihood is trivially related to the χ2 and is relevant for fit
quality assessment. More relevant for parameter estimation is
the marginalized likelihood, for which the log-likelihood is

given by

¯
( )

( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

f

s s
= -

+ S
+

S

+ SF F

 
2

log , 25max
max
2

2 2 2 2

with an associated marginalized value of the closure-phase shift
of
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Here, σΦ is the width of the Gaussian prior on f; it is indicative
of the amplitude of the refraction or turbulence responsible for
the interepoch closure-phase fluctuations. This marginalized
log-likelihood is appropriate for sampling the remaining
parameters. By breaking the closure-phase data into epochs
with similar visibility normalizations, corresponding, e.g., to a
variable accretion rate, this can substantially increase the
efficiency of sampling the remaining parameter space.

6.8. Gain-marginalized Visibility Amplitude

Station gains present a dominant source of systematic error
in the construction of visibility amplitudes. Typically, it is
possible to calibrate these to 10%–20% (Paper III); in instances
where redundant antennas exist, network calibration schemes
can reduce this to 1%. Occasionally, much larger gain
variations are possible. In either case, these systematic errors
overwhelmingly dominate the remaining, random components,
e.g., the thermal noise. Accessing the full sensitivity of the
EHT via visibility amplitude comparisons requires an efficient
method of addressing the reconstruction and marginalization
over these uncertain gains.
This reconstruction is facilitated by the correlations among

visibilities resulting from the repeated appearance of the gain
factors: in a scan involving N stations, at most N gains must be
reconstructed along the underlying model from N(N−1)/2
visibility amplitude measurements. It is complicated by the
time-variable nature of the gains, which can vary significantly
from scan to scan, i.e., on timescales of tens of minutes, and
thus introduces many additional parameters to be modeled (see,
e.g., Natarajan et al. 2017). Within THEMIS, this is addressed
by directly marginalizing over the gains at the level of
likelihood construction. That is, THEMIS effectively self-
calibrates the station gains to the model at each likelihood
evaluation.
We assume that the gain at each station is well modeled by a

set of constant corrections for each gain-reconstruction epoch.
That is, for some set of {tk} for [ )Î +t t t,k k 1 , the gain-corrected
model visibility amplitudes obtained from stations A and B are

∣ ˆ ∣ ( ) ( )( )∣ ¯ ∣( )
( )

= + +p u pV g g g g V, ; 1 1 ; ,

27
AB j A k B k A k B k AB j, , , , , ,

where ¯ ( )u pV ; are the model amplitudes in the absence of gain
corrections gA k, and gB k, , and the baselines uAB j, comprise those
baselines connecting A to B for which measurements were
made within the specified time frame. For each k, we
reconstruct all of the gain corrections independently, subject
to Gaussian priors on the ( )=g g g, ,...k A k B k, , with variance

Sg A,
2 , Sg B,

2 , .... This is done in two steps:

14

The Astrophysical Journal, 897:139 (38pp), 2020 July 10 Broderick et al.



1. By numerically maximizing the log-likelihood in
Equation (16) at fixed p supplemented by Gaussian
priors for the coupled set of gk to obtain ḡk. This is
necessarily peaked, unimodal, and a modest multidimen-
sional optimization problem for the number of antennas
relevant for the EHT. We do this using a modified
Levenberg–Marquardt algorithm that includes the priors
(see Appendix C).

2. An approximate marginalization over all gk is performed
via the Laplace approximation, i.e., by assuming that near
ḡk, the log-likelihood is nearly quadratic, and thus the
contribution to the log-likelihood from [ )Î +t t t,k k 1 is

( )
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where C is the covariance of the prior-adjusted log-
likelihood from the first step and ∣∣ ∣∣C is its determinant.

The final log-likelihood is obtained by combining those over all
gain-reconstruction epochs: ( ) ( )= å p pk k .

The number of additional effective parameters introduced
can be very large and depends on the particulars of the stations
contributing during each gain-reconstruction epoch. Within
each reconstruction epoch, the number of additional parameters
is the minimum of the number of baselines and the number of
stations participating. When all stations participate in Ng gain-
reconstruction epochs, the number of additional model
parameters is ´N Ng, which for a typical EHT observation
in 2017 can be of order 102 for a single band. By ignoring
potential correlations between gain-reconstruction epochs, we
reduce the dimension of the additional parameter space by a
large factor. By sampling the log-likelihood after margin-
alization over the { }gk , we efficiently restrict the dimension of
the parameter space that must be sampled, e.g., by the
techniques described in Section 7, to that of the original
model. Typically, this has the effect of reducing the number of
parameters by many hundreds.

We present validation tests in Section 8.2.2 and Paper VI.

7. Samplers

The dependence of the likelihood on the model parameters,
incorporating any priors on the parameter values, is assessed
via samplers. The process of sampling is conceptually
separated from the definitions of data and models through the
standardization of the likelihood objects. Thus, within THEMIS,
a sampler is any method for exploring the values of a likelihood
for various choices of the parameter vector. There is no
standard output or input for a sampler, which may even vary
qualitatively depending on the goal of the sampling process.
However, all samplers interface with data and model objects
solely through the use of likelihood objects and thereby permit
analyses of a wide variety of combinations of data and models.
Implemented samplers include the following.

7.1. Grid Search

The conceptually simplest but least efficient is a simple grid
search where the parameter space is probed in predetermined
fixed steps in each dimension. While limited in computational
efficiency, this scheme is often used to cross-check results

obtained by other samplers for smaller parameter spaces that
both schemes can handle.

7.2. Parallel-tempered, Affine-invariant Markov Chain Monte
Carlo

A natural choice for high-dimensional models is to use
MCMC. Having scalability in mind, we chose to implement
ensemble sampling methods in which many MCMC chains
sample the parameter space in parallel. The chains interact and
use the information from their spatial distribution to effectively
adjust their next jump proposals. This has the added benefit of
being able to sample the unknown likelihood surfaces
efficiently and with minimal user input. We have implemented
two different ensemble sampling methods, namely, an affine-
invariant method and a differential-evolution method; the latter
is given in Section 7.3.
The affine-invariant method can sample likelihood functions

that are related by affine transformations with the same
efficiency (Goodman & Weare 2010). This means it is very
efficient in sampling highly stretched likelihood distributions as
long as the nonlinear correlations among parameters are
sufficiently weak.
MCMC algorithms are generally not very efficient on highly

multimodal distributions. In order to overcome this problem,
we have implemented parallel tempering for each MCMC
sampler. Parallel tempering makes copies of the log-likelihood
() function that are made smoother through the introduction
of a temperature parameter, the higher the temperature, the
smoother the likelihood surface:

( )µ

T
. 29i
i

The different temperatures are chosen from a temperature
ladder such that  T T1 i max. Then, we run a copy of our
MCMC sampler for each tempered likelihood copy in parallel.
The highest temperature chains can freely move in the
parameter space, while the low-temperature chains can be
trapped in local likelihood maxima. By allowing the different
temperature chains to exchange their positions following some
prescription, the low-temperature chains efficiently escape the
local maxima and explore the entire parameter space. The
lowest-temperature chain, which samples the original untem-
pered likelihood, yields the posterior probability distribution.
An efficient parallel-tempering algorithm requires that the

temperature ladder has to be chosen carefully. There are two
main factors to consider. First, the highest temperature used
should be large enough to let the chains move freely within the
likelihood surface. Furthermore, the temperatures should not be
too widely spaced as that could hinder efficient swaps between
chains from adjacent temperatures and lead to inefficient
tempering. The choice of an efficient temperature ladder
depends on the likelihood surface and could be difficult to
guess. To mitigate this problem, we have implemented a
method to adaptively change the temperatures in order to get
near optimal efficiency. Our method follows that of Vousden
et al. (2016).
The temperatures of the top and bottom tempering levels are

fixed to = ¥T and T=1, respectively, ensuring that the top
and bottom tempering levels sample the prior and posterior of
interest. Intervening tempering levels are initialized to have a
geometric ladder with the total number of levels, initial spacing
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ratio, and tempering schedule treated as hyperparameters.
During sampling runs, the user is responsible for inspecting the
evolution of the resulting MCMC chains, tempering level
exchange rates, and tempering level temperature evolution to
ensure that the tempering is performing well. Key aspects to
ensure are that the tempering level exchange rates are similar
across the ladder (including to the prior), that the tempering
level temperatures have settled to asymptotic values, and that
the minimum number of tempering levels necessary are being
used (thereby minimizing the roundtrip time). These must be
explored via the comparison of multiple sampling runs, though
they are frequently clearly discernible early in the run.

We have implemented parallelism in different levels of the
MCMC sampler. Tempering is parallelized, MCMC chains at
each tempering level run in parallel, and the likelihood can
itself use multiple threads to run. This allows for the effective
use of large high-performance computing machines.

It is a well-known feature of MCMC schemes that there is an
initial so-called “burn-in” phase when the sampling exhibits
comparatively large changes in parameter predictions, followed
by a phase where the walkers settle down to smaller and more
consistent changes, before ultimately converging to a final
answer. As is customary in this approach, we exclude a certain
number of MCMC steps corresponding to the “burn-in”
process at the beginning of the “chains,” i.e., the history of
an MCMC walker. This “burn-in” is identified by inspection,
although tools and diagnostics (e.g., Vehtari et al. 2019) are in
active development and will be available in a future release of
THEMIS.

7.3. Parallel-tempered, Differential-evolution Markov Chain
Monte Carlo

The second MCMC algorithm implemented in THEMIS is
the parallel-tempered, differential-evolution algorithm (Braak
2006). The differential-evolution method adjusts the collective
move of its chains in a way to achieve optimal acceptance rate
during Monte Carlo steps. It has the added benefit of being able
to jump between modes in multimodal problems even without
any tempering, thus representing a better option for multimodal
distributions. Our implementation follows that of Nelson et al.
(2014), and it also makes use of the same parallel-tempering
algorithm as the affine-invariant method. Nelson et al. (2014)
uses the ensemble to drive the acceptance rate of the sampler to
a predetermined value, typically 0.25. Additionally, every 100
steps, it proposes a large step to potentially enable mode
swapping for multimodel posteriors. Note, however, that this
depends on the posterior having a regular structure.

