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Abstract Practical engineering designs typically involve
many load cases. For topology optimization with many de-
terministic load cases, a large number of linear systems of
equations must be solved at each optimization step, leading
to an enormous computational cost. To address this chal-
lenge, we propose a mirror descent stochastic approxima-
tion (MD-SA) framework with step size strategies to solve
topology optimization problems with many load cases. This
method requires only one linear system per optimization
step. We reformulate the deterministic objective function and
gradient into stochastic ones through randomization. The
proposed MD-SA algorithm only requires low accuracy in
the stochastic gradient and thus uses only a single sample
per optimization step (i.e., the sample size is always one).
We reduce the number of linear systems to solve per step from
hundreds to one, thus drastically reducing the total computa-
tional cost. For example, for one of the design problems, the
total number of linear systems to solve and wall clock time
are reduced by factors of 223 and 22, respectively.

*Correspondence author.

1 Introduction

Mechanics-driven topology optimization is a powerful
tool that can generate materials and structures with uncon-
ventional and significantly improved performance in many
engineering applications [1-12]. Real-world engineering
designs, such as automobiles, high-rise buildings, and air-
planes, involve numerous load scenarios. For instance, the
challenge problem proposed in the 2019 topology optimiza-
tion roundtable is to design a suspension upright of a race car
subjected to 13 load cases, as shown in Fig. 1. A detailed so-
lution of this challenge problem provided by SIMULIA from
Dassault Systemes can be found in [13]. Thus, it is important
to account for many load cases in structural and mechanical
topology optimization.

In the literature, several formulations incorporating
many load cases have been explored [14—-16]. A popular
one is the weighted-sum formulation, which aims to mini-
mize a weighted sum of the objective functions from all the
load cases. Another common approach is the min-max for-
mulation, which minimizes the maximum objective function
among all load cases [16,17]. For all of these formulations, a
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Fig. 1. 2019 topology optimization roundtable challenge problem: design of a suspension upright. (a) Formula 1 race car and the location of
the design region. (b) Design domain and 13 load cases applied at the domain from cornering (6 cases) and breaking (7 cases) [13]. Dotted
arrows are the schematic illustrations of non-active load cases. A detailed solution of this challenge problem provided by SIMULIA from

Dassault Systémes can be found in [13].

major challenge is the computational cost because the solu-
tion of the state equation for each load case is required. For
large-scale problems with many load cases (e.g., hundreds or
more), this leads to overwhelming computational costs.

To address this challenge, Zhang et al. [18] employed a
randomized algorithm that drastically reduces computational
cost for topology optimization with many load cases. The pa-
per introduces randomization techniques to rewrite the deter-
ministic optimization formulation into an equivalent stochas-
tic one. A Sample Average Approximation (SAA)-based ap-
proach is then employed in [18] to estimate the correspond-
ing gradients. Widely used in various contexts [19-21], the
basic idea of the SAA approach is to generate a random
sample &,,....&, of size n, of the involved random vector
€, and consequently to approximate the original problem by
the sample average problem. Different from the conventional
SAA, which fixes the random sample throughout the opti-
mization process, the SAA-based algorithm in [ 18] re-selects
random samples at every optimization iteration.

The obtained stochastic gradient has to be combined
with an optimization algorithm. For example, the Optimality
Criteria (OC) method is used to update the vector of design
variables in [18]. As a result, the SAA approach requires
an adequate level of accuracy for the estimated problem (the
objective function and its gradient) and, thus, a few samples
(e.g. 5 or 6) are typically used. For the randomized formula-
tion of topology optimization considering many load cases,
n = 6 is typically sufficient to estimate the gradients when the
SAA-based approach is used. This leads to a greatly reduced
computational cost compared with the standard deterministic
approach.

Unlike the SAA method, the Stochastic Approximation
(SA) method is an algorithm designed to solve stochastic op-
timization problems, whose objective functions are given in
terms of expectations. The SA approach does not require
the estimated gradient to be accurate and it only requires

one sample to evaluate the estimated gradient at each opti-
mization iteration [22]. Because of this attractive property,
the SA method and its variants have been widely adopted in
many modern machine learning methods [23,24]. The per-
formance of the classical SA approach, however, is highly
sensitive to the choice of step size. To address this step size
dependence, a robust SA approach is proposed in [25], in
which “robustness” with respect to the step size is achieved
by averaging the iterates (vector of design variables) over a
certain window size. The Mirror Descent (MD) approach
originates from the work of Nemirovski and Yudin [26], and
the Mirror Descent SA (MD-SA) approach can be found
in [22] and is a generalization of the robust SA approach
(which is intrinsically linked to Euclidean space). Through
a general definition of a distance generating function [22],
the MD-SA allows for the adjustment of the algorithm to the
underlying geometry of the problem.

In this paper, we propose a tailored MD-SA algorithm
to efficiently solve randomized topology optimization prob-
lems under many load cases based on compliance minimiza-
tion. Tailored to the geometry of the underlying feasible de-
sign space, we introduce an entropic ¢; norm MD-SA algo-
rithm with the distance generating function being the entropy
function. This algorithm requires only low accuracy in the
stochastic gradient. Thus, we are able to use a single sample
(n = 1) regardless of the number of load cases considered.
To obtain effective step sizes and updates, we propose sev-
eral algorithmic strategies, including step size policy and re-
calibration, iterates averaging, and a damping scheme to im-
prove the performance and convergence of the proposed al-
gorithm. We also demonstrate both theoretically and numer-
ically that, compared with the robust SA approach based on
the Euclidean norm (the commonly used method), the pro-
posed entropic £; norm MD-SA algorithm exhibits robust-
ness in step size selection and better performance for various
problem sizes, particularly large-scale problems. We further
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compare the performance of an SAA variant [18] (with OC
update) with the proposed SA algorithm described in this
paper. Compared with the SAA-based algorithm, the pro-
posed algorithm is able to perform high-quality updates with
less accurate estimates of gradient and, as a result, leads to
fewer linear systems (i.e., 1 solve per step vs. 6 solves per
step) to solve. We also demonstrate that, when adopted in
conjunction with an iterative solver, the proposed MD-SA
algorithm allows for a significantly higher convergence tol-
erance in solving the state equation without influencing the
performance of the optimization, which typically cannot be
achieved with any deterministic algorithms.

The remainder of this paper is organized as follows.
Section 2 briefly reviews the deterministic and equivalent
randomized formulations for topology optimization with
many load cases. Section 3 reviews the general MD-SA
framework and presents an entropic version of MD-SA using
the /| norm. Section 4 proposes an entropic £; norm MD-SA
algorithm tailored for a randomized topology optimization
formulation. In Section 5, we introduce the step size strate-
gies, a damping scheme, the iterative solver, and discuss the
algorithmic parameters. Section 6 demonstrates numerical
examples in two and three dimensions, highlighting the effi-
ciency and effectiveness of the proposed algorithm, and Sec-
tion 7 provides concluding remarks.

2 Deterministic and randomized topology optimization

with many load cases

In this section, we briefly review the deterministic for-
mulation of topology optimization under many load cases
and its equivalent randomized form. Throughout this
work, we use compliance minimization with a weighted-
sum formulation, and we focus on the popular density-based
method.

2.1 Deterministic density-based topology optimization

with many load cases

For a given finite element mesh containing M elements
and N nodes in d dimensions, and assuming a total of m
design load cases f; € RN i =1,...,m, we denote by o
(0 >0,¥Y" o = 1) and u; € R the weight and dis-
placement vector associated with i-th load case f;, respec-
tively. The standard weighted-sum topology optimization
formulation for minimum end-compliance problems using
the density-based method takes the form [16, 18],

min {C(x) = 1:21 (XifiT“i(x)}

X

M v(é)f((’)

—V; =0,
= el (1)

0<x¥<1,e=1,...M,
with u;(x) = K(E (%)) "' f,i=1,...,m,
E') = Epin+ [ (Eo — Emin), e = 1,...,M.

In the above optimization problem, the objective function
C(-) is the weighted compliance, x € RY is the vector of
design variables, %@ is the design variable of element e,
K € RIN*dN is the global stiffness matrix, and dN is the num-
ber of degrees of freedom (DOF). In order to avoid checker-
board instability, we apply a density filter on the vector of
design variables to obtain the vector of filtered densities X
as X = Hx, where H is the filter matrix [27]. Furthermore,
the design problem is subject to a global volume constraint,
with the volume (area) of an element e denoted by v(©), the
prescribed volume fraction denoted by Vy, Q and |Q| being
the problem domain and area/volume of the domain, respec-
tively. To simplify the form of the volume constraint, we in-
troduce #(¢) = Zl}” H, jv(j ) and rewrite the volume constraint
as

f (€) e) 2 . o
[ A,

e=1

<I

Notice that 7(¢) is a constant that does not change throughout
the entire optimization process. We use the Solid Isotropic
Material with Penalization (SIMP) [28, 29] approach, Ep;,
and Ej are the elastic moduli for Ersatz and solid materials,
respectively, and p is a penalization parameter.

