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Abstract Practical engineering designs typically involve
many load cases. For topology optimization with many de-
terministic load cases, a large number of linear systems of
equations must be solved at each optimization step, leading
to an enormous computational cost. To address this chal-
lenge, we propose a mirror descent stochastic approxima-
tion (MD-SA) framework with step size strategies to solve
topology optimization problems with many load cases. This
method requires only one linear system per optimization
step. We reformulate the deterministic objective function and
gradient into stochastic ones through randomization. The
proposed MD-SA algorithm only requires low accuracy in
the stochastic gradient and thus uses only a single sample
per optimization step (i.e., the sample size is always one).
We reduce the number of linear systems to solve per step from
hundreds to one, thus drastically reducing the total computa-
tional cost. For example, for one of the design problems, the
total number of linear systems to solve and wall clock time
are reduced by factors of 223 and 22, respectively.

∗Correspondence author.

1 Introduction
Mechanics-driven topology optimization is a powerful

tool that can generate materials and structures with uncon-

ventional and significantly improved performance in many

engineering applications [1–12]. Real-world engineering

designs, such as automobiles, high-rise buildings, and air-

planes, involve numerous load scenarios. For instance, the

challenge problem proposed in the 2019 topology optimiza-

tion roundtable is to design a suspension upright of a race car

subjected to 13 load cases, as shown in Fig. 1. A detailed so-

lution of this challenge problem provided by SIMULIA from

Dassault Systèmes can be found in [13]. Thus, it is important

to account for many load cases in structural and mechanical

topology optimization.

In the literature, several formulations incorporating

many load cases have been explored [14–16]. A popular

one is the weighted-sum formulation, which aims to mini-

mize a weighted sum of the objective functions from all the

load cases. Another common approach is the min-max for-

mulation, which minimizes the maximum objective function

among all load cases [16,17]. For all of these formulations, a
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load case 13load case 1

a b

Fig. 1. 2019 topology optimization roundtable challenge problem: design of a suspension upright. (a) Formula 1 race car and the location of
the design region. (b) Design domain and 13 load cases applied at the domain from cornering (6 cases) and breaking (7 cases) [13]. Dotted
arrows are the schematic illustrations of non-active load cases. A detailed solution of this challenge problem provided by SIMULIA from
Dassault Systèmes can be found in [13].

major challenge is the computational cost because the solu-

tion of the state equation for each load case is required. For

large-scale problems with many load cases (e.g., hundreds or

more), this leads to overwhelming computational costs.

To address this challenge, Zhang et al. [18] employed a

randomized algorithm that drastically reduces computational

cost for topology optimization with many load cases. The pa-

per introduces randomization techniques to rewrite the deter-

ministic optimization formulation into an equivalent stochas-

tic one. A Sample Average Approximation (SAA)-based ap-

proach is then employed in [18] to estimate the correspond-

ing gradients. Widely used in various contexts [19–21], the

basic idea of the SAA approach is to generate a random

sample ξξξ1, ...,ξξξn of size n, of the involved random vector

ξξξ, and consequently to approximate the original problem by

the sample average problem. Different from the conventional

SAA, which fixes the random sample throughout the opti-

mization process, the SAA-based algorithm in [18] re-selects

random samples at every optimization iteration.

The obtained stochastic gradient has to be combined

with an optimization algorithm. For example, the Optimality

Criteria (OC) method is used to update the vector of design

variables in [18]. As a result, the SAA approach requires

an adequate level of accuracy for the estimated problem (the

objective function and its gradient) and, thus, a few samples

(e.g. 5 or 6) are typically used. For the randomized formula-

tion of topology optimization considering many load cases,

n= 6 is typically sufficient to estimate the gradients when the

SAA-based approach is used. This leads to a greatly reduced

computational cost compared with the standard deterministic

approach.

Unlike the SAA method, the Stochastic Approximation

(SA) method is an algorithm designed to solve stochastic op-

timization problems, whose objective functions are given in

terms of expectations. The SA approach does not require

the estimated gradient to be accurate and it only requires

one sample to evaluate the estimated gradient at each opti-

mization iteration [22]. Because of this attractive property,

the SA method and its variants have been widely adopted in

many modern machine learning methods [23, 24]. The per-

formance of the classical SA approach, however, is highly

sensitive to the choice of step size. To address this step size

dependence, a robust SA approach is proposed in [25], in

which “robustness” with respect to the step size is achieved

by averaging the iterates (vector of design variables) over a

certain window size. The Mirror Descent (MD) approach

originates from the work of Nemirovski and Yudin [26], and

the Mirror Descent SA (MD-SA) approach can be found

in [22] and is a generalization of the robust SA approach

(which is intrinsically linked to Euclidean space). Through

a general definition of a distance generating function [22],

the MD-SA allows for the adjustment of the algorithm to the

underlying geometry of the problem.

In this paper, we propose a tailored MD-SA algorithm

to efficiently solve randomized topology optimization prob-

lems under many load cases based on compliance minimiza-

tion. Tailored to the geometry of the underlying feasible de-

sign space, we introduce an entropic �1 norm MD-SA algo-

rithm with the distance generating function being the entropy

function. This algorithm requires only low accuracy in the

stochastic gradient. Thus, we are able to use a single sample

(n = 1) regardless of the number of load cases considered.

To obtain effective step sizes and updates, we propose sev-

eral algorithmic strategies, including step size policy and re-

calibration, iterates averaging, and a damping scheme to im-

prove the performance and convergence of the proposed al-

gorithm. We also demonstrate both theoretically and numer-

ically that, compared with the robust SA approach based on

the Euclidean norm (the commonly used method), the pro-

posed entropic �1 norm MD-SA algorithm exhibits robust-

ness in step size selection and better performance for various

problem sizes, particularly large-scale problems. We further
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compare the performance of an SAA variant [18] (with OC

update) with the proposed SA algorithm described in this

paper. Compared with the SAA-based algorithm, the pro-

posed algorithm is able to perform high-quality updates with

less accurate estimates of gradient and, as a result, leads to

fewer linear systems (i.e., 1 solve per step vs. 6 solves per

step) to solve. We also demonstrate that, when adopted in

conjunction with an iterative solver, the proposed MD-SA

algorithm allows for a significantly higher convergence tol-

erance in solving the state equation without influencing the

performance of the optimization, which typically cannot be

achieved with any deterministic algorithms.

The remainder of this paper is organized as follows.

Section 2 briefly reviews the deterministic and equivalent

randomized formulations for topology optimization with

many load cases. Section 3 reviews the general MD-SA

framework and presents an entropic version of MD-SA using

the �1 norm. Section 4 proposes an entropic �1 norm MD-SA

algorithm tailored for a randomized topology optimization

formulation. In Section 5, we introduce the step size strate-

gies, a damping scheme, the iterative solver, and discuss the

algorithmic parameters. Section 6 demonstrates numerical

examples in two and three dimensions, highlighting the effi-

ciency and effectiveness of the proposed algorithm, and Sec-

tion 7 provides concluding remarks.

2 Deterministic and randomized topology optimization
with many load cases
In this section, we briefly review the deterministic for-

mulation of topology optimization under many load cases

and its equivalent randomized form. Throughout this

work, we use compliance minimization with a weighted-

sum formulation, and we focus on the popular density-based

method.

2.1 Deterministic density-based topology optimization
with many load cases

For a given finite element mesh containing M elements

and N nodes in d dimensions, and assuming a total of m
design load cases fff i ∈ R

dN , i = 1, ...,m, we denote by αi
(αi > 0, ∑m

i=1 αi = 1) and ui ∈ R
dN the weight and dis-

placement vector associated with i-th load case f i, respec-

tively. The standard weighted-sum topology optimization

formulation for minimum end-compliance problems using

the density-based method takes the form [16, 18],

min
xxx

{
C (xxx) =

m

∑
i=1

αi fff T
i uuui(xxx)

}
s.t.

M

∑
e=1

v(e)x̄(e)

|Ω| −Vf = 0 ,

0 ≤ x(e) ≤ 1, e = 1, ...,M,

with uuui(xxx) = K(EEE (x̄xx))−1 fi, i = 1, ...,m,

E(e) = Emin +[x̄(e)]p(E0 −Emin), e = 1, ...,M.

(1)

In the above optimization problem, the objective function

C(·) is the weighted compliance, xxx ∈ R
M is the vector of

design variables, x(e) is the design variable of element e,

K∈R
dN×dN is the global stiffness matrix, and dN is the num-

ber of degrees of freedom (DOF). In order to avoid checker-

board instability, we apply a density filter on the vector of

design variables to obtain the vector of filtered densities x̄xx
as x̄xx = Hxxx, where H is the filter matrix [27]. Furthermore,

the design problem is subject to a global volume constraint,

with the volume (area) of an element e denoted by v(e), the

prescribed volume fraction denoted by Vf , Ω and |Ω| being

the problem domain and area/volume of the domain, respec-

tively. To simplify the form of the volume constraint, we in-

troduce v̄(e) = ∑M
j He, jv( j) and rewrite the volume constraint

as

M

∑
e=1

v̄(e)x(e)

|Ω| −Vf = 0. (2)

Notice that v̄(e) is a constant that does not change throughout

the entire optimization process. We use the Solid Isotropic

Material with Penalization (SIMP) [28, 29] approach, Emin

and E0 are the elastic moduli for Ersatz and solid materials,

respectively, and p is a penalization parameter.

The gradient (sensitivity) ∇C(e)
x = ∂C

∂x(e)
of the objective

function is the weighted sum of the sensitivities from each

individual loading case:

∇C(e)
x =−

m

∑
i=1

αiuuu T
i

∂K
∂x(e)

ui. (3)

We remark that the optimization problem in formulation (1)

is convex when p = 1 [30]. With p > 1 the formulation be-

comes non-convex, and there is no guarantee that the opti-

mization algorithm converges to the global minimum.

2.2 Randomized topology optimization
In this subsection, we introduce a randomized topol-

ogy optimization formulation under many load cases that

is equivalent to the deterministic density-based one (1).

