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We report on a study of UVC photonics integrated circuit consisting of monolithically integrated Al,Ga;_,N multiple quantum wells based light-
emitting diodes, detectors and channel waveguides on sapphire substrates. The waveguide stack consisted of a 1.5 um thick n-Aly gsGag 3sN

waveguide over an AIN (3.5 um thick) clad layer. Using the integrated devices, we estimated the multi-mode ridge waveguide losses to be 23 cm

=

at Aemission ~ 280 nm. We also measured that approximately 80% of the guided light was confined in the n"-AlygsGagssN layer, 7% in the
underlying AIN cladding and the remaining 13% in the double-side polished sapphire substrate. © 2020 The Japan Society of Applied Physics

UVC spectral region are of significant interest for
applications in solar-blind communications, UV
Raman spectroscopy, bio-chemical detection and nonlinear
optics."s) Since our first report of Al,Ga;_,N MQW based
UVC LEDs on sapphire substrates, significant progress has
been made and they are now commercially available from
several companies globally.®” Similarly, UVC light detec-
tors using ultra-wide bandgap (UWBG) Al,Ga,_,N hetero-
junctions have also been reported by several research groups
including ours.*™'” Sapphire, due to its optical transparency
for wavelengths longer than 200 nm, is primarily the sub-
strate of choice for UVC emitters and detectors.''~'* For
either device type a high quality AIN buffer layer is
incorporated prior to the growth of the device active layers
which consist of UWBG Al,Ga;_,N heterojunctions
(x>0.5).""7"” AIN is also transparent at UVC wavelengths
thereby making the AIN/sapphire templates an ideal cladding
layer for Al,Ga;_,N based UVC guided wave structures.'®
Nearly all the reported UVC devices to-date have the emitted
or detected light in a direction perpendicular to the epilayer
surface. For UVC LEDs with emission wavelengths
<280 nm, the emitted light is increasingly TM polarized
(TE/TM ~ 50%/50% at Aemission = 280 nm).'”" For these
wavelengths, it is more favorable for the emitted light to be
guided along the lateral direction parallel to the
epi-surface.”” >
However, the study of UVC radiation wave-guiding in
UWBG Al,Ga;_,N heterojunctions over sapphire is difficult.
Accurate measurement of the guided-mode reflectivity and
waveguide cavity losses requires the fabrication of multiple
waveguides with varying lengths and identically cleaved
facets.”® Due to absence of natural cleavage planes, cleaving
facets in AIN/sapphire structures is very challenging.
However, it is possible to fabricate cleaved facets after
thinning the sapphire substrates.”””® But grinding and
thinning sapphire substrates is in itself a very difficult task
due to the hardness of the material. Thus, in addition to the
absence of wave-guiding studies, there are also no reports of
PIC fabrication in the UVC spectral region All the estimates
and measurements of the optical attenuation of metal organic
chemical vapor deposited (MOCVD) AlGaN in this spectral
region have primarily focused on normal-incidence for the
measurement of the optical transmission fringe contrast.””~"
It is often difficult to obtain enough fringe contrast at UVC
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wavelengths because the typical thickness of the absorbing
AlGaN layers is only ~1-2 ym, which makes the normal-
incidence attenuation coefficient difficult to characterize with
spectrophotometry.®” The difficulty is compounded by the
effects of surface scattering and the crossing of refractive
index barriers at epilayer interfaces.

Here we report on a new approach to fabricate mono-
lithically integrated LEDs, detectors and waveguides in the
UVC spectral region. In this approach the UVC emitter-
detector pairs are fabricated using the same epilayer structure
which also serves as the waveguide coupling between them.
This approach circumvents the need for cleaved facets for
UVC waveguiding studies. The schematic of our epilayer
structure is shown in Fig. 1. It consists of an MOCVD-grown
AIN (~3.5 pm)/basal plane sapphire template with a 1.5 pm
thick nt-Alp ¢sGag 45N n-contact/cladding layer
(Ng~2x108cm™). It is followed by 4 pairs of
Alg ¢Gag 4N/Aly 35Gag 65N multiple quantum wells (Aemission
~280nm) and an electron blocking AlGaN, a polarization
doped graded composition p-AlGaN, and a Mg-doped hole-
injection p*-GaN cap layer. Mesa type emitter and detector
device pairs were then fabricated by first accessing the
n"-Aly65Gag.4sN via inductively coupled plasma reactive
ion etching (ICPRIE) and then making the n-contacts using a
Ti (150 A)/Al (700 A)/Ti (300 A)/Au (500 A) metal stack. A
305 950 °C rapid thermal annealing was used to improve the
ohmic behavior and reduce the n-contact resistivity which
was measured to be 0.77 () mm using standard transmission
line measurement test patterns. For the p-contact, Ni/Au was
deposited followed by a 5 min 450 °C hot-plate annealing.

