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Abstract— This paper describes a method for optimizing
a user-defined, time-based, linear system performance index
through the use of a flexible-time iterative learning control
(ILC) framework. This method utilizes a two stage design
wherein a point-to-point ILC procedure is conducted to improve
sparse reference tracking performance, followed by a linear
programming optimization that updates the system timing to
minimize the time-based performance cost. A guarantee of
strictly monotonic improvement of system performance cost
is presented. The technique is applied to a simulated servo
positioning system subject to input saturation constraints in
order to minimize the time required to track a sequence of
waypoints. This framework relaxes restrictions of traditional
ILC techniques that require a fixed trial length to allow ILC to
be applied effectively to a broader range of system objectives.

I. INTRODUCTION

While optimal control strategies may be employed to
improve a system’s performance, these methods rely on the
availability of an accurate system model. In the presence of
model uncertainty, control signals developed through these
techniques will often lead the system to behave in a sub-
optimal or undesirable manner. To counteract these effects,
Iterative Learning Control (ILC) can be used to improve the
performance of systems that operate repetitively. This is ac-
complished by learning from a system’s previous executions
of a task to update a feedforward control sequence.

Often, a system’s performance is closely linked to its
temporal behavior. Thus, the ability to update the system
timing requirements from one iteration of the task to the next
can be necessary for an ILC framework to optimize system
performance. Importantly, enabling system timing to be used
as a design parameter would allow for the improved perfor-
mance of many systems that already utilize ILC techniques.
For instance, in manufacturing applications where ILC is
used to reduce tracking error during device construction [1],
updates to the timing requirements of the system could be
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used to increase throughput. Meanwhile, such a ‘flexible-
time’ framework would also allow ILC to be applied to
new fields. For example, ILC has not traditionally been used
in airborne wind energy applications where performance is
measured by the amount of energy generated by a system
as it traverses along a repetitive flight path. These systems,
whose energy harvesting abilities are correlated to their flight
velocity [2], would also benefit from an optimization of the
system timing along the flight trajectory.

Traditionally, ILC applications have been limited to sys-
tems that execute a task identically at each iteration [3]. In
particular, ILC is typically used to reduce tracking error over
a predefined reference trajectory with a fixed trial duration.
However, the restrictions of a reference tracking objective
and fixed trial duration greatly limit how the control sequence
may be constructed, and therefore how much system perfor-
mance can be improved.

Advancements in ILC have relaxed reference tracking re-
strictions. In [4], a point-to-point framework grants flexibility
to the shape of the trajectory by enforcing reference tracking
at only a few select locations. This idea is extended in [5]
by leveraging the increased freedom in the control sequence
design to optimize broader performance objectives over the
trajectory. In both cases, however, the trial duration and
timing requirements of the system are iteration invariant.

Other developments in ILC have relaxed the requirement
for a fixed trial duration. In [6], trial duration is treated as a
stochastic variable to accommodate learning in systems with
randomly varying trial duration. A time-scale transformation
is used in [7] to allow ILC to be applied to systems whose
trial duration is uncertain before execution. Yet, neither of
these techniques allow for the system timing to be used as
a design variable for performance optimization.

Time is treated as a design parameter in [8] and [9]
wherein the travel duration between points in a point-to-
point scheme is modified to optimize performance. However,
trial duration remains iteration-invariant in [8], and neither
consider objective functions that are explicit functions of
time. Alternatively, [10] presents a framework in which trial
duration and system timing requirements are treated as a
design parameter. Here, a path-coordinate based ILC update
is used to minimize both path following error as well as
trial duration. This method allows for the optimization of
a broader class of objectives, but also requires complete
knowledge of the desired path shape before every iteration.

While these developments have removed traditional re-
strictions on ILC, there is still a need for methods that
leverage the flexibility afforded by both sparse tracking



enforcement and non-strict timing requirements. The main
contribution of this paper is the development of an ILC
framework that relaxes strict timing requirements to improve
linear, time-based performance objectives subject to tracking
and input saturation constraints, with provided guarantees on
the convergence of system performance. In this manner the
applicability and efficacy of ILC is broadened.