The gradient (sensitivity) VC,Ee) = ai(ce) of the objective

function is the weighted sum of the sensitivities from each
individual loading case:

(@ _ 17K
VG = i;oc,u, RO 3)

We remark that the optimization problem in formulation (1)
is convex when p = 1 [30]. With p > 1 the formulation be-
comes non-convex, and there is no guarantee that the opti-
mization algorithm converges to the global minimum.

2.2 Randomized topology optimization

In this subsection, we introduce a randomized topol-
ogy optimization formulation under many load cases that
is equivalent to the deterministic density-based one (1).
We first briefly review the Hutchinson trace estimator [31],
which is a popular stochastic sampling technique used to es-
timate the trace of a matrix. For alternative trace estimators
in the literature, the interested reader is referred to [20, 32]
and the references therein.

For a given matrix A € R?*9, the Hutchinson trace es-
timator uses a random vector, F, € R4, whose entries are in-
dependent and identically distributed (i.i.d.) and follow the
Rademacher distribution (41, each with probability 1/2 [33]
). It can be shown that the random vector & has the following
properties,

E(E)=0and E (ggT) ~1, &)
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where 1, is the g x g identity matrix. It follows then that

E (§TA§) = trace (A). 3)

Using this concept, the following subsections introduce an
equivalent randomized topology optimization formulation
for the deterministic topology optimization formulation un-
der many load cases. In the framework of discretized param-
eter estimation problems with PDE constraints, a random-
ized algorithm based on (5) was used in [19].

2.2.1 Randomized formulation for the density-based
method

Consider the standard topology optimization formula-
tion in (1) with m load cases. We introduce the weighted
load and displacement matrices F,U € R¥*"_defined as

= [Voufis Vo f] and U = [0 w1, .. /O ],

respectively. With these weighted matrices, we can rewrite
the equilibrium equations as U = K ~'F and, consequently,
the end-compliance and its sensitivities as

m
x) = Z (xl-fl-Tu,- = trace (FTU) = trace (FTK_IF) , (6)
i=1

oK
T
Zoc, u; 8 — trace (U e U>
9K )
1

_ T pr— 1
= trace(FK @ F)

Furthermore, by introducing the random vector & and
applying the Hutchinson trace estimator, we define the ran-
domized topology optimization for the density-based method
under m load cases as

min {C (x) = E[(FE)" K(E(3)) "' (FE)] }
M 5(e) (o)
St;w—‘/f:o, (8)

0<x¥<1,e=1,..M
with E(©) =

?

Emm+[ 7 )]p(EO*Emin), e=1,...M.

Again, X = Hx. Accordingly, the sensitivity of the objective
function in the above randomized formulation is also given

in expectation form as

VC,(CB) = —trace (FTKl aili -1 >

o LK ©)

5|y’ (g

We remark that, because this randomized formulation (8) is
equivalent to the standard one (1), it is convex when p = 1
and non-convex when p > 1, where p is the penalty parame-
ter in the SIMP approach.

We also remark that, in recent work [18], a variant of
the SAA algorithm is proposed where the compliance and
its gradient in (8) are estimated as the sample average over
n sampled load cases. For the density-based approach, the
estimated compliance and its gradient are

1 n
O (x )=, Ll (F&)'K(x)~' (F&)  (10)
and
1 & oK
(VL) 72 (FE) K = "(FE&,). (11)

A standard deterministic optimization algorithm (i.e., the OC
method) is then used to compute the design variable updates
based on the estimated gradient. Thus, a sufficiently accurate
gradient estimation is needed, and it is shown in [18] that a
sample size of n ~ 6 provides this accuracy in the consid-
ered applications. By doing so, the number of linear system
solves at each optimization iteration is reduced from m to
n. In the present paper, we take a conceptually different ap-
proach. Instead of estimating the gradient using a few sam-
ples and then performing an optimization update using the
standard algorithm, we treat the randomized formulation (8)
as a stochastic optimization problem, and use SA algorithms
to compute a design variable update. As a result, as shown
below, the accuracy requirement on the gradient estimation
is relaxed, and only one sample (n = 1) is needed at each
optimization step.

For the remainder of this paper, we use the following
notation. For a given vector x € R”, we denote by |x||,
its £, norm. 1In particular, |[x|l2 = vVxTx denotes the Eu-
clidean norm, and |||« = max {|x")], ..., |x(")|} denotes the
max-norm (infinity norm). In addition, we denote by Iy the
metric projection operator onto a closed convex set X C R”,

I (x) = argmin|lx —y||2. (12)
yex
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3 " Miirror deéscent stochastic approximation (MD-SA)

This section presents the mirror descent stochastic ap-
proximation approach for a general stochastic optimization
problem. We first introduce the general framework of the
MD-SA. We then restrict our attention to a version of the
MD-SA algorithms, the Entropic MD-SA with the ¢; norm,
which is well-suited for our problem. Another version—the
Euclidean MD-SA with the ¢, norm and the comparison be-
tween these two algorithms are provided in the Appendices
and Example 1.

3.1 General framework

As a direct descendant of the stochastic mirror descent
method [26], the mirror descent SA algorithm, developed
in [22], is an effective algorithm to solve stochastic optimiza-
tion problems of the following form:

min {¢ (x) =E[® (x.§)] }. (13)

xeX

Here the feasible set X C R” is assumed to be a nonempty
bounded closed convex set, and § is a random vector with
a given probability distribution. Suppose that the differenti-
ation and expectation operators in the objective function of
(13) commute (this holds under mild regularity conditions).
Then, we can write the gradient of ¢ (x) as

Vo (x) =E[G(x,8)], (14)

where G (x,§) = V, @ (x,&). Note that if @ (x,&) is convex
in x, then the expected value function ¢ (x) is also convex.
In that case, formula (14) also holds for the corresponding
subgradients.

Note that the gradient of the objective function lies in
the dual of the feasible space of the design variables. The
key idea of the MD-SA algorithm is to obtain the updates of
the vector of design variables by mapping the gradient de-
scent into the dual of the primal space. At each optimization
step, the mirror descent SA uses a single realization of the
random vector &, independent of the previous iterations. The
stochastic gradient G (x,&), at the current vector of design
variables, is computed and the algorithm takes a step in the
descent direction of the stochastic gradient in the dual space.
Finally, the update of the vector of design variables is ob-
tained by “mirroring” the results back into the primal space
(i.e., the feasible space of the optimization problem). The
mirror descent SA algorithm is a generalization of the ro-
bust SA algorithm. For further details, the reader is referred
to [22].

We will now describe the general framework of the
MD-SA. For any norm || - ||, its dual norm is defined as
x|« = supHyHSIyTx. A function ® : X — R is said to be
a distance-generating function modulus o > 0 with respect
to a norm || - ||, if ®(+) is convex and continuous on X, con-

tinuously differentiable on the relative interior of X, and

(x' —x)T (Vo (x') — Vo (x)) > of|x' —x||, forall x,x €X.
15)

Note that (15) implies that o is strongly convex. The corre-

sponding prox-function V (-, -) is defined as follows:

V(x,2) = o) - [0 + Vo) (z-x)].  (16)

Here z is a point in the feasible space, and V (x, -) is nonnega-
tive and strongly convex with respect to the chosen norm || - ||.
The function V(-,-) is also known as the Bergman distance
generated by ®.

Based on the prox-function V(x,z), the prox-mapping
Py : R" — X is defined as follows:

_ . T(,
Px(y)—arglgiel)?{y (z x)—I—V(x,z)}. (17)

Because of the strong convexity of ®, the minimizer
Z* (x,y) = Pc(y) is unique. Note that V(x, z) serves as a reg-
ularizer when mapping the point y (representing the gradient
information in the dual space) to the primal space to obtain
z, and x is the current vector of design variables. One ex-
ample of a distance-generating function is ® (x) = %xTx (see
7). An important advantage of the MD algorithm is that it
is possible to adjust the distance-generating function to the
geometry of the set X (cf. [22]). The prox-mapping in this
paper is defined in terms of the feasible set of the considered
optimization problem (8).

Having introduced the concept of the prox-function and
prox-mapping, the general update of the MD-SA at the cur-
rent iterate xy, is

X1 = Py, (VG (21, &), (18)

where 7, is a chosen step size and &, is a sample of the
random vector €. A convergence analysis and convergence
bounds for the so-defined MD-SA are provided in [22] for

convex stochastic optimization problems. Our numerical

studies, provided in Section 6, indicate that the MD-SA
method works for non-convex problems (i.e. (8) with p > 1)
as well.

