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Inverse Projection Representation and Category
Contribution Rate for Robust Tumor Recognition
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Abstract—Sparse representation based classification (SRC) methods have achieved remarkable results. SRC, however, still suffer
from requiring enough training samples, insufficient use of test samples, and instability of representation. In this paper, a stable inverse
projection representation based classification (IPRC) is presented to tackle these problems by effectively using test samples. An IPR is
first proposed and its feasibility and stability are analyzed. A classification criterion named category contribution rate is constructed to
match the IPR and complete classification. Moreover, a statistical measure is introduced to quantify the stability of representation-based
classification methods. Based on the IPRC technique, a robust tumor recognition framework is presented by interpreting microarray
gene expression data, where a two-stage hybrid gene selection method is introduced to select informative genes. Finally, the functional
analysis of candidate’s pathogenicity-related genes is given. Extensive experiments on six public tumor microarray gene expression
datasets demonstrate the proposed technique is competitive with state-of-the-art methods.

Index Terms—Tumor classification, inverse projection representation, category contribution rate, classification stability index,

two-stage hybrid gene selection

1 INTRODUCTION

ITH the rapid development of gene chip technology,

we can quickly and accurately acquire tumor gene
expression microarray data, which have strong ability to
measure expression levels of thousands of genes simulta-
neously. Analyzing and interpreting these gene data can
provide aid for tumor early diagnosis on the level of
molecular biology [1]. Therefore, effective analysis of
microarray gene expression data techniques has attracted
much attention in recent years. Microarray gene expres-
sion data, however, have the characteristics of small sam-
ples (patients), high dimensions (thousands of genes) and
high redundancy [2], which impose a challenge to tumor
classification.

Microarray gene expression data-based tumor classifica-
tion mainly consists of clustering [3] and classification [4].
For the characteristic of small sample size, classifier design
is still an active and challenging issue for tumor classifica-
tion [5], [6], [7], [8]. Khan et al. [5] developed a method of
classifying cancers to specific diagnostic categories based
on their gene expression signatures using artificial neural
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networks. Furey et al. [6] used support vector machine
(SVM) to analysis both classification of the tissue samples
and give exploration of the data for mis-labeled or question-
able tissue results. Shi et al. [7] proposed an improved diag-
onal discriminant analysis with sparse constraint for tumor
classification. Liu et al. [9] proposed a tumor classification
based on robust principal component analysis (PCA) and
SVM. However, these methods are mostly based on statisti-
cal learning theory and need training process to determine
model parameters. Recently, deep-learning based classifica-
tion methods have been proved effective for recognition.
However, its success usually relies on big data, complex net
structure and advanced hardware.

Sparse representation is a sparse coding technique based
on an over-completed dictionary without learning. Sparse
representation based classification (SRC) was originally pro-
posed by Wright et al. for face recognition [10]. Xu et al. [11]
proposed an integrated sparse representation-based face rec-
ognition method, which artificially enlarged training set by
constructing symmetry virtual face samples. Our previous
work [12] proposed an inverse projection based pseudo-full-
space representation classification (PFSRC) for face recogni-
tion by focusing on exploiting complementary information
among existing available samples rather constructing auxil-
iary training samples. Recently, SRC has attracted much atten-
tion from bioinformatics [13-17]. Hang et al. [13] applied SRC
in tumor classification by interpreting gene expression data.
Zheng et al. [14] made use of singular value decomposition to
learn a dictionary and then classified gene expression data of
tumor subtypes based on SRC. Gan et al. [15] improved and
generalized [14] by adding a weighted matrix. Khormuii et al.
[16] proposed a SRC based tumor classification method, which
used geometrical structure of data. Gan et al. [18] used latent
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low-rank representation (Lat_LLR) for extracting salient fea-
tures from the original tumor data before SRC. The success of
SRC depends on enough training data of the same category.
For tumor classification, however, it is difficult to acquire so
many labeled samples. Zhang et al. [19] indicates that the dis-
crimination ability of SRC will be reduced when there is a
small disturbance on representation error. It is meaningful to
improve the effect of tumor classification if one can tackle
these problems of SRC.

On the other hand, there are many irrelevant, redundant
and noisy genes and small set of informative genes. It is
believed that more reliable cancer classification results will
be achieved based on the informative genes. Ranking meth-
ods [1], [4], [20] are promising and attractive because their
simplicity and stability. Least absolute shrinkage and selec-
tion operator (LASSO) [21], [22] is an embedded method,
which uses predictor performance as the objective function to
evaluate the selected informative gene subset. Hybrid gene
selection methods [23], [24] reach more reliable performance
by effectively combining complementary strengths from
different methods [25]. There are other methods, of course,
can be used for gene selection. Wu et al. [26] applied sparse
linear discriminant analysis to gene selection. Dai et al. [27]
presented an attribute selection method based on fuzzy gain
ratio under the framework of fuzzy rough set theory.
Cadenas et al. [28] applied fuzzy random forest and feature
selection fuzzy random forest with embedded capacity to
tumor classification. RPCA technology proposed by Candes
was also used for gene selection and achieves good results [9].

Motivated by these works, we propose an inverse projec-
tion representation classification (IPRC) to improve the per-
formance of SRC based tumor classification. We restrict our
attention to limited training samples and representation
without learning. Here, limited training samples mean that
there are a small number of training samples (with label)
and others are test samples (without label). It is noted that
the proposed inverse projection representation focuses on
utilizing existing available samples to form the representa-
tion space, rather than constructing auxiliary samples by
other ways. The main differences between the proposed
IPRC and the related works [10], [11], [12] are as follows. (1)
IPRC focuses on a completely opposite projection way to
[10] and presents a novel classification criterion to match the
inverse representation and fulfill classification, which simi-
lar to [12]. (2) [11] also mentioned inverse representation,
while the projection way is different because different appli-
cations. [11] represented each training face sample of a cate-
gory with a test sample, training samples of the other
categories and their symmetry virtual face samples, while
IPRC focuses on the available test sample space. The classifi-
cation criterion of [11] is the same with [10]. (3) Our previous
work [12] proposed an inverse projection for face recogni-
tion. However, [12] projects each training sample into
pseudo-full space because face images have important com-
plementary between samples, while it not suitable for gene
expression data. More importantly, a statistical measure is
constructed to quantify the stability of representation-based
classification methods.

The remainder of this paper is organized as follows. The
presented robust tumor classification based on two-stage
gene selection and IPRC is stated in Section 2. Extensive

1263

experimental results are shown in Section 3. Finally, Section 4
concludes the paper.