The paper is organized as follows. Section II details the
lifted system representation of the considered classes of
systems. Section III describes existing ILC techniques and
their limitations. Section IV outlines the flexible-time ILC
algorithm with a corresponding convergence assessment. A
simulation implementation is presented in Section V with
conclusions given in Section VI.

II. LIFTED SYSTEM MODELS

The class of systems addressed in this work are causal,
single-input, single-output, linear, time-invariant, stable sys-
tems whose dynamics are expressed in continuous time as

ẋxx[t] = AAAxxx[t]+BBBu[t]

y[t] =CCCxxx[t]
(1)

where t denotes time, xxx[t] ∈ IRg are the system states, u[t] ∈
IR is an input signal, y ∈ IR is the output, and AAA,BBB,CCC are
continuous-time state space matrices.

If u[t] is a zero-order held signal, system (1) then has a
discrete time representation

xxx(k+1) = AAAddd(k)xxx(k)+BBBddd(k)u(k)

y(k) =CCCddd(k)xxx(k)
(2)

with

AAAddd(k) = eAAAT (k), BBBddd(k) =
∫ T (k)

0
eAAAτ BBBdτ, CCCddd(k) =CCC (3)

where k ∈N is a timestep index and T (k) is the time period
between samples k and k+1.

Suppose that there are N timestep intervals, T (k), k ∈
{0, ...,N − 1}. Additionally, assume that at each iteration,
xxx(0) = 0. Define the following sequences

uuu =

 u(0)
...

u(N−1)

 ,TTT =

 T (0)
...

T (N−1)

 ,yyy =
y(1)

...
y(N)

 . (4)

Then, yyy can be described using the lifted system [3]

yyy = HHHuuu. (5)

Here HHH ∈ IRN×N is a matrix with elements given by

Hm,n(TTT ) =


0 m < n
CCCdddAAAddd(m)AAAddd(m−1)...AAAddd(n+1)BBBddd(n)

=CCCeAAATsum
∫ T (n)

0 eAAAτ BBBdτ m≥ n
(6)

where indexing starts at m= n= 0 and Tsum = T (m)+T (m−
1)+ ...+T (n+1).

III. PRELIMINARIES
A. Standard norm-optimal ILC

Norm-optimal ILC (NOILC) is a commonly used ILC
strategy that aims to optimize a quadratic function by min-
imizing various weighted costs to system performance [11].
Consider the case where tracking of reference sequence yyyrrr =[
yr(1), . . . , yr(N)

]T is desired. Let j denote an iteration
index. In NOILC, the timestepping sequence is held fixed
such that TTT j = TTT for all j. From (6), this implies that
HHH j = HHH(TTT ) for all j. Define tracking error, eee ∈ IRN, as

eee j , yyyrrr− yyy j = yyyrrr−HHHuuu j. (7)

A quadratic cost function is then constructed as

J = eeeT
j+1QQQeee j+1 +uuuT

j+1SSSuuu j+1 +(uuu j+1−uuu j)
T RRR(uuu j+1−uuu j)

(8)

where QQQ,SSS,RRR ∈ IRN×N are positive definite matrices that
define the relative costs of tracking error, control effort, and
iteration-to-iteration changes in input respectively [11], [12].

Setting the gradient of (8) with respect to uuu j+1 to zero
yields the update law given in [13] as

uuu j+1 = LLLuuuuuu j +LLLeeeeee j (9)

where
LLLuuu = (HHHT QQQHHH +SSS+RRR)−1(HHHT QQQHHH +RRR)

LLLeee = (HHHT QQQHHH +SSS+RRR)−1HHHT QQQ.
(10)

B. Point-to-point ILC with input saturation constraints
While NOILC penalizes tracking error over an entire

trajectory, this enforcement can be overly restrictive. For
instance, in robotic pick and place applications, accurate
tracking is required at only a few critical locations to ensure
proper operation. Point-to-point ILC then relaxes trajectory
following objectives by only penalizing error at a few points
of interest, henceforth referred to as waypoints, within yyyrrr.