7.4. Bayesian Evidence

The MCMC sampling described above provides the poster-
ior probability distribution on parameters within the context of
a given model. This allows us to calculate expectation values
for any quantity of interest and to assess the goodness of fit for
a given model to the data. However, if we need to compare the
plausibility of different models given the same data set, running
conventional MCMC is insufficient. Potential ways to perform
model comparisons include reversible jump MCMC, calculat-
ing the Bayesian evidence (via thermodynamic integration,
nested sampling, or Laplace approximation), and the use of
information criteria (Knuth et al. 2015).

In Bayesian probability theory the relative probability of two
models, M1 and M2, given the same data set, D, is related to the
ratio of the Bayesian evidences for the two models, i.e., the
Bayes factor or odds ratio. The relative posterior probability of
the two models can be written as

( ∣ )
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( ∣ )P D M1 and ( ∣ )P D M2 are the Bayesian evidence for the two
models. In the absence of some strong prior preference, it is
often assumed that the prior probability of the two models,

( )P M1 and ( )P M2 , are equal, and hence the ratio of the
Bayesian evidence or the Bayes factor is all that must be
computed.

THEMIS implements the thermodynamics integration method
to calculate the Bayesian evidence (Lartillot & Philippe 2006).
In order to do this many MCMC chains are run in parallel on
tempered versions of the likelihood. The temperature ladder for
this purpose is provided by the user. Given the posterior
distributions and the values of the likelihood at these points, the
Bayesian evidence (Z) is obtained from

( ) ( )ò b= b Z E dln , 31
0

1

where  is the log-likelihood, β=1/T, and ( )b E is the
expectation value of the log-likelihood calculated using the
posterior probability distribution of chains at a tempered level
corresponding to T=1/β.
It is critical that the tempering ladder be sufficiently large to

make contact with the prior, effectively sampled at = ¥T
(β=0). Moreover, for the sum of the tempering levels to
provide an accurate approximation of the Bayesian evidence,
the separation between tempering levels must be sufficiently
small. Both of these restrict the application of the Bayesian
evidence, and often we will still appeal to information criteria.

8. Validation Tests

We now turn to validating THEMIS. For this we focus on the
sampling methods, for which the implementations are novel,
and reproducing prior analyses of EHT observations of SgrA*.
The variety in algorithmic improvements present in THEMIS
results in considerable speed-up and simplicity in implementa-
tion in comparison to previous work to which we compare—
often, analyses that took many months (e.g., Broderick et al.
2011, 2014, 2016) are now executed in days. Moreover, all of
these tests have been integrated into THEMIS, both as validation
tools and tutorials for future users.
Note that the sampler parameters (e.g., number of walkers,

number of MCMC steps, number of tempering levels, grid
search resolution) differ among these tests. In some cases, these
are determined approximately algorithmically (e.g., the number
of walkers in ensemble samplers should exceed the number of
parameters by a factor of 4 or more; Braak 2006; Goodman &
Weare 2010) while others are assessed by inspection (e.g.,
length of MCMC chains and grid search resolution). In
principle, for problems that exhibit strong nonlinear covar-
iances between all parameters, the number of walkers may
scale as the number of parameters squared. However, in
practice, the covariances for most problems are dominantly
diagonal, i.e., the off-diagonals are sparse, and thus necessitate
far fewer walkers.
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8.1. Validation of the Samplers

Here we test the sampling part of the code thoroughly. In
particular, we demonstrate the ability of the affine sampler to
reliably probe nontrivial parameter spaces. That is, we
anticipate that the complex models ultimately of most interest
in the context of EHT analyses will produce multimodal
probability distributions in high-dimensional parameter spaces.
It will be necessary, therefore, to consistently identify all of the
high-likelihood islands and determine accurately their relative
posterior probabilities.

8.1.1. Two-dimensional Gaussian Likelihood

If our model has a small number of parameters, the grid
search sampler can be efficient in sampling the parameter
space. In this test, the grid search sampler was used to sample a
two-dimensional symmetric Gaussian likelihood. Figure 4
shows the log-likelihood recovered using the grid search
sampler as well as the marginalized posterior distributions for
the same likelihood sampled using MCMC methods.

8.1.2. Egg Box Test

In this test, a five-dimensional parameter space with a highly
multimodal egg-box-like distribution is sampled. The like-
lihood is described in Section 6.1 and contains 55=3125
extrema, of which 1563 are maxima at the tops of sharp peaks
within the prior range: piä[−8, 8] for all i.

This presents a significant challenge to most sampling
schemes. The narrowness of the peaks and the dimensionality
of the parameter space preclude a grid search, which would
require more than 3×1012 samples to robustly detect all of
them. The large dynamic range in the likelihood, i.e., the very
low likelihoods between peaks, precludes typical MCMC

schemes, which are unable to efficiently explore the full
parameter space. Therefore, it provides a strong test of the
ability of the parallel -tempered, affine-invariant, and differ-
ential-evolution parallel MCMC samplers to efficiently find
and reconstruct the various high-likelihood regions.
As seen in Figure 5, both capture the gross features of the

egg box likelihood. This run was executed employing the
differential-evolution sampler with 8 tempering levels and took
only 10minutes on a typical laptop. There were 128 walkers
running for 105 steps, of which the first 104 were discarded as
the burn-in period
Every one of the 1563 maxima are populated, with an

apparent average number of independent samples of only 10.
This is sufficient to faithfully map out the diagonal elements of
the covariance, which are reconstructed to better than 8% of the
true value; the off-diagonal elements are restricted to less than
6% of the magnitude of the diagonal elements. While this is
likely assisted by the highly symmetric nature of the peaks and
their regular locations, it nevertheless demonstrates the ability
of the samplers to effectively address highly multimodal
likelihoods.

8.1.3. 16 Gaussian Test

Here we show that the sampling scheme can correctly probe
a two-dimensional parameter space with a likelihood consisting
of 16 Gaussians and accurately reconstruct the relative
posterior probabilities of different peaks. To do this, the
likelihood of the Gaussian located at (x0, x1)=(20, 10) is
chosen to be nine times higher than the others. This test was
run using the affine-invariant sampler with four tempering
levels. The number of MCMC steps in this case was 4000
steps, and the sampler used 100 walkers.
As shown in Figure 6, the sampler finds all of the Gaussian

components. In addition, it recovers the nonuniformity of the

Figure 4. Two-dimensional Gaussian likelihood sampled by the affine-
invariant MCMC sampler (blue), the differential-evolution MCMC sampler
(red), and the grid search sampler (black).

Figure 5. Validation of the sampler with a five-dimensional “egg-box”-
likelihood test with the five artificial parameters x0, x1, x2, x3, and x4. All peaks
in the likelihood surface are successfully recovered.
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likelihood surface, accurately reconstructing the posterior
weight of the appropriate component. Figure 7 shows the
relative probability mass correctly recovered for these 16
Gaussian peaks.

8.1.4. 2D Rosenbrock Test

In this test, we demonstrate the differential-evolution
sampler’s ability to probe a two-dimensional parameter space
with a likelihood surface that is quite narrow along one axis but
broad in another and that has long tails. The two-dimensional
Rosenbrock function serves as a standard test of sampling
schemes. It has a global extremum at ( ) ( )=x x, 1, 10 1 . We first
ran the Rosenbrock test with flat priors and with three
independent initial conditions for 100,000 steps with 24
walkers and temperatures. Upon inspection, these appear
converged.

Given that sampling from the truncated Rosenbrock
distribution is computationally much easier, we run again
using a linear prior within the [−2, 2] test and 20 walkers and
20 tempering levels for 5000 MCMC steps. As shown in
Figure 8, the sampler probes the Rosenbrock likelihood surface
well and recovers the global extremum. The fact that the
marginalized distribution for x1 peaks away from the truth is a
result of the pathological functional form causing large
contributions from x1∼0 regions. Note that the best fit
maximizes the joint posterior distribution, not the marginalized
distributions individually.

8.1.5. 5D Griewank Test

This test involves elements of both the egg box test and the
Rosenbrock test in that it features many locally peaked
likelihoods as in the egg box test and a long-tail component
in the form of a parabola. The sampler finds the global
extremum at (xi=0) for i=0K 4 and captures the parabolic
falloff; see Figure 9. This test was performed by executing 3
independent runs using the differential-evolution sampler with
24 walkers and 24 tempering levels for 50,000 MCMC steps

with flat priors. Upon inspection, the resulting chains appear
well converged.

8.1.6. Multivariate Cauchy Distribution

The Cauchy (or Lorentz) distribution is a tough sampling
problem due to its heavy tails and undefined mean. Its
multivariate form, in particular, is therefore an effective and
popular choice to test sampler performance. We ran the
differential-evolution sampler on a three-dimensional Cauchy
distribution using 24 walkers and temperatures for 100,000
MCMC steps with a flat prior, shown in Figure 10. While runs
with a linear prior converge quickly, the flat prior runs require
significantly longer evolutions. Even very long runs produce
residual apparent structure in the resulting MCMC chains.

Figure 6. Validation of the sampler with a two-dimensional test involving a 16
Gaussian likelihood and 2 artificial parameters x0 and x1. Note that the sampler
not only probes the likelihood surfaces comprehensively, it also correctly
retrieves the Gaussian with the higher likelihood at = =x x20, 100 1 .

Figure 7. Relative posterior probability mass for the 16 Gaussian peaks
recovered via MCMC sampling, in good agreement with the true values (red
lines).