2 METHODOLOGY

2.1 Inverse Projection Representation Based
Classification
2.1.1 Sparse Representation Based Classification

Suppose X = [z1,...,x|y|] are training samples, Let |X]| be
labeled training samples in total of ¢ categories. SRC [10]
assumes a test sample y, can be represented as,

|X]

Yr = Z%Olnu (1)
i=1

where i =1,2,...,|X|, r=1,2,...,kwo,; € R is the coding
coefficients. Let o, = [ety1,. .., sy .., 0 X|]T, l;-norm with
the following Lagrangian formulation is often adopted.

@, :argmin{Hyr—Xa,ng—}—)\HaTHl}. (2)
The classification criterion of SRC is as follows,

e{ = Hy,. - X;8i(a,) g, i=1,...,¢ 3)

where §; : R" — R" is a characteristic function that selects
coefficients associated with the jth category. For z € R",
8;(@) is a vector whose only nonzero entries in « that are
associated with category j. A test sample is classified into
the category with the minimal reconstruction error.

Next, the stability of SRC will be analyzed. Suppose X;,
Xy € R™", which come from two different categories. For a
sample y, from one category, a coefficient vector and error
can be calculated: «; = argmin, ||y, — X;|, and error e; =
v — Xoei, i = 1,2.

Suppose the difference between X; and X5 is a small dis-
turbance A(X;) = X, — X3, which results in y, has a small
disturbance A(y, ). The error can be calculated

~ e AKX D)y AW, @x(X1)
T { Xl Tl }5 (X))’

where ¢, (X1) and ¢|y(X1) are the largest and the smallest
singular values of X, respectively. Refer to [19], the rela-
tionship between e, ; and e, 5 can be written as,

(4)

W < e(1+w2(Xy))min{l,m —n} + O(%), ©)
rll2

where (X)) = || X1l], - [[(X:7X,) 7' X, 7|, is the Il»-norm
conditional number of Xj. It is obviously that the bigger the
similarity of X; and X, is, the smaller the difference
between ¢,; and e, is. Eq. (5) demonstrates that misclassifi-
cation is easy to happen and the classification is unstable
when e, ; is similar to e, 5.

2.1.2 Inverse Projection Representation

Suppose there are few training samples (with label) per cat-
egory, and the others are test samples (without label). In
this case, SRC doesn’t work well. Therefore, an IPR is
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proposed to obtain a more stable representation by explor-
ing test sample space.

The projection way of IPR is opposite to that of sparse
representation. Let Y = [y,...,yx] is test sample space,
where k expresses the number of test samples. Each training
sample z; can be represented by all test samples.

Ty =Yyt ViU T T Vi (6)

where y;, € R are representation coefficients. Let y, =
Vits-- Vi, AR represents coefficient vector, z; can be rewrit-
ten as z; =Yy;. And then all training samples X =
[z1,...,7|x] can be linearly represented as follows.

X =Yy, (7

where y = [yy,..., v x| is the coefficient matrix.

Zhang et al. [19] indicates that it is the collaborative repre-
sentation, but not sparsity, that plays the essential role for
classification in SRC. Moreover, it is also proved that the
li-norm can be replaced by /;-norm, which can achieve simi-
lar classification results but with significantly lower complex-
ity. Therefore, [,-regularized constraint is used in IPR model.

7. = argmin{ |l; — Yy, [3+Aly.l13 }. ®
Vi

where ) is a regularization parameter.
The analytic solution of matrix form y with regularized
least square about Eq. (7) is easily and analytically derived as

y=0"Y +A)YTX (9)

As a result, IPR can be more easily implemented than
standard sparse representation. What we emphasize is that,
the representation space may be enlarged by using test sam-
ples, especially there are a small number of training samples
per category.

It is easy to notice that the latter focuses on the column
coefficients before test samples, rather than row coefficients
of training samples for the former. The different projection
way makes the IPR is less sensitive to the number of train-
ing samples than that of sparse representation.

The feasibility of the proposed IPR can be further ana-
lyzed as follows. Similar to [19], for the simplicity of analy-
sis, the regular term in Eq. (8) is removed and then the
representation becomes a least square problem,

y; = arg min||x; — Yy7|\§
Vi

Let z] represent a training sample z; belongs to category
J, which can be represented by the test sample space based
on IPR. Similar to standard sparse representation and with-
out cause confusion, suppose Y7 denotes test sample sub-
space belong to the same category with z;, the associated

representation &/ = 3 ;Y78;(7;) is actually the perpendicu-
lar projection of x; onto the test sample full space Y. The
reconstruction error by each category e; = ||:r{ - Yf(Sj(f/?;)Hg
is used for classification. It can be readily derived by

j TR i ad)2 . s (]2
ej = |l = Y78;()lls = [l — &[5 + (187 — Y78,(7)ll>-
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Obviously, it is the amount e} = || —Yv"S‘,,-(f/i)Hg that
works because ||/ — 77|[5 is a constant for all categories.
Denoted by x; = Y78;(y;) and X = Z’"# .Y’”Sm(f/i),
m=1,...,¢c, m # j, since j; is parallel to &} — Y/8;(y;), we
can readily have
1112

1l = Y53,

sin (x;, &)

)

where (x;, x;) is the angle between x; and %;, and (Xj,i{ )
is the angle between x; and ;. Finally, the representation
error can be represented by

sin® (o, 2114115

- (10)
sin® (x, x;)

* ~j i ~ 2
€; = &} = Y28;(7)ll; =

Eq. (10) shows that by using IPR, when judging if 27 has a
strong correlation with a test sample, we need not only con-
sider if sin (x;,4]) is small and also consider if sin (x;, x;)
is large. Such a “double checking” makes the representation
effective and robust.

2.1.3 Category Contribution Rate

It can be observed that the conventional classification criteria,
reconstruction error, doesn’t work for IPR. Since the represen-
tation dictionary is unlabeled test samples. Hence, a classifica-
tion criterion, CCR, is constructed to match the proposed IPR
and complete classification, which is called IPRC.

Definition 1 (Category Contribution Rate, CCR). For a
test sample vy, the contribution rate C;, of y, for the j-th cate-
gory can be calculated by Eq. (11).

cjﬁ,.—sjz<zi{|y“|}>, 1,....)x|,

i

an

where j=1,2,...,¢cr=1,2,...,k, s; denotes the number of
jth category training samples. For eliminating effects of train-
ing sample size may differ in different categories, the projection
coefficient vector of every category before y, is normalized by
summing up itself and solving the average. And then the CCR
matrix [C},],j=1,...,c, 7=1,...,k for all test samples is
got. The larger the CCR is, the higher the correlation between
each test sample and every category is. A test sample vy, is clas-
sified into the category with the maximal contribution rate.

