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Abstract— This paper applies a unique variant of point-to-
point iterative learning control, wherein total iteration times
are made flexible in order to truly maximize an economic
performance index, to the problem of crosswind flight control in
an airborne wind energy system. The mathematical formulation
relies on a lifted system representation that is specified without
explicit reference to time, along with relaxed waypoint following
constraints (termed region-to-region constraints) that ultimately
allow for flexible waypoint arrival times. The approach is
applied to a simplified 2D model of an airborne wind energy
system that executes repetitive crosswind motions with the
ultimate (economic) goal of maximizing its net energy output.

I. INTRODUCTION

Many engineered systems, including assembly lines, pick-
and-place robots, active exoskeletons, and the airborne wind
energy (AWE) systems considered in the present paper,
involve repetitive control. Traditional repetitive control and
iterative learning control (ILC) methodologies have focused
on utilizing information from previous iterations to improve
tracking performance, ultimately driving transient errors to
zero. While this is an important goal in many applications
(especially manufacturing), there are a host of systems for
which additional criteria, such as energy generation (or
consumption), time optimality, or monetary cost are critical.

In response to the need for ILC strategies that address
additional performance concerns beyond tracking, which we
term economic objectives, a variant of ILC known as point-
to-point ILC has emerged in the past decade (see [1], [2],
[3], [4]). Point-to-point ILC only enforces tracking at par-
ticular waypoints (traditionally specified in both space/state
variables and time), while allowing for economic objectives
to be considered between waypoints. A variant of point-to-
point ILC, termed region-to-region ILC, relaxes the equality
constraints at the waypoints. Existing point-to-point and
region-to-region ILC strategies typically fix both the time and
spatial/state variable associated with each waypoint. Even the
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limited point-to-point approaches that allow for flexibility
in the waypoint arrival times (see [5]) do not allow for
flexibility in total iteration time; this represents a severe
limitation, since any acceleration of one segment must be
compensated with deceleration of another. Finally, while the
recent technique of uncertain trial duration-ILC [6] does
allow for flexible iteration times, existing results in uncertain
trial duration ILC focus exclusively on reference tracking and
do not incorporate additional economic objectives. The lack
of a strategy that simultaneously addresses economic metrics
and allows for flexible iteration times not only precludes
consideration of time-optimal ILC problems; it precludes the
consideration of any iterative problem for which performance
is linked to total iteration time.

One emerging repetitive control application for which
we seek to maximize an economic metric is the crosswind
flight control of airborne wind energy (AWE) systems. AWE
systems, examples of which are pictured in Fig. 1, replace
conventional towers with tethers and a lifting body (typically
a wing or aerostat), dramatically reducing material costs and
enabling high-altitude operation. When a high lift/drag wing
is used as the lifting body, it has been shown (first in a simpli-
fied 2D quasi-static analysis in [7], and in significant follow-
on work involving higher-fidelity simulations/experiments in
[8], [9], [10], [11], [12], and [13]) that dramatically increased
energy production can be attained through the execution of
figure-8 or circular patterns perpendicular to the direction
of the prevailing wind. The real-time optimization of these
crosswind flight patterns represents a repetitive control appli-
cation for which the performance objective is an economic
one – average net power output over the course of a lap.
In fact, in previous work (see [14], [15], [16]), the authors
have developed iterative learning strategies that modify the
waypoints that define the figure-8 path after each lap. How-
ever, the underlying waypoint-following control laws utilized
standard tracking control approaches. In the present work, we
focus on tracking a prescribed set of waypoints that define a
figure-8 path in a way that maximizes average lap velocity,
which is correlated with the maximization of average power
output.