Figure 8. Validation of the differential-evolution sampler with a two-
dimensional Rosenbrock test with two artificial parameters x0 and x1. The
sampler finds the correct extremum and samples the likelihood surface
comprehensively.
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However, again, running an even slightly truncated version
using linear priors (more akin to our typical challenges),
convergence is achieved substantially more rapidly.

8.2. Self-tests with Simulated Data

Here, we demonstrate the ability of THEMIS to accurately
reconstruct model parameters. This presents a simultaneous test
of many of the components of THEMIS, including the data
structures, models, likelihoods, and samplers. We generate
simulated images using THEMIS’ native model classes, from
which the appropriate simulated data is constructed. Thermal
noise is then included, producing a data set similar in character
to that associated with a single night of the 2017 EHT
campaign. The simulated data are then analyzed with THEMIS
using the corresponding model. Note that this does not address
model discrimination. For this purpose, we considered three
models: the symmetric Gaussian and the geometric crescent
models, for which visibilities can be computed analytically, and
the SED-fitted RIAF model, which incorporates the ray-tracing
components of VRT2 and numerical data generation of
THEMIS.

8.2.1. Gaussian Model

We generated simulated closure amplitude data from a
compact, symmetric Gaussian with V0=2.5 Jy and σ=5 μas.
We adopted a Gaussian for simplicity. The very compact size
was selected to ensure high-S/N detections on even the longest
baselines of the 2017 EHT campaign; such high S/Ns are
typical of more complex models. We analyze these data with
THEMIS’ symmetric Gaussian model (Section 4.2.1) to assess
potential biases associated with the non-Gaussian nature of the
closure amplitude error distribution. We imposed an S/N
minimum of 4 on the simulated closure amplitude.

For this analysis, we used the closure amplitude likelihood
described in Section 6.4. We sampled the posterior distribution with
the parallel-tempered, affine-invariant MCMC sampler, adopting
linear priors on each model parameter. The analysis converged
using 5 tempering levels with 128 walkers communicating every
50 MCMC steps and taking 5000 samples per walker.
As expected, the total intensity is not constrained by closure

amplitudes, recovering our prior distribution. The resulting
posterior distribution for the size of the Gaussian is shown in
Figure 11. The reconstructed size is σ=5.0004±0.0004μas,100

consistent with the input value. Repeating the analysis with
different realizations of the simulated data produces qualita-
tively similar results, though they do exhibit 2σ fluctuations
marginally more often than anticipated. No experiment
produced a deviation larger than 3σ. As a result, we conclude
that the likelihood in Equation (18) does not fully eliminate the
bias inherent in the closure amplitude error distribution, though
does so at the 2σ level. Decreasing the S/N minimum increases
this bias substantially, suggesting that additional development
is required to fully exploit low-S/N data.
While the closure amplitude likelihood in Equation (18) is

not Gaussian, and thus does not admit a well-defined χ2, we do
construct an approximate expression via c = - 22 . In the
limit of small closure amplitudes, this identification is well
motivated. The associated reduced χ2 is 0.97 with 1656
degrees of freedom, suggesting that this statistic will be
informative of fit quality. The corresponding two-tailed
p-value, assuming a χ2 distribution, is 39%.101

Figure 9. Validation of the differential-evolution sampler with a five-
dimensional Griewank test with five artificial parameters x x x x, , , ,0 1 2 3 and
x4. The sampler finds the correct extremum and explores the likelihood surface
comprehensively.

Figure 10. Validation of the differential-evolution sampler with a three-
dimensional Cauchy/Lorentz test with three artificial parameters x x, ,0 1 and x2.
The sampler finds the correct extremum and explores the likelihood surface
comprehensively.

100 Note that for all of our analysis, we report the marginalized values for the
parameters of each model instead of the maximum values, which for
complicated likelihood distributions may differ significantly.
101 To quantitatively assess a given χ2 value, we employ the two-tailed p-
values, defined by [ ( ∣ ) ( ∣ )]c c= < >p P P2min dof , dof2 2 , where ( ∣ )c< >P dof,

2 is
the appropriate one-sided cumulative χ2 for a given number of degrees of
freedom, dof. This penalizes both poor fits (χ2 ? dof) and overfits (χ2 = dof).
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8.2.2. Gaussian Model with Gain Errors

We generated simulated visibility amplitude data from a
compact, symmetric Gaussian with V0=2 Jy and σ=15 μas
that incorporated known gain errors. The S/Ns, observing
schedule, and baseline coverage approximate those associated
with the 2017 April observations of M87.102 Multiple types of
gain errors were considered. Following the properties of the
recent M87 observations, we permit potentially large errors on
the LMT gains and modest errors on the remaining stations
(Paper III). This presents a pathological situation, with one
station considerably more poorly characterized. In all cases, the
gains were assumed to be stationary across a scan.

The analysis employed the parallel-tempered, differential-
evolution MCMC sampler, adopting linear priors on both. We
adopt Gaussian priors on the reconstructed gain errors, with
Σg=0.2 for all stations with the exception of the LMT, for
which Σg=1.0. The analysis used 8 tempering levels, 128
walkers communicating every 50 MCMC steps, and converged
rapidly.

The reconstructed gains for the best fit are shown in
Figure 12 when the true gain errors vanish and when they are
nonzero and vary throughout the night. In both cases, the same
realization of the observational errors was employed. Modest
fluctuations within the assumed gain-reconstruction priors
driven by the thermal errors are present. This is clear from
the analysis in which no gain errors were introduced. Patterns
in the reconstructed gains persist across points within the
MCMC chain and across different input gain-error realizations,
indicating that they result from the overdetermined nature of
the gain-reconstruction problem (see Section 6.8). Never-
theless, the reconstructions faithfully follow the introduced
gain errors for all stations. This is most apparent for the LMT,
which, by design, has the largest errors.

The process of reconstructing the gains does significantly
expand the posteriors of the model parameters. This is clear in
Figure 13, in which the red contours indicate the posterior

without gain reconstruction. This is expected: the additional
freedom associated with the gain corrections can marginally
correct for larger deviations from the true model. Nevertheless,
the true model parameters are well within the posteriors
generally. This is shown explicitly in Figure 13 for both cases
shown in Figure 12.

8.2.3. Crescent Model

We generated simulated visibility amplitude and closure-
phase data from a diffractively scattered crescent image with
V0=2.24 Jy, R=28 μas, ψ=0.14, τ=0.07, and ξ=0°,
and added thermal noise to it. We then analyze these data with
THEMIS’ crescent model (Section 4.2.4), demonstrating that
THEMIS properly recovers the parameters of the original image.
For the analysis, we used the standard visibility amplitude

and closure-phase likelihoods described in Sections 6.2 and

Figure 11. Posterior distribution of the size of the symmetric Gaussian
reconstructed from simulated closure amplitude data with σ0=5 μas. The
expected value is indicated by the vertical blue line.

Figure 12. Reconstructed gains from simulated visibility amplitude data
associated with a symmetric Gaussian with σ0=15 μas in the absence and
presence of gain errors (top and bottom, respectively). Different stations are
offset for clarity; for each station, the line of vanishing gain corrections is
indicated by the horizontal dotted lines of the same color. Input gain
corrections are shown by the open circles, and recovered gain corrections are
shown by the filled dots with horizontal bars, which indicate the time range
over which the gains are assumed to be fixed.

102 Stations included are the SMA (SM), Pico Valeta (PV), LMT (LM), JCMT
(JC), ARO-SMT (AZ), APEX (AP), and ALMA (AA).
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6.3, and modeled the effects of diffractive scattering with the
default scattering model implemented in THEMIS and described
in Section 4.3.1.

In this case, we sampled the posterior distribution with
the parallel-tempered, differential-evolution MCMC sampler
adopting linear priors on each parameter of the model. The
analysis converged using 4 tempering levels with 16 walkers
per level communicating every 50 MCMC steps and taking
10,000 samples per walker. The resulting posterior distribu-
tions for the parameters of this model are shown in Figure 14
where the blue lines represent the true parameter values of the
original image.

Our analysis shows that the marginalized values for the
parameters of the model are V0=2.2399±0.0001 Jy for
the total flux, R=28.0064±0.0054 μas for the overall size of
the crescent, with a relative thickness ψ=0.1404±0.0003,
an asymmetry parameter τ=0.0691±0.0005, and a position
angle ξ=0°.040±0°.023. Individually, these are consistent at
the 2σ level with the true values of the original crescent image.
The model gives a satisfactory fit to the data as confirmed by
the reduced χ2 of 0.98 with 1670 degrees of freedom, which
implies that high-quality fits exist. The corresponding two-
tailed p-value is 59%, implying that the fit quality is well within
the anticipated statistical range.

8.2.4. RIAF Model

We generated visibility amplitude and closure-phase data
from a diffractively scattered RIAF image with (a, θ,
ξ)=(0.10, 60°, 0°). We added thermal noise to the simulated
data and then analyze it with THEMIS’ SED-fitted RIAF model
(Section 4.4.1) to show that THEMIS can properly recover the
parameters of the original image.

For the analysis, the standard visibility amplitude and
closure-phase likelihoods (Sections 6.2 and 6.3) were used,

and the effects of diffractive scattering were modeled using
THEMIS’ default scattering model (Section 4.3.1). We used the
parallel-tempered, differential-evolution MCMC sampler with
3 tempering levels, 14 walkers per level communicating every
50 MCMC steps, and took 5000 samples per walker.
The posterior distributions for the parameters of the model

are shown in Figure 15. We find that the marginalized values
for the black hole spin parameters are = -

+a 0.0997 0.0007
0.0006,

q =  - 
+ 59 .9983 0 .0167
0 .0155 , and x =  - 

+ 0 .0017 0 .0199
0 .0223 . These parameter

estimates are consistent at the 1σ level with the true values of
the original RIAF image. In this case, we find a reduced χ2 of
0.99 with 1664 degrees of freedom and corresponding two-
tailed p-value of 71%, indicating that high-quality fits were
found.