The recurrence (18) provides a general iteration frame-
work for MD-SA. By selecting the norm || - || and various
forms of distance generating functions , different forms of
design update schemes can be obtained. Appropriate choices
of the norm and distance generating function for a given ap-
plication can substantially improve convergence by adjust-
ing the geometry to the specific constraints. In the following
section, the MD-SA algorithm with the ¢; norm will be pre-
sented.
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3.Z “Entropic viD-SA with /; norm

The MD-SA method with /1 norm has been studied in
the context of linear programming and online learning, e.g.,
[34]. The dual of the ¢; norm is the fw (|| - ||) norm. A
distance generating function for the /; norm MD-SA is the
entropy function given by (cf. [22])

19)

o
I

I
™=
X,\

this leads to the entropic ¢; norm MD-SA. Based on equation
(19), the prox-function V (-, -) can be written as

M Z(e)
= Z 2 1n o +x0 -z 20
e=1 xi

and the corresponding prox-mapping

Px(y) =

alglien(2)

1
(2D
When the feasible set is the standard simplex,

M
X—{xERM: Zx<e>:1,x(e)20, e=1,...M»,

e=1

a closed form expression of the prox-function is

(@)

(e)
re 1L, M. (23)

) -+ ¢~ _
[PX(y)} Mlx(l) _y(j)? e=1 ...,

Thus the update x,(il = [ . (TG (x1, &) ] for each com-

ponent in the entropic £; norm MD-SA can be written as

xl@ e*YkG(xk@k )

e=1,...M. (24)
ZM 1) =16 (x. &)Y

An important question for the MD-SA method is the choice
of the step sizes Yi; we will introduce the strategies for step
size selection in Section 5.1.

4 Randomized topology optimization with an entropic
£; norm MD-SA update algorithm
In this section, we propose an MD-SA algorithm tai-
lored to efficiently solve the randomized topology optimiza-
tion formulation (8). As it is tailored to the geometry of the
feasible design space, we use the entropic ¢; norm MD-SA

algorithm described in Section 3.2. Furthermore, in the de-
rived update algorithm, we introduce a move limit for each
design variable at each optimization step that allows us to ef-
fectively incorporate the damping scheme described in Sec-
tion 5.2.

According to (8), the feasible set for the design variable
vector x is given by

M 5(e) ()
v¥x
Xy ={xcRM: —v;=0, 0<xl¥<1,
X { Z’l |Q| f > >
e=1,...M}.

(25)
At iteration k with design variable vector xy, the compliance
estimator C* takes the form

C (xi) = (FE,)" K (x) " (FE,) (26)

and the stochastic gradient G(xx,&,), using a single sample
&, is given in component form as

) K 2K ko (rey).

CSAY(e) —
(ch ) - x (e)
(27)

Gl (x, &) =

Here, we map the vector of design variables to a scaled
feasible set (which is the standard simplex), compute the up-
dated design variable vector using the proposed entropic ¢}
norm MD-SA update, and then map the updated design vari-
able vector back to the original feasible set. Following this
procedure, we introduce X as the scaled design variable vec-

tor, whose e-th component is given by 7o = ﬁ‘gﬁ:) The
scaled feasible set }?x for X is defined as
% RV Y HO 1, o< <
={xeRM: V9 =1 o<i#d<_—),
’ P Qv (@8)
e=1,...M}.

Accordingly, the stochastic gradient with respect to X, de-
noted by G(%,&;), is also scaled in component form as

ax Qv
a ka&k | | f

G (3, 8;) = G (x, &) (29)

Given the scaled feasible set and scaled design variable
vector, the prox-mapping generated by the entropy function
(19) takes the form

Px(y) = argmin
zeXy

- l) <Z<€) —i<e>) PO (ijﬂ } G0
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and the entropic ¢; norm MD-SA update then is given by
i1 = P (WG (%, &) GD

Comparing the above expression to (22), we notice that
the scaled set X, includes an additional upper bound for each

design variable, £¢) < ite Therefore, the closed-form ex-

QV;
pression (24) cannot be ‘al‘)phed directly, because the updated
variables could violate their upper bounds. Thus, an iterative
formula is derived here to solve for X, in the constrained
optimization problem (30)-(31). To achieve this, we first in-
troduce a Lagrange multiplier M for the equality constraint in

the definition of X and form the Lagrangian function

(32)
where we assume ¥ and X are given vectors in the optimiza-
tion. The optimality condition of (32) with respect to z(¢)
states that

oL, - s(e) -
@) =39t o | vA=0, (33
© @
which gives
Ry = 57 e (34)

By introducing fi = et (notice that fi > 0), we can simplify
the above expression as

29 () = e (35)

and incorporating the upper bound (28) into equation (34)
gives

v

5(e)
) () — mi ole) 7
29 (u) mm<|gv N1 ) (36)

The stationary condition of (32) with respect to ji yields,

Y M
oL _aL i: Y 1=0. (37

e=1

Observe that (37) is monotonic with respect &t and can be
solved by various methods, e.g., the bisection method that is

used in this work. Denote fi; as the solution of (37) at step k.
By plugging in i}, step size yk, and the scaled stochastic gra-
dient (29), the updated (scaled) design variable vector Xy
takes the form,

=€) _ e

Tt =29(f) = min

|£‘72(e‘)/ ik ]((>e*YkG (%i8r0) ] . (38)

Once X is obtained, the last step in the proposed en-
tropic £; norm MD-SA algorithm is to map it back to x| in
the original feasible set as

L0 _19Vr oo
17 o) Ykt

| = min [1“[,]*()(1({) Gl (3, &p) . (39

The update formula (39) is the final expression of the en-
tropic #; norm MD-SA algorithm for the randomized topol-
ogy optimization problem. Note that the gradient informa-
tion in (39) is accessed through an estimate, G(xy,&;), b
using a single sample &,. The entropic ¢;-norm MD-SA
algorithm (39) has advantages over standard gradient-based
algorithms (e.g., OC and MMA) for stochastic optimization
problems. Using a standard gradient-based update algorithm
for a stochastic optimization problem requires moderate ac-
curacy of the estimated gradient, which leads to an increase
of the sample size required. On the other hand, the MD-SA
update in (39) only needs low accuracy in the stochastic gra-
dient, and thus only needs a single sample, meaning the sam-
ple size is always one. If the required gradient information
is computationally expensive, the entropic ¢; norm MD-SA
algorithm is likely to be preferable compared with standard
gradient-based algorithms.

Furthermore, for the structural optimization problems
solved by the entropic ¢; norm MD-SA algorithm in this pa-
per, we propose a step size strategy with a damping scheme
that creates a decaying step size set [18], which fits well with
the structural optimization framework and stochastic algo-
rithms. The proposed step size strategy and damping scheme
is discussed in detail in Section 5. To incorporate the damp-
ing scheme, we introduce an additional move limit, denoted
by move € (0,1], to the vector of design variables in the en-
tropic £; norm MD-SA update. At iteration k with design
variable vector x;, the move limit modifies the lower bound
(LBy) and upper bound (UBy) of the update of the vector of
design variables as follows,

LB,({e) = max{x,(f> —move,0} and 40)
UB,((e) = min{x,(f) +move, 1}.

Incorporating the modified LBy and U By, (39) is changed to

x,(f_gl = max {LB,(f)7min {UB,(CE),/Zl,tx,(f)e“/ké(e)(ik’ék) )
(41)
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‘We note that the specific form of update (39) is based on
the feasible space defined by a simplex and the fact that the
linear volume constraint is always active, the latter is always
the case for compliance minimization problems. No specific
form of the objective function is assumed. Thus, the update
formula applies to other objective functions in forms of ex-
pectation of a random function, with linear (in terms of de-
sign variables) equality and active inequality constraints. For
other constraint functions, one needs to adjust the projection
(e.g., norm and distance generating function) of computed
stochastic gradients to the geometry of the feasible space,
which is determined by the specific constraint functions. For
a detail discussion, we refer to [22] and [35].

5 Algorithmic strategies for randomized optimization

The choice of step size strategy is essential for SA al-
gorithms. In this section, we propose a step size strategy
with a damping scheme. The main idea is to calculate and
re-calibrate step sizes in different stages of the optimization,
and to reduce the move limit when the average progress per
step drops below a tolerance. Furthermore, to improve the
performance of the proposed algorithm, we introduce a tech-
nique that averages the history of design variable updates and
a re-calibration strategy for step size. Finally, we review an
iterative solver with recycling for solving the large linear sys-
tems to further reduce the computational cost.

5.1 Step size strategy

In SA algorithms, a key step is to determine the step
size, Vi, of the update (39). Thus, this subsection presents
a formula to determine the step size Y;. In general, there
are two types of step size strategies, constant and varying
[22]. The constant step size policy assumes a priori a total
number of iterations, the step size is constant throughout the
optimization, and the algorithm always ends at the prescribed
maximum step. For the varying step size policy, the step size
is a function of the iteration number and it decreases over the
optimization process.

In [22], a constant step size is discussed for convex ob-
jective functions. The main idea is to calculate a step size
that minimizes the error estimate of the stochastic optimiza-
tion solutions. A formula for the constant step size policy is
given as,

0v2D,
o= 0ox gy 42)
B* VNmax

where 0 > 0 is a scaling parameter, Ny, is the number of
allowable iterations, B, is an estimate of an upper bound on
the stochastic gradient norm, i.e.,

B> > E[||G(x.8)|[2], )

and D, x is the w-diameter of X defined as

1
2
Dax = [maxo(d) ~mipol@)| . @4

We adopt (42) to calculate the step size. In our case,
Dy x = v/logM, and we take the scaling parameter 6 = 1.
Because the bound B, for the stochastic gradient is unknown,
we use the /. norm of the estimated gradient calculated by
the sample average of a random sample with size n = 6 at the
first optimization step, namely, B, = 1/n||Y", G(x0,&,)|l...
where xg stands for the initial guess for the vector of design
variables. This gives for the step size

\/2loeM
vo= Yo 1, N, (45)

k — )
B/Nmax

which is used in the entropic ¢; norm MD-SA.