To address the aforementioned AWE application and
similarly framed path following problems with economic
objectives, we formulate a flexible-time ILC control strategy
that enforces waypoint following constraints while maximiz-
ing (or minimizing) an economic objective and allowing
for flexible iteration times. The first step in this process,
performed at each iteration, involves a path linearization
of the original system dynamics along a path position, s,



that varies from 0 to 1 along the prescribed path. The
resulting path linearized model is used to derive a lifted
system representation with respect to the path position, where
waypoint arrival times are implicit in the entries of the lifted
matrix but not explicitly defined. The objective function to
be maximized or minimized (lap-averaged flight velocity
as a surrogate for power output in the AWE application)
is linearized, enabling the updated control sequence to be
computed as the solution to a linear program (LP). In the
LP formulation, waypoint arrival constraints are cast as
inequality constraints, which forces the path to fall within a
specified region of the waypoints but does not require them
to be matched exactly. Because waypoint arrival times are
implicit in the derived lifted system matrix, the imposition
of inequality constraints on waypoints is critical in allowing
the iteration time to vary from one repetition to the next.
In particular, the relaxation of equality constraints allows
the system to overshoot the waypoints by some amount
based on the derived lifted system representation. When
the new control sequence is executed at the subsequent
iteration, instead of overshooting the waypoints (and with
the help of time-domain feedback), the system hits the
waypoints and reduces its iteration (lap) time. Because of the
computationally simple LP formulation of the ILC update,
the strategy is well-suited to both discrete operation (where
a pause between iterations exists) and continuous operation
(where one iteration begins as soon as the previous one ends,
requiring the ILC update to be performed very quickly).

The paper is organized as follows. In Section II, we lay
out a general flexible-time ILC methodology for maximizing
(or minimizing) an economic objective over a path that
is described by waypoints. In Section III, we present the
specific dynamic model and problem formulation for the
AWE system. In Section IV, we present simulation results
that show the effectiveness of the flexible-time ILC law on
a simplified AWE system model. Conclusions are presented
in Section V.

II. FLEXIBLE-TIME ILC METHODOLOGY

A. Problem Formulation and General Approach

In this work, we consider waypoint-following problems
with economic objectives, which take on the following form
in continuous time:

maximize
u

J(u;x(0)) =

∫ tf

0

h(x(t), u(t))dt, (1)

subject to: ẋ(t) = f(x(t), u(t)) (2)
min
t
{d(~r(t), ~p(si))} ≤ dt∀si ∈ Sw, (3)

Here, J(u;x(0)) ∈ R is the performance index (to be
maximized in the above formulation), which depends on the
control trajectory u and initial condition x(0). Constraint
(2) represents the dynamic model of the system, where
x(t) ∈ Rn is the state vector, and u(t) ∈ Rm is the control
input vector.

Equation (3) captures the need to track specific points
along the path, termed waypoints. Here, d(·, ·) is the distance

Fig. 1: Two examples of AWE system designs: Image credit
Altaeros, Inc. [17] (top left), and Windlift, LLC [18] (top
right, bottom). Obtained with permission.

between the two input vectors, ~r(t) ∈ Rl is the spatial
position of the system in l dimensions, ~p(s) ∈ Rl is the
user-specified vector that describes the shape of the desired
path. This path-shape vector is parameterized with respect
to s ∈ R. The value dt ∈ R is the user-specified distance
tolerance that describes a ball around each waypoint wherein
the system is considered to have successfully reached the
waypoint. Lastly, Sw is the user-defined set of values of s
that define the set of waypoints.

In this work, we seek to leverage an ILC formulation that
improves upon the value of J(u;x(0)) from one iteration
to the next while allowing waypoint arrival times and total
iteration duration to vary. The proposed formulation for
accomplishing this is shown in Fig. 2. In this diagram, t
represents time, whereas s represents a path position, which
varies from 0 to 1 along the path. At the completion of each
iteration, the ILC update receives the previous iteration’s
state and control trajectories, denoted by xk(t) and uk(t),
respectively. The ILC update produces an updated control
sequence and corresponding path, parameterized entirely in
the spatial domain and denoted by uk+1

ff and ~p(s), respec-
tively. At each time instant, t, the time-domain controller
must pick off the appropriate element of ~p(s), which is
accomplished by the path-projection lookup table. Finally,
a path-following feedback controller is included in the time-
domain component of the control system in order to achieve
closed-loop stable tracking of the prescribed path.