8.3. Reproducing Previous Results

The variety of published analyses of EHT observations of
SgrA* provides a natural validation test of THEMIS, as well as
a demonstration of its flexibility. These include comparisons of
purely phenomenological and physically motivated models of
the image structure. In constructing these, we make use of the
published EHT data sets listed in bold in Table 1, consisting of
visibility amplitudes measured in 2007 and 2009 and closure
phases measured between 2009 and 2013, inclusively.

8.3.1. Symmetric Gaussian

We analyze the visibility amplitude data from 2007 and 2009
using the symmetric Gaussian model described in Section 4.2.1
in order to show that THEMIS can reproduce previous model-
fitting studies made to estimate the source size of SgrA*.
For the analysis, we employed the norm-marginalized

visibility amplitude likelihood described in Section 6.6 to

Figure 13. Posterior distribution of the size and amplitude of a symmetric
Gaussian reconstructed from simulated visibility amplitude data with
s m= 15 as0 without (red) and with (blue and black) station gain reconstruc-
tion. These include the posteriors from simulated data without gain errors (red
and blue) and with significant imposed gain errors (black).

Figure 14. Joint parameter distributions from the crescent model analysis of the
simulated visibility amplitude and closure-phase data generated from a crescent
image with V0=2.24 Jy, R=28 μas, ψ=0.07, τ=0.14, and ξ=0 rad.
Here, the true parameter values are represented by the blue lines, and the
contours show to the 1σ, 2σ, and 3σ levels of the sampled posterior
distribution.
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account for variations in the total flux of SgrA* between
observation nights. The effects of diffractive scattering
were modeled using THEMIS’ default scattering model
(Section 4.3.1).

We employed the parallel-tempered affine-invariant sampler
with 4 tempering levels with 32 walkers per level, and adopted
linear priors on each parameter of this model. The posterior
distribution for the intrinsic size of SgrA* after 10,000 MCMC
iterations is shown in Figure 16. The reconstructed size is
σ=15.73±0.25 (FWHM=37.05±0.60). The model
gives a satisfactory fit to the data with an associated reduced
χ2=1.15 with 65 degrees of freedom, with a corresponding
two-tailed p-value of 38%. These results are in good agreement
with the best fits found in Broderick et al. (2011) when all
epochs are combined and the inferred sizes for each night
reported in Doeleman et al. (2008) and Fish et al. (2011).

8.3.2. Asymmetric Gaussian

We also analyze the visibility amplitude data from 2007 and
2009 with the asymmetric Gaussian model described in
Section 4.2.2 to show that THEMIS can reproduce previous
studies made to probe the asymmetry of the emitting region
of SgrA*.

For this analysis, we also analytically marginalized variations
in the total flux of SgrA* between observation nights using the
norm-marginalized visibility amplitude likelihood described in
Section 6.6, and modeled the effects of diffractive scattering
using THEMIS’ default scattering model (Section 4.3.1).

We employed the affine-invariant sampler and adopted linear
priors on each parameter of this model. The results converge
using 4 tempering levels, with 32 walkers per level, and taking
20,000 samples per walker. The posterior distributions for the
different parameters of the model are shown in Figure 17. Our

analysis shows that the marginalized values for the parameters
of the model are s m= -

+19.07 as2.51
1.07 , = -

+A 0.54 0.18
0.13, and

x = -  - 
+ 64 .3 4 .7
17 .0, and x =  - 

+ 114 .7 5 .1
19 .2.

This model also gives a satisfactory fit to the data with an
associated reduced χ2=0.75 with 63 degrees of freedom, with
a corresponding two-tailed p-value of 14%. These results are in
good agreement with the best fits found in Broderick et al.
(2011) when all epochs are combined.

8.3.3. Crescent Model

We analyze the visibility amplitude data from 2007 and 2009
with the crescent model outlined in Section 4.2.4 in order to
show that THEMIS can reproduce the earlier findings reported
by Kamruddin & Dexter (2013).
We proceeded in a fashion similar to the analysis performed

with the Gaussian models employing the norm-marginalized
visibility amplitude likelihood described in Section 6.6 to
account for variations in the total flux of SgrA* between days
and modeling the effects of diffractive scattering with the default
scattering model implemented in THEMIS (Section 4.3.1).
In this case, we sampled the posterior distributions with the

differential-evolution MCMC sampler adopting linear priors on
each parameter of the model. We used the reported values in
Table 1 of Kamruddin & Dexter (2013) as initial guesses for
the values of the parameters of this model. The analysis
converged using 6 tempering levels with 32 walkers per level,
and taking 100,000 samples per walker. The resulting posterior
distributions for the parameters of this model are shown in
Figure 18. The marginalized values for the parameters of the
model are m= -

+R 29.8 as3.2
4.8 , y = -

+0.28 0.17
0.12, and t = -

+0.20 0.13
0.15.

In this case, the analysis finds two values for the position angle
x =  - 

+ 60 .5 12 .4
8 .4 , x = -  - 

+ 119 .4 13 .7
8 .7 , and a minimum reduced

χ2=0.76 with 62 degrees of freedom, with a corresponding
two-tailed p-value of 16%.
The recovered crescent parameters are consistent with those

reported in Kamruddin & Dexter (2013), though the inferred 1σ
errors are larger. In addition, we recover the expected bimodal
distribution in position angle, resulting from the insensitivity of

Figure 15. Joint parameter distributions for the SED-fitted RIAF model
analysis of the simulated visibility amplitude and closure-phase data generated
for a RIAF image with (a, cos θ, ξ)=(0.1, 0.5, 0.0). Here, the true parameter
values are represented by the blue lines, and the contours show the 1σ, 2σ, and
3σ of the sampled posterior distribution.

Figure 16. Gaussian size distribution from the analysis of the symmetric
Gaussian model to the 2007 and 2009 visibility amplitude data of SgrA*.
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the visibility amplitudes to a 180° rotation, and an additional
weak bimodality in the crescent radius.

8.3.4. RIAF Model: Visibility Amplitude Analysis

We now turn to the first example of a physical model. First,
we demonstrate THEMIS’ ability to reproduce the analysis
published in Broderick et al. (2011). For that purpose, we
analyze the visibility amplitude data of SgrA* from 2007 and
2009 with the SED-fitted RIAF model described in
Section 4.4.1, using a tabulated set of accretion flow parameters
obtained at different black hole spins and inclinations—and
distributed with THEMIS—that reproduces the observed SED
of SgrA*.

For this analysis, we employed a set of linear priors for each
parameter of the model and the norm-marginalized visibility
amplitude likelihood described in Section 6.6 to account for
variations in the total flux of SgrA* between observation
nights. The effects of diffractive scattering were modeled using
THEMIS’ default scattering model (Section 4.3.1).

We used the parallel-tempered, differential-evolution
MCMC sampler with 12 tempering levels and 8 walkers per
level communicating every 50 MCMC steps. The test
completed 20,000 MCMC iterations, and the posterior
distributions for the black hole spin parameters are shown in
Figure 19. We find a spin = -

+a 0.25 0.19
0.35, while the inclination

angle has two values located at q =  - 
+ 118 .94 10 .02
8 .77 and

q =  - 
+ 62 .31 9 .33
10 .54. The model has a minimum reduced

χ2=0.80 with 63 degrees of freedom, with a corresponding
two-tailed p-value of 25%. These results are in good agreement

with the best fits found in Broderick et al. (2011) when all
epochs are combined.

8.3.5. RIAF Model: Visibility Amplitude and Closure-phase Analysis

We analyze the visibility amplitude and closure-phase data
sets that are bolded in Table 1 with the SED-fitted RIAF model
described in Section 4.4.1 using 128×128 pixel RIAF images
to show that THEMIS successfully reproduces the results of the
analysis published by Broderick et al. (2016).
For this analysis, we employed the norm-marginalized

visibility amplitude likelihood described in Section 6.6 to
account for variations in the total flux of SgrA* between
observation nights. We also used the shift-marginalized
closure-phase likelihood in Section 6.7 to model the effects
of refractive scattering, while the effects of diffractive
scattering were modeled using THEMIS’ default scattering
model (Section 4.3.1).
We used the parallel-tempered, differential-evolution MCMC

sampler with 12 tempering levels and 8 walkers per level
communicating every 50 MCMC steps. The MCMC chain was
run for 20,000 steps, and the resulting posterior distributions for
the parameters of this model are show in Figure 20 in comparison
to the results of analysis with visibility amplitude data only
discussed in the previous section. We find that the black hole spin
parameters are similarly constrained after the inclusion of the
closure-phase data, with = -

+a 0.09 0.07
0.11, q =  - 

+ 119 .00 2 .12
2 .74 , and

q =  - 
+ 61 .55 3 .25
1 .97 , and x = -  - 

+ 165 .13 4 .62
7 .42 . In this case, we find a

reduced χ2 of 1.08 with 231 degrees of freedom, with a
corresponding two-tailed p-value of 39%, indicating that high-
quality fits were found. These results are consistent with best-fit
parameters reported by Broderick et al. (2016).

Figure 17. Joint parameter distributions from the analysis of the asymmetric
Gaussian model of the 2007 and 2009 visibility amplitude data of SgrA*. The
gray contours show the 1σ, 2σ, and 3σ confidence regions for the size; the
asymmetry parameter; and the position angle. For reference, the symmetric
Gaussian size distribution from Figure 16 is shown in red in the top-left panel.
These parameter distributions are consistent with the results of Broderick
et al. (2011).