We first briefly review the Hutchinson trace estimator [31],

which is a popular stochastic sampling technique used to es-

timate the trace of a matrix. For alternative trace estimators

in the literature, the interested reader is referred to [20, 32]

and the references therein.

For a given matrix A ∈ R
q×q, the Hutchinson trace es-

timator uses a random vector, ξξξ ∈ R
q, whose entries are in-

dependent and identically distributed (i.i.d.) and follow the

Rademacher distribution (±1, each with probability 1/2 [33]

). It can be shown that the random vector ξξξ has the following

properties,

E(ξξξ) = 0 and E

(
ξξξξξξT

)
= Iq, (4)
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where Iq is the q×q identity matrix. It follows then that

E

(
ξξξT AAAξξξ

)
= trace(A) . (5)

Using this concept, the following subsections introduce an

equivalent randomized topology optimization formulation

for the deterministic topology optimization formulation un-

der many load cases. In the framework of discretized param-

eter estimation problems with PDE constraints, a random-

ized algorithm based on (5) was used in [19].

2.2.1 Randomized formulation for the density-based
method

Consider the standard topology optimization formula-

tion in (1) with m load cases. We introduce the weighted

load and displacement matrices FFF ,UUU ∈ R
dN×m, defined as

FFF = [
√

α1 fff 1, ...,
√

αm fff m] and UUU = [
√

α1 u1, ...,
√

αm um] ,

respectively. With these weighted matrices, we can rewrite

the equilibrium equations as U = K −1F and, consequently,

the end-compliance and its sensitivities as

C (xxx) =
m

∑
i=1

αif T
i ui = trace

(
FT U

)
= trace

(
FT K −1F

)
, (6)

∇C(e)
xxx =−

m

∑
i=1

αiu T
i

∂K
∂x(e)

ui =− trace

(
U T ∂K

∂x(e)
U
)

=− trace

(
FT K−1 ∂K

∂x(e)
K−1F

)
.

(7)

Furthermore, by introducing the random vector ξξξ and

applying the Hutchinson trace estimator, we define the ran-

domized topology optimization for the density-based method

under m load cases as

min
xxx

{
C (xxx) = E

[
(Fξξξ)T K(EEE (x̄xx))−1 (Fξξξ)

]}
s.t.

M

∑
e=1

v̄(e)x(e)

|Ω| −Vf = 0 ,

0 ≤ x(e) ≤ 1, e = 1, ...,M ,

with E(e) = Emin +[x̄(e)]p(E0 −Emin), e = 1, ...,M.

(8)

Again, x̄xx = Hxxx. Accordingly, the sensitivity of the objective

function in the above randomized formulation is also given

in expectation form as

∇C(e)
xxx =− trace

(
FT K−1 ∂K

∂x(e)
K−1F

)
=−E

[
(Fξξξ)T K−1 ∂K

∂x(e)
K−1 (Fξξξ)

]
.

(9)

We remark that, because this randomized formulation (8) is

equivalent to the standard one (1), it is convex when p = 1

and non-convex when p > 1, where p is the penalty parame-

ter in the SIMP approach.

We also remark that, in recent work [18], a variant of

the SAA algorithm is proposed where the compliance and

its gradient in (8) are estimated as the sample average over

n sampled load cases. For the density-based approach, the

estimated compliance and its gradient are

ĈSAA (xxx) =
1

n

n

∑
k=1

(Fξξξk)
T K(xxx)−1 (Fξξξk) (10)

and

(∇ĈSAA
xxx )(e) =−1

n

n

∑
k=1

(Fξξξk)
T K−1 ∂K

∂x(e)
K−1 (Fξξξk) . (11)

A standard deterministic optimization algorithm (i.e., the OC

method) is then used to compute the design variable updates

based on the estimated gradient. Thus, a sufficiently accurate

gradient estimation is needed, and it is shown in [18] that a

sample size of n ≈ 6 provides this accuracy in the consid-

ered applications. By doing so, the number of linear system

solves at each optimization iteration is reduced from m to

n. In the present paper, we take a conceptually different ap-

proach. Instead of estimating the gradient using a few sam-

ples and then performing an optimization update using the

standard algorithm, we treat the randomized formulation (8)

as a stochastic optimization problem, and use SA algorithms

to compute a design variable update. As a result, as shown

below, the accuracy requirement on the gradient estimation

is relaxed, and only one sample (n = 1) is needed at each

optimization step.

For the remainder of this paper, we use the following

notation. For a given vector x ∈ R
n, we denote by ‖x‖p

its �p norm. In particular, ‖x‖2 =
√

xT x denotes the Eu-

clidean norm, and ‖x‖∞ = max{|x(1)|, ..., |x(n)|} denotes the

max-norm (infinity norm). In addition, we denote by ΠX the

metric projection operator onto a closed convex set X ⊂ R
n,

ΠX (x) = argmin
y∈X

‖x− y‖2. (12)
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3 Mirror descent stochastic approximation (MD-SA)
This section presents the mirror descent stochastic ap-

proximation approach for a general stochastic optimization

problem. We first introduce the general framework of the

MD-SA. We then restrict our attention to a version of the

MD-SA algorithms, the Entropic MD-SA with the �1 norm,

which is well-suited for our problem. Another version–the

Euclidean MD-SA with the �2 norm and the comparison be-

tween these two algorithms are provided in the Appendices

and Example 1.

3.1 General framework
As a direct descendant of the stochastic mirror descent

method [26], the mirror descent SA algorithm, developed

in [22], is an effective algorithm to solve stochastic optimiza-

tion problems of the following form:

min
xxx∈X

{
φ(xxx) = E [Φ(xxx,ξξξ)]

}
. (13)

Here the feasible set X ⊂ R
n is assumed to be a nonempty

bounded closed convex set, and ξξξ is a random vector with

a given probability distribution. Suppose that the differenti-

ation and expectation operators in the objective function of

(13) commute (this holds under mild regularity conditions).

Then, we can write the gradient of φ(xxx) as

∇φ(xxx) = E [GGG(xxx,ξξξ)] , (14)

where GGG(xxx,ξξξ) = ∇xΦ(xxx,ξξξ). Note that if Φ(xxx,ξξξ) is convex

in xxx, then the expected value function φ(xxx) is also convex.

In that case, formula (14) also holds for the corresponding

subgradients.

Note that the gradient of the objective function lies in

the dual of the feasible space of the design variables. The

key idea of the MD-SA algorithm is to obtain the updates of

the vector of design variables by mapping the gradient de-

scent into the dual of the primal space. At each optimization

step, the mirror descent SA uses a single realization of the

random vector ξξξ, independent of the previous iterations. The

stochastic gradient GGG(xxx,ξξξ), at the current vector of design

variables, is computed and the algorithm takes a step in the

descent direction of the stochastic gradient in the dual space.

Finally, the update of the vector of design variables is ob-

tained by “mirroring” the results back into the primal space

(i.e., the feasible space of the optimization problem). The

mirror descent SA algorithm is a generalization of the ro-

bust SA algorithm. For further details, the reader is referred

to [22].

We will now describe the general framework of the

MD-SA. For any norm ‖ · ‖, its dual norm is defined as

‖x‖∗ = sup‖y‖≤1 yT x. A function ω : X → R is said to be

a distance-generating function modulus α > 0 with respect

to a norm ‖ · ‖, if ω(·) is convex and continuous on X , con-

tinuously differentiable on the relative interior of X , and

(
xxx′ − xxx

)T (∇ω
(
xxx′
)−∇ω(xxx)

)≥α||xxx′−xxx||, for all xxx,xxx′ ∈X .
(15)

Note that (15) implies that ω is strongly convex. The corre-

sponding prox-function V (·, ·) is defined as follows:

V (xxx,zzz) = ω(zzz)− [
ω(xxx)+∇ω(xxx)T (zzz− xxx)

]
. (16)

Here zzz is a point in the feasible space, and V (xxx, ·) is nonnega-

tive and strongly convex with respect to the chosen norm ‖·‖.

The function V (·, ·) is also known as the Bergman distance

generated by ω.

Based on the prox-function V (xxx,zzz), the prox-mapping

Pxxx : Rn → X is defined as follows:

Pxxx(yyy) = argmin
zzz∈X

{
yyyT (zzz− xxx)+V (xxx,zzz)

}
. (17)

Because of the strong convexity of ω, the minimizer

zzz∗ (xxx,yyy) = Pxxx(yyy) is unique. Note that V (xxx,zzz) serves as a reg-

ularizer when mapping the point yyy (representing the gradient

information in the dual space) to the primal space to obtain

zzz, and xxx is the current vector of design variables. One ex-

ample of a distance-generating function is ω(xxx) = 1
2 xxxT xxx (see

7). An important advantage of the MD algorithm is that it

is possible to adjust the distance-generating function to the

geometry of the set X (cf. [22]). The prox-mapping in this

paper is defined in terms of the feasible set of the considered

optimization problem (8).

Having introduced the concept of the prox-function and

prox-mapping, the general update of the MD-SA at the cur-

rent iterate xxxk is

xxxk+1 = Pxxxk

(
γkGGG(xxxk,ξξξk)

)
, (18)

where γk is a chosen step size and ξξξk is a sample of the

random vector ξξξ. A convergence analysis and convergence

bounds for the so-defined MD-SA are provided in [22] for

convex stochastic optimization problems. Our numerical

studies, provided in Section 6, indicate that the MD-SA

method works for non-convex problems (i.e. (8) with p > 1)

as well.