B. Flexible-Time ILC Update - Details

The flexible-time ILC update consists of three key steps:
1) The continuous-time nonlinear model is linearized about

the state and control input sequences from the previous



Fig. 2: Feedforward + feedback time-independent economic
ILC control structure used in this work.

iteration. These sequences are parameterized with re-
spect to the corresponding path position (s), and the
resulting linearized model is a linear and path-varying.

2) The continuous model is discretized in the path domain,
using a zero order hold, leading to a lifted system
representation in the spatial domain.

3) The performance index of (1) and waypoint inequality
constraints of (3) are approximated linearly, giving
rise to an LP that can easily be solved with minimal
computational burden.

Details of each of these three steps are provided below.
1) Path Linearization of the Dynamic Model: The goal of

this step in the ILC update is twofold. First, we would like to
re-parameterize the dynamic model of (2) with respect to our
position along the path. Second, we would like to linearize
that model around a sequence of points parameterized with
respect to the path position. To do so, we must introduce
measures for position along a path, which we adopt from the
field of contour tracking in manufacturing processes [19].

To begin, we define the quantities path variable and path
position:

Definition. Suppose that a path in space is described by
~p(φ), where φ ∈ [0 1] is referred to as a path variable.
Then the corresponding path position is given by:

s(t) = arg min
φ
{d
(
~r(t), ~p(φ)

)
}. (4)

Thus, the path position, s(t), is equal to the value of the path
variable, φ that minimizes the Euclidean distance from our
current position in space, ~r(t) to the path described by ~p(φ).

The time-domain dynamic model of (2) can be expressed
in path domain through the relationship:

dx

ds
= f(x, u)

(
ds

dt

)−1

, (5)

where
(
ds
dt

)−1
is inverse of the rate of change of the position

of system along the path. An analytical expression for this

term is provided by a corollary of the implicit function
theorem and given by:

ds

dt
= −∂φ∂td(t, φ)

∂2
φd(t, φ)

(6)

where ∂φ,t denotes the partial derivative with respect to φ
or t, and ∂2 is the corresponding second partial derivative.
If we then define the vector-valued function g(x, u), where:

g(x, u) , −f(x, u)
∂2
φd(t, φ)

∂φ∂td(t, φ)
, (7)

then (5) can be written concisely as x′ = g(x, u) where ′

denotes the derivative with respect to path position, s. Note
that this expression g(x, u) implicitly depends on the choice
of path shape, ~p(φ). Defining a nominal sequence of state
vector and control inputs parameterized with respect to the
path position as x0 , x|x=x0(s)

u=u0(s)

and u0 , u|x=x0(s)
u=u0(s)

, we can

then calculate an approximation of our path-parameterized
dynamic model by linearizing g(x, u). The resulting lin-
earized model is given by:

δx′(s) = A(s)δx(s) +B(s)δu(s), (8)

where:

δx′(s) , x′(s)− g(x0(s), u0(s)), (9)
δx(s) , x(s)− x0(s), (10)
δu(s) , u(s)− u0(s), (11)

and the path-varying matrices A(s) and B(s) are defined as:

A(s) ,
(
∇xg(x, u)

)
|x=x0(s)
u=u0(s)

B(s) ,
(
∇ug(x, u)

)
|x=x0(s)
u=u0(s)

.

(12)

2) Discretization of the Path-Parameterized Linearized
Model: To obtain a lifted system representation that is useful
for an ILC update, the model of equation (8) is discretized
spatially using a zero order hold approximation. The se-
quences of discrete path variable matrices, {A1, A2, ..., AN}
and {B1, B2, ..., BN}, where N is the number of discrete
steps along the path, are then given by:

Aq = eA(sq)∆s , (13)

Bq =

∫ ∆s

0

eA(sq)τsB
(
sq
)
dτs, (14)

where ∆s is the user-specified path discretization level and
sq represents the path position at step q. The result is a
discrete-path approximation given by:

δxq+1 = Aqδxq +Bqδuq, (15)

where q refers to a discrete index along the path.
Given these discrete-path dynamics, it is now straight-

forward to derive a linear lifted system representation that
relates the full sequence of control inputs to the full sequence
of resulting states. To do this, we define these sequences as:

δx , [ δxT0 . . . δxTN ]T , (16)

δu , [ δuT0 . . . δuTN ]T . (17)