5.2 Proposed damping scheme

Using the constant step size policy (45), the optimiza-
tion terminates at the prescribed total number of steps, Nmax-
To promote convergence before the maximum number of it-
erations is reached, we incorporate a damping scheme based
on the one introduced in [18], which gradually reduces the
move limit of the updates. The advantage of using the damp-
ing scheme is that it allows us to monitor the progress of the
update throughout the optimization and damp the update ap-
propriately.

Inspired by simulated annealing [36, 37], the damp-
ing scheme proposed in [18] evaluates the average progress
per step and reduces the move limit whenever the average
progress drops below a tolerance. The effective step ratio Ry
for iteration k is defined as:

TL||xk_x(k—ND+1)||
[l — Xk 1|

Ry = , (46)

where Np is the sample window size (see below). This effec-
tive step ratio serves as an indicator of the optimizer’s sta-
tus, i.e., if the ratio is relatively large, then the optimizer is
making progress; and if the ratio is relatively small (typically
smaller than 0.1), then the steps are not effective.

The damping scheme works as follows: once Ry is be-
low a prescribed tolerance, i.e., Ry < Tp, we reduce the al-
lowable move limit (i.e. move) (40) by a prescribed scale
factor k, namely move = move /K. To avoid damping the up-
date too early because of insufficient history data, we do not
damp the update in the first Np optimization steps, where
Np is a chosen parameter. The damping scheme evaluates
the average progress of the optimizer to determine damping,
thus the window size for the damping scheme Np needs to be
large enough to have a conservative damping and a smooth
convergence. However, as the window size increases, we av-
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erage over more steps. If Np is too large, it slows down con-
vergence because the damping algorithm adapts more slowly.
In practice, we have found Np = 100 is sufficient for prob-
lems containing more than one thousand design variables.

5.3 Averaging the iterates

The classical SA and MD-SA algorithms, going back
to [38], are sensitive to the step size and may perform poorly
in practice. In order to make the SA (and MD-SA) algorithm
(more) robust, it was suggested in [39,40] to use larger step
sizes and to weighted average the resulting iterates over a
chosen window (even earlier this was discussed in [26]). If
we denote the window size as Ny, then current iteration k is
the end of the window and step j = k — Na + 1 is the start of
the window. The weighted averaged design variable vector
at step k, denoted as Xi, is calculated as follows,

(47)

where 7; is the step size in iteration ¢ and v; is the associated
weight. In case of the constant step size strategy, we have
that &] = NLA Zf:jx,.

In this algorithm, the weighted averaged design vari-
able vector, JAC‘]i, represents the current solution. As discussed
in [22], the weighted averaged design variable vector con-
verges to an optimal solution for convex stochastic optimiza-
tion problems, thus we use the weighted averaged design
variable vector to determine the current estimate of the opti-
mal objective value and the optimized structure. On the other
hand, the design variable vector xj is used in computing the
stochastic gradient and performing the design variable up-
dates, as suggested in [22]. The window size for averag-
ing solutions (N ) directly determines the current solution,
thus it needs to be smaller than Np so as to achieve faster
progress, because larger N leads to slow progress during
optimization. In practice, we have found Ny = 50 is suffi-
cient for problems containing more than one thousand design
variables.

5.4 Re-calibration of step size

Because the (constant) step size is evaluated based on
the initial guess at the start of the algorithm and kept constant
thereafter, it may perform poorly at later iterations. There-
fore, we propose a step size re-calibration scheme which re-
evaluates the step size periodically during the optimization
procedure. The prescribed parameter calibration defines the
number of times we perform the re-calibration. In each re-
calibration, we take the final X; (after the optimization is con-
verged) as the initial guess xo and restart the optimization
process by re-calculating the step size according to (45) with
an updated B, and x( (replaced by %y).

5.5 TIterative solver: MINRES with recycling

Although the number of linear systems to solve is dras-
tically reduced by the MD-SA method, we still have a long
sequence of large linear systems to solve, with the sys-
tems changing only modestly from one optimization step
to the next. Hence, we use a preconditioned iterative
method with recycling, the recycling MINRES (RMINRES)
method [41-43], which was derived from the MINRES
method [44,45]. RMINRES uses approximate invariant sub-
spaces computed during previous linear solves to acceler-
ate the convergence for subsequent linear systems. Recy-
cling an approximate invariant subspace effectively removes
the corresponding eigenvalues from the spectrum of the ma-
trix over the resulting Krylov space [42,46]. In particu-
lar, if we remove the largest or smallest eigenvalues for a
symmetric, positive definite matrix in this fashion, this im-
proves the theoretical convergence bounds of the MINRES
method [45]. The most common choice, also used here, is
to effectively remove the smallest eigenvalues by approx-
imating the corresponding invariant subspace. Compared
with MINRES or with the method of conjugate gradients
(CG) [47,48] this generally leads to substantially faster con-
vergence [41-43,49].

We outline the main steps in the RMINRES algorithm
for solving the linear system Ku = f, in a sequence of linear
systems. For details, including a MATLAB® code, see [42,
43].

Let the columns of the matrix W € RNk span the ap-
proximate invariant subspace that we recycle from previous
linear systems, and assume that W has been computed such
that Y = KW has orthonormal columns, that is, Y'Y =1 (the
identity matrix). Given an initial guess, i, and its residual,
#o = f — Kiity, we compute ug = itg + WY' ¥y and the up-
dated residual ro = #o — YY” ¥, set vi = ro/||ro||2, and we
carry out a Lanczos iteration with additional orthogonaliza-
tion against Y,

vt = Kvi —Yby — vty 1,
(48)
Vipitjr1,j =Kvj=Ybj—vjt;j— v itj1

where bj = YTKVj, tj; = VJT~KVJ', and ti—1j = tjj—1 =
||KVJ;1 — ij,1 —Vj_1tj—1,j-1 — Vj,2t1;27j71||2 was com-
puted in the previous iteration. At the mth iteration, with
Vil = Vi v2 ... V] and V2 Vi = Ly, By =
[by by ... byl,and T, € R +1)xm 3 tridiagonal matrix with
the 1; ; above as coefficients and its leading m x m part sym-
metric, we have

KVm - YBm + Vm+11m~ (49)
Minimizing the residual for a solution of the form

Up = ug+Wz+Vyy, (50)
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gives

rm = f—Kuy— KWz—KV,y (&29)]
=ro—Yz— (YBm + Vm-HIm)y
= Vimri(el|lroll2—T,,y) = Y(z+Bny).  (52)

Since the matrix [Y V4] has all orthonormal columns, min-
imizing ||r,,||> involves (i) solving for y in exactly the same
way as in standard MINRES, which can be done efficiently
with a short term recurrence, (ii) choosing z = —B,,y, and
(iii) updating u,, according to (50) at the end of the linear
solve.

The implementation details, including updating the ma-
trix W that defines the recycle space for subsequent linear
systems, are outside the scope of this paper; for this we refer
to [42,43].

In addition, as the MD-SA algorithm using a single sam-
ple will only provide gradient estimates with low accuracy,
there is no need to solve the linear systems very accurately.
Hence, we can reduce the computational cost further by us-
ing a low relative convergence tolerance. We provide results
of these experiments for a 3D design in Section 6.3.

5.6 Entropic /; norm MD-SA algorithm

The proposed entropic ¢; norm MD-SA algorithm in-
cluding algorithmic parameters for randomized topology op-
timization is summarized in Algorithm 1.

Algorithm 1 Randomized topology optimization using en-
tropic £; norm MD-SA
1: Initialize: xo, Nmax, Topr, To, Np, move, calibration
2: for k=0,1,...,Njmax do
3: if £ = 0 then

4: Evaluate vy, based on (45)
5: end if
6: Select &, and evaluate G (xy, &)
7 Compute x; based on (41)
8: Calculate Xy based on (47)
9: Evaluate the effective step ratio Ry,
10: if R, < tp and k > Np then
11: move = move/x
12: end if
13: if ||.\A¢k+1 —.fkaoo < Topt then
14: quit
15: end if
16: end for
17: if calibration > 0 then
18: calibration = calibration — 1
19: X0 < X1 and goto step 2
20: else
21: Evaluate final compliance C(%;1) and plot final
topology
22: end if

6 Numerical examples

In this section, we present several numerical examples
in both two and three dimensions to demonstrate the effec-
tiveness and the computational efficiency of the proposed en-
tropic £; norm MD-SA algorithm for topology optimization.

The first example compares the entropic #; norm MD-
SA with the ¢, norm MD-SA (see Appendix A). The second
example compares the entropic £; norm MD-SA and the ran-
domized algorithm proposed in [18], which is a variant of
the SAA algorithm, coupled with a common optimization
update algorithm (i.e., OC). In the last example, we use a
3D problem to demonstrate the use of an iterative method
with a relatively low convergence tolerance for the entropic
£; norm MD-SA algorithm to further reduce the computa-
tional cost. In all examples, we also compare the results
from these stochastic algorithms with those from the stan-
dard deterministic algorithm. The examples are summarized
in Table 1.