The waypoints, W (ηµ)⊂ yyyrrr, define a subsequence of the
reference profile where ηµ is a timestep index with µ ∈
{0, ...,Nw−1} and Nw <N denotes the number of waypoints.

Define the elements of matrix ΨΨΨ ∈ IRN×N as

Ψm,n =

{
1, m = n = ηµ −1, µ ∈ {0, ...,Nw−1}
0, otherwise.

(11)

Here, ΨΨΨ acts as a selection matrix that identifies the waypoint
indices [4]. Suppose that the input signal is bounded by
actuator limits which take the form of saturation constraints.
Then, the constrained point-to-point ILC algorithm solves

min
uuu j+1

(ΨΨΨeee j+1)
T QQQ(ΨΨΨeee j+1)+(uuu j+1−uuu j)

T RRR(uuu j+1−uuu j)

s.t. umin ≤ uuu j+1 ≤ umax.
(12)

In (12), tracking error is only penalized at the waypoints.
The constrained ILC and constrained point-to-point ILC

problems are studied in [14], [15]. These techniques allow
for sparse tracking enforcement, however, restrictions on an
iteration-invariant HHH forces the waypoints to have a non-
modifiable location in time. This paper relaxes this restriction
to enable improvement of new performance objectives.



IV. FLEXIBLE-TIME ILC

A. The Flexible-Time ILC Problem

Due to the restriction on an iteration-invariant timestep-
ping scheme, time-based performance objectives cannot be
improved by using point-to-point ILC. Instead, to address
systems whose performance is given by a linear function of
its timesteps, the flexible-time ILC problem is introduced as

minimize
uuu,TTT

JLP = cT TTT (13)

subject to TTT ≥ 0 (14)
umin ≤ uuu≤ umax (15)
yyy = HHHuuu (16)
ΨΨΨyyyrrr−∆≤ΨΨΨyyy≤ΨΨΨyyyrrr +∆. (17)

Here, c ∈ IRN defines the performance cost. Constraint (14)
maintains that all timestep intervals must have a nonnegative
duration, (15) enforces input saturation limits, while (16)
and (17) require that the system output tracks the waypoints
within tolerance ∆ > 0 subject to the system dynamics.

To solve the problem given by (13)-(17), a flexible-time
ILC algorithm is proposed consisting of two iterative stages:
• Stage 1 - Inner-loop constrained point-to-point ILC:

Given a timestepping sequence TTT j, a point-to-point ILC
algorithm is performed to update the input sequence as
the solution to the problem

minimize
uuu j,i+1

JPT P = q
∥∥ΨΨΨeee j,i+1

∥∥
∞
+ r
∥∥uuu j,i+1−uuu j,i

∥∥
∞

subject to umin ≤ uuu j,i+1 ≤ umax

yyy j,i+1 = HHH juuu j,i+1

eee j,i+1 = yyyrrr− yyy j,i+1 = eee j,i +HHH juuu j,i− yyy j,i+1
(18)

where q,r > 0 are weighting parameters and i is an
inner-loop iteration index denoting the number of times
(18) has been solved within outer-loop iterate j.

• Stage 2 - Timestep update: The timestepping scheme is
updated as the solution to the linear program

minimize
TTT j,h+1

JLP = cT TTT j,h+1

subject to λ
h
δδδTTT min ≤ δδδTTT j,h+1 ≤ λ

h
δδδTTT max

δδδTTT j,h+1 = TTT j,h+1− T̄TT j

(19)

where δδδTTT min,δδδTTT max ∈ IRN, λ ∈ (0,1), T̄TT j is a nominal
timestepping scheme, and h is an inner-loop iteration
index corresponding to the number of times (19) has
been solved within outer-loop iterate j.