Figure 18. Joint parameter distributions from the analysis of the crescent model
of the 2007 and 2009 visibility amplitude data of SgrA*. The gray contours
show the 1σ, 2σ, and 3σ confidence regions for the overall radius; the relative
thickness; the degree of symmetry; and the position angle of the crescent.
These parameter distributions are consistent with the results of Kamruddin &
Dexter (2013).
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9. New Results

In this section, we present novel results obtained with
THEMIS. These include model comparisons to larger collections
of legacy EHT data sets and/or more uniform comparisons
than reported previously. Additional results obtained by
combining a more complete combination of the data sets in
Table 1 and applying additional model features will be reported
elsewhere. Application to the 2017 EHT observations of M87
can be found in Papers V and VI.

9.1. Crescent Model

Prior analyses of the Kamruddin & Dexter (2013) crescent
model utilized visibility amplitude data. With THEMIS, we extend
these to include the closure-phase data sets that are bolded in
Table 1. To account for refractive scattering, we employ the shift-
marginalized closure-phase likelihood (Section 6.7) when includ-
ing the contribution to the total likelihood from closure phases. In
all other respects, the analysis is similar to that presented in
Section 8.3.3.

The inclusion of closure-phase data places strong new
constraints on the crescent structure in a number of respects.
The resulting posterior distributions for the parameters of this
model are shown in Figure 21. The constraints on all of the
crescent parameters are substantially improved quantitatively,
often settling ambiguities in the previous analysis. The overall
crescent size has been restricted to m= -

+R 46.3 as1.5
1.4 , the

relative thickness parameter is now y = -
+0.41 0.04
0.07, and the

asymmetry parameter is t = -
+0.23 0.14
0.21. Individually, these are

consistent at the 2σ level with the expectation based on
visibility amplitudes alone.

Similarly, the position angle is also strongly constrained,
with the prior degeneracy eliminated, finding x =  - 

+ 179 .4 9 .1
19 .2.

Unlike the other parameters, this is inconsistent with the

estimates from the visibility amplitudes alone at the 2σ level.
This is apparent in the bottom panels of Figure 21. This is
modestly disconcerting, given the qualitatively distinct natures

Figure 19. Joint parameter distributions from the analysis of the SED-fitted
RIAF model of the 2007 and 2009 visibility amplitude data of SgrA*. The
gray contours show the 1σ, 2σ, and 3σ confidence regions for the spin
magnitude, a, the cosine of the inclination, qcos , and the position angle, ξ.
These parameter constraints are consistent with the results of Broderick
et al. (2011).

Figure 20. Joint posterior parameter distributions for the SED-fitted RIAF
model implied by the combined visibility amplitude and closure-phase data sets
bolded in Table 1. For reference, the posteriors implied by the visibility
amplitude data alone are shown in red. The contours show the 1σ, 2σ, and 3σ
confidence regions for the spin magnitude, a; the cosine of the inclination,

qcos ; and the position angle, ξ. All parameter constraints are consistent with
the results of Broderick et al. (2016).

Figure 21. Joint posterior parameter distributions for the crescent model
implied by the combined visibility amplitude and closure-phase data sets
bolded in Table 1. For reference, the posterior distributions implied by the
visibility amplitude data alone from Figure 18 are shown in red. The gray
contours show the 1σ, 2σ, and 3σ confidence regions for the overall radius; the
relative thickness; the degree of symmetry; and the position angle of the
crescent.
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of the closure phases and visibility amplitudes. Nevertheless,
the reduced χ2=1.07, with a corresponding two-tailed p-
value of 44%, implies that high-quality fits exist.

9.2. Extended RIAF Model

The SED-fitted RIAF model treats the comparisons to the
EHT data and flux measurements differently, utilizing a prior
set of compact radio SED fits. Here, we use THEMIS to relax
this procedure, comparing RIAF models simultaneously to the
flux and millimeter-VLBI measurements. In principle, this may
broaden the black hole parameter estimates, trading worse
compact radio SED fits for better structural fits. To explore
this, we performed a new analysis, similar in spirit to that
presented in Section 8.3.5, in which we analyze both data sets
concurrently.

We performed a new analysis using the extended RIAF
model described in Section 4.4.2, which generates flux
measurements in addition to the millimeter-VLBI observations
in a fashion identical to the SED-fitted RIAF model. In addition
to the parameters describing the black hole spin (magnitude,
inclination, and position angle), three additional parameters
were introduced, describing the normalizations of the densities
(ne t, , ne,nt) and temperature (Te) of the emitting electron
population; all remaining parameters were held fixed at the
values employed in the SED-fitted RIAF model: ηt=−1.1,
ηnt=−2.02, τt=−0.84, ht=hnt=1.0, α=1.25, γmin=
100, β=10, and κ=0. This model was compared to the flux
and millimeter-VLBI data bolded in Table 1. For this run, the
differential-evolution sampler with 12 tempering levels was
used. There were 24 walkers used, and the MCMC chain was
run for 8200 steps. The obtained reduced χ2=1.06, with a
corresponding two-tailed p-value of 50%, implying that high-
quality fits were found.

In Figure 22, the resulting set of parameter constraints is
presented in comparison to the prior analyses described in
Sections 8.3.4 and 8.3.5. In all cases, the spacetime parameters
are consistent with those found previously. Including the flux
data produces a marginally stronger constraint on the black
hole spin, = -

+a 0.1 0.08
0.19, arising from the systematic decrease

in the quality of the compact radio SED fits at higher spins
(which was ignored in the prior analyses). Nevertheless, as
anticipated, the inclination constraints are broadened, permitting
q = -

+62.2 4.6
5.3 and q = -

+117.2 6.2
5.5.

10. Code Performance

As seen in many of the validation tests and example analyses
presented in Sections 8 and 9, even for models with modest
numbers of parameters, it is typical for the posterior probability
distributions to be multimodal. As the models increase in
sophistication, introducing additional physical freedoms and
addressing various systematic uncertainties, this problem will
be compounded by the need to explore high-dimensional
parameters spaces. This is further complicated by the
computational expense of numerically generating images of
realistic astrophysical models. As a result, THEMIS has been
designed to exploit the proliferation of modern HPC systems.
Here we discuss the ways in which this has been, and may be,
implemented, along with a description of THEMIS’s scaling
efficiency, demonstrating that it can run efficiently on very
large machines.

THEMIS explicitly supports parallelization via MPI and
implicitly via OpenMP and CUDA. MPI parallelization has
been implemented at a number of levels, including the
samplers, likelihood evaluation, and model generation, permit-
ting users maximum flexibility in distributing the computa-
tional workload of an analysis.
Both the parallel-tempered, affine-invariant and differential-

evolution MCMC sampling algorithms are designed to exploit
parallelization in two levels. First, the use of parallel-tempering
levels may be further parallelized by assigning separate
tempering levels to different collections of processors. Second,
the use of ensemble methods may be trivially parallelized
among the individual walkers. Our implementation of the
ensemble sampler evolves half of the walkers simultaneously
while using the other, nonevolving half to determine the next
proposed jump. Each walker in the “active” set can be evolved
on a separate CPU. Upon completion, the “active” and
“passive” sets swap, and the process is repeated. The result is
a set of samplers that can immediately utilize N N 2T W
processors, where NT is the number of tempering levels and
NW is the number of walkers, typically many times the number
of parameters.
Image generation is an intrinsically parallelizable task. The

VRT2 library already natively supports MPI parallelization and
vectorization via OpenMP. On modern Xeon-based systems,
VRT2 can efficiently use NL=32 cores to produce 128×128
pixel images before ancillary memory and communication
costs become significant. Odyssey employs GPUs via CUDA
and provides an example of mixed MPI/GPU support within
THEMIS. The performance of mixed MPI/GPU computation
depends mainly on the number and specifications of the GPU
cards and is less sensitive to the number of MPI cores. Users
implementing new THEMIS models are provided an MPI
communicator and are only responsible for determining if and
how parallelization should be implemented in their instance;
they will be able to automatically exploit parallelization at the
other levels.
Figure 23 shows the scaling of THEMIS on a representative

sample problem with NT=4 tempering levels, NW=16
MCMC walkers, and NL=32 processors per likelihood
evaluation. For this case, THEMIS scales with 94% efficient to
32, 88% efficient at 512 cores, and 84% at 1024 cores. Note
that even modest increases in problem complexity involving
larger images or higher-dimensional parameter spaces require a
larger set of walkers and tempering levels, and allow more
processors per likelihood evaluation. Thus, the scaling
efficiency of THEMIS will improve with problem size. Already,
THEMIS can run efficiently on several thousand cores.

11. Summary

THEMIS provides a new framework in which to develop and
implement analyses of EHT observations. By focusing on the
construction of interfaces, THEMIS enforces a modularity that
facilitates rapid future development, ensuring flexibility and
permitting extensibility. This flexibility is illustrated by the
existing set of current THEMIS components, which span a
wide variety of types of data, models, and sampling techniques.
The clear definition of component inputs and outputs enables
future developers to rapidly contribute additional components
(e.g., image models) without the need for a global under-
standing of the internal structure of the code.
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Implemented data types include both millimeter-VLBI
observables (visibility amplitudes, closure phases, closure
amplitudes, polarization fractions) and ancillary data (fluxes).
The ability to easily add accoutrements to these data objects,
e.g., time stamps, observing stations, atmospheric conditions,
observation resolution, etc., significantly increases their flex-
ibility and the potential sophistication of subsequent analyses.

The generic nature of the model interface produces a
correspondingly broad array of acceptable models, solving a
key difficulty with unifying prior EHT analyses. As a result,
THEMIS can construct analyses of phenomenological (e.g.,
Gaussians) and physically motivated models (e.g., polarized
images of synchrotron-emitting GRMHD simulations). It also

naturally allows the inclusion of optional, additional, indepen-
dent model features (e.g., interstellar scattering) in a uniform
way. In principle, it can also facilitate in nonparametric
modeling, e.g., image inversion, though this has yet to be
implemented.
A number of likelihoods have been implemented, including

likelihoods that analytically address nuisance parameters. This
will become increasingly important as additional EHT
systematics are considered, e.g., telescope gain corrections,
refractive scattering, and intrinsic source variability. Similarly,
a number of samplers have been implemented, including
samplers that efficiently explore high-dimensional, multimodal
likelihood surfaces.