12)

m, = arg max(Cj ).

je{l,..c}

By this means, categories of all test samples are obtained
simultaneously and classification can be completed.

Comparing Eqs. (3) and (11), one can see that the differ-
ence between reconstruction error and CCR lies in that the
latter focuses on the coefficients before each test sample
rather than the former focuses on those of training samples.
Experiments will be shown in Section 3.3.2.

2.1.4  Stability Analysis of IPRC

Theorem (Classification Stability of IPRC). Suppose x;, z;
are ith and jth training samples, and the relationship x; and x;
is x; = x; + A(x;), where A(x;) is a disturbance of x;. Based on
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the test samples Y, the IPRs of x;,x; are as follows: x; = Yy;,
x; =Yy, where y; and y; are representation coefficients for x;
and xj, respectively. Let A (Y') represents the disturbance corre-
sponding to A(z;). If

(I8l 1AL _ e¥)
- { T }Swlm’

ors =Y vrs,—

andsin (0) = prg/l|zilly # 1, where
zillyyrs, = argmin,, |[z; — Yy;||y, then

||Vj = villa 2i5(Y) 2 2
A < 5{ <05 (6) + tan (0)k2(Y) } + 0(e%). (13)
where iex(Y)  (eo(Y) = [[Y]ly - [|[(YTY) 'Y ]|y, wea(Y)* =

Y5 [(YTY) Y |,) is the ly-norm conditional number of Y,
and 0 is angle between x; and its projection vectoron Y.

[lyj=vill2
[lvilla
find the relationship between y; and y;. Let y;(¢) is contin-

Proof. In order to discuss the value of

, we need to

uously differentiable for all ¢ € [0, €], where y; = y;(0) and
y; = vi(e). Let y;(t) do the Taylor expansion at t=
0:7;(t) = 7;(0) + €¥}(0) + O(t*). We have y; = y;+ £¥;(0)+
O(£*) when t = ¢. Then

lly; =vills _ _1IYi(O)ll;
lyilly 1yill,

+0(g%). (14)

O
In order to obtain ||y}(0)|],, similar to Theorem 5.3.1 in [29],

one can construct (Y +tf) (Y +¢f)y;(t), where f=A(Y)
/g, then

Y+t (Y +tf)yi(t) = (V + )" (@i + tAY)y, () /2).

Let E' = A(z;)/e, then

Y+t +tf)y(t) = (Y + )" (2 + tE). (15)

In order to bound ||y(0)||,, one can take the derivative of
Eq. (15) and set z;, f1Yy, + YT fy, + YYT9/(0) =
YTE + Tz, ie.,
(YY) (@ - V).

Yi0) = (YY) YT(E - fy) + (16)

By singular value decomposition theorem [29], we have
rank(Y +tf) =k for all ¢€[0,e], where [[AY)|, < ¢,
(Y)(¢,(Y) is the largest singular value of ). Then

112 = [[AY)/elly < @ (Y) < [[Y]]o,

and [|E|l, = [|A(z:)/ell; < [lailly-
By substituting Eq. (16) result into Eq. (14), taking norms,
the inequality can be obtained,

HVj_ViHQ { Ty~ 1y T ||,
W=7l o Ly, - jvmyy vy, (2l
H%:HQ : : HY||2HV1H2

PrLs 2 Ty~ 1 2
LR Rty }+05 |
Wi, 1l 2f +0()

Since YZ(Yy; — x;) =0, Yy, is orthogonal to Yy, — x;, it
is also known that A(z;), then ||Y|3 - [|y:|5 > ||zil[5 — p%s-
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The relationship between y; and y; ;,v1 4, - -, ¥,,1 Will be

5 sin (0)
cos ()

||V.7'—V1:H2
H)’,Hz

< e{KQ(Y) (ﬁ@ﬁ 1> + i (Y) } +0(£?).

The conclusion indicates that the distance between y; and
y;isvery small when z; is similar to z;(in other words, Y has a
small disturbance A(Y")). Compared Eq. (13) with Eq. (5), one
can see that coefficients are more sensitive to a small distur-
bance A than that of reconstruction error. Because, for nonzero
residual problems, it is the square of the condition number
that measures the sensitivity of coefficients. In contrast,
according to Section 2.1.1, reconstruction error sensitivity line-
arly depends on the condition number «,(X). Moreover, it is
worth noting that we focus on the column coefficient vector
Y11 Y12:° " V|x|1 before each test sample when we calculate
CCR. However, it has been demonstrated that disturbance
will affect row coefficients rather than column coefficients.
Moreover, the effect on column coefficients is a positive
impact when CCRs of different categories are calculated.

For further quantifying the classification stability of
representation-based methods, we propose a statistic mea-
sure named as CSL

Definition 2 (Classification Stability Index, CSI). For the
representation-based classification methods, suppose R}, and
R, are the values of a classification criterion corresponding to
the best category and the second best category. The CSI of a test
sample is defined to measure the difference between R, and
R; . The CSI is normalized as CSI € [0,1] and is always
defined as the ratio of the smaller one and the larger one.

CSI = Réest/RI%esL‘

For SRC, the CSI is denoted as CSIgp, where R}, ., and
R? ., are the minimal reconstruction error and the second
minimal one. While for IPRC, the CSI is denoted as CSIccr,
where R}, and R?,, are the second maximal CCR and the
maximal one. The smaller the index is, the better the stabil-
ity is, the better the representation-based method is. Experi-
ments will be shown in Section 3.3.3.

2.2 Two-Stage Hybrid Gene Selection

A two-stage hybrid gene selection method is presented to
extract informative genes and to further improve the perfor-
mance of IPRC for tumor classification.

2.2.1 The First Stage-Gene Pre-selection

The first stage, gene pre-selection, aims to primarily select
information genes by top-ranked intersection of three filter
methods, analysis of variance, ANOVA) [20], signal noise
ratio (SNR) [1] and the ratio of between-groups to within-
groups sum of squares (BW) [4].

Gy = {Ganova} N{Gsnr} N {Gpw},

where G/ is the gene subset based on the first stage, G anova,
Ggsnr and Gpyy are the gene subsets based on analysis of
variance, SNR and BW, respectively.
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This step primarily picks up candidate genes and reduces
the computational complexity. Without loss of generality, the
significance level p = 0.05 is selected for ANOVA.

2.2.2 The Second Stage-Gene Refinement

The second stage, an embedded approach, LASSO-logistic
regression [22] is used to perform the gene refinement,
which further efficiently refines the smaller subset of candi-
date information genes.

=

[u (z:B" + Bo) — log (1 B exlﬁ”ﬁﬂ)}

i=1
d

= Z: |8
=

where z; and y; express the gene expression data and the
label of ith sample respectively, and B denotes regression
coefficient vector and is designed to cope with the case that
y follows multinomial distribution.