The recurrence (18) provides a general iteration frame-

work for MD-SA. By selecting the norm ‖ · ‖ and various

forms of distance generating functions ω, different forms of

design update schemes can be obtained. Appropriate choices

of the norm and distance generating function for a given ap-

plication can substantially improve convergence by adjust-

ing the geometry to the specific constraints. In the following

section, the MD-SA algorithm with the �1 norm will be pre-

sented.
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3.2 Entropic MD-SA with �1 norm
The MD-SA method with �1 norm has been studied in

the context of linear programming and online learning, e.g.,

[34]. The dual of the �1 norm is the �∞ (‖ · ‖∞) norm. A

distance generating function for the �1 norm MD-SA is the

entropy function given by (cf. [22])

ω(xxx) =
M

∑
e=1

x(e) ln(x(e)), (19)

this leads to the entropic �1 norm MD-SA. Based on equation

(19), the prox-function V (·, ·) can be written as

V (xxx,zzz) =
M

∑
e=1

[
z(e) ln

(
z(e)

x(e)

)
+ x(e)− z(e)

]
, (20)

and the corresponding prox-mapping

Pxxx(yyy) =

argmin
zzz∈X

{
M

∑
e=1

[(
y(e)−1

)(
z(e)− x(e)

)
+ z(e) ln

(
z(e)

x(e)

)]}
.

(21)

When the feasible set is the standard simplex,

X =

{
xxx ∈ R

M :
M

∑
e=1

x(e) = 1, x(e) ≥ 0, e = 1, ...,M

}
,

(22)

a closed form expression of the prox-function is

[Pxxx(yyy)]
(e) =

x(e)e−y(e)

∑M
j=1 x( j)e−y( j) , e = 1, ...,M. (23)

Thus the update x(e)k+1 =
[
Pxxxk (γkGGG(xxxk,ξξξk))

](e)
for each com-

ponent in the entropic �1 norm MD-SA can be written as

x(e)k+1 =
x(e)k e−γkGGG(xxxk,ξξξk)

(e)

∑M
j=1 x( j)

k e−γkGGG(xxxk,ξξξk)
( j) , e = 1, ...,M. (24)

An important question for the MD-SA method is the choice

of the step sizes γk; we will introduce the strategies for step

size selection in Section 5.1.

4 Randomized topology optimization with an entropic
�1 norm MD-SA update algorithm
In this section, we propose an MD-SA algorithm tai-

lored to efficiently solve the randomized topology optimiza-

tion formulation (8). As it is tailored to the geometry of the

feasible design space, we use the entropic �1 norm MD-SA

algorithm described in Section 3.2. Furthermore, in the de-

rived update algorithm, we introduce a move limit for each

design variable at each optimization step that allows us to ef-

fectively incorporate the damping scheme described in Sec-

tion 5.2.

According to (8), the feasible set for the design variable

vector xxx is given by

Xxxx =

{
xxx ∈ R

M :
M

∑
e=1

v̄(e)x(e)

|Ω| −Vf = 0, 0 ≤ x(e) ≤ 1,

e = 1, ...,M} .
(25)

At iteration k with design variable vector xxxk, the compliance

estimator ĈSA takes the form

ĈSA (xxxk) = (Fξξξk)
T K(xxxk)

−1 (Fξξξk) , (26)

and the stochastic gradient G(xxxk,ξξξk), using a single sample

ξξξk, is given in component form as

G(e)(xxxk,ξξξk) = (∇ĈSA
xxx )(e) =−(Fξξξk)

T K−1 ∂K
∂x(e)

K−1 (Fξξξk) .

(27)

Here, we map the vector of design variables to a scaled

feasible set (which is the standard simplex), compute the up-

dated design variable vector using the proposed entropic �1

norm MD-SA update, and then map the updated design vari-

able vector back to the original feasible set. Following this

procedure, we introduce x̃xx as the scaled design variable vec-

tor, whose e-th component is given by x̃(e) = v̄(e)x(e)
|Ω|Vf

. The

scaled feasible set X̃xxx for x̃xx is defined as

X̃xxx =

{
x̃xx ∈ R

M :
M

∑
e=1

x̃(e) = 1, 0 ≤ x̃(e) ≤ v̄(e)

|Ω|Vf
,

e = 1, ...,M} .
(28)

Accordingly, the stochastic gradient with respect to x̃xx, de-

noted by G̃(x̃xxk,ξξξk), is also scaled in component form as

G̃(e)(x̃xxk,ξξξk) =
∂x(e)

∂x̃(e)
G(e)(xxxk,ξξξk) =

|Ω|Vf

v̄(e)
G(e)(xxxk,ξξξk). (29)

Given the scaled feasible set and scaled design variable

vector, the prox-mapping generated by the entropy function

(19) takes the form

Px̃xx(ỹyy) = argmin
z̃zz∈X̃x{

M

∑
e=1

[(
ỹ(e)−1

)(
z̃(e)− x̃(e)

)
+ z̃(e) ln

(
z̃(e)

x̃(e)

)]}
,

(30)
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and the entropic �1 norm MD-SA update then is given by

x̃xxk+1 = Px̃xxk(γkG̃(x̃xxk,ξξξk)). (31)

Comparing the above expression to (22), we notice that

the scaled set X̃x includes an additional upper bound for each

design variable, x̃(e) ≤ v̄(e)
|Ω|Vf

. Therefore, the closed-form ex-

pression (24) cannot be applied directly, because the updated

variables could violate their upper bounds. Thus, an iterative

formula is derived here to solve for x̃xxk+1 in the constrained

optimization problem (30)-(31). To achieve this, we first in-

troduce a Lagrange multiplier λ̃ for the equality constraint in

the definition of X̃ and form the Lagrangian function

L(z̃zz, λ̃) =
M

∑
e=1

[(
ỹ(e)−1

)(
z̃(e)− x̃(e)

)
+ z̃(e) ln

(
z̃(e)

x̃(e)

)]
+

λ̃

(
M

∑
e=1

z̃(e)−1

)
,

(32)

where we assume ỹ and x̃xx are given vectors in the optimiza-

tion. The optimality condition of (32) with respect to z̃(e)

states that

∂L
∂z̃(e)

(z̃zz, λ̃) = ỹ(e) + ln

(
z̃(e)

x̃(e)

)
+ λ̃ = 0, (33)

which gives

z̃(e)(λ̃) = x̃(e)e−ỹ(e)e−λ̃. (34)

By introducing μ̃ = e−λ̃ (notice that μ̃ > 0), we can simplify

the above expression as

z̃(e)(μ̃) = μ̃x̃(e)e−ỹ(e) , (35)

and incorporating the upper bound (28) into equation (34)

gives

z̃(e)(μ) = min

(
v̄(e)

|Ω|Vf
, μ̃x̃(e)e−ỹ(e)

)
. (36)

The stationary condition of (32) with respect to μ̃ yields,

∂L
∂μ̃

(zzz(μ)) =
∂L
∂λ̃

(zzz(μ))
λ̃
μ̃
=

M

∑
e=1

z(e) (μ)−1 = 0. (37)

Observe that (37) is monotonic with respect μ̃ and can be

solved by various methods, e.g., the bisection method that is

used in this work. Denote μ̃∗k as the solution of (37) at step k.

By plugging in μ̃∗k , step size γk, and the scaled stochastic gra-

dient (29), the updated (scaled) design variable vector x̃xxk+1

takes the form,

x̃(e)k+1 = z̃(e)(μ̃∗k) = min

[
v̄(e)

|Ω|Vf
, μ̃∗k x̃(e)k e−γkG̃(e)(x̃xxk,ξξξk)

]
. (38)

Once x̃xxk+1 is obtained, the last step in the proposed en-

tropic �1 norm MD-SA algorithm is to map it back to xxxk+1 in

the original feasible set as

x(e)k+1 =
|Ω|Vf

v̄(e)
x̃(e)k+1 = min

[
1, μ̃∗kx(e)k e−γkG̃(e)(x̃xxk,ξξξk)

]
. (39)

The update formula (39) is the final expression of the en-

tropic �1 norm MD-SA algorithm for the randomized topol-

ogy optimization problem. Note that the gradient informa-
tion in (39) is accessed through an estimate, G(xxxk,ξξξk), by
using a single sample ξξξk. The entropic �1-norm MD-SA

algorithm (39) has advantages over standard gradient-based

algorithms (e.g., OC and MMA) for stochastic optimization

problems. Using a standard gradient-based update algorithm

for a stochastic optimization problem requires moderate ac-

curacy of the estimated gradient, which leads to an increase

of the sample size required. On the other hand, the MD-SA

update in (39) only needs low accuracy in the stochastic gra-

dient, and thus only needs a single sample, meaning the sam-

ple size is always one. If the required gradient information

is computationally expensive, the entropic �1 norm MD-SA

algorithm is likely to be preferable compared with standard

gradient-based algorithms.

Furthermore, for the structural optimization problems

solved by the entropic �1 norm MD-SA algorithm in this pa-

per, we propose a step size strategy with a damping scheme

that creates a decaying step size set [18], which fits well with

the structural optimization framework and stochastic algo-

rithms. The proposed step size strategy and damping scheme

is discussed in detail in Section 5. To incorporate the damp-

ing scheme, we introduce an additional move limit, denoted

by move ∈ (0,1], to the vector of design variables in the en-

tropic �1 norm MD-SA update. At iteration k with design

variable vector xxxk, the move limit modifies the lower bound

(LBk) and upper bound (UBk) of the update of the vector of

design variables as follows,

LB(e)
k = max{x(e)k −move,0} and

UB(e)
k = min{x(e)k +move,1}.

(40)

Incorporating the modified LBk and UBk, (39) is changed to

x(e)k+1 = max
{

LB(e)
k ,min

[
UB(e)

k , μ̃∗kx(e)k e−γkG̃(e)(x̃xxk,ξξξk)
]}

.

(41)
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We note that the specific form of update (39) is based on

the feasible space defined by a simplex and the fact that the

linear volume constraint is always active, the latter is always

the case for compliance minimization problems. No specific

form of the objective function is assumed. Thus, the update

formula applies to other objective functions in forms of ex-

pectation of a random function, with linear (in terms of de-

sign variables) equality and active inequality constraints. For

other constraint functions, one needs to adjust the projection

(e.g., norm and distance generating function) of computed

stochastic gradients to the geometry of the feasible space,

which is determined by the specific constraint functions. For

a detail discussion, we refer to [22] and [35].