Using this notation, with δx0 = 0, δx and δu are related by:

δx = Gδu, (18)

where the n×m block elements in G are given by:

Gi,j =


0n×m, i < j

Bi, i = j

AiAi−1...AjBi, otherwise.
(19)

3) Economic ILC Update as a Linear Program: In this
work, the feedforward control sequence, ukff (s), is updated
according to the following law:

uk+1
ff (s) = ukff (s) + δu∗(s), (20)

where δu∗(s) serves the role of a correction to the previous
iteration’s feedforward control sequence and is based on
the solution to a linear program (LP). To compute δu∗(s),
the objective function is linearized with respect to both the
control and state sequences, resulting in the approximation:

δJ(δxk) = Ψxδx+ Ψuδu, (21)

where:

Ψx = ∇xJ(δxk), (22)

Ψu = ∇uJ(δuk). (23)

The optimized correction in the control sequence is then
computed according to the following LP:

δu∗ = arg max
δu

Ψxδx
k + Ψuδu

k (24)

subject to: −∆tol ≤ Ψwδx ≤ ∆tol (25)
blo ≤ δu ≤ bhi, (26)

where Ψw is a diagonal matrix with ones in diagonal entries
corresponding to values of s where waypoint tracking in-
equality constraints are to be imposed and zeros everywhere
else.

Remark. The imposition of inequality constraints, rather
than equality constraints, for waypoint tracking, is signifi-
cant. Because the lifted system representation depends upon
the rate at which the path is traversed (dsdt ), the lifted system
matrix implicitly (but not explicitly) depends on waypoint
arrival times. In order to render waypoint arrival times
flexible, the waypoints themselves must be made flexible.
Furthermore, because it is well known that an LP will, in
all but limiting special cases, result in a boundary solution,
saturation constraints on δu are important. The result of
this implementation is an ILC update that “nudges” the
control sequence in the economically optimal direction at
each iteration.

C. Time Domain Path Projection and Path-Following Feed-
back Controller

Because ukff is parameterized with respect to the path
variable, s, not time, it is necessary to introduce a path
projection that picks off the relevant element of ukff at every
time instant, t. This is done in two stages:

1) First, the closest point along the path provided by the
ILC update, denoted by ~p k(s), is determined.

2) Secondly, the corresponding value of ukff (s) is deter-
mined via interpolation.

Because the dynamics of path following operations typically
involve pure integrators (leading to an open-loop system that
is input-output unstable in the time domain), a stabilizing
path-following controller becomes necessary. For the AWE
system considered in this work (detailed in the next section),
a pure pursuit path following controller is used to accomplish
this goal.

III. AWE-SPECIFIC PROBLEM

As noted in the introduction, AWE systems whose lifting
bodies possess high lift/drag ratios can execute crosswind
flight patterns that dramatically enhance power capture [7].
This arises from the fact that the wind presented to the
airborne turbine(s) results from a combination of the system’s
motion and the naturally occurring wind. In fact, it is the
vector difference of the true wind velocity vector and the
wing’s velocity, known as the apparent wind velocity and
defined as ~vapp , ~vwind − ~v, that dictates the power
production of the system. Fig. 3 illustrates this concept in a
simple 2D quasi-static analysis. This concept has been shown
through numerical models and experiments (see [8], [9], [10],
[11], [12], and [13]) to translate to 3D flight. Because power
production is proportional to apparent wind speed cubed,
even small increases in apparent wind speed can result in
significant increases in power.

Fig. 3: Summary of the key forces and velocities at play
in crosswind flight, based on a simplified 2D quasi-static
analysis. In particular, crosswind flight with a high lift/drag
(L/D) ratio results in a large ratio of crosswind flight speed
(v) to wind speed (vwind), leading to a large apparent wind
speed (vapp).