To quantify the computational cost of the standard and
stochastic optimization algorithms, we define the total num-
ber of linear systems of equations to solve in the optimization
process as Nyolve = M X Nyep for the standard deterministic
approach, and Ngolve = 1 X Nyep for stochastic algorithms,
where Ngep is the number of optimization steps. This is a
measure of the computational efficiency of the optimization
formulation. For large 3D systems, where iterative solvers
are required, Nyolve 1S @ good proxy for computational cost.
In addition, we include the wall clock time of the entire
optimization process for comparison. All the examples are
performed on a machine with an Intel(R) Xeon(R) CPU E5-
1660 v3, 3.00 GHz processor and 256 GB of RAM, running
Matlab R2018b. The optimization is considered converged
if the current step size (bounded by the move limit) is below
a prescribed tolerance Top for the optimization process, that
is, ||xr — xp 1 Hm < Topt-

We have incorporated the proposed MD-SA algorithm
into the computer program PolyTop [50]. All the prob-
lems are initialized as follows. The initial guess is taken
as x\¥) = V;. The convergence tolerance is Top = 102; the
initial move limit is chosen as move = 0.1. The maximum
number of optimization steps for the standard deterministic

approach is N, = 400.

The entropic ¢; norm MD-SA algorithm uses the follow-
ing parameters. The sample size is chosen to be n = 1, the
window size to weighted average iterates is Ny = 50; for step
size calculation, 6 = 1, Ny.x = 400, the initial move limit is
move = 0.1; the calibration parameter is calibration = 1; the
sample size to estimate the initial gradient for stepsize cal-
culation is 6. In the damping scheme, the window size is
Np = 100, and we use a step size reduction factor ¥ = 2,
and the tolerance for the damping Tp = 0.05. For the {»
norm MD-SA algorithm, 6 = 50 is used for step size cal-
culation, all other parameters are the same as for the entropic
£1 norm MD-SA algorithm. For the SAA-based randomized
algorithm, the sample size is chosen to be n = 6, other pa-
rameters are as follows: move = 0.1, Np = 100, ¥ = 2, and
Tp = 0.05.
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Let'x and xg, represent the optimal solutions obtained
from the standard formulation in (1) and the MD-SA al-
gorithms, respectively. For the stochastic algorithms, we
present the true values of the objective function C(x3,) at the

solution x5, (instead of its estimator s (x$4)) and compare
these with the ones obtained from the standard algorithm,
C(x*), to evaluate the quality of the solutions. The relative
difference is defined as AC = (C(x§,) — C(x*)) /C(x*). To
distinguish between different stochastic algorithms, we use
X7 _sa» X1o_ga» and x5, 4 to denote the optimal solutions
from the entropic ¢/; norm MD-SA algorithm, ¢, norm MD-
SA algorithm, and the SAA-based randomized algorithm, re-
spectively.

6.1 Example 1: 2D disk with 200 load cases

In this example, we demonstrate the computational ef-
ficiency as well as the effectiveness of two MD-SA algo-
rithms, entropic ¢; norm and ¢, norm (Euclidean) MD-SA,
for various problem sizes. We show that, as the problem size
increases, the entropic /1 norm MD-SA performs better than
the /, norm MD-SA.

Here, we consider a 2D disk whose design domain,
boundary conditions, and passive zone (non-designable
solid) are shown in Fig. 2a. The domain is discretized with
continuum polygonal elements [50]. We enforce the sym-
metry of the density distribution in both horizontal and ver-
tical axes. A total of 200 linearly independent and equally
weighted load cases are applied at the outer circle of the do-
main (Figure 2b). For this design example, the active volume
fraction (excluding the passive zone) is Vy = 0.25, the radius
of the density filter is chosen as 0.05, and the penalization
factor, p, is taken to be 3.0. Moreover, to demonstrate the dif-
ference between designs considering a combined single load
case and multiple load cases, we include the case where all
the 200 loads are applied simultaneously (i.e., 1 deterministic
load case with all the 200 loads acting together). The corre-
sponding optimized topology is shown in Fig. 3(a), which is
distinct from all other designs which consider 200 load cases
(Figs. 3(b)-(d)).

To investigate the performance and computational effi-
ciency of the entropic £; norm MD-SA (n = 1) and the />
norm MD-SA (n = 1) algorithms versus the standard de-
terministic approach (m = 200), we consider four problem
sizes: M = 10,000;40,000;70,000;and 100,000. The op-
timized topologies (from representative trials) obtained by
these three methods (the standard deterministic approach, the
entropic ¢ norm MD-SA, and the /, norm MD-SA) for prob-
lem size M = 40,000 are shown in Figs. 3 (b)-(d). For this
problem size, the entropic £; norm MD-SA algorithm leads
to a topology with a similar (true) compliance value as the
standard deterministic formulation. The ¢, norm MD-SA al-
gorithm, on the other hand, produces a final topology with a
slightly higher (true) compliance value.

In order to evaluate the stability of the stochastic al-
gorithms, we run each of the MD-SA algorithms (the en-
tropic /1 norm MD-SA and the ¢, norm MD-SA) 50 times
and present the statistics of the results in Table 2 (this is not

needed in practice). “Mean” and “Dev” stand for the mean
and the standard deviation, over 50 trials, of the objective
function value evaluated at the obtained solutions. Note that
one trial is one run of the numerical experiment. For the stan-
dard deterministic approach, we present two sets of results
in Table 2. The first set of results is obtained, if we stop the
optimization when ||x; — Xx—1 [|ee < Topt = 1072 or when the
number of optimization steps reaches the given maximum,
Npax = 400. This strategy is also used in Examples 2 and 3.
The second set of results is obtained, if we terminate the op-
timization only when Top = 1072 is reached. In the compari-
son with other algorithms, we mainly use the results from the
first strategy in the standard deterministic approach, because
we also use Ny;qx = 400 for the MD-SA algorithms.

Figures 4 and 5 depict the final (true) compliances ver-
sus the corresponding number of design variables for the en-
tropic ¢; norm MD-SA (for 50 trials) and the ¢, norm MD-
SA (for 50 trials) algorithms, respectively. In these figures,
the final compliances from the standard deterministic algo-
rithm with 200 load cases are included for comparison. Rep-
resentative optimized topologies obtained from the entropic
£; norm and ¢, norm MD-SA algorithms are provided as
well.

The entropic ¢; norm MD-SA algorithm, while offer-
ing similar solutions (in terms of the objective function val-
ues) to the standard approach (—7.60%, —1.06%, 0.14%,
and 1.41% relative differences, respectively for M = 10,000,
M = 40,000, M = 70,000, and M = 100,000), drastically re-
duces the computational cost for all the problem sizes con-
sidered. As shown in Table 2, for the largest problem (M =
100,000), the number of linear systems to solve (Nyjye) on
average is 223 times smaller than for the standard determin-
istic algorithm (i.e., 358 solves vs. 80,000 solves), and the
total wall clock time is 22 times lower (i.e., 20 minutes vs.
7.5 hours). The ¢, norm MD-SA algorithm provides com-
parable solutions with the standard approach for the smallest
problem size (M = 10,000), as shown in Fig. 5. However, as
the problem size increases, the performance of the ¢, norm
MD-SA algorithm deteriorates.

Moreover, the comparison between the two MD-SA al-
gorithms suggests that the entropic ¢; norm algorithm is
more accurate than the ¢, norm algorithm for larger prob-
lems. This observation confirms the theoretical comparison
of error estimates between the two MD-SA algorithms in Ap-
pendix B. It should also be noted that, while the numbers of
optimization steps are similar in both MD-SA algorithms,
the wall clock time of the entropic #; norm MD-SA algo-
rithm on average is 8% less than that of the ¢, norm one for
all the problem sizes considered. The slight difference in
wall clock time comes from the different ways to compute
the projections ((30) vs (55)) in the two MD-SA algorithms.

6.2 Example 2: Two-dimensional bracing design with
102 load cases

In this example, we aim to compare the proposed en-

tropic ¢; norm MD-SA algorithm (n = 1) in (41) with the

standard deterministic algorithm (m = 102) in (1) with OC
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Table 1. Brief description of the numerical examples.

Example Dimension Description

Feature

1 2D

2 2D

3 3D

Disk design with 200 load cases

Bracing design with 102 load cases

Bridge design with 441 load cases

Comparison between deterministic, en-
tropic ¢; norm MD-SA and ¢, norm
MD-SA algorithms

Comparison among standard determin-
istic formulation with OC, entropic ¢,
norm MD-SA algorithm, and SAA-
based randomized algorithm with OC

Combination of entropic /; norm MD-
SA with RMINRES iterative solver

load case 2

load case 1

load case 199 load case 200

Fig. 2. Example 1. 2D disk with (a) the domain geometry and non-designable layer, Di, = 0.2 and Doy = 1.0; the domain is discretized
by a mesh with continuum polygonal elements (mesh sizes: 10,000; 40,000; 70,000; and 100,000); (b) a total of 200 equal-weighted load
cases are applied at the outer boundary of the domain (the dotted arrows are the schematic illustrations of non-active load cases).

update and with the randomized algorithm (n = 6) proposed
by Zhang et al [18] (which uses a variant of the SAA tech-
nique with OC update). The design domain, boundary con-
ditions, and the passive zone (non-designable solid region)
are shown in Figure 6a. A total of 102 linearly independent
and equally weighted load cases are applied on the two sides
of the box (Figure 6b). The problem domain is modeled us-
ing 153,600 continuum quadrilateral (Q4) elements, which
gives 309,442 degrees of freedom (DOFs). For this exam-
ple, the active volume fraction (excluding the passive zone)
is Vy = 0.25, the radius of the linear density filter is 3, and
the penalization factor, p, is taken to be 3.0.