Here, Stage 1 updates the input sequence to improve way-
point tracking while Stage 2 minimizes the cost, JLP. The
algorithm is depicted in block diagram form in Fig. 1.

B. Stage 0 - Initial warm-start solution

Before running the iterative algorithm, a nominal timestep-
ping scheme, T̄TT 0, and input sequence, ūuu0, are needed where
T̄TT 0 and ūuu0 satisfy (14) and (15) respectively. Additionally,
(ūuu0,T̄TT 0) must strictly satisfy the waypoint tracking constraint.

Stage 1

Point-to-Point 

ILC update

Plant

Increment

Stage 1

index, i

Stage 2 

Linear

Program
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Stage 1 not

converged

Set h=0
Increment outer-loop index, j

Set i = 0 Set

Increment

Stage 2

index, h Stage 2 not

converged

Stage 2

converged

Set

                     and 

Fig. 1. To optimize performance, the flexible-time ILC algorithm iteratively
performs 2 stages. The first stage utilizes a point-to-point ILC algorithm that
updates the input sequence to improve waypoint tracking performance. The
second stage uses a linear program that updates the timestepping sequence
to improve the time-based system performance metric.

In other words, the output produced by applying ūuu0 over T̄TT 0
must satisfy (17) with strict inequalities.

C. Stage 1 - Constrained point-to-point ILC

The Stage 1 procedure reduces waypoint tracking error by
updating the input sequence. First, set uuu j,0 , ūuu j and define
HHH j(T̄TT j) according to (6). The input sequence update is per-
formed by iteratively solving (18) with solution uuu j,i+1. uuu j,i+1
is then applied to the plant and reupdated until waypoint
tracking converges according to∥∥ΨΨΨ(yyyrrr− yyy j,i)

∥∥
∞
=
∥∥ΨΨΨeee j,i

∥∥
∞
≤ εi (20)

for some sequence of convergence parameters, εi, satisfying

0 < εi < εi+1 < ∆,∀i and lim
i→∞

εi = ∆. (21)

After (20) is met, define ūuu j+1 , uuu j,i before commencing to
Stage 2. Note that by setting εi < ∆, an output sequence
ȳyy j = yyy j,i+1 that satisfies (20) also strictly satisfies (17).

D. Stage 2 - Timestep update

The Stage 2 procedure aims to reduce the cost, JLP, by
generating updated timestepping scheme, T̄TT j+1. Additionally,
T̄TT j+1 is designed such that (14) is satisfied and (17) is
strictly satisfied. Thus, careful selection of the bounds on
the timestep updates in (19), δδδTTT min and δδδTTT max, is required.

To develop δδδTTT min and δδδTTT max, first suppose that a T̄TT and
ūuu are given such that constraints (14) and (15) are satisfied
by TTT = T̄TT and uuu = ūuu, and that (ūuu, T̄TT ) strictly satisfies (17).
The output after k timesteps, ȳ(k), is then given by (5) as

ȳ(k) =CCCeAAA(T̄ (1)+...+T̄ (k−1))
∫ T̄ (0)

0
eAAAτ BBBdτ ū(0)+

...+CCCeAAAT̄ (k−1)
∫ T̄ (k−2)

0
eAAAτ BBBdτ ū(k−2)

+CCC
∫ T̄ (k−1)

0
eAAAτ BBBdτ ū(k−1).