In practice, crosswind flight patterns are executed through
repetitive circular or figure-8 motions, as illustrated in Fig.
4. Given the correlation between crosswind flight speed
and power production, there exists a significant interest in
maximizing flight velocity over the course of a lap. The
velocity maximization objective must be balanced against
the need to achieve stable, well-controlled flight, which is
encoded in the requirement that the system reach a specified
set of waypoints. With fixed waypoints, increasing flight ve-
locity typically requires reduced lap time, thereby requiring
a flexible-time formulation. Thus, we have a system wherein



we would like to reach specific waypoints, but in between
those waypoints, we would like to maximize an economic
metric (average flight velocity, which acts as a surrogate for
energy generation). Furthermore, we have the opportunity to
leverage information from each past figure-8 cycle (“lap”) to
inform the actions at the next lap. This conforms precisely
to the economic ILC formulation considered in this paper.

Fig. 4: Schematic depiction of crosswind flight, in full 3D
(top) and planar projection (bottom). The quantities rx and
ry on the bottom diagram represent arc lengths in the Θ and
−Φ directions of the top diagram, respectively.

A. Simulation Model

The simulation model used in this work, illustrated in
Fig. 4, is developed as a simplified analog that captures the
essential features of the optimization problem for the full
AWE system while simplifying complex nonlinear dynamics
of more complicated models.

In particular, we consider motion along the surface of
a sphere (assuming the tether remains taut and maintains
a constant length). We consider motion in two directions:
the azimuthal direction, denoted in Fig. 4 (a) through the
angle Θ and in Fig. 4 (b) through the arc length rx, and the
elevation direction, denoted in Fig. 4 (a) through the angle
−Φ and in Fig. 4 (b) through the arc length ry . We model
the AWE system’s flight speed according to a velocity polar,
which encodes the steady-state flight speed as a function
of the system’s heading relative to the wind (denoted by
ψ). A velocity polar for the AWE system, depicted for a
wind speed of 3 m

s , is shown in Fig. 5. The radial distance
of the polar curve represents the steady-state flight velocity
for any particular heading angle. Because the wing under
consideration is symmetric, the polar curve is symmetric

about the vertical axis. The control input for the system
is the heading setpoint, denoted by u; it is assumed that
a lower-level controller manipulates control surfaces to drive
this heading to its setpoint.

Ultimately, the above approximations result in a simplified
2D model, consisting of four states: two for position, one
for the speed of the system, and one for the heading of the
system:

ṙx = v cos (ψ), v̇ =
1

τv
(VSS(ψ)− v),

ṙy = v sin (ψ), ψ̇ =
1

τψ
(u− ψ).

(27)

In (27), v represents the speed of the AWE system, VSS(ψ)
represents the steady-state speed for a particular heading, as
obtained from the velocity polar, τv represents a lumped time
constant associated with the translational dynamics, and τψ
represents a lumped time constant associated with the closed-
loop rotational dynamics.

Fig. 5: Velocity polar for a 3 m/s wind speed: Position
along the radial axis corresponds to the maximum achievable
flight speed in m/s, and position along the angular axis
corresponds to the heading (ψ) in degrees.

B. Lower-Level Path Following Controller
The stabilizing controller is implemented as a pure-pursuit

path following controller. At every instant in time, it performs
three steps in order to calculate the feedback component of
the control signal, ufb(t). First, the controller solves the one-
dimensional minimization problem given in (4) to obtain the
current position along the path, s. It then adds a constant,
user-specified amount, st, to this value to obtain the path
parameter of the “target” point along the path, φ∗, where
φ∗(t) = s(t) + st. Finally, the feedback element of the
control signal is calculated as the angle between the target
point, ~p(φ∗) and the current position,

(
rx(t), ry(t)

)
. The one-

dimensional minimization problem is solved in this work
using the golden section method.

The path chosen for the AWE application comprises a
figure 8 and is defined mathematically according to:

~p(φ) =

[
W
2 cos

((
2φ+ 3

2

)
π

)
H
2 sin

(
2
(
2φ+ 3

2

)
π

)]T
, (28)



where W and H are the overall width and height of the path.