First, we perform topology optimization using the stan-
dard deterministic formulation (1) with OC update scheme.
The final topology obtained is shown in Fig. 7(c), which
has an objective function value of C(x*) = 50.65. The fi-
nal topology is obtained with 400 optimization steps (max-
imum number of optimization steps), and in each optimiza-
tion step we solve 102 linear systems (corresponding to 102
load cases), which leads to a total of N, = 40,800 solves.

Next, we use the entropic ¢1-norm MD-SA algorithm
with the update proposed in (41), which uses a single sample
to estimate the gradient (reselected every iteration), and the
SAA-based randomized algorithm with the OC update algo-
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a b

Deterministic
m=1,C=2789

Deterministic
m =200, C=10.20

42 norm MD-SA
n=1,C=1046

CEntropic £1 norm MD-SA
n=1,C=10.12

Fig. 3. Results for Example 1 with 40,000 design variables. The optimized topologies obtained by (a) the standard deterministic approach
with 1 load case and m = 1 (i.e., all 200 loads are applied simultaneously); (b) the standard deterministic approach with 200 load cases and
m = 200 (each of 200 loads is applied independently); (c) the proposed entropic 1 norm MD-SA with n = 1 (one representative trial); (d)

the £> norm MD-SA with n = 1 (one representative trial).

Entropic £1 norm MD-SA final compliances

11.5
O c(ps ) Entropic £1 MD-SA
O c(p*) Deterministic
11.0 4 o
o
average
o107 g (10.28)
8 o E average
& 0 /1020
g .
8 10.0 4 .
average
9.5
9.0 i ; . .

0 10,000 40,000

70,000 100,000

Number of design variables, M

Fig. 4. Performance of the entropic /)

norm MD-SA
10,000;40,000;70,000; 100,000): Number of design variables versus the final (true) compliance.

algorithm (n = 1) for various problem sizes (M =
The final compliances for

each problem size for the standard deterministic approach (m = 200) are included for comparison. The final topologies obtained by the
entropic /1 norm MD-SA from representative trials are also included. The final compliances for the entropic £; norm MD-SA algorithm are

shown for 50 trials for each problem size.

rithm, which uses six samples to estimate the gradient (res-
elected every iteration). Because the final topology from the
standard algorithm is y-symmetric, we enforce the symme-
try of the topologies in both cases by enforcing symmetry of
the density distribution with respect to the y-axis. Similar to
the first example, we run each of them 50 times, the resulting
statistics are shown in Table 3. “Mean” and “Dev” are the
mean and the standard deviation, over 50 trials, of the ob-

jective function evaluated at the obtained solutions, respec-
tively. The optimized topologies (from representative trials)
obtained by the entropic /; norm MD-SA and the SAA-based
randomized algorithms are shown in Fig. 7(a) and 7(b), re-
spectively.

For each method, the convergence history of the objec-
tive function for a representative trial is shown in Fig. 7(d).
For the stochastic cases, the objective function estimators
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Fig. 5. Performance of the £ norm MD-SA algorithm (n = 1) for four problem sizes (M

= 10,000;40,000;70,000; 100,000): Number

of design variables versus the final (true) compliance. The final compliances for each problem size for the standard deterministic approach
(m = 200) are included for comparison. The final topologies obtained by the £, norm MD-SA from representative trials are also included.
The final (true) compliances for the £ norm MD-SA algorithm are shown for 50 trials for each problem size.
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Fig. 6. Example 2. Two-dimensional bracing design domain with (a) the geometry and the non-designable layer, the domain is modeled by
a mesh with 153,600 continuum quadrilateral elements and 309,442 DOFs; (b) a total of 102 linearly independent equal-weighted load cases
are applied at the domain (dotted arrows are the schematic illustrations of non-active load cases).

(CSA(x) and CS*4(x)) are plotted during the optimization,
while the true values of the objective function (C(x},_g4)
and C(x,,)) are only evaluated at the end of the optimiza-
tion (indicated with markers). Notice that, because only one
sample load case is used to estimate the compliance in the

entropic ¢; norm MD-SA algorithm rather than six sample
load cases in the SAA-based one, the history of the estimator
C%4(x) is more oscillatory than C544 (x). However, in terms
of the true objective function values obtained at the end of
the optimization, the one from the entropic ¢; norm MD-SA
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Table 2. Results for Example 1, disk design with 200 load cases. Results are averaged over 50 trials.

Algorithm M C  Mean(C) AC  Dev(C)  Ngep Ngve  Time 2—““}?
avg. avg. avg. avg.
(sec) (sec)
10,000  10.39 - - - 228 45,600 1,401 6.2
Std. 40,000  10.22 - - - 400(max) 80,000 10,425 26.1
Deterministic 70,000  10.18 - - - 400(max) 80,000 18,520 46.3
m =200 100,000 10.14 - - - 400(max) 80,000 26,888 67.2
Std. 10,000  10.39 - - - 228 45,600 1,401 62
Deterministic 40,000  10.17 - - - 821 164,200 21,397 26.1
(reach Top) 70,000  10.11 - - - 1,056 211,200 48,893 46.3
m = 200 100,000 10.07 - - - 1,449 289800 97,402 67.2
Entropic 10,000 - 9.60  -7.60% 0.2l 349 349 91 0.26
/1 norm 40,000 - 1011 -1.06%  0.20 351 351 426 121
MD-SA 70,000 - 1020  0.14% 022 357 357 815 229
n=1 100,000 - 1028  141% 022 358 358 1,194 3.40
10,000 - 9.96  -410% 0.7 330 330 95 029
£, norm 40,000 - 1044  2.10% 023 344 344 471 1.37
MD-SA 70,000 - 10.59  3.96%  0.26 350 350 888  2.54
n=1 100,000 - 1063  4.90%  0.32 355 355 1,298  3.65

algorithm is smaller than the one from the SAA-based algo-
rithm.

To quantify the accuracy and efficiency of the stochastic
algorithms over multiple trials, Fig. 8 plots the final (true)
compliance of the entropic £; norm MD-SA algorithm (aver-
aged over 50 trials), the SAA-based algorithm (averaged over
over 50 trials), and the standard deterministic algorithm ver-
sus the corresponding total number of linear system solves.
In terms of the accuracy, the entropic /; norm MD-SA algo-
rithm provides a similar topology to the one obtained from
the standard deterministic formulation with OC update and
yields a slightly smaller mean compliance value (—1.24%
relative difference). The SAA-based approach with OC up-
date also leads to a design similar to the one obtained from
the standard deterministic formulation, but with a slightly
larger mean compliance value (41.88% relative difference).
In terms of the efficiency, both stochastic algorithms use sub-
stantially fewer linear system solves and less wall clock time
than the standard deterministic one. For the entropic ¢; norm
MD-SA algorithm, the number of linear systems to solve is
on average (over 50 trials) 110 times fewer than for the stan-
dard algorithm (i.e., 372 solves vs. 40,800 solves), and the
total wall clock time is 14.1 times shorter (i.e., 11.2 min-
utes vs. 2.6 hours). Moreover, the convergence for both the

entropic ¢ norm MD-SA algorithm and the standard one is
comparable. For the SAA-based algorithm, the number of
linear systems to solve is on average 27 times fewer than
for the standard algorithm (1,530 solves vs. 40,800 solves),
and the total wall clock time is 12.8 times shorter (12.3 min-
utes vs. 2.6 hours). Moreover, the convergence of the SAA-
based algorithm is more rapid than that of the standard al-
gorithm. Comparing the two stochastic algorithms, the en-
tropic ¢; norm MD-SA leads to a 3.06% lower (averaged)
compliance and 9.2% less wall clock time than the SAA-
based one on average, because the MD-SA algorithm solves
fewer linear systems (372 solves vs. 1,530 solves). Accord-
ing to the standard deviation of both methods, the entropic ¢}
norm MD-SA gives more consistent solutions than the SAA-
based algorithm. In summary, among all algorithms in this
example, the entropic #/; norm MD-SA offers the lowest (av-
eraged) compliance while being the most computationally
efficient, it takes the least amount of time and the smallest
number of solves.