(22)

The Taylor expansion of ȳ(k) about T̄TT is then given as

y(k) = ȳ(k)+
k−1

∑
i=0

∂ ȳ(k)
∂T (i)

(T (i)− T̄ (i))+R1 (23)



where R1 is the Lagrange remainder and ∂ ȳ
∂T (i) is given by

∂ ȳ(k)
∂T (i)

=CCCeAAA(T̄ (i)+...+T̄ (k−1))BBBū(i)

+
i−1

∑
l=0

CCCeAAA(T̄ (l+1)+...+T̄ (k−1))(eAAAT̄ (l)− III)BBBū(l)
(24)

where III is the identity matrix. Denote the change in timestep
from the nominal value as δT (·) , T (·)− T̄ (·). If δT (·) ∈
[δT−,δT+] where −T̄ (i)≤ δT− ≤ 0 and δT+ ≥ 0, then

|R1| ≤
1
2

k−1

∑
m=0

k−1

∑
n=0

pm,n |δT (m)δT (n)| (25)

over the set Θ = {δδδTTT k : δT− ≤ δT (i)≤ δT+,∀i = 0, ...,k−
1}, where

pm,n = max
TTT k

∣∣∣∣ ∂ 2ȳ(k)
∂T (m)∂T (n)

∣∣∣∣
subject to δT− ≤ δδδTTT k ≤ δT+.

(26)

Here TTT k ∈ IRk and δδδTTT k ∈ IRk represent sequences of the first
k values of T (·) and δT (·) respectively. For ρ = min{m,n},

∂ 2ȳ(k)
∂T (m)∂T (n)

=CCCAAAeAAA(T̄ (ρ)+...+T (k−1))BBBū(ρ)

+
ρ−1

∑
l=0

CCCAAAeAAA(T̄ (l+1)+...+T̄ (k−1))(eAAAT̄ (l)− III)BBBū(l).

(27)

Consider the case when δT = δT (m) = δT (n),∀m,n ∈
{0, ...,k−1}. Then (23) can be rewritten as

y(k) = ȳ(k)+LδT +R1 where L =
k−1

∑
m=0

∂ ȳ(k)
∂T (m)

. (28)

Additionally, (25) is rewritten as

|R1| ≤
1
2

PδT 2 where P =
k−1

∑
m=0

k−1

∑
n=0

pm,n. (29)

Given this bound on the Lagrange remainder, observe that if

ȳ(k)+LδT − 1
2

PδT 2 ≥ r(k)−∆

ȳ(k)+LδT +
1
2

PδT 2 ≤ r(k)+∆

(30)

holds for all k corresponding to waypoints, then (17) holds.
Since it is given that (ūuu, T̄TT ) strictly satisfies (17), then r(k)−
∆ < ȳ(k)< r(k)+∆. It follows that since P≥ 0, solving (30)
will give real values δT lo < 0 and δT hi > 0 such that for all
δT ∈ [δT lo,δT hi], (30) is satisfied.

However, because P is only evaluated for δδδTTT k ∈ Θ,
satisfying (30) at the µ th waypoint, wµ , with corresponding
timestep k does not imply that the tracking requirement at wµ

is satisfied. This may occur if δT lo < δT− or δT hi > δT+.
Thus, to satisfy the tracking requirement at wµ , δδδTTT ∈ IRN

must lie in the set Ξµ = {δδδTTT : max(δT lo,δT−) ≤ δT (i) ≤
min(δT hi,δT+),∀i = 0, ...,k− 1} where δδδTTT represents the
change from nominal timing scheme T̄TT .

Ξµ is then calculated for each waypoint, wµ , with µ ∈
{0, ...,Nw−1}. To satisfy constraint (17), tracking is required
at each waypoint. Thus, tracking is satisfied if δδδTTT ∈ Ξ =⋂
µ=0,...Nw−1

Ξµ . Specifically, Ξ is given by

Ξ = {δδδTTT : δTmin(i)≤ δT (i)≤ δTmax(i),∀i = 0, ...,N−1}.
(31)

δδδTTT min and δδδTTT max are then given by their elements δTmin(i)
and δTmax(i).

δδδTTT min and δδδTTT max serve as a model-based guess on bounds
for δδδTTT . In other words, if δδδTTT min ≤ δδδTTT ≤ δδδTTT max, the system
model predicts that waypoint tracking constraint (17) will be
satisfied by applying ūuu over timesteps T̄TT +δδδTTT .