Figure 22. Joint posterior parameter distributions for the SED-fitted RIAF model implied by the combined flux, visibility amplitude, and closure-phase data sets
bolded in Table 1. For reference, the posteriors implied by the visibility amplitude data alone and by the combined visibility amplitude and closure-phase data sets
from Figures 19 and 20 are shown in red and blue, respectively. The contours show the 1σ, 2σ, and 3σ confidence regions for the spin magnitude, a; the cosine of the
inclination, qcos ; and the position angle, ξ. All parameter constraints are consistent with the results of Broderick et al. (2016).
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A key feature of THEMIS is the ability to mix and match the
above, constructing new analyses via minor changes in the
model used, data included, and sampler used. This will be
critical to evaluating the robustness of features, teasing apart
subtle interactions in aspects of complex models, and system-
atically assessing the impact of additional types of data. At the
same time, this permits rapid, distributed development: as
features are added in the service of one analysis, e.g., a new
sampler or a new scattering model, they may be rapidly
deployed to others.

In anticipation of increasingly complex, physically moti-
vated emission models for EHT targets, THEMIS enables the
implementation of parallelization at multiple levels via multiple
schemes. At present, this is implemented in a number of
samplers via MPI and models via MPI, OpenMP, and CUDA.
As a result, for typical analyses, THEMIS scales efficiently to
thousands of cores, depending on problem complexity, and can
effectively exploit modern HPC systems. For the implemented
samplers, this parallel-performance scaling improves with
problem complexity (i.e., number of parameters), partially
mitigating the introduction of additional physical features.

Both the individual components of THEMIS and their
integration have been extensively tested. THEMIS is able to
accurately and consistently explore high-dimensional multi-
modal posterior probability distributions. It is able to recover
the parameters of models used to construct realistic simulated
EHT data for both geometric and physically motivated RIAF
models. It has accurately reproduced previous analyses of
published EHT data. In the case of the RIAF models, it has
done so in an order-of-magnitude less user time.

The extensibility of THEMIS is evident in the extension of
these prior analyses. The Kamruddin & Dexter (2013) crescent
model has been reassessed in light of the EHT closure-phase
measurements of SgrA* published in Fish et al. (2016). The
weak degeneracy in the size of the crescent is now broken,
selecting m= -

+R 46.3 as1.5
1.4 . This is considerably larger than the

size implied by the 1σ region obtained when only visibility
amplitude is considered, though still consistent at 2σ. Never-
theless, high-quality fits of the combined closure-phase and

prior visibility amplitude data sets do exist. Note that this
implies a crescent diameter that is nearly twice as large as the
55 μas anticipated for SgrA* by identifying the crescent with
the gravitationally lensed image of a geometrically thick
accretion flow.
Where prior RIAF analyses have separated the fitting of the

SED and EHT data for SgrA*, THEMIS now simplifies the
process of fitting both simultaneously. While this may yield
weaker parameter constraints in principle, in practice the
black hole spin parameters are similarly constrained. Within
the context of a similarly constrained RIAF model, i.e., a
geometrically thick, Keplerian flow, we find = -

+a 0.1 ;0.08
0.19

q = -
+62.2 4.6
5.3, and q = -

+117.2 ;6.2
5.5 and x = -  - 

+ 158 .1 10 .4
11 .5 . Future

analyses that will systematically explore the relaxation of
assumptions about the structure of the inner accretion flow will
be published elsewhere.

THEMIS is meant to facilitate continuous, vigorous develop-
ment. Already, plans are underway to address refractive
scattering in the interstellar medium, model stochastic
variability in the intrinsic emission region, introduce jet
models, exploit GRMHD simulations, and perform nonpara-
metric analyses. Anticipated future data-type development will
include polarized fluxes, Faraday rotation measurements,
circular polarization, and visibility variances. Additionally,
new samplers will be implemented to help with the known
difficulties of ensemble methods presented here (Huijser et al.
2015). As a result, THEMIS is designed to facilitate the future
scientific utilization of the new window on black hole physics
now opened by the EHT.
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Appendix A
Prediction Accuracy Requirements

When predictions are made numerically, frequently the
computational expense is strongly dependent on the accuracy
of the theoretical estimate required. Thus, significant efficien-
cies can be realized by understanding and limiting the accuracy
requested where possible. Generally, comparisons with data
with large uncertainties require far less accurate theoretical
estimates than with data that have small uncertainties. Here we
determine the relationship with parameter estimation uncer-
tainty and the accuracy of the theoretical estimates, thereby
estimating the accuracy required by THEMIS.
We begin by assuming that the measurement errors are

Gaussian. We further assume that the posterior parameter
probability is also nearly Gaussian and thus adopt a Fisher
matrix approach to the estimation of the uncertainty of the
parameter estimates. Finally, we assume that errors in the
predicted values are Gaussian and uncorrelated. That is, we set
the log-likelihood to
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where the predicted value is fj, dj is the error in the predicted
value, yj are the data, and σj are the observational uncertainties.
The assumption that the prediction errors are Gaussian

corresponds to assuming that the dj are Gaussian random
variables. This is not true in an absolute sense: each time a
prediction is made for the same independent variables, the δj
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does not change. However, in a statistical sense, we are
assuming that at different independent variable values and for
different parameter values, the δj are well approximated by a
random variable. It will be useful henceforth to characterize the
size of the distribution of the δj in terms of σj, i.e., we set the
variance of the prediction error in terms of the measurement
uncertainty as d sá ñ = Dj j

2 2 2. This implies that higher prediction
accuracy is possible for more accurately measured quantities.

The δj modify the minimum  (and thus χ2) expected:
averaging over realizations of the data and the prediction errors,

( )
( ) ( )å

d

s
á ñ = -

- +
» - + D

f y N

2 2
1 , A2

j

j j j

j

2 2

2
2

where we have further assumed the number of degrees of
freedom is close to the number of data points, N. For a
sufficiently large number of degrees of freedom and a large
enough Δ2, the deviation will be statistically noticeable in the
reduced χ2 when ( )D  N8 1 4. This expression grows slowly
with N, though, and is therefore not a fundamental limit as far
as parameter estimation is concerned.

The uncertainty in the estimate of the parameters is set by the
inverse of the covariance matrix, given by
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Again, averaging over realizations of the data and the
prediction errors gives
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However, a typical value will be modified by the presence of
the linear term. That is, the variance in the inverse covariance is
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The covariance matrix, whose eigenvalues indicate the
magnitude of the uncertainties, is given by
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in which μ is a Gaussian random variable with unit variance.
This error term is suppressed by approximately a factor of

-N 1 2 relative to the mean variance, and thus in the limit of
large N becomes insignificant.

The error term contains two elements, associated with the
measurement and prediction errors, respectively. The ratio of
the latter to the former is Δ2/2. When Δ2 is small and N is
large, the uncertainty on the parameter estimates then grows by
a multiplicative factor of Δ2/4. This is unconditionally small
when Δ is small.
In THEMIS, we typically set Δ=0.25, for which Δ2/4=

0.016, which broadens the posterior parameter distributions by
1.6%. This does complicate the interpretation of fit quality for
N2048, however.

Appendix B
Error Distributions of Quantities Associated with Visibility

Amplitudes

THEMIS has three data types associated with visibility
amplitudes: the visibility amplitudes themselves, interfero-
metric polarization fractions, and closure amplitudes. None of
the underlying error distributions for any of these is Gaussian,
and the latter two are poorly approximated by Gaussians. Here,
we summarize what the relevant error distributions are and
quantify how well they are approximated in THEMIS. In all
cases, we will assume that the complex visibilities are well
described by a Gaussian random variable with nonzero mean.

B.1. Visibility Amplitudes

The probability distribution of the magnitude of a complex
Gaussian random variable, V, with mean V0 and standard
deviation σ, is given by the Rice distribution (see, e.g.,
Thompson et al. 2017):
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At high S/N (defined here by ∣ ∣ sV0 ), a Gaussian with mean

∣ ∣ s+V0 2 2 and standard deviation σ becomes an increasingly
good proxy for the Rice distribution, with the quality of this
approximation increasing with S/N. When S/N�2, the
biased Gaussian is within 8% of the maximum probability of
the Rice distribution for all values of ∣ ∣V . These are compared in
the left panel of Figure B1 for various choices of S/N. We
provide a set of quantitative estimates of the accuracy of the
Gaussian approximation in Table B1 for various S/Ns.

B.2. Visibility Amplitude Products

Before discussing the data quantities of interest, we begin by
considering the distribution of the product of visibility
amplitudes, i.e., ∣ ∣∣ ∣=W V VA B . We do this both to illustrate
the procedure by which we construct exact probability
distributions for combinations of products and quotients of
visibility amplitudes and to show explicitly that these are
typically well approximated by a single Rice distribution.
We begin by exploiting the nonnegative behavior of ∣ ∣V to

define (∣ ∣)=v Vlog . This simplifies the construction of the
product by reducing it to a sum, i.e., in terms of vA and vB,

= º+W e ev v wA B . The probability distribution of v is given in
terms of the Rice distribution by
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which we will call the logarithmic Rice distribution. Its
characteristic function is
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In practice, this may be computed efficiently via FFT. In terms
of fr, the characteristic function of the probability distribution of w
is, ( ∣ ∣ ∣ ∣ )f s sk V V; , , ,p A A B B,0 ,0 = ( ∣ ∣ ) ( ∣ ∣ )f s f sk V k V; , ; ,r A A r B B,0 ,0 ,
and thus, the probability distribution of w is
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which again may be computed efficiently via FFT. Finally, the
desired probability distribution of W is then
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These are shown in Figure B1.
While formally the distribution of W is characterized by four

parameters, in practice it is well approximated by a single Rice
distribution with ∣ ∣∣ ∣=W V VA B0 ,0 ,0 and s s s= +A B

2 2 , differ-
ing by 17% of the maximum probability for S/N�2. This
comparison is also shown in the right panel of Figure B1, and

estimates of the accuracy of the approximation are tabulated in
Table B2 for various S/Ns. Note that this also implies that the
product distribution is well fit by a Gaussian for sufficiently
high S/N.