6.3 Example 3: Three-dimensional bridge design with
the RMINRES iterative solver

In the third example, we use a three-dimensional (3D)

bridge design to demonstrate the performance of the pro-

15 Copyright © by ASME

020z Asenuer g| uo Jasn AYiSISAIUN SJEIS PUE SjNJIISU| OlUYDBIA0d BIUIBIIA Aq Jpd 085 |-61-WEl/E8LB9Y9/Z06GH0 L/S L L 0L/10p/spd-ajoiie/solueyoswpalidde/B10-awse uonoe||0o|e)Bipawuse;/:sdpy wolj papeojumoq



aEntropic£’1 MD-SA b SAA-based c Deterministic

n=1 C=50.09

n=6 C=5158 m=102, C=50.65

d
— — Cs4(p) Ocp; ,)=50.09
450 I Cs(p)y A C(pr)=51.58
400 ; — C(p) O C(p*)=50.65
Q 350 ;

Compliance,
|38 o
n >
5= 53

()
>
S

IR N AR R
0 ) ¥ 1
0 50 100 150 200 250 300 350 400

Optimization step

Fig. 7. Results for Example 2. (a) The optimized topology obtained by the proposed entropic £ norm MD-SA algorithm with n = 1 (one
representative trial); (b) the optimized topology obtained by the SAA-based randomized algorithm [18] (with OC update) with n = 6 (one
representative trial); (c) the optimized tg\pology obtaig\ed by the standard deterministic algorithm [16] (with OC update), where m = 102; (d)
the history of compliance estimators (C34(x) and C4(x)) and deterministic compliance (C(x)) for corresponding cases (a)-(c), where
also the true values of the objective function (C(x5, ), C(x5, ), and C(x¥)) at the optimized solutions (X34, X§4 4, and x*) in corresponding

cases (a)-(c) are given.

Table 3. Results for Example 2, bracing design with 102 load cases. Results are averaged over 50 trials. “Dev” represents standard

deviation.

Algorithm C(x*) Mean(C) AC Dev(C)  Ngep  Neolve  Time ;‘S—“:s
(avg.) (avg.) (avg.) (avg.) (avg)

(sec)  (sec)

Std. Deterministic 50.65 -

m =102
Entropic MD-SA - 50.02
n=1
SAA-based [18] - 51.60
n==6

- 400 40,800 9,480 23.70

(max)

-1.20% 0.50 372 372 671 1.80

1.92% 0.87 255 1,530 739 2.90

posed entropic ¢; norm MD-SA algorithm for 3D problems.
In this example, we also combine the entropic /1 MD-SA al-
gorithm with a fast iterative solver for linear systems to fur-
ther reduce the computational cost of topology optimization
with many load cases. Specifically, we use the RMINRES
iterative solver [42,43], which recycles selected subspaces
with an incomplete Cholesky preconditioner. For the RMIN-
RES parameters, we choose the number of vectors to be re-
cycled as 10, the number of Lanczos vectors kept in cycle as
100, and the max number of iterations as 1000.

The bridge design problem is set up as follows. The de-

sign domain, load cases, and boundary conditions are shown
in Fig. 9(a). A total of 1764 equally-weighted load cases
are applied to the bridge deck, which is taken to be a non-
designable solid layer. Due to the symmetry of the design
problem, we optimize a quarter of the domain with m = 441
load cases, as shown in Fig. 9(b). A total of 248,832 brick
elements are used to discretize the quarter domain, resulting
in 793,875 DOFs. For this design example, the volume frac-
tion is chosen as Vy = 0.08 (excluding the passive zone), the
radius of the density filter is 6, and the penalization factor is
taken to be p = 3. For the entropic ¢; norm MD-SA algo-
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Fig. 8. Performance comparison of the proposed entropic £; norm MD-SA (41), SAA-based [18] (with OC method), and the standard
deterministic (1) (with OC method) algorithms: Number of linear systems to solve in the optimization process versus the resulting final
compliance for each algorithm. (The entropic £1 norm MD-SA and SAA-based algorithms each include 50 trials.) In this example, the
entropic £1 norm MD-SA offers the lowest (averaged) compliance while being the most computationally efficient, i.e., solving the least number

of linear systems.

rithm, the following parameters are adopted: the sample size
n = 1, the window size Np = 100, and T, = 0.05.

We perform topology optimization using the standard
deterministic formulation (1). The final topology obtained
is shown in Fig. 10(a), which has an objective function value
of C(x*) = 13.56. This final topology is obtained with 400
optimization steps (maximum number of optimization steps)
and, in each optimization step, Matlab’s sparse direct solver
is used to solve the linear systems with 441 right hand sides.
Note that Matlab’s sparse direct solver uses compiled code,
while our iterative solver is run as interpreted code (so it runs
much more slowly).

We then compare the design using the entropic ¢; norm
MD-SA algorithm with n = 1. Three cases are considered:
one using a sparse direct solver, and the other two using
the RMINRES iterative solver. For the latter two cases,
we test two convergence tolerance values, Tier = 108 and
Tier = 10~%. For each case, we perform the optimization 10
times, and present the results in Table 4. In addition, the opti-
mized structures for the three cases (each obtained from one
representative trial) are shown in Figures 10 (b)-(d).

First, we observe that all three cases using the entropic
£ norm MD-SA algorithm with n = 1 produce designs sim-
ilar to the standard deterministic formulation in terms of the

final topology and on average 4.2% higher true compliance
values. However, the entropic {; norm MD-SA algorithm
is able to yield the final design with a greatly reduced wall
clock time compared with the standard algorithm. For ex-
ample, with the RMINRES iterative solver with a tolerance
of Tirer = 1074, the total wall clock time is 87.1% lower than
with the standard formulation (i.e., 5.6 hours vs. 43.6 hours).

Comparing the three cases using the entropic £; norm
MD-SA algorithm, with the RMINRES iterative solver we
obtain almost identical designs and compliances as with the
sparse direct solver. However, the algorithm with the RMIN-
RES iterative solver is more efficient than the algorithm with
the sparse direct solver. In terms of the wall clock time,
the RMINRES runtimes are 72% and 60% faster than the
sparse direct solver when the tolerance values Tier = 1074
and Tier = 1078 are used, respectively.

Finally, based on the performance comparison between
the RMINRES iterative solver with two tolerance values, we
highlight that, the single sample in entropic /; norm MDSA
leads to a relatively inaccurate gradient estimate, and hence
there is no need to solve the linear system very accurately.
This is an advantage of the entropic /; norm MD-SA algo-
rithm that we exploit with low accuracy iterative solves. The
features of the proposed entropic /; norm MD-SA algorithm
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and the RMINRES iterative solver with a large convergence
tolerance allow us to achieve a further reduction in the com-
putational time in addition to reducing the number of linear
systems to solve.

7 Concluding remarks and perspective

In this paper, we propose a tailored stochastic approx-
imation algorithm to solve mechanics-driven topology op-
timization problems with many load cases based on com-
pliance minimization formulation at a drastically reduced
computational cost. We first reformulate the deterministic
topology optimization problem with many load cases into
a stochastic one, whose objective function takes the form
of the expectation of a random variable. We propose a tai-
lored MD-SA algorithm (see Algorithm 1), which adopts an
entropic distance generating function using the ¢; norm to
mimic the underlying geometry of the feasible design space
(i.e., a design space with a linear volume constraint). Un-
like commonly used optimization algorithms, the proposed
entropic /1 norm MD-SA algorithm requires only moderate
accuracy in the stochastic gradient, which enables the use of
a single sample per optimization step (i.e., the sample size
is always one) to estimate the stochastic gradient. With the
proposed MD-SA algorithm, we reduce the number of lin-
ear systems to solve per iteration from hundreds to one. To
the authors’ knowledge, this is the first work in the literature
that tailors SA algorithms to solve deterministic topology op-
timization problems.

To improve the performance and convergence of the pro-
posed algorithm, we propose several algorithmic strategies
for obtaining effective step sizes and updates, including the
step size policy and re-calibration, iterates averaging, and a
damping scheme inspired by simulated annealing. The main
idea is to calculate and re-calibrate step sizes adaptively in
different stages of the optimization. We also adopt an itera-
tive solver with recycling for solving the large linear systems,
this allows the MD-SA algorithm to use a significantly higher
convergence tolerance in solving large state equations with-
out influencing the performance of the design update to fur-
ther reduce computational cost. With the proposed algorith-
mic strategies, the convergence rate of the proposed MD-SA
algorithm is shown to be comparable to that of the standard
algorithm.