Given T̄TT j and ūuu j+1, bounds δδδTTT min and δδδTTT max are cal-
culated. However, the existence of model uncertainty may
cause δδδTTT min and δδδTTT max to be too large, thus preventing (17)
from being satisfied. Hence, (19) is solved iteratively with
increasingly tightened constraints dictated by λ h until∥∥ΨΨΨ(yyyrrr− yyy j,h)

∥∥
∞
< ∆. (32)

The parameter λ is used in (19) to control the rate at which
the bounds on changes in timesteps are tightened. Once (32)
is met, define T̄TT j+1 , TTT j,h before returning to Stage 1.

E. The flexible-time ILC algorithm
The flexible-time ILC algorithm is given in Algorithm 1.

Algorithm 1 Flexible-time ILC for linear timing objectives
Input: State space model (AAA,BBB,CCC), initial system timing

T̄TT 0, reference yyyrrr, selection matrix ΨΨΨ, waypoint track-
ing tolerance ∆, initial convergence parameter ε0, input
saturation bounds (umin,umax), ILC weighting parameters
(q,r), timestep constraint tightening parameter λ , func-
tion f (TTT ) to determine nominal bounds on changes in
timesteps, (δT−,δT+).
Initialisation : Set iteration indices j = i= h= 0. Define
ūuu0 such that applying ūuu0 over T̄TT 0 strictly satisfies (17).

1: while true do
2: Set uuu j,0 to ūuu j
3: repeat
4: Apply the solution, uuu j,i+1, of (18) over T̄TT j. Set εi+1

according to (21). Increment i.
5: until Condition (20) is met.
6: Set ūuu j+1 = uuu j,i. Set i = 0. Set TTT j,h = T̄TT j.
7: Calculate δδδTTT min,δδδTTT max from (31).
8: repeat
9: Apply ūuu j+1 over the solution to (19), TTT j,h+1. Incre-

ment h
10: until Condition (32) is met.
11: Set T̄TT j+1=TTT j,h. Set h = 0. Increment j.
12: end while

F. Convergence properties
Theorem 1: If an initial input sequence, uuu j,0, that is feasible
for (18) produces a yyy j,0 that strictly satisfies (17) such that∥∥ΨΨΨeee j,0

∥∥
∞
< ∆, (33)



then the Stage 1 algorithm will terminate after a finite
number of iterations by satisfying convergence criterion (20).
Proof: At inner-loop iterate, i, denote the solution to (18)
as uuu j,i+1. Since uuu j,0 is feasible for (18), this implies that a
solution to (18), uuu j,i, exists for all i ∈N0. Note that the cost
of uuu j,i is

JPT P(uuu j,i) =q
∥∥ΨΨΨeee j,i

∥∥
∞
+ r
∥∥uuu j,i−uuu j,i

∥∥
∞

(34)

=q
∥∥ΨΨΨeee j,i

∥∥
∞
+ r‖000‖

∞
= q

∥∥ΨΨΨeee j,i
∥∥

∞
. (35)

Since uuu j,i+1 minimizes (18), this implies

JPT P(uuu j,i)≥ q
∥∥ΨΨΨeee j,i+1

∥∥
∞
+ r
∥∥uuu j,i+1−uuu j,i

∥∥
∞

(36)

≥ q
∥∥ΨΨΨeee j,i+1

∥∥
∞
. (37)

Combining (33), (35), and (37) then gives

∆ >
∥∥ΨΨΨeee j,0

∥∥
∞
≥
∥∥ΨΨΨeee j,i

∥∥
∞
,∀i. (38)

In other words, the waypoint tracking constraint is strictly
satisfied at every inner-loop iteration. From (21), this implies
that there exists î such that

εi >
∥∥ΨΨΨeee j,0

∥∥
∞
≥
∥∥ΨΨΨeee j,i

∥∥
∞
,∀i≥ î. (39)