B.3. Polarization Fractions—Visibility Amplitude Quotients

We follow a similar procedure to that in the previous section to
compute the distribution of the quotient of visibility amplitudes,
i.e., ∣ ∣ ∣ ∣=Q V VA B . Unfortunately, we find that the remarkable
simplicity of the distribution of visibility products does not extend
to quotients. The characteristic function of the logarithmic quotient
distribution is ( ∣ ∣ ∣ ∣ ) ( ∣ ∣ )f s s f s f= *k V V k V; , , , ; ,q A A B B r A A r,0 ,0 ,0

( ∣ ∣ )sk V; ,B B,0 , where the ∗ denotes complex conjugation. The
resulting logarithmic quotient probability distributions is
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with the corresponding quotient probability distribution
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This is directly applicable to the polarization fraction, for which
this distribution is shown in the left panel of Figure B2.

Figure B1. Left: comparison of the Rice and Gaussian distributions at various S/Ns. Right: distribution of products of visibility amplitudes and their comparison to a

single Rice distribution. The S/N indicates ∣ ∣ ∣ ∣s s s= +W V VA A B B
2

,0
2 2

,0
2 , with the range for each S/N value corresponding to that obtained from different ways

of apportioning the errors between ∣ ∣s VA A,0 and ∣ ∣s VB B,0 . Summaries of the accuracy of the comparisons shown can be found in Tables B1 and B2.

Table B1
Accuracy of Visibility Amplitude Error Distribution Approximations

S/N

Approx. Notes Error 1 2 4 8 32

Gauss L δmax
a 29% 8% 2% 0.4% 0.02%

L L δmode
b 7% 1% <0.1% <0.1% <0.1%

L L δw
c 15%/17% 5%/6% 2%/2% <0.5%/0.5% <2%/<1%

Notes.
a Maximum absolute difference, measured relative to probability maximum.
b Fractional error in the location of the mode.
c Fractional error in the width of the region containing 68%/95% of the cumulative probability.
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The polarization fraction distribution clearly deviates from
the Gaussian and Rice distributions in two key respects. First,
even at high S/N, the distributions are asymmetric, with the
probability maximum lying below ∣ ∣ ∣ ∣=Q V VA B0 ,0 ,0 . Second,
there is a significant tail extending to high values of Q,
containing sufficient weight to move the average Q above Q0

for S/N�2. More accurate are fitted (i.e., same mean and
standard deviation) log-normal approximations, shown in the
left panel of Figure B2, which recover the asymmetry, though
still exhibit deviations for S/N�4.

Combined with the accuracy of the Gaussian approximation
to the Rice distribution, this motivates an exploration of better
approximates to the quotient distribution of visibility ampli-
tudes. For two Gaussian variables, with nonzero means, it is
possible to analytically construct the quotient distribution
analytically:
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and erf(x) is the standard error function. This is also shown in
the left panel of Figure B2. While deviations from pq continue
to exist, the Gaussian quotient (Gauss Q) distribution
accurately reproduces the large high-Q tail.

As with pp(W), pq(Q) depends on the S/N of both the
numerator and denominator independently. Unlike the product
distribution, the quotient distribution is not symmetric in this
dependency, with the properties of the denominator controlling
the asymmetry and tail. Therefore, characterizing this distribu-
tion by a single pair of numbers—a central value and width—
will result in a substantial uncertainty in the resulting quotient
distribution. This is simplified for polarization fractions by the
fact that the stations used to construct the visibility amplitudes
in the numerator and denominator are the same, and thus both
quantities have similar noise profiles in principle, i.e., σA≈σB.
This implies that
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where ∣ ∣ ∣ ∣ =m V VA B0 ,0 ,0 and sm is the uncertainty obtained by
the standard error propagation formula. Note that these are the
only two quantities required to fully specify the Gauss Q and
quotient distributions. Combining this with Equation (B8), we

obtain for the polarization fraction
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For various  sm m0 , the right panel of Figure B2 shows
comparisons of the exact quotient and Gauss Q distributions
assuming the errors in Equation (B9) for  =m 0.50 and 2.0. The
Gauss Q distribution is within 11% and 13% of the maximum
probability of the exact quotient distribution, respectively, at all
values of m when S/N�2. The accuracy of the Gauss Q
approximation for the polarization fraction distribution is
tabulated for different S/Ns and m in Table B3.

B.4. Closure Amplitudes

We now turn to the problem of constructing the error
distribution for closure amplitudes generally. Again, the exact
expression can be constructed using the characteristic functions
of the logarithmic Rice distributions:
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These are shown in the left panel of Figure B3. Similar to the
polarization fractions, they are clearly asymmetric and exhibit
large tails to high values, typical of quotient distributions.
Formally, this requires knowledge of eight values to define.

However, again, it is possible to accurately estimate p with only
a handful of combinations of these values. Due to the similarity
between the amplitude product distribution (Appendix B.2) and
the Rice distribution, both the numerator and the denominator can
be effectively described by only two parameters each. As a result,
the closure amplitude distribution is similar to the amplitude
quotient distribution described in Appendix B.3, shown by the
dashed lines in the left panel of Figure B3.
If the S/Ns of the denominator and numerator are

independently known, this is well approximated by the Gauss
Q distribution in Equation (B8). These may be reconstructed
with knowledge of the total S/N ( s ), and the ratio of the
thermal uncertainties in the numerator and denominator, i.e.,
s s s= +n A B

2 2 and s s s= +d C D
2 2 , also shown in the left

panel of Figure B3. The latter are not independent, related by
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the repeated presence of each of the four stations required to
produce a closure amplitude in the numerator and denominator.
That is, identifying the baselines A, B, C, and D, with stations 1
and 2, 3 and 4, 1 and 4, and 2 and 3, respectively, assuming
identical bandwidths and scan duration,

( )( )
( ) ( )

( )r
s
s

º =
+
+

=
+

+
S S S S

S S S S

S S S S

S S S S
,

1
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2
2

2
1 2 3 4

1 4 2 3

3 1 4 2
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where the Sj are station-specific system-equivalent flux
densities (SEFDs). Despite the appearance of four SEFDs, this
is a function of only two variables: the ratios S3/S1 and S4/S2.
Where both of these ratios are of order unity, i.e., for a
homogeneous array, ρ≈1. For highly heterogeneous arrays, in
which more than one station is much more sensitive than the
others, this can deviate from unity substantially, by an amount
that depends on the second-lowest and second-highest SEFDs,
S2nd min and S2nd max, respectively,

( )r S

S

S

S
. B152nd min

2nd max

2nd max

2nd min

For the 2017 EHT campaign, the station SEFDs ranged from
90 to 6000Jy, with most being near 5000Jy. The phased
Atacama Large Millimeter/submillimeter Array (ALMA) is an
extremely low-noise outlier at 90Jy, followed by the Large
Millimeter Telescope at 600Jy (see the EHT imaging library,
Chael et al. 2016, 2018b, and available at github.com/achael/
eht-imaging). As a result, ρ ranges from 0.3 to 3.3, with most of
the potential closure amplitude squares having ρ within 11% of
unity. Therefore, even without prior knowledge about the
visibilities that comprise the numerator and denominator of
the closure amplitude, a similar procedure to that used for the
closure amplitudes, where ρ≈1 is assumed, is well motivated.
Given a value of ρ, either from the station SEFDs or setting

it to unity,
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where n and d are the mean values of ∣ ∣∣ ∣V VA B and ∣ ∣∣ ∣V VC D , and
= n d0 . As a result, an approximation of the closure

amplitude distribution based on the Gauss Q distribution can

Table B2
Accuracy of Product Error Distribution Approximations

S/N

Approx. Notes Error 1 2 4 8 32

Rice S/N ratioa=1 δmax
b 33% 17% 9% 4% 1%

L L δmode
c 36% 14% 4% 1% <0.1%

L L δw
d 16%/21% 7%/10% 2%/2% 0.6%/0.6% <2%/<1%

Rice S/N ratio=4 δmax 11% 5% 2% 1% 0.2%
L L δmode 13% 4% 1.0% 0.2% <0.1%
L L δw 4%/9% 1%/3% 0.4%/0.7% <0.5%/<0.2% <2%/<1%

Notes.
a Ratio of VA,0/σA to VB,0/σB in the construction of the product distribution.
b Maximum absolute difference, measured relative to probability maximum.
c Fractional error in the location of the mode.
d Fractional error in the width of the region containing 68%/95% of the cumulative probability.

Figure B2. Left: comparison of the polarization fraction distribution (visibility amplitude quotient distribution) with the Gaussian quotient distribution approximate
(Gauss Q) for various input values of the denominator S/N, S/Nd. In all cases, the numerator S/N was set to 8. For comparison, a log-normal distribution is also
shown. Right: comparison of the polarization fraction distribution (boundaries of the shaded region), the Gauss Q approximation in Equation (B10), and the log-
normal model, for various total S/Ns (i.e.,  sm m) at  =m 0.5 and 2.0. Quantitative estimates of the accuracy of the various approximations can be found in Table B3.
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be constructed via
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Quantitative assessments of the performance of this approx-
imation for a number of variations in the distribution of S/Ns
among the various components and for fixed and known ρ are
listed in Table B4. In the Gauss Q cases with fixed ρ and for the
log-normal distribution, we permit the true value of ρ to range
from 0.3 to 3.3, reporting the maximum deviation for each
measure independently.
Knowledge of ρ significantly improves the quality of the

approximation, which for S/N�2 is accurate to 13% for
< 1. The asymmetric impact of noise in the denominator and

numerator of the closure amplitude is responsible for the
worsening performance of the approximation when > 1;
generally, closure amplitudes can be constructed so that   1.