The penalty parameter n in LASSO is selected corre-
sponding to the best classification accuracy on the training
set by ten-fold cross-validation. The LASSO model is
trained on nine-fold of training set, while the validation is
conducted on the other fold training set.

It is worth noting that LASSO is introduced to select gene
subset which is used to subsequent classify, that is, the quality
of gene subset depends on the classification effect. Therefore,
the parameters are selected based on the classification effect
rather than those selected by LASSO itself. That is to say, the
validation is based on the classification results, which is based
on the gene subset selected from the trained LASSO model.

First of all, we do ten-fold cross validation on the training
set, and give the average error of ten folds as cross-
validation error,

(By: B) = arg max

I

10
1
FError; = — err;
10 7
J=1

where Error; is the cross validation error of the parameter
n;, and err;j, 7 =1,...,10 is the verification error of every
fold. It should be noted that the verification error is the clas-
sification error on the verification set (that is, the other fold
training set).

Then, the parameter # corresponding to the minimum

cross-validation error Error* is selected as the final parame-
ter of LASSO,

7= argmin (Error;).
ni€{n..un}

The gene subset corresponding to the parameter is just
the one used for classification.

For the selected parameter 7), the corresponding gene sub-
sets Gj,j = 1,...,10 obtained by ten folds are not exactly the
same. Therefore, we compare each fold gene subsets, and
finally chose the one corresponding to the minimum error,

G= arg min
Gj€{G1,.G1o}

erry j,

where err, ; is the verification error for each fold.
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Fig. 1. Flowchart of the two-stage hybrid gene selection.

2.2.3 Two-Stage Hybrid Gene Selection

The reasons of using two-stage hybrid gene selection
method which combined filter method with embedded
method are as follows. Filter method can provide general
solutions for various classifiers because it is independent
of any learning algorithm. However, filter methods ignore
the interactions between classifiers and may not be suitable
for all classifiers. Embedded methods, to some extent, can
solve the problems of the filter approach by considering
the dependencies on features and classifiers. However, the
computational complexity is a major issue, especially can be
intractable for large datasets. As the filter method efficiently
reduces the size of the gene set, the computational complex-
ity of embedded method becomes acceptable and two meth-
ods bring out the best to each other. The framework of the
two-stage gene selection method is shown in Fig. 1.

2.3 Tumor Classification Based on Two-Stage
Hybrid Gene Selection and IPRC

Combined the two-stage hybrid gene section with IPRC, the

basic idea of our robust tumor classification algorithm is as

follows.

Input: Training sample set X = [z, 2, ..., 2|x|], training label

set L = [l1,lz,...,lx]] and test sample set Y = [y, yo, ..., yz].

Preprocessing: Standardize the observations (arrays) to have

mean 0 and variance 1 across variables. Two-stage hybrid gene

selection is applied to {(z;,l;), ¢=1,...,|X|} and then is

applied to Y. And we get samples only with informative genes.

Classification based on IPRC:

Stepl. By Eq. (6), the IPR is realized.

Step2. By Eq. (9), the projection coefficient matrix is got.

Step3. By normalizing the CCR matrix, relevancies between
each test sample and all categories are obtained.
Output: By Eq. (12), each test sample can be classified into the

category with the maximal CCR.

Identification of pathogenic genes: Based on the two-stage
hybrid gene selection, the informative genes are selected as the
candidate pathogenic subset, whose occurrence number is
more than a threshold value.

Fig. 2 shows the framework of IPRC with two-stage
hybrid gene selection for robust tumor classification.
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Classification

Projection matrix l

Normorlized column |
coefficients between

test samples and

each category |

Gene

data

| Category contribution rate matrix |

Diagnosis result

Training Test

Category contribution
rates of a test sample
to all categories

Fig. 2. Flowchart of the two-stage hybrid gene selection and IPRC for
robust tumor classification.

3 RESULTS

Experiments are demonstrated on six public gene expression
datasets. Six kinds of measures are used to measure the per-
formance of these methods. Accuracy measures the classifica-
tion performance by using the percentage of correctly
classified samples. Sensitivity measures the non-missed diag-
nosis performance by using the rate of correctly classified
positive samples. Specificity measures the non-misdiagnosis
performance by using the rate of correctly classified negative
samples. For any test, there is usually a trade-off between the
sensitivity and specificity. This tradeoff can be represented
graphically using a receiver operating characteristic curve
(ROCQ), which is a graphical plot that illustrates the diagnostic
ability of a binary classifier system as its discrimination
threshold is varied. AUC is just the area under the curve of
ROC and is also suitable to binary classification problem [30].
Error reduction rate (ERR) [31] intuitively characterizes the
proportion of the errors reduced by switching a method
to the other one. Without loss of generality, ten-fold cross-
validation ten times is used to test the performance of the
algorithms. All experiments are carried out using MATLAB
R2016a on a 3.30 GHz machine with 4.00 GB RAM.

3.1 Tumor Data Sets

Six public benchmark cancer microarray gene expression
datasets are used to evaluate the performances of our meth-
ods: Colon [32], DLBCL [33], SRBCT [5], 9 Tumors [34],
11_Tumors [35] and Leukemia [36]. The first two are binary
category datasets and the remaining four are multi-categories
datasets. Colon dataset consists of gene expression data of 40
tumor and 22 normal colon tissue samples. The number of
genes is 2000. DLBCL dataset consists of gene expression data
of diffuse large B cell lymphoma, follicular lymphoma. There
are 77 samples, each of which contains 5469 genes. SRBCT
dataset consists of small, round blue cell tumors (SRBCT) of
childhood. There are 2308 genes in each sample and 83 sam-
ples. 9_Tumors dataset consists of gene expression data of
nine different human tumor types, such as NSCLC, colon and
breast, including 60 samples. Each sample has 5726 genes.
11_Tumors dataset consists of gene expression data of eleven
different human tumor types, such as ovary, breast and colo-
rectal. There are 12533 genes in each sample and 174 samples.
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Fig. 3. The numbers of genes and average error rate corresponding to
different penalty parameters 5 on Colon dataset.
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Fig. 4. The numbers of genes and average error rate corresponding to
different penalty parameters n on DLBCL dataset.

Leukemia dataset consists of gene expression data of acute
myelogenous leukemia, acute lymphoblastic leukemia and
mixed-lineage leukemia, including 72 samples. Each sample
has 11225 genes.

3.2 Parameters Selection
3.2.1 Parameter of LASSO Model

Fig. 3 gives the cross validation error at different values of
parameter n on Colon dataset. The abscissa is the number of
selected genes, and the ordinate is the cross-validation
error. Points on the curve represent parameter values of 7.
The dotted arrow and the solid arrow corresponding to the
parameters selected by LASSO itself and our proposed
method, respectively.