5 Algorithmic strategies for randomized optimization
The choice of step size strategy is essential for SA al-

gorithms. In this section, we propose a step size strategy

with a damping scheme. The main idea is to calculate and

re-calibrate step sizes in different stages of the optimization,

and to reduce the move limit when the average progress per

step drops below a tolerance. Furthermore, to improve the

performance of the proposed algorithm, we introduce a tech-

nique that averages the history of design variable updates and

a re-calibration strategy for step size. Finally, we review an

iterative solver with recycling for solving the large linear sys-

tems to further reduce the computational cost.

5.1 Step size strategy
In SA algorithms, a key step is to determine the step

size, γk, of the update (39). Thus, this subsection presents

a formula to determine the step size γk. In general, there

are two types of step size strategies, constant and varying

[22]. The constant step size policy assumes a priori a total

number of iterations, the step size is constant throughout the

optimization, and the algorithm always ends at the prescribed

maximum step. For the varying step size policy, the step size

is a function of the iteration number and it decreases over the

optimization process.

In [22], a constant step size is discussed for convex ob-

jective functions. The main idea is to calculate a step size

that minimizes the error estimate of the stochastic optimiza-

tion solutions. A formula for the constant step size policy is

given as,

γk =
θ
√

2Dω,X

B∗
√

Nmax
, k = 1, ...,Ns, (42)

where θ > 0 is a scaling parameter, Nmax is the number of

allowable iterations, B∗ is an estimate of an upper bound on

the stochastic gradient norm, i.e.,

B2
∗ ≥ E

[||G(xxx,ξξξ)||2∞
]
, (43)

and Dω,X is the ω-diameter of X defined as

Dω,X =

[
max
z∈X

ω(z)−min
z∈X

ω(z)
] 1

2

. (44)

We adopt (42) to calculate the step size. In our case,

Dω,X =
√

logM, and we take the scaling parameter θ = 1.

Because the bound B∗ for the stochastic gradient is unknown,

we use the �∞ norm of the estimated gradient calculated by

the sample average of a random sample with size n = 6 at the

first optimization step, namely, B∗ = 1/n‖∑n
i=1 G(x0,ξξξi)‖∞,

where x0 stands for the initial guess for the vector of design

variables. This gives for the step size

γk =

√
2logM

B∗
√

Nmax
, k = 1, ...,Nmax, (45)

which is used in the entropic �1 norm MD-SA.

5.2 Proposed damping scheme
Using the constant step size policy (45), the optimiza-

tion terminates at the prescribed total number of steps, Nmax.

To promote convergence before the maximum number of it-

erations is reached, we incorporate a damping scheme based

on the one introduced in [18], which gradually reduces the

move limit of the updates. The advantage of using the damp-

ing scheme is that it allows us to monitor the progress of the

update throughout the optimization and damp the update ap-

propriately.

Inspired by simulated annealing [36, 37], the damp-

ing scheme proposed in [18] evaluates the average progress

per step and reduces the move limit whenever the average

progress drops below a tolerance. The effective step ratio Rk
for iteration k is defined as:

Rk =

1
ND

‖xxxk − xxx(k−ND+1)‖
‖xxxk − xxxk−1‖ , (46)

where ND is the sample window size (see below). This effec-

tive step ratio serves as an indicator of the optimizer’s sta-

tus, i.e., if the ratio is relatively large, then the optimizer is

making progress; and if the ratio is relatively small (typically

smaller than 0.1), then the steps are not effective.

The damping scheme works as follows: once Rk is be-

low a prescribed tolerance, i.e., Rk < τD, we reduce the al-

lowable move limit (i.e. move) (40) by a prescribed scale

factor κ, namely move = move/κ. To avoid damping the up-

date too early because of insufficient history data, we do not

damp the update in the first ND optimization steps, where

ND is a chosen parameter. The damping scheme evaluates

the average progress of the optimizer to determine damping,

thus the window size for the damping scheme ND needs to be

large enough to have a conservative damping and a smooth

convergence. However, as the window size increases, we av-
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erage over more steps. If ND is too large, it slows down con-

vergence because the damping algorithm adapts more slowly.

In practice, we have found ND = 100 is sufficient for prob-

lems containing more than one thousand design variables.

5.3 Averaging the iterates

The classical SA and MD-SA algorithms, going back

to [38], are sensitive to the step size and may perform poorly

in practice. In order to make the SA (and MD-SA) algorithm

(more) robust, it was suggested in [39, 40] to use larger step

sizes and to weighted average the resulting iterates over a

chosen window (even earlier this was discussed in [26]). If

we denote the window size as NA, then current iteration k is

the end of the window and step j = k−NA +1 is the start of

the window. The weighted averaged design variable vector

at step k, denoted as x̂xx j
k, is calculated as follows,

x̂xx j
k =

k

∑
t= j

vtxxxt , with vt =
γt

∑k
t= j γt

, (47)

where γt is the step size in iteration t and vt is the associated

weight. In case of the constant step size strategy, we have

that x̂xx j
k =

1
NA

∑k
t= j xxxt .

In this algorithm, the weighted averaged design vari-

able vector, x̂xx j
k, represents the current solution. As discussed

in [22], the weighted averaged design variable vector con-

verges to an optimal solution for convex stochastic optimiza-

tion problems, thus we use the weighted averaged design

variable vector to determine the current estimate of the opti-

mal objective value and the optimized structure. On the other

hand, the design variable vector xxxk is used in computing the

stochastic gradient and performing the design variable up-

dates, as suggested in [22]. The window size for averag-

ing solutions (NA) directly determines the current solution,

thus it needs to be smaller than ND so as to achieve faster

progress, because larger NA leads to slow progress during

optimization. In practice, we have found NA = 50 is suffi-

cient for problems containing more than one thousand design

variables.

5.4 Re-calibration of step size

Because the (constant) step size is evaluated based on

the initial guess at the start of the algorithm and kept constant

thereafter, it may perform poorly at later iterations. There-

fore, we propose a step size re-calibration scheme which re-

evaluates the step size periodically during the optimization

procedure. The prescribed parameter calibration defines the

number of times we perform the re-calibration. In each re-

calibration, we take the final x̂k (after the optimization is con-

verged) as the initial guess x0 and restart the optimization

process by re-calculating the step size according to (45) with

an updated B∗ and x0 (replaced by x̂k).

5.5 Iterative solver: MINRES with recycling

Although the number of linear systems to solve is dras-

tically reduced by the MD-SA method, we still have a long

sequence of large linear systems to solve, with the sys-

tems changing only modestly from one optimization step

to the next. Hence, we use a preconditioned iterative

method with recycling, the recycling MINRES (RMINRES)

method [41–43], which was derived from the MINRES

method [44,45]. RMINRES uses approximate invariant sub-

spaces computed during previous linear solves to acceler-

ate the convergence for subsequent linear systems. Recy-

cling an approximate invariant subspace effectively removes

the corresponding eigenvalues from the spectrum of the ma-

trix over the resulting Krylov space [42, 46]. In particu-

lar, if we remove the largest or smallest eigenvalues for a

symmetric, positive definite matrix in this fashion, this im-

proves the theoretical convergence bounds of the MINRES

method [45]. The most common choice, also used here, is

to effectively remove the smallest eigenvalues by approx-

imating the corresponding invariant subspace. Compared

with MINRES or with the method of conjugate gradients

(CG) [47, 48] this generally leads to substantially faster con-

vergence [41–43, 49].

We outline the main steps in the RMINRES algorithm

for solving the linear system Kuuu = fff , in a sequence of linear

systems. For details, including a MATLAB� code, see [42,

43].

Let the columns of the matrix W ∈ R
dN×k span the ap-

proximate invariant subspace that we recycle from previous

linear systems, and assume that W has been computed such

that Y = KW has orthonormal columns, that is, YT Y = I (the

identity matrix). Given an initial guess, ũuu0, and its residual,

r̃rr0 = fff −Kũuu0, we compute uuu0 = ũuu0 +WYT r̃rr0 and the up-

dated residual rrr0 = r̃rr0 −YYT r̃rr0, set vvv1 = rrr0/‖rrr0‖2, and we

carry out a Lanczos iteration with additional orthogonaliza-

tion against Y,

vvv2t2,1 = Kvvv1 −Ybbb1 − vvv1t1,1,

vvv j+1t j+1, j = Kvvv j −Ybbb j − vvv jt j, j − vvv j−1t j−1, j,
(48)

where bbb j = YT Kvvv j, t j, j = vvvT
j Kvvv j, and t j−1, j = t j, j−1 =

‖Kvvv j−1 − Ybbb j−1 − vvv j−1t j−1, j−1 − vvv j−2t j−2, j−1‖2 was com-

puted in the previous iteration. At the mth iteration, with

Vm+1 = [vvv1 vvv2 . . . vvvm+1] and VT
m+1Vm+1 = Im+1, Bm =

[bbb1 bbb2 . . . bbbm], and Tm ∈ R
(m+1)×m a tridiagonal matrix with

the ti, j above as coefficients and its leading m×m part sym-

metric, we have

KVm = YBm +Vm+1Tm. (49)

Minimizing the residual for a solution of the form

uuum = uuu0 +Wzzz+Vmyyy, (50)
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gives

rrrm = fff −Kuuu0 −KWzzz−KVmyyy (51)

= rrr0 −Yzzz− (YBm +Vm+1Tm)yyy

= Vm+1(eee1‖rrro‖2 −Tmyyy)−Y(zzz+Bmyyy). (52)

Since the matrix [Y Vm+1] has all orthonormal columns, min-

imizing ‖rrrm‖2 involves (i) solving for yyy in exactly the same

way as in standard MINRES, which can be done efficiently

with a short term recurrence, (ii) choosing zzz = −Bmyyy, and

(iii) updating uuum according to (50) at the end of the linear

solve.