Table B3
Accuracy of Polarization Fraction Error Distribution Approximations

S/N

Approx. Notes Error 1 2 4 8 32

Gauss Q  =m 0.50 δmax
a 41% 11% 5% 2% 0.6%

L L δmode
b 22% 7% 2% 0.5% <0.1%

L L δw
c 3%/13% 5%/4% 2%/2% <0.5%/0.4% <2%/<1%

Gauss Q  =m 2.00 δmax 31% 13% 6% 3% 0.6%
L L δmode 2% 2% 1% 0.4% <0.1%
L L δw 17%/20% 13%/18% 5%/6% 1%/1% <2%/<1%

log-norm  =m 0.50 δmax 41% 17% 10% 5% 1%
L L δmode 26% 0.2% 0.4% <0.1% <0.1%
L L δw 46%/27% 21%/29% 5%/6% 1%/2% <2%/<1%

log-norm  =m 2.00 δmax 68% 48% 27% 13% 3%
L L δmode 27% 23% 9% 3% 0.2%
L L δw >100%/63% 51%/23% 12%/3% 3%/0.6% <2%/<1%

Notes.
a Maximum absolute difference, measured relative to probability maximum.
b Fractional error in the location of the mode.
c Fractional error in the width of the region containing 68%/95% of the cumulative probability.

Figure B3. Left: comparison of the closure amplitude distribution with the Gauss Q approximation in Equation (B17) for various choices of the denominator S/N,
S/Nd. In all cases, the numerator S/N was set to 8, divided equally among the visibility amplitudes in the numerator. For comparison, the visibility amplitude quotient
(Rice Q) distribution is also shown. The range of the filled bands indicates the uncertainty associated with various choices of how S/Nd is apportioned between the two
visibility amplitudes in the denominator. In all cases, the value of ρ was set to the proper value in all models. Right: comparison of the closure amplitude distribution
and the Gauss Q approximation with ρ=1, for = 0.50 . The colored bands indicate the range of closure amplitude distributions when the true ρ is varied within the
permissible range for the 2017 EHT campaign, [0.3,0.33]. The S/N within the numerator and denominator is distributed uniformly. Quantitative estimates of the
accuracy of the various approximations for illustrative cases can be found in Table B4.
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The performance of the approximation in reconstructing the
mode and width of the distribution is very good in this limit,
better than 1%. When ρ is not known a priori, setting it to unity
introduces an additional error in the approximation of the
closure amplitude distribution. Nevertheless, even with excur-
sions of a factor of 3, by S/N�4, the Gauss Q approximation
is accurate to 13% at all  .

In practice, the primary difficulty with applying
Equation (B17) is the accuracy with which s nn and s dd
can be reconstructed, which depends how close  is to 0. At
low S/N, this can lead to a significant error in the estimation of
the likelihood. Where the estimate of σn/n or σd/d is higher
than their true values, this makes little difference. However,
where they are much lower than their true values, this can result

Table B4
Accuracy of Closure Amplitude Error Distribution Approximations

S/N

Approx. Notes Error 1 2 4 8 32

Gauss Q = 0.50 , δmax
a 54% 28% 13% 6% 2%

ρ=1b S/Nn d, ratiosc=0.5, δmode
d 38% 17% 6% 2% <0.1%

L ρ ä [0.3, 3.3]e δw
f 15%/14% 14%/11% 6%/8% 2%/4% <2%/<1%

Gauss Q = 0.50 , δmax 54% 28% 13% 6% 2%
ρ=1 S/Nn,d ratios=2, δmode 38% 17% 6% 2% <0.1%
L ρ ä [0.3, 3.3] δw 15%/14% 14%/11% 6%/8% 2%/4% <2%/<1%

Gauss Q = 2.00 , δmax 47% 25% 13% 6% 2%
ρ=1 S/Nn,d ratios=0.5, δmode 25% 17% 6% 2% <0.1%
L ρ ä [0.3, 3.3] δw 15%/5% 5%/26% 4%/15% 2%/5% <2%/<1%

Gauss Q = 2.00 , δmax 47% 25% 13% 6% 2%
ρ=1 S/Nn,d ratios=2, δmode 25% 17% 6% 2% <0.1%
L ρ ä [0.3, 3.3] δw 15%/5% 5%/26% 4%/15% 2%/5% <2%/<1%

Gauss Q = 0.50 , δmax 53% 13% 6% 2% 0.6%
ρ setg S/Nn,d ratios=0.5, δmode 5% 0.6% <0.1% <0.1% <0.1%
L ρ=3.3 δw 9%/0.6% 0.4%/5% 0.5%/0.1% <0.5%/<0.2% <2%/<1%

Gauss Q = 0.50 , δmax 53% 13% 6% 2% 0.6%
ρ set S/Nn,d ratios=2, δmode 5% 0.6% <0.1% <0.1% <0.1%
L ρ=3.3 δw 9%/0.6% 0.4%/5% 0.5%/0.1% <0.5%/<0.2% <2%/<1%

Gauss Q = 2.00 , δmax 46% 20% 8% 3% 0.6%
ρ set S/Nn,d ratios=0.5, δmode 15% 3% 0.4% <0.1% <0.1%
L ρ=0.3 δw 5%/6% 5%/16% 3%/10% 0.9%/2% <2%/<1%

Gauss Q = 2.00 , δmax 46% 20% 8% 3% 0.6%
ρ set S/Nn,d ratios=2, δmode 15% 3% 0.4% <0.1% <0.1%
L ρ=0.3 δw 5%/6% 5%/16% 3%/10% 0.9%/2% <2%/<1%

log-norm = 0.5, δmax 64% 43% 23% 11% 3%
L S/Nn,d ratios=0.5, δmode 36% 22% 8% 2% <0.1%
L ρ ä [0.3, 3.3] δw 62%/28% 32%/38% 10%/13% 3%/5% <2%/<1%

log-norm = 0.5, δmax 64% 43% 23% 11% 3%
L S/Nn,d ratios=2, δmode 36% 22% 8% 2% <0.1%
L ρ ä [0.3, 3.3] δw 62%/28% 32%/38% 10%/13% 3%/5% <2%/<1%

log-norm = 2.0, δmax 76% 52% 29% 14% 3%
L S/Nn,d ratios=0.5, δmode 42% 27% 10% 3% 0.2%
L ρ ä [0.3, 3.3] δw >100%/40% 41%/32% 12%/11% 4%/5% <2%/<1%

log-norm = 2.0, δmax 76% 52% 29% 14% 3%
L S/Nn,d ratios=2, δmode 42% 27% 10% 3% 0.2%
L ρ ä [0.3, 3.3] δw >100%/40% 41%/32% 12%/11% 4%/5% <2%/<1%

Notes.
a Maximum absolute difference, measured relative to probability maximum.
b Gauss Q model with ρ fixed at unity.
c Ratio of VA,0/σA to sVB B,0 and sVC C,0 to sVD D,0 in the construction of the closure amplitude distribution.
d Fractional error in the location of the mode.
e Range of input values of ρ explored in accuracy estimate.
f Fractional error in the width of the region containing 68%/95% of the cumulative probability.
g Gauss Q model with ρ set to input value.
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in a distribution that is considerably more narrowly concen-
trated about 0 than the true distribution, biasing any resulting
parameter estimates. This ceases to be a significant bias for
S/N > 4 for the 2017 campaign.

Finally, we remark on comparisons to a frequent alternative
approximation for the closure amplitude error distribution, the
log-normal distribution. This has a number of desirable features:
it is simple to define and rapid to compute, it eliminates the
conceptual distribution between the numerator and denominator
in the definition of the closure amplitudes, and it naturally
produces extended tails toward large values. A quantitative
comparison to the Gauss Q approximation is presented in
Table B4. To do so, we have constructed a biased log-normal
distribution, i.e., with mean ( )s+ log 0

2
0 and standard

deviation s  0. These perform more poorly than the Gauss Q
approximation at all values of S/N, exhibiting significant biases
in the maximum and median of the error distributions.

At high S/Ns, this distinction makes little difference; for
modest S/Ns, this results in significant systematic biases in
reconstructed structural parameters. This is clear in Figure B4,
which presents the posterior distributions of the size of a
Gaussian feature from simulated 2017 campaign data. The
underlying image and thermal noise were chosen such that the
S/Ns of the closure amplitudes are moderate, i.e., they range
from below our cutoff of 4–18. The two posteriors shown are
for two likelihoods that differ in the assumed closure amplitude
error distribution. For both, excellent fits are obtained.
However, in the latter case, when a log-normal distribution is
assumed, a notable and systematic bias toward more compact
structures is present. For this reason, we adopt the modestly
more complicated Gauss Q distribution.

Appendix C
Gaussian-prior-modified Levenberg–Marquardt Algorithm

To numerically maximize the likelihood during the recon-
struction and marginalization over station gain reconstructions

(Section 6.8), we employ a modified Levenberg–Marquardt
algorithm that includes Gaussian priors on the gains. We follow
Section 15 of Press et al. (1992), in which algorithms to
minimize a χ2 are presented. The appropriately modified
expression for the χ2, accounting for a Gaussian prior on the
parameters, is

˜ ( ) ( ) ( )åc c= +
S

g g
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2 2
2

2

where g, gA, and ΣA are all defined in Section 6.8, and the
additional term is the Gaussian prior directly. The associated
modified definitions of βA and αAB (defined in 15.5.8 of Press
et al. 1992) are
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The expression for aAB is simplified further in 15.5.11 of Press
et al. (1992), though we continue to adopt the above
modification. All other elements of the Levenberg–Marquardt
algorithm are unchanged.
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