Fig. 3 shows that the final selected parameter /) = 1.20e — 4
and the number of genes is 143. It is worth noting that the
parameter selected by LASSO itself is 6.73e — 2, and the
corresponding gene subset has higher cross-validation error
and lower classification accuracy. That is to say, the parameter
selected by LASSO itself is not the one we want, because it
doesn’t get the best classification results. Similarly, Fig. 4 gives
the results on DLBCL dataset, where the parameter of LASSO
is ) = 6.80e — 5 and the number of selected genes is 270.

Without loss of generality, if multiple folds (greater than
one fold) have the same lowest error, one can choose any of
them. In this paper, we further calculate the entropy of each
fold of gene subset, and select the one corresponding to the
lowest entropy. The reason for that is entropy means uncer-
tainty, and the greater the entropy is, the greater the uncer-
tainty is. Fig. 6 shows that the validation errors (Fig. 5a) and
entropies (Fig. 5b) of each fold on Colon dataset, where the
selected parameter is 7) = 1.20e — 4. The gene subset of the
fifth-fold is selected as the final selected gene subset because
it has the minimum verification error and entropy.
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3.2.2 Parameter of Inverse Projection Representation
Model

By using the method described in Section 2.3, we first ran-
domly separate the six datasets into training set and test set.
In all experiments, the regularization parameter X is set to
n/m in Eq. (8), where n and m are the numbers of test sam-
ples and training samples, respectively. On the one hand,
the parameter setting is similar to PFSRC [12] and CRC [19].
On the other hand, the regularization parameter A is tested
by experiments. Taking binary category dataset (Colon) and
multi-category dataset (Leukenmia) as examples, the regu-
larization parameter \ are set to 0.0001 % n/m, 0.001 % n/m,
0.01 *n/m, 0.1 xn/m, 2+n/m, 3xn/m and n/m, respec-
tively. We select the parameter value corresponding to the
optimal classification accuracy. Fig. 6 shows that A = n/m is
clearly better than the others.

3.3 Results of Tumor Classification Based on IPRC
In this subsection, the performance of the proposed IPRC
method is demonstrated. The comparable methods are SVM,
SRC and some improved SRC methods. SVM is chosen beca-
use SVM [37], [38] outperform K-nearest neighbors and neural
network in gene expression cancer diagnosis [35]. Although
we mainly focus on the proposed projection way and classifi-
cation criterion, it is believed that improved strategies in SRC
methods also can be embedded in our IPPC framework.

3.3.1 Comparison of Inverse Projection Representation
and Sparse Representation

By taking full advantage of the information embedded in test
samples, the IPR can relieve the problem of insufficient train-
ing samples. The performance of standard representation and
the proposed IPR are compared by reducing the number of
training samples per category. In order to verify the stability,
we perform on two different categories distribution datasets.
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Fig. 8. Comparison of classification accuracies when the test data is not
balanced in each category. (a) Colon dataset and (b) Leukenmia dataset.

The Leukemia dataset has a balanced distribution on all cate-
gories of sample number, while 11_Tumors has a badly unbal-
anced sample. For dataset with balanced distribution, the
number of training samples per category is reduced from 10
to 2 in Fig. 7a. While for dataset with unbalance distribution,
the percentage of training sample number per categories is
decreased from 70 to 25 percent in Fig. 7b. From Fig. 8, it can
be seen that SRC and IPRC reach similar results when the
number of training samples is more than 6 per category or per-
centage is more than 45 percent. With decreasing the amount
of training samples, classification accuracy of SRC will soon
lower than IPRC. The results show that IPRC performs more
stable than SRC, especially when there are few training
samples.

For testing the performance of the proposed IPRC model
when the test data is not balanced in each category, the
experiments on binary category dataset and multi-category
are done. Without loss of generality, binary category dataset
(Colon) and multi-category dataset (Leukenmia) are selected
as examples. We fix the number of test samples in one cate-
gory and change that of another category from more to none
(zero). Experiments are given in the Fig. 8, which shows that:
(1) the category-imbalance does affect the classification
results, and the classification accuracies of category-balance
is superior to category-imbalance. (2) the optimal classifica-
tion accuracy is achieved when the numbers of samples are
balanced. (3) IPRC has higher accuracies and better stability
than SRC either category-balance or category-imbalance.

3.3.2 Compatrison of Category Contribution Rate and
Reconstruction Error

For verifying the CCR has discrimination power for tumor
classification, we randomly select some test samples and
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Fig. 10 The comparison of seven samples random selected on Colon
dataset. (a) CCR and (b) Reconstruction error. The same color histo-
gram expresses the same category.

calculate the corresponding CCR results across all categories.
Some individuals of 11_Tumors are randomly taken as exam-
ples, nine test samples (55th, 29th, 116th, 21th, 159th, 66th,
106th, 59th and 131th samples in order) on 11_Tumors dataset.
Fig. 9 gives the CCR results of these test samples versus all cat-
egories. It can be seen that there is only one peak (the maxi-
mum CCR) in every subfigure obviously, which means that
we can judge the category of a test sample based on the
maximum CCR.

Next, it is demonstrated CCR for IPRC is superior to
reconstruction error for SRC. It's worth noting that the more
obvious the difference between categories is, the stronger
the discrimination ability is, and the better the classification
criterion is. Figs. 10 and 11 give the results of the two criteri-
ons about some randomly selected test samples in binary
category (Colon) and multi-category (11_Tumors) datasets,
respectively. The same color expresses the values of a test
sample across all categories. According to the overall trend,
one can see that, to the same test sample, difference between
categories of CCR is much bigger than that of reconstruction
error. This shows that the CCR has better discrimination
power than construction error. Moreover, for example, the
CCR classifies the sixth test sample in Fig. 10 easily, but
reconstruction error is hard to discriminate and leads to a
wrong classification. The classification stability will be fur-
ther verified in the following Subsection.

3.3.3 Results of Classification Stability
The classification stability is further verified by comparing

the quantitative indicator of stability, CSI. Fig. 12 shows the
CSI of all samples on the six datasets (Colon, DLBCL,
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Fig. 11. The comparison on 11_Tumors dataset. (a) CCR and (b) Recon-
struction error. This 3-dimensional histogram shows the values of two
classification criterions of test samples across all classes. The same color
expresses the values of the same test sample across all categories.
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Fig. 12. The curve of CSI versus all samples in ten-fold cross validation.
The star line expresses CSls of CCR in IPRC, and square line expresses
CSils of reconstruction error in SRC.