Condition (20) is then satisfied after, at most, î iterations.
Theorem 2: Given that the output of the true system has
bounded first and second derivatives with respect to the
timesteps such that∣∣∣∣ ∂y(k)

∂T (n)

∣∣∣∣< lmax,

∣∣∣∣ ∂ 2y(k)
∂T (m)∂T (n)

∣∣∣∣< pmax,∀TTT ≥ 0 (40)

and nominal timestepping and input sequences T̄TT j and ūuu j+1
produce an output trajectory, ȳyy, that strictly satisfies (17),
then the Stage 2 algorithm will terminate after a finite
number of iterations by satisfying criterion (32).
Proof: From (29) and (40), the Lagrange remainder is
bounded by

|R1|<
1
2

PδT 2 with P = k2 pmax (41)

where k is the timestep index corresponding to an arbitrary
waypoint. Since P > 0 and ȳyy strictly satisfies waypoint
tracking, then there exists δT lo

true < 0,δT hi
true > 0 such that for

all δT ∈ [δT lo
true,δT hi

true], (30) holds. Define δδδTTT lo
true,δδδTTT hi

true ∈
IRN as vectors whose elements all equal δT lo

true and δT hi
true

respectively. Because |R1| is strictly bounded in (41), this
implies that applying input ūuu j+1 over T̄TT j + δδδTTT with δδδTTT ∈
Ξtrue produces yyy such that (17) is strictly satisfied where

Ξ
true = {δδδTTT : δT lo

true ≤ δT (i)≤ δT hi
true,∀i = 0, ...,N−1}.

(42)

Let Ξ j,h denote the set of δδδTTT j,h+1 such that the first
constraint of (19) is satisfied. Observe that because λ ∈ (0,1),

lim
h→∞

Ξ j,h = 0 (43)

where 0 denotes the zero element. Since 0 is in the interior of
Ξtrue and δδδTTT j,h+1 ∈ Ξ j,h, this implies that there exists ĥ < ∞

such that for h = ĥ, convergence condition (32) is met.

Note that the more accurate ȳyy tracks the waypoints, the
larger the set Ξtrue becomes. Thus, more accurate waypoint
tracking allows larger reductions in JLP. Therefore, the use
of point-to-point ILC in Stage 1 tends to improve the
convergence rate of the system cost.
Theorem 3: Suppose T̄TT 0 and ūuu0 satisfy (14) and (15) and
satisfy (17) strictly. Additionally, suppose the true system
obeys (40). Then the flexible-time ILC algorithm does not
terminate after a finite number of outer-loop iterations and

JLP(T̄TT j+1)< JLP(T̄TT j) (44)

Proof: Suppose T̄TT j and uuu j,0 = ūuu j satisfy (14) and (15)
and strictly satisfy (17). Then the required conditions for
Theorem 1 are satisfied at iteration j. Thus, after some num-
ber, î, of Stage 1 iterations, (20) is satisfied and (ūuu j+1, T̄TT j)
strictly satisfies (17). Combined with (40), the conditions for
Theorem 2 then hold at iteration j. Thus, after some number,
ĥ, of Stage 2 iterations, (32) is satisfied. This implies that
T̄TT j+1 and uuu j+1,0 = ūuu j+1 satisfy (14) and (15) and satisfy (17)
strictly. Since T̄TT 0 and ūuu0 meet the conditions for Theorem 1,
the algorithm is therefore infinitely recursive giving the first
claim of the theorem.

Additionally, note that since (ūuu j+1, T̄TT j) strictly satisfies
(17), 0 is in the interior of Ξ j,ĥ. Hence, T̄TT j is in the interior
of the feasible region of (19). However, the fundamental
theorem of linear programming gives that the solution to
a linear program must lie on a boundary of the feasible set.
Therefore T̄TT j is not the minimizer of (19). Let T̄TT j+1 denote
the solution to (19). Then

JLP(T̄TT j+1)< JLP(T̄TT j). (45)

which gives the second claim of the theorem.