The emitter and detector devices of our study share a
common epilayer structure which also serves as the wave-
guide. Figure 2(a) shows an integrated module comprising of
1 detector (200 gm x 200 ygm) and two emitters
(100 pgm x 100 pm) each. As shown these devices are
coupled through the n-AlggsGagssN waveguide (the n-
contact layer for the devices). In Fig. 2(b) we have plotted
the emission power and responsivity as a function of
wavelength for the individual devices of our integrated
module were performed, using a measurement technique
similar to that described elsewhere.”” The detector respon-
sivity peaks at 1 mA W' (at A =250 nm) and falls approxi-
mately by a factor of 10° by A\ =280 nm which is the peak
emission wavelength for the LED emitter. Despite their peak
response wavelength difference, there is enough of an

© 2020 The Japan Society of Applied Physics
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Fig. 1. (Color online) Device epilayer cross section schematic.

overlap in these spectra which gave a strong signal response
on the reverse biased detector when either of the emitters
were forward biased. This establishes that the same MQW
epilayer structure can be employed for the monolithic
integration of Al,Ga;_,N based emitters and detectors for
the study of UVC waveguiding and PICs Furthermore, using
the capacitance—voltage (C-V) and power—current (L)

&
&
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characteristics of these devices, their total series resistances
(emitter =51 (), detector=33 () and capacitances
(emitter = 50 pF, detector = 44 pF), give an RC time constant
of 2.5 ns and 1.2 ns, respectively.” This should in principle
be capable of supporting a data transfer rate in excess of
about 100 Mbs~".**

Note our selected device geometry also enables a determi-
nation that the detector signal when an emitter is forward
biased has no free-space transmission signal. First the emitter
1 of our module was forward biased and the detector signal
was measured. Then using a probe tip, UV-absorbing red
paint was inserted between them and the signal was measured
again. No reduction of the photo-signal confirmed that the
detector photo-signal was entirely due to the waveguided
UVC radiation from the MQW emitter.

Then, to determine the distribution of guided light among
the different layers of our waveguide structure, we measured
the detector signal as a function of the depth of a trench that
was etched between the adjacent emitter/detector pair of the
linear array of Fig. 2(a). For the trench etching which is
schematically shown in Fig. 2(c), an ICP-RIE process was
used and it resulted in an RMS surface roughness of
approximately 2.5nm. This measured surface roughness
was well below the Rayleigh criterion approximation for an
optically smooth surface,” which conservatively requires
RMS roughness <14 nm for specular light transmission. The
AlGaN and the AIN layers of our guided-wave structure were
completely etched out in steps and after each step the detector
photo-signal was recorded. These data are plotted in
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Fig. 2. (Color online) (a) Schematic of linear array of devices. (b) Individual detector and emitter responsivity and emitted power as a function of

wavelength. (c) Linear array of devices. Also shown is the etched trench used for power distribution study. (d) Fraction of the waveguided power transmitted

between adjacent emitter and detector as a function of the trench depth.
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Fig. 2(d). From these data we were able to establish that
approximately 80% of the guided light is in the AlGaN
waveguide, about 7% in the AIN clad layer and about 13% in
the two-sided polished sapphire substrate. Note the uncer-
tainty in these power levels arises from the exact location of
the AlGaN/AIN interface and the step-size of the trench
etching procedure.

Next, to measure the total waveguide losses, we fabricated
the test structure with multiple emitter/detector sets with
varying channel waveguide coupling distances between
them. The channels were defined using an SiO, masking
followed by ICPRIE. The channel widths were 340 pm. This
wide channel geometry was selected to minimize the sidewall
scattering losses. The channel etch depth was 2 um. A
microscope image of these emitter-detector pairs with
varying distances between them is included in Fig. 3(a).
We then measured and plotted, in Fig. 3(b), the photocurrent
arising from the guided light in the channel waveguide as a
function of the detector-emitter spacing. The detector photo-
current was found to increase from the lateral channel
confinement due to the air/AlpesGagssN ridge sidewall
refractive index contrast. We then applied an exponential fit
directly to the measured photocurrent versus waveguide
length data yielding an attenuation coefficient of
23.35cm ', Note this number includes both the planar
propagation losses and the losses due to sidewall scattering.
The use of an optimized fabrication procedures to improve
the sidewall roughness in the ICPRIE process is expected to
significantly reduce the scattering losses.
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Fig. 3.

We then measured the crosstalk between emitter-detector
pairs on adjacent ridges. A top-view schematic of the
measurement procedure with the photocurrents overlaid is
presented in Fig. 3(c). The crosstalk induced photocurrent
arising from the sapphire/AIN transmission is about 45% of
the guided-signal strength. This is expected based on our
epilayer power distribution measurements of Fig. 2(d). Note,
the guided light propagation through the sapphire substrate is
nearly double of that through the AIN clad layer. To reduce
the crosstalk, the wafer backside was coated with an UV-
absorbing paint. This reduced the crosstalk reduced by a
factor of 30 while the photocurrent also decreased but only
by a factor of 2. This crosstalk is similar to what was reported
recently for GaN PICs operating at visible wavelengths.*®

In summary, we have for the first time demonstrated an
UVC PIC using MOCVD-grown monolithically integrated
detectors and emitters  (Aemission ~ 280 nm) and an
n-Aly 65Gag 35N channel waveguide. The measured attenua-
tion coefficient for multi-mode UVC propagation in this ridge
waveguide structure was approximately 23 cm ™' which
establishes the feasibility of using this system for other
integrated optical devices and circuits. The fraction of the
guided light was estimated to be 80% in the Alg¢5Gag3sN
layer, 7% in the underlying AIN template and approximately
13% in the sapphire substrate.
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