SRBCT, 9 Tumors, 11_Tumors and Leukemia in order). The
smaller the CSI is, the better the stability is. One can see that
CSIpg is almost close to 1 in all subfigures, while the
CSIccr is much smaller. That is to say, the difference
between R}, and R}, in CCR for IPRC is much bigger
than those in reconstruction error for SRC. This further veri-
fies CCR for IPRC has better discrimination ability than
reconstruction error for SRC.

3.3.4 Results of IPRC-Based Tumor Classification

The performance of IPRC for robust tumor classification is
demonstrated in this subsection. For comparison, the results
of SVM and SRC are listed under the same experimental envi-
ronment. For each experiment, we run the ten-fold cross vali-
dation ten times and take the means as the final results.

Table 1 and Fig. 13 show that IPRC achieves competitive
results with highest AUC, which shows IPRC has the best pre-
diction ability among the three classifiers. ROC plot analysis in
Fig. 13 has shown that IPRC has the better discrimination abil-
ity than SVM and SRC. The accuracy and sensitivity of IPRC
are higher than SVM and SRC on Colon dataset. Especially sen-
sitivity of IPRC is 14.77 percent higher than SVM and SRC, that
is, the missed diagnosis rate of IPRC is the lowest. Although
the specificity is slightly lower than SVM and SRC. It is worth
noting that the patients with acute abdominal pain as main
symptoms are susceptible to missed diagnosed in clinical treat-
ment. Hence, high sensitivity and low missed diagnosis rate
are indeed needed and helpful for early clinical diagnosis. For
DLBCL dataset, the patients will face multiple courses of che-
motherapy and great psychological stress if follicular
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TABLE 1 TABLE 2
Classification Results on Six Datasets Comparative Error Rates on SRC and IPRC
Methods Accuracy Sensitivity Specificity AUC  Datasets Error Rate (%) ERR
Colon dataset SRC IPRC
SVM 85.48 72.73 92.50 0.8080 Colon 14.52% 11.19% 122.93%
SRC 85.48 72.73 92.70 0.8455 11_Tumors 5.17% 4.02% 1 22.24%
IPRC 88.81 87.50 90.90 0.9250 Leukemia 4.17% 3.10% 1 25.66%
DLBCL dataset 9_Tumors 33.33% 33.33% 10
SVM 94.09 98.28 89.47 0.8721
SRC 94.75 98.28 94.74 0.9537
IPRC 89.82 91.37 100 0.9855 TABLE 3
9 Tumors dataset Accuracy of Different Methods on 9_Tumors and 11_Tumors
S Sn 3% B bpemes vews
IPRC 66.67 44.44 94.11 - 9 Tumors 11 Tumors
11 Tumors dataset Our methd IPRC 66.67 95.00
— This paper IPRC 66.67 95
SVM 94.68 92.50 95.80 © Ganetal.2014) SRC Lat LRR  66.67 94.83
SRC 94.83 92.59 95.92 © Khormujietal.(2016)  LLE4+SR 66.75 96.42
IPRC 95.00 93.10 9627 -~ Ganetal.2013) MRSRC 60.00 95.40
Leukemia dataset Zheng et al.(2011) MSRC-SVD 63.33 95.98
SVM 96.60 94.74 94.12 -
SRC 95.83 94.74 94.06 -
IPRC 96.90 96.43 97.73 - specificity of 85.93 and 83.89 percent. Dang et al. [41] got
SRBCT dataset the sensitivity and specificity of 81.82 and 90.95 percent.
SVM 100 100 100 _ Consequently we can draw the conclusion that the results of
SRC 100 100 100 - IPRC are in the acceptable range.
IPRC 100 100 100 - More intuitively, ERR [31] is introduced by denoting a
notion |. Table 2 lists the ERR results by switching SRC to
IPRC on Colon, 11_Tumors, Leukemia and 9 Tumors data-
L . sets. Since the accuracy on SRBCT dataset is 100 percent for
. : - ol i TR all classifiers, the ERR need not to be calculated. For DLBCL
j: Sospi ¢ dataset, the ERR doesn’t also need to calculate because the
8ol .} 8,0 1 classification accuracy is slightly lower than SRC. For
§ é E instance, since the IPRC reduces the error rate from 14.52 to
g0 gég g0t 11.19 percent, the ERR is 22.93 percent [(14.52-11.19)/14.52],
oo} | M- 502 T suggesting that 22.93 percent recognition errors can be
RE = 1PRC .  lere avoided by using IPRC instead of SRC.
0 02 04 06 08 1 0 02 04 06 08 1 From all these results, one can conclude that IPRC

1-Specificity(false positives) 1-Specificity(false positives)

Fig. 13. ROC analysis of the ability of SVM, SRC and IPRC on Colon and
DLBCL datasets. Note that on the vertical axis, the scale is from no (0) to
complete (1 or 100 percent) sensitivity. The horizontal axis is a recipro-
cal scale (1-specificity). The optimum performance of a test is deter-
mined either as the highest sum of the specificity and sensitivity or at an
acceptable level of sensitivity for the given disease.

lymphoma is misdiagnosed as diffuse large B-cell lymphoma.
Therefore, we want to reduce misdiagnosis as far as possible.
IPRC just has the specificity of 100 percent, which means the
rate of misdiagnosing follicular lymphoma as diffuse large B-
cell lymphoma is O percent. For multi-categories datasets,
Table 1 shows IPRC is superior to SVM and SRC. Moreover,
one can also observe that the two sparse representation-based
methods, SRC and IPRC, have higher sensitivity and specificity
than SVM. As for the acceptable level of accuracy, sensitivity
and specificity for a given disease depend on clinical context.
For instance, the accuracies of the Colon dataset are 82.73-90.91
percent, the AUCs of the same dataset are 84-93 percent [9].
Dettling et al. [39] demonstrated similar levels of accuracy
of 87.1 percent. Garcia-Nieto et al. [40] give the sensitivity and

method is feasible and effective for not only binary tumor
classification problems but also multi-category tumor classi-
fication problems. The reason for IPRC is superior to
SVM and SRC may due to the following two facts. First, the
number of training sample is small, while SRC and SVM
do not consider the information embedded in test data.
Second, the CCR is more stable to a small disturbance
than reconstruction error, which has been validated in
Sections 3.3.2 and 3.3.3.