The implementation details, including updating the ma-

trix W that defines the recycle space for subsequent linear

systems, are outside the scope of this paper; for this we refer

to [42, 43].

In addition, as the MD-SA algorithm using a single sam-

ple will only provide gradient estimates with low accuracy,

there is no need to solve the linear systems very accurately.

Hence, we can reduce the computational cost further by us-

ing a low relative convergence tolerance. We provide results

of these experiments for a 3D design in Section 6.3.

5.6 Entropic �1 norm MD-SA algorithm
The proposed entropic �1 norm MD-SA algorithm in-

cluding algorithmic parameters for randomized topology op-

timization is summarized in Algorithm 1.

Algorithm 1 Randomized topology optimization using en-

tropic �1 norm MD-SA

1: Initialize: x0, Nmax, τopt , τD, ND, move, calibration
2: for k = 0,1, ...,Nmax do
3: if k = 0 then
4: Evaluate γk based on (45)

5: end if
6: Select ξξξk and evaluate G(xk,ξξξk)
7: Compute xk+1 based on (41)

8: Calculate x̂xxk+1 based on (47)

9: Evaluate the effective step ratio Rk
10: if Rk < τD and k > ND then
11: move = move/κ
12: end if
13: if ‖x̂k+1 − x̂k‖∞ < τopt then
14: quit

15: end if
16: end for
17: if calibration > 0 then
18: calibration = calibration−1

19: x0 ← x̂k+1 and goto step 2

20: else
21: Evaluate final compliance C(x̂k+1) and plot final

topology

22: end if

6 Numerical examples
In this section, we present several numerical examples

in both two and three dimensions to demonstrate the effec-

tiveness and the computational efficiency of the proposed en-

tropic �1 norm MD-SA algorithm for topology optimization.

The first example compares the entropic �1 norm MD-

SA with the �2 norm MD-SA (see Appendix A). The second

example compares the entropic �1 norm MD-SA and the ran-

domized algorithm proposed in [18], which is a variant of

the SAA algorithm, coupled with a common optimization

update algorithm (i.e., OC). In the last example, we use a

3D problem to demonstrate the use of an iterative method

with a relatively low convergence tolerance for the entropic

�1 norm MD-SA algorithm to further reduce the computa-

tional cost. In all examples, we also compare the results

from these stochastic algorithms with those from the stan-

dard deterministic algorithm. The examples are summarized

in Table 1.

To quantify the computational cost of the standard and

stochastic optimization algorithms, we define the total num-

ber of linear systems of equations to solve in the optimization

process as Nsolve = m×Nstep for the standard deterministic

approach, and Nsolve = n × Nstep for stochastic algorithms,

where Nstep is the number of optimization steps. This is a

measure of the computational efficiency of the optimization

formulation. For large 3D systems, where iterative solvers

are required, Nsolve is a good proxy for computational cost.

In addition, we include the wall clock time of the entire

optimization process for comparison. All the examples are

performed on a machine with an Intel(R) Xeon(R) CPU E5-

1660 v3, 3.00 GHz processor and 256 GB of RAM, running

Matlab R2018b. The optimization is considered converged

if the current step size (bounded by the move limit) is below

a prescribed tolerance τopt for the optimization process, that

is, ‖xxxk − xxxk−1‖∞ < τopt.

We have incorporated the proposed MD-SA algorithm

into the computer program PolyTop [50]. All the prob-

lems are initialized as follows. The initial guess is taken

as x(e)0 = Vf . The convergence tolerance is τopt = 10−2; the

initial move limit is chosen as move = 0.1. The maximum

number of optimization steps for the standard deterministic

approach is Nmax = 400.

The entropic �1 norm MD-SA algorithm uses the follow-

ing parameters. The sample size is chosen to be n = 1, the

window size to weighted average iterates is NA = 50; for step

size calculation, θ = 1, Nmax = 400, the initial move limit is

move = 0.1; the calibration parameter is calibration = 1; the

sample size to estimate the initial gradient for stepsize cal-

culation is 6. In the damping scheme, the window size is

ND = 100, and we use a step size reduction factor κ = 2,

and the tolerance for the damping τD = 0.05. For the �2

norm MD-SA algorithm, θ = 50 is used for step size cal-

culation, all other parameters are the same as for the entropic

�1 norm MD-SA algorithm. For the SAA-based randomized

algorithm, the sample size is chosen to be n = 6, other pa-

rameters are as follows: move = 0.1, ND = 100, κ = 2, and

τD = 0.05.
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Let xxx∗ and xxx∗SA represent the optimal solutions obtained

from the standard formulation in (1) and the MD-SA al-

gorithms, respectively. For the stochastic algorithms, we

present the true values of the objective function C(xxx∗SA) at the

solution xxx∗SA (instead of its estimator ĈS(xxx∗SA)) and compare

these with the ones obtained from the standard algorithm,

C(xxx∗), to evaluate the quality of the solutions. The relative

difference is defined as ΔC =
(
C(xxx∗SA)−C(xxx∗)

)
/C(xxx∗). To

distinguish between different stochastic algorithms, we use

xxx∗L1−SA, xxx∗L2−SA, and xxx∗SAA to denote the optimal solutions

from the entropic �1 norm MD-SA algorithm, �2 norm MD-

SA algorithm, and the SAA-based randomized algorithm, re-

spectively.

6.1 Example 1: 2D disk with 200 load cases
In this example, we demonstrate the computational ef-

ficiency as well as the effectiveness of two MD-SA algo-

rithms, entropic �1 norm and �2 norm (Euclidean) MD-SA,

for various problem sizes. We show that, as the problem size

increases, the entropic �1 norm MD-SA performs better than

the �2 norm MD-SA.

Here, we consider a 2D disk whose design domain,

boundary conditions, and passive zone (non-designable

solid) are shown in Fig. 2a. The domain is discretized with

continuum polygonal elements [50]. We enforce the sym-

metry of the density distribution in both horizontal and ver-

tical axes. A total of 200 linearly independent and equally

weighted load cases are applied at the outer circle of the do-

main (Figure 2b). For this design example, the active volume

fraction (excluding the passive zone) is Vf = 0.25, the radius

of the density filter is chosen as 0.05, and the penalization

factor, p, is taken to be 3.0. Moreover, to demonstrate the dif-

ference between designs considering a combined single load

case and multiple load cases, we include the case where all

the 200 loads are applied simultaneously (i.e., 1 deterministic

load case with all the 200 loads acting together). The corre-

sponding optimized topology is shown in Fig. 3(a), which is

distinct from all other designs which consider 200 load cases

(Figs. 3(b)-(d)).

To investigate the performance and computational effi-

ciency of the entropic �1 norm MD-SA (n = 1) and the �2

norm MD-SA (n = 1) algorithms versus the standard de-

terministic approach (m = 200), we consider four problem

sizes: M = 10,000;40,000;70,000;and100,000. The op-

timized topologies (from representative trials) obtained by

these three methods (the standard deterministic approach, the

entropic �1 norm MD-SA, and the �2 norm MD-SA) for prob-

lem size M = 40,000 are shown in Figs. 3 (b)-(d). For this

problem size, the entropic �1 norm MD-SA algorithm leads

to a topology with a similar (true) compliance value as the

standard deterministic formulation. The �2 norm MD-SA al-

gorithm, on the other hand, produces a final topology with a

slightly higher (true) compliance value.

In order to evaluate the stability of the stochastic al-

gorithms, we run each of the MD-SA algorithms (the en-

tropic �1 norm MD-SA and the �2 norm MD-SA) 50 times

and present the statistics of the results in Table 2 (this is not

needed in practice). “Mean” and “Dev” stand for the mean

and the standard deviation, over 50 trials, of the objective

function value evaluated at the obtained solutions. Note that

one trial is one run of the numerical experiment. For the stan-

dard deterministic approach, we present two sets of results

in Table 2. The first set of results is obtained, if we stop the

optimization when ‖xxxk − xxxk−1‖∞ < τopt = 10−2 or when the

number of optimization steps reaches the given maximum,

Nmax = 400. This strategy is also used in Examples 2 and 3.

The second set of results is obtained, if we terminate the op-

timization only when τopt = 10−2 is reached. In the compari-

son with other algorithms, we mainly use the results from the

first strategy in the standard deterministic approach, because

we also use Nmax = 400 for the MD-SA algorithms.

Figures 4 and 5 depict the final (true) compliances ver-

sus the corresponding number of design variables for the en-

tropic �1 norm MD-SA (for 50 trials) and the �2 norm MD-

SA (for 50 trials) algorithms, respectively. In these figures,

the final compliances from the standard deterministic algo-

rithm with 200 load cases are included for comparison. Rep-

resentative optimized topologies obtained from the entropic

�1 norm and �2 norm MD-SA algorithms are provided as

well.

The entropic �1 norm MD-SA algorithm, while offer-

ing similar solutions (in terms of the objective function val-

ues) to the standard approach (−7.60%, −1.06%, 0.14%,

and 1.41% relative differences, respectively for M = 10,000,

M = 40,000, M = 70,000, and M = 100,000), drastically re-

duces the computational cost for all the problem sizes con-

sidered. As shown in Table 2, for the largest problem (M =
100,000), the number of linear systems to solve (Nsolve) on

average is 223 times smaller than for the standard determin-

istic algorithm (i.e., 358 solves vs. 80,000 solves), and the

total wall clock time is 22 times lower (i.e., 20 minutes vs.

7.5 hours). The �2 norm MD-SA algorithm provides com-

parable solutions with the standard approach for the smallest

problem size (M = 10,000), as shown in Fig. 5. However, as

the problem size increases, the performance of the �2 norm

MD-SA algorithm deteriorates.

Moreover, the comparison between the two MD-SA al-

gorithms suggests that the entropic �1 norm algorithm is

more accurate than the �2 norm algorithm for larger prob-

lems. This observation confirms the theoretical comparison

of error estimates between the two MD-SA algorithms in Ap-

pendix B. It should also be noted that, while the numbers of

optimization steps are similar in both MD-SA algorithms,

the wall clock time of the entropic �1 norm MD-SA algo-

rithm on average is 8% less than that of the �2 norm one for

all the problem sizes considered. The slight difference in

wall clock time comes from the different ways to compute

the projections ((30) vs (55)) in the two MD-SA algorithms.