Through numerical examples, we demonstrate the effec-
tiveness, efficiency, and potential of the proposed entropic ¢;
norm MD-SA algorithm. Compared to the standard deter-
ministic approach, the entropic /; norm MD-SA algorithm
allows to solve large-scale topology optimization problems
with hundreds of load cases at a drastically reduced compu-
tational cost while obtaining similar design quality. For in-
stance, in example 1, compared to the standard deterministic
algorithm (rm = 200), the number of linear system solves is
223 times smaller (i.e., 358 solves vs. 80,000 solves) and the
average wall clock time is 22 times faster (i.e., 20 minutes vs.
7.5 hours) with the proposed entropic /| norm MD-SA algo-
rithm (n = 1). In addition, the proposed entropic ¢; norm
MD-SA (n = 1) is shown to outperform both the ¢, norm

MD-SA (n = 1) and the SAA-based algorithm [18] (n = 6)
with OC update in terms of both efficiency and effectiveness.
The first example investigates the performance of two MD-
SA algorithms, namely the entropic /| norm and the ¢, norm,
in a design problem with various problem sizes (M = 10,000,
M = 40,000, M = 70,000, and M = 100,000). The entropic
¢1 norm algorithm is found to be more accurate than the ¢,
norm one for larger problems, which confirms the theoretical
comparison of error estimates between the two MD-SA algo-
rithms (see Appendix B). In addition, the wall clock time of
the entropic ¢; norm MD-SA algorithm on average is 9.21%
less than that of the ¢, norm algorithm for all the problem
sizes investigated. The second example shows that the en-
tropic £; norm MD-SA leads to a 3.06% lower (averaged)
compliance and 9.2% lower (averaged) wall clock time than
the SAA-based algorithm with OC, because the MD-SA al-
gorithm solves fewer linear systems (i.e., 1 solve per step
vs. 6 solves per step). In the third example, the entropic
£1 norm MD-SA algorithm is employed in conjunction with
the RMINRES iterative solver for a 3D bridge design under
1,764 load cases (441 load cases for a quarter of the domain).
We demonstrate that, as compared to the deterministic opti-
mization algorithm, the proposed entropic ¢; MD-SA algo-
rithm can produce good-quality designs even when working
with an iterative solver with a relaxed tolerance (i.e., 10~*
instead of the more common 10~%), which is especially de-
sirable for large-scale problems to further reduce the compu-
tational time.

Future research directions include studying the optimal
choices of parameters for both overall computational cost
and quality of design. Another important direction is to tai-
lor the proposed algorithm to other objective functions and
constraints as well as applying it to practical and complex
design examples.
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Nomenclature

o; Weighting factor for the ith load case

H Filter matrix for density

X544 Optimal solution obtained by the SAA variant algo-

rithm [18] in the density-based method

Optimal solution obtained by the standard algorithm in

the density-based method

X}frsA Optimal solution obtained by the entropic ¢, norm
MD-SA algorithm in the density-based method
with weighted averaged iterates

%/, _sa Optimal solution obtained by the ¢; norm MD-
SA algorithm in the density-based method with
weighted averaged iterates

x*

x Filtered density vector

X Scaled density vector

€ Random vector with its entries drawn from the
Rademacher distribution

Jfi External force vector for the ith load case

G(x,&,) Stochastic gradient at optimization step k

G(%,&;) Stochastic gradient with respect to ¥ at optimiza-
tion step k

u; Displacement vector for the ith load case
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Vi~ Step size at optimization step k
Kk Scale factor in the damping scheme
o(x) Distance generation function
V(-,-) Prox function generated by ®(x)
X, Feasible set of the scaled design variable X in the
density-based appraoch
Rmin  Radius of the density filter
Np Sample window size in the damping scheme
N4 Window size to obtain the weighted averaged density X
Tp Tolerance for the damping scheme
Topt Tolerance for the optimization process
F Weighted external force matrix
K Global stiffness matrix
U Weighted displacement matrix
a Scaled cross-sectional area
C54  Expected objective function by the SA algorithm
CSA Expected objective function by the SAA variant al-
gorithm [18]
C  Weighted compliance (objective function)
calibration Number of times the step size re-calibration
process is performed
d Number of dimensions
Ep Young’s modulus of the solid material
Emnin Young’s modulus of the Ersatz material
M Number of elements in the mesh
m  Number of load cases
move Move limit in the design update
N Number of nodes in the mesh
n  Sample size
Nyep Total number of optimization steps to obtained the
final topology
Nmax Maximum number of steps in the optimization
Nsolve Total number of linear systems solves in the opti-
mization process
p Penalization parameter in the density-based method
P¢(-) Prox mapping defined by V (-,")
R;  Effective step ratio in the damping scheme evaluated at
optimization step k
x(©) Density of element e (the e-th design variable in the
density-based method)
v(© Volume of element e
Vimax  Prescribed maximum volume of the design
Vr  Prescribed allowable volume fraction in the density-
based method
X, Feasible set of the design variable x in the density-based
approach

Appendix A: Euclidean MD-SA with ¢/, norm

In this appendix, we present the MD-SA algorithm with
the /> norm (also known as the Euclidean SA). In this vari-
ant, we use the Euclidean (¢») norm, and define the distance
generating function as follows, ®(x) = x’x. In that case

the prox-function V (-, -) becomes

1 1 1
V(x,z):isz— ExTx—i—xT(z—x) :§||z—x\|§, (53)

and the prox-mapping Py(x) = IIx(x —y); see (12). As a
result, we obtain the following update formula (18) for MD-
SA algorithm with the ¢, norm,

X1 = x (X — 7Gx, &) - (54)

That is, using the Euclidean norm, the MD-SA is equivalent
to the robust SA algorithm.

When applied to randomized topology optimization for-
mulations, the feasible sets are given by

M, (e) x(e)
Xx—{XGRMIZV a

e=1

—— _v,=0, 0<x9<1,

o

e=1,..,.M}.
(55)

The ¢, norm MD-SA framework gives the update formula

X1 =Ix, (0 — G (21, &) - (56)

We note that in the above update formula, a subproblem
needs to be solved to find the corresponding Euclidean pro-
jection.

The ¢, norm MD-SA adopts the same algorithmic
framework as the entropic ¢; norm MD-SA described in Sec-
tion 5, except for a different formula for ;. A general for-
mula for ¢, norm MD-SA is suggested in [22] which takes
the form

0D x
=——>—, k=1,...,Nnax, 57
Yk B\/m max ( )
where
B*>E[|G(x,8)|3]. (58)

is a bound on the ¢, norm squared of the stochastic gradient.
Similar to the entropic /; norm MD-SA case, the above for-
mula is used in this paper to determine the step size for the
£> norm MD-SA. In our case, Dy x = /M and the scaling
parameter 0 is taken to be 50. Because the bound B for the
stochastic gradient is unknown, we estimate B using a few
samples as B = 1/n|| Y7, G(x0,&;)||2, which is the sample
averaged ¢, norm of the estimated gradient at the initial step.
This gives the following formula for the constant step size Y
for the £, norm MD-SA,

50vVM

=V k=1,...,Noa. 59
Yk B\/m max ( )

As a final remark, unlike in the entropic /; norm MD-SA, we
find that the performance of #, norm MD-SA is much more
sensitive to the step size, especially to the scaling parameter
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In Algorithm 2, we summarize the ¢, norm MD-SA al-
gorithm for randomized topology optimization considered in
this work.

Algorithm 2 Randomized topology optimization using ¢
norm MD-SA
1: Initialize: xo, Niax, Topr» Tn, Np, move, calibration
2: for k=0,1,...,Njmax do
3: if k =0 then

4 Evaluate y; based on (59)
5: end if
6: Select a single sample &, and evaluate G(xy,&;)
7 Compute x| based on (56)
8 Calculate Xy by averaging using (47)
9: Evaluate the effective step ratio Ry,
10: if R, < tp and k > Np then
11: move = move /K
12: end if
13: if ||.f?k+1 _ﬁkH‘x’ < Topt then
14: quit
15: end if
16: end for
17: if calibration > 0 then
18: calibration = calibration — 1
19: X0 < X+ and goto step 2
20: else
21: Evaluate final compliance C(%;;;) and plot final
topology
22: end if

Appendix B: Comparison of entropic /; norm MD-SA
and ¢, norm MD-SA

Here, we provide an error estimate comparison of the
entropic ¢; norm MD-SA and the ¢, norm MD-SA algo-
rithms for a generic convex function f [22]. The error es-
timate for the ¢» norm MD-SA is as follows,

E [f(Znsiep) — f(2:)] < 0(1)max{e,e*‘}BN;e%,, (60)

where Xy, is the weighted averaged design variable vector
after Neep steps using the corresponding MD-SA algorithm,
x, is the optimal design variable vector, O(1) is a generic
constant, 0 is the chosen parameter to determine the step size
Y (see previous page), and B is a bound on the ¢» norm of the
stochastic gradient,

B> E[|G(x.&)]3] .- 61)

The error estimate for the entropic £ norm MD-SA is as

follows,

_1
E [f(Xnyep) — f(x:)] < O(1)max {6,6"} /In(M)B. Ny,

(62)
where M is the number of design variables, and B, is a bound
on the /., norm of the stochastic gradient,

B:>E[|G(x.8)[2]. (63)

Notice that the following relation holds for every optimiza-

tion step,
1 B M
\ < ———— <y — 64
InM ~ B,v/InM ~ V InM’ 64

and

1sB£g\/zT4. (65)

*

According to equations 60, 62 and 65, the entropic ¢; norm
MD-SA can be more accurate (in terms of estimated error)
than the ¢/, norm MD-SA for large M. Therefore, MD-SA
with ¢; is preferred for problems with larger dimensions. In
Section 6.3, the numerical comparison between entropic 1
and ¢, norm MD-SA algorithms shows that the entropic ¢;
norm MD-SA is more accurate than the £, norm MD-SA for
large problem sizes. This observation agrees with the the-
oretical comparison between these two algorithms regarding
the error estimates. An important benefit of the £; norm MD-
SA algorithm over the ¢, norm MD-SA (Euclidean SA) is
the possibility to reduce the constant factor by adjusting the
norm and the distance-generating function to the geometry
of the problem [22].
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