3.3.5 Results of Comparing with Some Improved SRC
Methods

The performance of IPRC is also compared with those of some
recent SRC-based methods, SRC _Lat LRR [18], LLE+SR [16],
MRSRC [15] and MSRC-SVD [14]. It is worth noting that
these compared methods combine SRC with some
relatively complex techniques. The classification accuracies of
9 Tumorsand 11_Tumors datasets are listed in Table 3, which
shows IPRC achieves competitive results and is somewhat
slightly higher than MSRC and MRSRC for 9_Tumors dataset.
The average classification time over 10 runs of IPRC and SRC
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TABLE 4
Average Classification Time on Six Datasets

Colon DLBCL 9 tumors 11 tumors Leukemia SRBCT

SRC 0.6556 3.8659  2.4286 25.1199 5.2407  1.0906
IPRC 0.0011 0.0022  0.0045 0.0270 0.0037  0.0019
TABLE 5

Classification Results on five Datasets (with Gene Selection)

Methods Accuracy Sensitivity Specificity AUC
Colon dataset
SVM with BW 87.10 77.27 92.50 0.7273
SRC with BW 87.10 81.82 90.00 0.8852
IPRC with BW 90.48 87.50 90.90 0.8841
IPRC with first stage ~ 90.95 92.50 90.90 0.9523
DLBCL dataset
SVM with BW 94.40 96.55 89.47 0.9029
SRC with BW 94.75 98.28 94.74 0.9610
IPRC with BW 93.75 91.37 100 0.9819
IPRC with first stage 94.82 92.25 100 0.9846
9 tumors dataset
SVM with BW 66.82 33.33 94.12 -
SRC with BW 68.21 40.00 96.42 -
IPRC with BW 66.82 44.44 97.73 -
IPRC with first-stage ~ 73.55 44.44 98.09 -
11 _tumors dataset
SVM with BW 95.00 92.50 96.29 -
SRC with BW 94.91 92.59 95.92 -
IPRC with BW 95.96 96.29 99.31 -
IPRC with first stage 96.18 96.29 99.31 -
Leukenmia dataset
SVM with BW 97.22 97.37 94.12 -
SRC with BW 96.42 97.06 94.72 -
IPRC with BW 98.33 97.73 100 -
IPRC with first stage 98.75 97.73 100 -

are shown in Table 4. Compared with SRC, IPRC needs
much less time. Tables 3 and 4 show that IPRC leads to com-
petitive classification results with simple model and low
computational complexity.

3.4 Results of Tumor Classification Based on Two-
Stage Gene Selection and IPRC

Classification results of IPRC with and without gene selec-

tion are given in this section. Since the accuracy on SRBCT

dataset is 100 percent for all the classifiers, we do the experi-

ments on the other five datasets.

First, we illustrate the necessity of gene selection. Corre-
sponding to Table 1, Table 5 gives classification results based
on BW gene pre-selection method and our two-stage hybrid
gene selection method on five datasets. From Table 5, one
can see that BW method plays a positive role on all methods.
On DLBCL dataset, BW gene pre-selection improves the per-
formance of SVM obviously, but achieves a little improve-
ment on SRC and IPRC. The proposed two-stage hybrid
gene selection method can further improve the performance
of IPRC, especially for multi-category datasets. Fig. 14 gives
the ROC corresponding to Table 5.
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TABLE 6
Classification Accuracies of Our Method with
Different Selection Stages

Selection methods

Datasets
Original LASSO First stage ~ Two stage
Colon 88.81 90.95(978) 90.95(389)  91.90(143)
DLBCL 89.82 92.32(2002)  94.82(828)  96.07(270)
» gy 0
20 ? 1y P %o
@) (b) ©

Fig. 15. Representation of all samples consisting of 40 tumor (stars) and
22 normal (squares) on Colon datasets. the top three components of
(a) original genes, (b) pre-selected genes, and (c) two-stage hybrid
selected genes.

Next, the performance of the IPRC based on the pro-
posed two-stage hybrid gene selection will be demonstrated
on Colon and DLBCL datasets. Table 6 gives the classifica-
tion results. There are two reasons for only discussing
binary-category classification at LASSO -based gene refine-
ment stage. One is the advantage of IPRC on multi-category
datasets has already been proved in Table 5. The other is
the fact that Zhang et al. [42] shows that LASSO for
multi-category of genetic selection faces great difficulties.
Table 6 shows that the classification accuracy increases with
decreasing the number of information genes, when we per-
form the proposed two-stage gene selection.

Next, the performance of gene selection is visualized
using principal component analysis. Fig. 15 represents 62
samples consisting of 40 Colon tumor (stars) and 22 normal
(squares) using the top three principal components of total
2000 genes, 389 genes based on BW gene selection method
and 143 genes based on the proposed two-stage hybrid
gene selection method respectively. Fig. 15a shows that a
few of the 2000 genes provide classification information and
the distribution just looks uniform in each direction.
Fig. 15b shows that the 389 genes can mostly separate differ-
ent cancers. Fig. 15c also shows the 143 genes have the best
separability than those of Figs. 15a and 15b. All this suggests
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Fig. 16. Number of occurrences versus gene index number on Colon
dataset. In general, the more times it occurs, the more important the
gene is. The line expresses the threshold of occur frequency.

that the informative genes based on the two-stage method
contain the main classification discriminant information.

Compared with [9], experiments are conducted on Colon
and 11_Tumors datasets. In Colon, the IPRC with two-
stage hybrid gene selection (91.90 percent) performs better
than the RPCA+LDA+SVM method (90.45 percent). In
11_Tumors, the IPRC with gene pre-selection performs
(96.18 percent) slightly less than the RPCA+LDA-+SVM
method (99.34 percent), that is, IPRC achieves competitive
effect although combined with simple gene pre-selection
method on multi-category dataset.

3.5 Analysis of Candidate’s Pathogenic Genes
Apart from obtaining high classification accuracy results, it
is also important to identify pathogenicity-related genes,
which can be a biomarker of early diagnosis and be helpful
to auxiliary diagnosis.

As shown in Section 3.4, candidate’s pathogenic genes
can be selected by the two-stage hybrid gene selection
method based on different penalty levels of logistic regres-
sion with LASSO. First, the curve of appearance times ver-
sus gene index number is plotted by adjusting the penalty
level n in LASSO-logistic regression. Fig. 16 illustrates the
correlation between every gene and Colon tumor in a
degree. Therefore, it can be conjectured that the more it
occurs, the more relevant with tumor it is. Then the candi-
date pathogenic subset contains the genes, which occur
more than a threshold value (here, 13 times). At last, the
intersection genes over the threshold value are selected as
the candidate pathogenic gene subset.