6.2 Example 2: Two-dimensional bracing design with
102 load cases

In this example, we aim to compare the proposed en-

tropic �1 norm MD-SA algorithm (n = 1) in (41) with the

standard deterministic algorithm (m = 102) in (1) with OC
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Table 1. Brief description of the numerical examples.

Example Dimension Description Feature

1 2D Disk design with 200 load cases

Comparison between deterministic, en-

tropic �1 norm MD-SA and �2 norm

MD-SA algorithms

2 2D Bracing design with 102 load cases

Comparison among standard determin-

istic formulation with OC, entropic �1

norm MD-SA algorithm, and SAA-

based randomized algorithm with OC

3 3D Bridge design with 441 load cases
Combination of entropic �1 norm MD-

SA with RMINRES iterative solver

load case 1 

f1

load case 2 

f2
f199

f200

load case 199 load case 200 

…… 

b

a

Dout Din

t
passive zone

Fig. 2. Example 1. 2D disk with (a) the domain geometry and non-designable layer, Din = 0.2 and Dout = 1.0; the domain is discretized
by a mesh with continuum polygonal elements (mesh sizes: 10,000; 40,000; 70,000; and 100,000); (b) a total of 200 equal-weighted load
cases are applied at the outer boundary of the domain (the dotted arrows are the schematic illustrations of non-active load cases).

update and with the randomized algorithm (n = 6) proposed

by Zhang et al [18] (which uses a variant of the SAA tech-

nique with OC update). The design domain, boundary con-

ditions, and the passive zone (non-designable solid region)

are shown in Figure 6a. A total of 102 linearly independent

and equally weighted load cases are applied on the two sides

of the box (Figure 6b). The problem domain is modeled us-

ing 153,600 continuum quadrilateral (Q4) elements, which

gives 309,442 degrees of freedom (DOFs). For this exam-

ple, the active volume fraction (excluding the passive zone)

is Vf = 0.25, the radius of the linear density filter is 3, and

the penalization factor, p, is taken to be 3.0.

First, we perform topology optimization using the stan-

dard deterministic formulation (1) with OC update scheme.

The final topology obtained is shown in Fig. 7(c), which

has an objective function value of C(xxx∗) = 50.65. The fi-

nal topology is obtained with 400 optimization steps (max-

imum number of optimization steps), and in each optimiza-

tion step we solve 102 linear systems (corresponding to 102

load cases), which leads to a total of Nsolve = 40,800 solves.

Next, we use the entropic �1-norm MD-SA algorithm

with the update proposed in (41), which uses a single sample

to estimate the gradient (reselected every iteration), and the

SAA-based randomized algorithm with the OC update algo-
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a b Deterministic
m = 200, C = 10.20

Entropic    norm MD-SA
n = 1, C = 10.12

   norm MD-SA
n = 1, C = 10.46

c dDeterministic
m = 1, C = 278.9 

Fig. 3. Results for Example 1 with 40,000 design variables. The optimized topologies obtained by (a) the standard deterministic approach
with 1 load case and m = 1 (i.e., all 200 loads are applied simultaneously); (b) the standard deterministic approach with 200 load cases and
m = 200 (each of 200 loads is applied independently); (c) the proposed entropic �1 norm MD-SA with n = 1 (one representative trial); (d)
the �2 norm MD-SA with n = 1 (one representative trial).

C (     1-SA)*

C (     )*

Entropic    MD-SA

Deterministic

9.0

9.5

10.0

10.5

11.0

11.5

C
om
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e,

 C

Entropic    norm MD-SA final compliances 

average
(10.28)

average
(9.60)

average
(10.11)

average
(10.20)

Number of design variables, M
0 10,000 40,000 70,000 100,000

Fig. 4. Performance of the entropic �1 norm MD-SA algorithm (n = 1) for various problem sizes (M =
10,000;40,000;70,000;100,000): Number of design variables versus the final (true) compliance. The final compliances for
each problem size for the standard deterministic approach (m = 200) are included for comparison. The final topologies obtained by the
entropic �1 norm MD-SA from representative trials are also included. The final compliances for the entropic �1 norm MD-SA algorithm are
shown for 50 trials for each problem size.

rithm, which uses six samples to estimate the gradient (res-

elected every iteration). Because the final topology from the

standard algorithm is y-symmetric, we enforce the symme-

try of the topologies in both cases by enforcing symmetry of

the density distribution with respect to the y-axis. Similar to

the first example, we run each of them 50 times, the resulting

statistics are shown in Table 3. “Mean” and “Dev” are the

mean and the standard deviation, over 50 trials, of the ob-

jective function evaluated at the obtained solutions, respec-

tively. The optimized topologies (from representative trials)

obtained by the entropic �1 norm MD-SA and the SAA-based

randomized algorithms are shown in Fig. 7(a) and 7(b), re-

spectively.

For each method, the convergence history of the objec-

tive function for a representative trial is shown in Fig. 7(d).

For the stochastic cases, the objective function estimators
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Number of design variables, M

   norm MD-SA final compliances 

average
(10.63)average

(10.59)average
(10.44)

average
(9.96)

C (     )* Deterministic

C (     2-SA)*     MD-SA

9.0

9.5
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10.5
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11.5

0 10,000 40,000 70,000 100,000

Fig. 5. Performance of the �2 norm MD-SA algorithm (n = 1) for four problem sizes (M = 10,000;40,000;70,000;100,000): Number
of design variables versus the final (true) compliance. The final compliances for each problem size for the standard deterministic approach
(m = 200) are included for comparison. The final topologies obtained by the �2 norm MD-SA from representative trials are also included.
The final (true) compliances for the �2 norm MD-SA algorithm are shown for 50 trials for each problem size.

a b
f52

…… 

f1

load case 1 load case 52 …… 

L

t

passive 
zone

f102

…… 

load case 102 …… 

f51

…… 

load case 51…… 

Fig. 6. Example 2. Two-dimensional bracing design domain with (a) the geometry and the non-designable layer, the domain is modeled by
a mesh with 153,600 continuum quadrilateral elements and 309,442 DOFs; (b) a total of 102 linearly independent equal-weighted load cases
are applied at the domain (dotted arrows are the schematic illustrations of non-active load cases).

(ĈSA(xxx) and ĈSAA(xxx)) are plotted during the optimization,

while the true values of the objective function (C(xxx∗L2−SA)
and C(xxx∗SAA)) are only evaluated at the end of the optimiza-

tion (indicated with markers). Notice that, because only one

sample load case is used to estimate the compliance in the

entropic �1 norm MD-SA algorithm rather than six sample

load cases in the SAA-based one, the history of the estimator

ĈSA(xxx) is more oscillatory than ĈSAA(xxx). However, in terms

of the true objective function values obtained at the end of

the optimization, the one from the entropic �1 norm MD-SA
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Table 2. Results for Example 1, disk design with 200 load cases. Results are averaged over 50 trials.

Algorithm M C Mean(C) ΔC Dev(C) Nstep Nsolve Time Time
Nstep

avg. avg. avg. avg.

(sec) (sec)

10,000 10.39 - - - 228 45,600 1,401 6.2

Std. 40,000 10.22 - - - 400(max) 80,000 10,425 26.1

Deterministic 70,000 10.18 - - - 400(max) 80,000 18,520 46.3

m = 200 100,000 10.14 - - - 400(max) 80,000 26,888 67.2

Std. 10,000 10.39 - - - 228 45,600 1,401 6.2

Deterministic 40,000 10.17 - - - 821 164,200 21,397 26.1

(reach τopt) 70,000 10.11 - - - 1,056 211,200 48,893 46.3

m = 200 100,000 10.07 - - - 1,449 289,800 97,402 67.2

Entropic 10,000 - 9.60 -7.60% 0.21 349 349 91 0.26

�1 norm 40,000 - 10.11 -1.06% 0.20 351 351 426 1.21

MD-SA 70,000 - 10.20 0.14% 0.22 357 357 815 2.29

n = 1 100,000 - 10.28 1.41% 0.22 358 358 1,194 3.40

10,000 - 9.96 -4.10% 0.27 330 330 95 0.29

�2 norm 40,000 - 10.44 2.10% 0.23 344 344 471 1.37

MD-SA 70,000 - 10.59 3.96% 0.26 350 350 888 2.54

n = 1 100,000 - 10.63 4.90% 0.32 355 355 1,298 3.65

algorithm is smaller than the one from the SAA-based algo-

rithm.

To quantify the accuracy and efficiency of the stochastic

algorithms over multiple trials, Fig. 8 plots the final (true)

compliance of the entropic �1 norm MD-SA algorithm (aver-

aged over 50 trials), the SAA-based algorithm (averaged over

over 50 trials), and the standard deterministic algorithm ver-

sus the corresponding total number of linear system solves.

In terms of the accuracy, the entropic �1 norm MD-SA algo-

rithm provides a similar topology to the one obtained from

the standard deterministic formulation with OC update and

yields a slightly smaller mean compliance value (−1.24%

relative difference). The SAA-based approach with OC up-

date also leads to a design similar to the one obtained from

the standard deterministic formulation, but with a slightly

larger mean compliance value (+1.88% relative difference).