V. SIMULATION EXAMPLE

The flexible-time ILC framework is simulated on a servo
system test case described in [13], with application as a
positioning system for microscale additive manufacturing
(AM). The continuous time dynamics are given by

ẋxx j[t] =
(
−4.86 −21.86

1 0

)
xxx j[t]+

(
1
0

)
uuu j[t]

yyy j[t] =
(

4.36 21.86
)

xxx j[t].
(46)

However, suppose that the system is inaccurately modeled
such that the user model of the dynamics is given as

ẋxx j[t] =
(
−3.39 −25.59

1 0

)
xxx j[t]+

(
1
0

)
uuu j[t]

yyy j[t] =
(

3.85 25.59
)

xxx j[t].
(47)

For this case study, the time-optimal waypoint tracking
problem is investigated wherein performance objective JLP,
as given in (13), is defined by c = [1, ...,1]T which aims to
minimize the total trial duration. Such an objective is relevant
in AM, as faster tracking allows for improved throughput.
The tolerance on waypoint tracking error is ∆ = 0.2 and the
input signal is bounded as uuu∈ [umin,umax] = [−1,1]. The ILC



weighting parameters are (q,r) = (1,10−12) and the initial
Stage 1 convergence parameter is ε0 = 0.01 which is updated
within a given execution of Stage 1 according to

εi+1 = 0.9εi +0.1∆. (48)

The timestep constraint tightening parameter is λ = 0.95. At
outer-loop iterate j, the update to the timestepping scheme
set in Stage 2 is bounded by δT− = −0.05T̄TT j and δT+ =
1.01T̄TT j. Nw = 2 waypoints are defined at timesteps 10 and
20 for which yr(10) = 1 and yr(20) = 0. These waypoints
positions mimic raster printing patterns commonly used in
AM. The initial trial duration is 0.50s over which N = 20
equal duration timestep intervals are defined to give T̄TT 0. ūuu0
is then given as the solution to (18) for eee j,i = yyyrrr, u j,i = 0.

After running the algorithm for 100 outer-loop iterations,
the input sequences shown in Fig. 2a drive the system to the
trajectories in Fig. 2b. Note that the input never exceeds the
saturation bounds, thereby satisfying constraint (15). Addi-
tionally, the output stays within the tracking tolerance at the
waypoints, thereby satisfying constraint (17). Then, since all
of the timestep intervals are positive, the solution is feasible
for problem (13)-(17). As shown in Fig. 3, the trial duration
undergoes a strictly monotonic decrease from 0.50s to 0.30s,
as predicted by Theorem 3. Therefore, whereas optimal
control techniques would rely on an accurate system model to
develop the optimal timestepping scheme, the flexible-time
ILC framework is able to counteract model uncertainty to
improve the system’s temporal performance while satisfying
input saturation and waypoint tracking constraints.

VI. CONCLUSION
This work proposes an ILC method for improving a time-

based linear performance objective subject to input saturation
and sparse tracking constraints. A constrained point-to-point
ILC input update is used to reduce waypoint tracking error,
followed by an iterative linear programming procedure that

Fig. 2. a) Input sequences and b) output trajectories at iterations 1, 25,
and 100 of the outer-loop. The circular markers indicate the waypoints at a
given iteration with associated error tolerance, ∆ = 0.2.

Fig. 3. Trial duration monotonically decreases with each iteration of the
outer-loop procedure

is used to update the timestepping sequence to minimize a
system performance cost. This methodology relaxes the con-
ventional ILC restriction on an iteration-invariant trial dura-
tion. A simulated case study of the framework demonstrates
its ability to use time as a flexible optimization parameter
wherein system performance is improved monotonically.

Future work includes extensions to linear time-varying and
linear parameter-varying systems, as well as an exploration
to a broader class of system performance objectives.
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