Some genes from the final candidate subset for Colon
data are shown in Table 7, which are believed to be closely
related to Colon cancer. Gene H08393 has been turned out
to be associated with Colon cancer in clinical [43], [44]. For
further illustration, the related function of these genes is
searched in NCBI dataset. For instance, Collagen 11, a heter-
otrimeric molecule consisting of 91, 32 and 93 chains have
role in formation of collagen fibrils. COL11A1, a gene for
collagen (H08393), which is normally not expressed in adult
colon tissue, has been found to be expressed in colorectal
carcinomas. Another collagen gene, COL5A2, normally not
expresses but has been found co-expressed with COL11A1
in tumors. HNRNPA1 gene (X12671) encodes a member of
a family of ubiquitously expressed heterogeneous nuclear
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TABLE 7
List of the Best Subset of Some Genes for Colon Dataset

Index no.of Gene accession Gene description

selectedgenes number

493 R87126 Myosin heavy chainonmuscle
(Gallus gallus)

1772 H08393 Collagen (XI) chain (Homo
sapiens)

249 M63391 Human desmin genecomplete
cds.

625 X12671 Human gene for heteroge-
neous nuclear ribonucleopro-
tein (hnRNP) core protein

66 T71025 Human (HUMAN);mRNA
sequence

1873 107648 Human MXI1 mRNA,com-
plete cds.

897 H43887 Complement factor D precur-

sor (Homosapiens)

Gene:1122 Class 1:m=227.36 5td=128.70,Class 2m=227.33,5td=120.33

Gene:1772 Class 1:m=132.62,5td=80.17;Class 2:m=55.01,5td=24.97
400 E - - ; = 600 -

Gene expression values
Gene expression values
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Fig. 17. Comparison of expression levels for the pathogenic genes (left)
and irrelevant genes (right). For pathogenic genes H08393, the mean
and standard deviation of expression levels about tumor category sam-
ples are higher than that of normal category samples. But for irrelevant
genes M22488, there are similar mean and std in both categories.

ribonucleoproteins (hnRNPs), which are RNA-binding pro-
teins that associate with pre-mRNAs in the nucleus and
influence pre-mRNA processing, as well as other aspects of
mRNA metabolism and transport. The protein encoded by
this gene is one of the most abundant core proteins of
hnRNP complexes and plays a key role in the regulation of
alternative splicing. Quantitative alteration of hnRNPA1
may result in facilitation of transformation of colon epithe-
lial cells as a consequence of transcriptional and transla-
tional perturbation. Desmin gene (M63391) encodes a
muscle-specific category III intermediate filament. Homo-
polymers of this protein form a stable intracytoplasmic fila-
mentous network connecting myofibrils to each other and
to the plasma membrane. Mutations in this gene are associ-
ated with desmin-related myopathy, a familial cardiac and
skeletal myopathy (CSM), and with distal myopathies.

In order to check the quality of the selection processes,
the expression profiles of the final identified genes for the
opposite category are analyzed. For comparison, an irrele-
vant gene chosen randomly is presented. In Fig. 17, the
curve with star denotes gene expression levels of 40 tumor
samples and the curve with square expresses gene expres-
sion levels of 22 normal samples. The line indicates the
mean values of gene expression levels in corresponding
class. One can see in both cases the mean value of the sam-
ples belonging to tumor category differs significantly from
the referenced (normal) category. Fig. 18 shows the image
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Fig. 18. Heat map of the samples for the Colon dataset. Each panel cor-
responds to one gene. From small to high values represents low to high
expression levels of samples. The image reveals that moderate to high
upregulation of H08393 and X12671 and downregulation for other two
irrelative genes (M22488 and R72644).

TABLE 8
The Keeg Pathway Terms Enrichment Analysis of the Top 178
Genes in the Colon Data Set by David

Rank KEEG-PATHWAY P-value
1 DNA replication 5.7E-3
2 Spliceosome 8.8E-3
3 Hypertrophic cardiomyopathy(HCM) 1.1E-2
4 Dilated cardiomyopathy 1.4E-2
5 Arrhythmogenogenic right ventricular 4.2E-2

cardiomyopathy(ARVC)

06 ECM-receptor interaction 5.4E-2
7 Pyruvate metabolism 6.3E-2
8 Aminoacy-tRNA biosynthesis 6.5E-2
9 Purine metabolism 7.0E-2
10 Pyrimidine metabolism 7.2E-2

of the expression profiles for the two pathogenic genes
(H08393 and X12671) and two irrelative genes (M22488 and
R72644) in the form of the colormap of jet, where transition
from small value to high value corresponds to a shift from
low to high expression values of the samples. The vertical
axis represents samples (20 tumor samples, 10 normal
samples) and the horizontal the genes arranged by index
number 1772, 625, 1122, and 1408 respectively. Fig. 18 dem-
onstrate that moderate to high upregulation of H08393 and
X12671 and downregulation for other two genes can indi-
cate the presence of Colon. There is a visible difference
between samples of the Colon tumor group and the refer-
ence one in H08393 and X12671 but similar expression levels
in M22488 and R72644, which confirms good performance
of the proposed gene selection procedure.

To further study the biological function of the candidate
pathogenicity-related genes, we also perform the functional
enrichment analysis of the top 178 genes identified by our
method on the website https://david.ncifcrf.gov/. The
results of KEEG_PATHWAY are listed in Table 8. It can
be seen from this table that the item of DNA replication has
the lowest p-value, so it is considered as the most probable
enrichment item. Some other items with the most signifi-
cance are also listed in this table, for example, the first five
pathways have statistical meaning (p < 0.05). For genes
enrich in these pathways, we further do Kaplan-Meier curve
by anglicizing survival curves and corresponding Log-Rank

1273
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3

% Survival probability
% Survival probability

»
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Log-Rank P=0.0217 Log-Rank P=0.0197

°

0
[ 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time (Days) Time (Days)

Fig. 19. Kaplan-Meier survival curves of genes which enrich in pathways
with statistical meaning (p < 0.05). Subimages from left to right: NCBP2
and TPM1 respectively. lines with dotted arrow denote upper 50 percent
percentile and lines with solid arrow denote lower 50 percent percentile.

P values. We have found two proto-oncogenes (NCBP2
with P = 0.0217 and ITGA7 with P = 0.0183) and one anti-
oncogene (TPM1 with P = 0.0197). Fig. 19 shows that, for
proto-oncogenes and anti-oncogene, high expression and
low expression have significant difference in survival rate.

4 CONCLUSIONS AND FUTURE WORK

In this paper, a simple, efficient and stable representation
technique, IPRC, is presented for improving SRC by taking
full advantages of test samples. For robust tumor classifica-
tion, a two-stage hybrid gene selection algorithm is designed
to combine with IPRC. Furthermore, some valuable analysis
of candidate pathogenicity-related genes is given.

There remain some interesting questions. One is how to
enforce some prior constraints into the IPRC model based
on different applications. Another is to seek more effective
gene selection methods.
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