In terms of the efficiency, both stochastic algorithms use sub-

stantially fewer linear system solves and less wall clock time

than the standard deterministic one. For the entropic �1 norm

MD-SA algorithm, the number of linear systems to solve is

on average (over 50 trials) 110 times fewer than for the stan-

dard algorithm (i.e., 372 solves vs. 40,800 solves), and the

total wall clock time is 14.1 times shorter (i.e., 11.2 min-

utes vs. 2.6 hours). Moreover, the convergence for both the

entropic �1 norm MD-SA algorithm and the standard one is

comparable. For the SAA-based algorithm, the number of

linear systems to solve is on average 27 times fewer than

for the standard algorithm (1,530 solves vs. 40,800 solves),

and the total wall clock time is 12.8 times shorter (12.3 min-

utes vs. 2.6 hours). Moreover, the convergence of the SAA-

based algorithm is more rapid than that of the standard al-

gorithm. Comparing the two stochastic algorithms, the en-

tropic �1 norm MD-SA leads to a 3.06% lower (averaged)

compliance and 9.2% less wall clock time than the SAA-

based one on average, because the MD-SA algorithm solves

fewer linear systems (372 solves vs. 1,530 solves). Accord-

ing to the standard deviation of both methods, the entropic �1

norm MD-SA gives more consistent solutions than the SAA-

based algorithm. In summary, among all algorithms in this

example, the entropic �1 norm MD-SA offers the lowest (av-

eraged) compliance while being the most computationally

efficient, it takes the least amount of time and the smallest

number of solves.

6.3 Example 3: Three-dimensional bridge design with
the RMINRES iterative solver

In the third example, we use a three-dimensional (3D)

bridge design to demonstrate the performance of the pro-
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a b Deterministic
m = 102, C = 50.65

Entropic    MD-SA
n = 1, C = 50.09

SAA-based
n = 6, C = 51.58
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d

Fig. 7. Results for Example 2. (a) The optimized topology obtained by the proposed entropic �1 norm MD-SA algorithm with n = 1 (one
representative trial); (b) the optimized topology obtained by the SAA-based randomized algorithm [18] (with OC update) with n = 6 (one
representative trial); (c) the optimized topology obtained by the standard deterministic algorithm [16] (with OC update), where m = 102; (d)
the history of compliance estimators (ĈSA(xxx) and ĈSAA(xxx)) and deterministic compliance (C(xxx)) for corresponding cases (a)-(c), where
also the true values of the objective function (C(xxx∗SA), C(xxx∗SAA), and C(xxx∗)) at the optimized solutions (xxx∗SA, xxx∗SAA, and xxx∗) in corresponding
cases (a)-(c) are given.

Table 3. Results for Example 2, bracing design with 102 load cases. Results are averaged over 50 trials. “Dev” represents standard
deviation.

Algorithm C(xxx∗) Mean(C) ΔC Dev(C) Nstep Nsolve Time Time
Nstep

(avg.) (avg.) (avg.) (avg.) (avg.)

(sec) (sec)

Std. Deterministic 50.65 - - - 400 40,800 9,480 23.70

m = 102 (max)

Entropic MD-SA - 50.02 -1.20% 0.50 372 372 671 1.80

n = 1

SAA-based [18] - 51.60 1.92% 0.87 255 1,530 739 2.90

n = 6

posed entropic �1 norm MD-SA algorithm for 3D problems.

In this example, we also combine the entropic �1 MD-SA al-

gorithm with a fast iterative solver for linear systems to fur-

ther reduce the computational cost of topology optimization

with many load cases. Specifically, we use the RMINRES

iterative solver [42, 43], which recycles selected subspaces

with an incomplete Cholesky preconditioner. For the RMIN-

RES parameters, we choose the number of vectors to be re-

cycled as 10, the number of Lanczos vectors kept in cycle as

100, and the max number of iterations as 1000.

The bridge design problem is set up as follows. The de-

sign domain, load cases, and boundary conditions are shown

in Fig. 9(a). A total of 1764 equally-weighted load cases

are applied to the bridge deck, which is taken to be a non-

designable solid layer. Due to the symmetry of the design

problem, we optimize a quarter of the domain with m = 441

load cases, as shown in Fig. 9(b). A total of 248,832 brick

elements are used to discretize the quarter domain, resulting

in 793,875 DOFs. For this design example, the volume frac-

tion is chosen as Vf = 0.08 (excluding the passive zone), the

radius of the density filter is 6, and the penalization factor is

taken to be p = 3. For the entropic �1 norm MD-SA algo-
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Fig. 8. Performance comparison of the proposed entropic �1 norm MD-SA (41), SAA-based [18] (with OC method), and the standard
deterministic (1) (with OC method) algorithms: Number of linear systems to solve in the optimization process versus the resulting final
compliance for each algorithm. (The entropic �1 norm MD-SA and SAA-based algorithms each include 50 trials.) In this example, the
entropic �1 norm MD-SA offers the lowest (averaged) compliance while being the most computationally efficient, i.e., solving the least number
of linear systems.

rithm, the following parameters are adopted: the sample size

n = 1, the window size ND = 100, and τstep = 0.05.

We perform topology optimization using the standard

deterministic formulation (1). The final topology obtained

is shown in Fig. 10(a), which has an objective function value

of C(xxx∗) = 13.56. This final topology is obtained with 400

optimization steps (maximum number of optimization steps)

and, in each optimization step, Matlab’s sparse direct solver

is used to solve the linear systems with 441 right hand sides.

Note that Matlab’s sparse direct solver uses compiled code,

while our iterative solver is run as interpreted code (so it runs

much more slowly).

We then compare the design using the entropic �1 norm

MD-SA algorithm with n = 1. Three cases are considered:

one using a sparse direct solver, and the other two using

the RMINRES iterative solver. For the latter two cases,

we test two convergence tolerance values, τiter = 10−8 and

τiter = 10−4. For each case, we perform the optimization 10

times, and present the results in Table 4. In addition, the opti-

mized structures for the three cases (each obtained from one

representative trial) are shown in Figures 10 (b)-(d).

First, we observe that all three cases using the entropic

�1 norm MD-SA algorithm with n = 1 produce designs sim-

ilar to the standard deterministic formulation in terms of the

final topology and on average 4.2% higher true compliance

values. However, the entropic �1 norm MD-SA algorithm

is able to yield the final design with a greatly reduced wall

clock time compared with the standard algorithm. For ex-

ample, with the RMINRES iterative solver with a tolerance

of τiter = 10−4, the total wall clock time is 87.1% lower than

with the standard formulation (i.e., 5.6 hours vs. 43.6 hours).

Comparing the three cases using the entropic �1 norm

MD-SA algorithm, with the RMINRES iterative solver we

obtain almost identical designs and compliances as with the

sparse direct solver. However, the algorithm with the RMIN-

RES iterative solver is more efficient than the algorithm with

the sparse direct solver. In terms of the wall clock time,

the RMINRES runtimes are 72% and 60% faster than the

sparse direct solver when the tolerance values τiter = 10−4

and τiter = 10−8 are used, respectively.

Finally, based on the performance comparison between

the RMINRES iterative solver with two tolerance values, we

highlight that, the single sample in entropic �1 norm MDSA

leads to a relatively inaccurate gradient estimate, and hence

there is no need to solve the linear system very accurately.

This is an advantage of the entropic �1 norm MD-SA algo-

rithm that we exploit with low accuracy iterative solves. The

features of the proposed entropic �1 norm MD-SA algorithm
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and the RMINRES iterative solver with a large convergence

tolerance allow us to achieve a further reduction in the com-

putational time in addition to reducing the number of linear

systems to solve.

7 Concluding remarks and perspective
In this paper, we propose a tailored stochastic approx-

imation algorithm to solve mechanics-driven topology op-

timization problems with many load cases based on com-

pliance minimization formulation at a drastically reduced

computational cost. We first reformulate the deterministic

topology optimization problem with many load cases into

a stochastic one, whose objective function takes the form

of the expectation of a random variable. We propose a tai-

lored MD-SA algorithm (see Algorithm 1), which adopts an

entropic distance generating function using the �1 norm to

mimic the underlying geometry of the feasible design space

(i.e., a design space with a linear volume constraint). Un-

like commonly used optimization algorithms, the proposed

entropic �1 norm MD-SA algorithm requires only moderate

accuracy in the stochastic gradient, which enables the use of

a single sample per optimization step (i.e., the sample size

is always one) to estimate the stochastic gradient. With the

proposed MD-SA algorithm, we reduce the number of lin-

ear systems to solve per iteration from hundreds to one. To

the authors’ knowledge, this is the first work in the literature

that tailors SA algorithms to solve deterministic topology op-

timization problems.

To improve the performance and convergence of the pro-

posed algorithm, we propose several algorithmic strategies

for obtaining effective step sizes and updates, including the

step size policy and re-calibration, iterates averaging, and a

damping scheme inspired by simulated annealing. The main

idea is to calculate and re-calibrate step sizes adaptively in

different stages of the optimization. We also adopt an itera-

tive solver with recycling for solving the large linear systems,

this allows the MD-SA algorithm to use a significantly higher

convergence tolerance in solving large state equations with-

out influencing the performance of the design update to fur-

ther reduce computational cost. With the proposed algorith-

mic strategies, the convergence rate of the proposed MD-SA

algorithm is shown to be comparable to that of the standard

algorithm.

Through numerical examples, we demonstrate the effec-

tiveness, efficiency, and potential of the proposed entropic �1

norm MD-SA algorithm. Compared to the standard deter-

ministic approach, the entropic �1 norm MD-SA algorithm

allows to solve large-scale topology optimization problems

with hundreds of load cases at a drastically reduced compu-

tational cost while obtaining similar design quality. For in-

stance, in example 1, compared to the standard deterministic

algorithm (m = 200), the number of linear system solves is

223 times smaller (i.e., 358 solves vs. 80,000 solves) and the

average wall clock time is 22 times faster (i.e., 20 minutes vs.

7.5 hours) with the proposed entropic �1 norm MD-SA algo-

rithm (n = 1). In addition, the proposed entropic �1 norm

MD-SA (n = 1) is shown to outperform both the �2 norm

MD-SA (n = 1) and the SAA-based algorithm [18] (n = 6)

with OC update in terms of both efficiency and effectiveness.

The first example investigates the performance of two MD-

SA algorithms, namely the entropic �1 norm and the �2 norm,

in a design problem with various problem sizes (M = 10,000,

M = 40,000, M = 70,000, and M = 100,000). The entropic

�1 norm algorithm is found to be more accurate than the �2

norm one for larger problems, which confirms the theoretical

comparison of error estimates between the two MD-SA algo-

rithms (see Appendix B). In addition, the wall clock time of

the entropic �1 norm MD-SA algorithm on average is 9.21%

less than that of the �2 norm algorithm for all the problem

sizes investigated. The second example shows that the en-

tropic �1 norm MD-SA leads to a 3.06% lower (averaged)

compliance and 9.2% lower (averaged) wall clock time than

the SAA-based algorithm with OC, because the MD-SA al-

gorithm solves fewer linear systems (i.e., 1 solve per step

vs. 6 solves per step). In the third example, the entropic

�1 norm MD-SA algorithm is employed in conjunction with

the RMINRES iterative solver for a 3D bridge design under

1,764 load cases (441 load cases for a quarter of the domain).

We demonstrate that, as compared to the deterministic opti-

mization algorithm, the proposed entropic �1 MD-SA algo-

rithm can produce good-quality designs even when working

with an iterative solver with a relaxed tolerance (i.e., 10−4

instead of the more common 10−8), which is especially de-

sirable for large-scale problems to further reduce the compu-

tational time.

Future research directions include studying the optimal

choices of parameters for both overall computational cost

and quality of design. Another important direction is to tai-

lor the proposed algorithm to other objective functions and

constraints as well as applying it to practical and complex

design examples.
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Nomenclature
αi Weighting factor for the ith load case

HHH Filter matrix for density

xxx∗SAA Optimal solution obtained by the SAA variant algo-

rithm [18] in the density-based method

xxx∗ Optimal solution obtained by the standard algorithm in

the density-based method

x̂xx∗�2−SA Optimal solution obtained by the entropic �2 norm

MD-SA algorithm in the density-based method

with weighted averaged iterates

x̂xx∗�1−SA Optimal solution obtained by the �1 norm MD-

SA algorithm in the density-based method with

weighted averaged iterates

xxx Filtered density vector

x̃xx Scaled density vector

ξξξ Random vector with its entries drawn from the

Rademacher distribution

fff i External force vector for the ith load case

GGG(xxxk,ξξξk) Stochastic gradient at optimization step k
G̃(x̃xxk,ξξξk) Stochastic gradient with respect to x̃xx at optimiza-

tion step k
uuui Displacement vector for the ith load case
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γk Step size at optimization step k
κ Scale factor in the damping scheme

ω(x) Distance generation function

V (·, ·) Prox function generated by ω(x)
X̃xxx Feasible set of the scaled design variable x̃xx in the

density-based appraoch

Rmin Radius of the density filter

ND Sample window size in the damping scheme

NA Window size to obtain the weighted averaged density x̂xx
τD Tolerance for the damping scheme

τopt Tolerance for the optimization process

F Weighted external force matrix

K Global stiffness matrix

U Weighted displacement matrix

ãaa Scaled cross-sectional area

ĈSA Expected objective function by the SA algorithm

ĈSAA Expected objective function by the SAA variant al-

gorithm [18]

C Weighted compliance (objective function)

calibration Number of times the step size re-calibration

process is performed

d Number of dimensions

E0 Young’s modulus of the solid material

Emin Young’s modulus of the Ersatz material

M Number of elements in the mesh

m Number of load cases

move Move limit in the design update

N Number of nodes in the mesh

n Sample size

Nstep Total number of optimization steps to obtained the

final topology

Nmax Maximum number of steps in the optimization

Nsolve Total number of linear systems solves in the opti-

mization process

p Penalization parameter in the density-based method

Px(·) Prox mapping defined by V (·, ·)
Rk Effective step ratio in the damping scheme evaluated at

optimization step k
x(e) Density of element e (the e-th design variable in the

density-based method)

v(e) Volume of element e
Vmax Prescribed maximum volume of the design

Vf Prescribed allowable volume fraction in the density-

based method

Xxxx Feasible set of the design variable xxx in the density-based

approach

Appendix A: Euclidean MD-SA with �2 norm
In this appendix, we present the MD-SA algorithm with

the �2 norm (also known as the Euclidean SA). In this vari-

ant, we use the Euclidean (�2) norm, and define the distance

generating function as follows, ω(xxx) = 1
2 xxxT xxx. In that case

the prox-function V (·, ·) becomes

V (xxx,zzz) =
1

2
zzzT zzz−

[
1

2
xxxT xxx+ xxxT (zzz− xxx)

]
=

1

2
‖zzz− xxx‖2

2, (53)

and the prox-mapping Pxxx(xxx) = ΠX (xxx − yyy); see (12). As a

result, we obtain the following update formula (18) for MD-

SA algorithm with the �2 norm,

xxxk+1 = ΠX (xxxk − γkG(xxxk,ξξξk)) . (54)

That is, using the Euclidean norm, the MD-SA is equivalent

to the robust SA algorithm.

When applied to randomized topology optimization for-

mulations, the feasible sets are given by

Xxxx =

{
xxx ∈ R

M :
M

∑
e=1

v(e)x(e)

|Ω| −Vf = 0, 0 ≤ x(e) ≤ 1,

e = 1, ...,M} .
(55)

The �2 norm MD-SA framework gives the update formula

xxxk+1 = ΠXxxx (xxxk − γkG(xxxk,ξξξk)) . (56)

We note that in the above update formula, a subproblem

needs to be solved to find the corresponding Euclidean pro-

jection.

The �2 norm MD-SA adopts the same algorithmic

framework as the entropic �1 norm MD-SA described in Sec-

tion 5, except for a different formula for γk. A general for-

mula for �2 norm MD-SA is suggested in [22] which takes

the form

γk =
θDω,X

B
√

Nmax
, k = 1, ...,Nmax, (57)

where

B2 ≥ E
[‖G(xxx,ξξξ)‖2

2

]
, (58)

is a bound on the �2 norm squared of the stochastic gradient.

Similar to the entropic �1 norm MD-SA case, the above for-

mula is used in this paper to determine the step size for the

�2 norm MD-SA. In our case, Dω,X =
√

M and the scaling

parameter θ is taken to be 50. Because the bound B for the

stochastic gradient is unknown, we estimate B using a few

samples as B = 1/n‖∑n
i=1 G(x0,ξξξi)‖2, which is the sample

averaged �2 norm of the estimated gradient at the initial step.

This gives the following formula for the constant step size γk
for the �2 norm MD-SA,

γk =
50
√

M
B
√

Nmax
, k = 1, ...,Nmax. (59)

As a final remark, unlike in the entropic �1 norm MD-SA, we

find that the performance of �2 norm MD-SA is much more

sensitive to the step size, especially to the scaling parameter
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θ.

In Algorithm 2, we summarize the �2 norm MD-SA al-

gorithm for randomized topology optimization considered in

this work.

Algorithm 2 Randomized topology optimization using �2

norm MD-SA
1: Initialize: x0, Nmax, τopt , τD, ND, move, calibration
2: for k = 0,1, ...,Nmax do
3: if k = 0 then
4: Evaluate γk based on (59)

5: end if
6: Select a single sample ξξξk and evaluate G(xk,ξξξk)
7: Compute xk+1 based on (56)

8: Calculate x̂xxk+1 by averaging using (47)

9: Evaluate the effective step ratio Rk
10: if Rk < τD and k > ND then
11: move = move/κ
12: end if
13: if ‖x̂k+1 − x̂k‖∞ < τopt then
14: quit

15: end if
16: end for
17: if calibration > 0 then
18: calibration = calibration−1

19: x0 ← x̂k+1 and goto step 2

20: else
21: Evaluate final compliance C(x̂k+1) and plot final

topology

22: end if

Appendix B: Comparison of entropic �1 norm MD-SA
and �2 norm MD-SA

Here, we provide an error estimate comparison of the

entropic �1 norm MD-SA and the �2 norm MD-SA algo-

rithms for a generic convex function f [22]. The error es-

timate for the �2 norm MD-SA is as follows,

E
[

f (x̄xxN step)− f (xxx∗)
]≤ O(1)max

{
θ,θ−1

}
BN

− 1
2

step, (60)

where x̄xxNstep is the weighted averaged design variable vector

after Nstep steps using the corresponding MD-SA algorithm,

xxx∗ is the optimal design variable vector, O(1) is a generic

constant, θ is the chosen parameter to determine the step size

γ (see previous page), and B is a bound on the �2 norm of the

stochastic gradient,

B2 ≥ E
[‖G(xxx,ξξξ)‖2

2

]
. (61)

The error estimate for the entropic �1 norm MD-SA is as

follows,

E
[

f (x̄xxNstep)− f (xxx∗)
]≤ O(1)max

{
θ,θ−1

}√
ln(M)B∗N

− 1
2

step,
(62)

where M is the number of design variables, and B∗ is a bound

on the �∞ norm of the stochastic gradient,

B2
∗ ≥ E

[‖G(xxx,ξξξ)‖2
∞
]
. (63)

Notice that the following relation holds for every optimiza-

tion step,

√
1

lnM
≤ B

B∗
√

lnM
≤
√

M
lnM

, (64)

and

1 ≤ B
B∗

≤
√

M. (65)

According to equations 60, 62 and 65, the entropic �1 norm

MD-SA can be more accurate (in terms of estimated error)

than the �2 norm MD-SA for large M. Therefore, MD-SA

with �1 is preferred for problems with larger dimensions. In

Section 6.3, the numerical comparison between entropic �1
and �2 norm MD-SA algorithms shows that the entropic �1

norm MD-SA is more accurate than the �2 norm MD-SA for

large problem sizes. This observation agrees with the the-

oretical comparison between these two algorithms regarding

the error estimates. An important benefit of the �1 norm MD-

SA algorithm over the �2 norm MD-SA (Euclidean SA) is

the possibility to reduce the constant factor by adjusting the

norm and the distance-generating function to the geometry

of the problem [22].
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