C. AWE-Specific Economic ILC Update

For the AWE application, at every iteration, the updated
control signal is obtained by solving an economic opti-
mization problem that encodes both the desire to generate
more energy and the requirement that the system reach the
waypoints. Thus, the economic optimization problem used
to calculate the updated feedforward control input is given
by the solution to the following LP, which is analogous to
the general formulation from Section II:

δu∗ = arg max
δu

Ψvδx (29)

subject to: −∆tol ≤ Ψwδx ≤ ∆tol (30)
blo ≤ δu ≤ bhi, (31)

ψmin ≤ δψN + ψkN ≤ ψmax, (32)

where Ψv = [ Ψv1 . . . ΨvN ] and Ψvi =
[ 0 0 1 0 ] for every i. In other words, Ψv picks
off the iteration-to-iteration deviations in velocities (δv)
from the state variables and sums them, producing a
spatially-averaged velocity deviation (to be maximized) as
a linear performance metric.

The first inequality constraint encodes a range of admis-
sible values for the states at the user-specified waypoints.
The vector ∆tol =

[
∆x,1 ∆y,1 . . . ∆x,nw ∆y,nw

]T
encodes the allowable deviations of states from waypoints
where nw is the number of waypoints specified by the
user and ∆x,i,∆y,i ∈ R define the “box” around each
waypoint that the system is constrained to reach. The matrix
Ψw is a block matrix designed to pick off the δx and δy
state values from the lifted state vector δx at the specified
waypoints. Specifically, denoting Sw as the set of spatial
indices corresponding to waypoints, the elements of Ψw,
denoted by wi,j are given by:

wi,j =


[

1 0 0 0

0 1 0 0

]
, sj ∈ Sw

0l×n, otherwise,

(33)

where i = 1, 2, . . . , nw and j = 1, 2, . . . , N .
The vectors blo, bhi define the allowable limits on de-

viation in the control input from one iteration to the next.
For this work, we restrict the change in the control input to
be constant. That is, −blo = bhi =

[
δulim δulim . . .

]T
where δulim ∈ R is a user-defined constant.

The final constraint ensures that the heading at the com-
pletion of each lap lies within a prescribed tolerance.

IV. SIMULATION RESULTS AND DISCUSSION

In order to assess the performance of the AWE system, we
look at two quantities, the value of the performance index
from iteration to iteration and a direct measure of energy
capture. Table I provides the numerical values of critical
parameters used in simulation.

The performance index as a function of iteration (figure-8
lap) is shown in Fig. 6. To quantify energy production in a

Variable Description Value Units
W Path width 50 m
H Path height 15 m
Vss Max steady state speed 10 m/s
τv Speed time constant 1 s
τΨ Heading time constant 0.1 s
Sw Waypoint path parameters {0.25, 0.5, 0.75, 1} -
∆x Waypoint x tolerance 0.25 m
∆y Waypoint y tolerance 0.25 m
∆ψ Final allowable heading error 25 deg
δulim Max allowable ctrl. change 1 deg
∆s Path discretization level 0.005 -
vwind Wind speed 4 m/s
st Target lead distance 0.02 -

TABLE I: Parameter values used in simulation results.

non-dimensional manner that lends insight into the benefit of
crosswind motion, we use a metric that we term the energy
augmentation ratio (EAR). This number is a ratio of the
amount of energy generated by the system under crosswind
flight, to the amount of energy that the same system would
have generated if it had been motionless. Over a single lap,
denoted by the index z, it is calculated as:

EAR =

∫ tf,z
ti,z
|~vwind(t)− ~v(t)|3dt∫ tf,z
ti,z
|~vwind(t)|3dt

, (34)

where the ti,z and tf,z are the initial and final times of the
zth iteration respectively. The term in the denominator is
proportional to the amount of energy generated by a turbine
pointed directly into the wind in a stationary system, whereas
the term in the numerator is proportional to (with the same
proportionality constant) the amount of energy produced by
the system under crosswind flight. The quantity ~vwind(t) −
~v(t) is commonly referred to as apparent wind, which is
the wind actually presented to the turbine during crosswind
flight. The progression of EAR as a function of iteration
number is shown in Fig. 7. A comparison of Figs. 6 and 7
confirms that the average velocity-based performance index
used as a surrogate economic metric in this work indeed
correlates extremely well with the EAR. This is unsurprising
considering that energy augmentation is driven by apparent
wind speed, which is heavily driven by crosswind flight
speed, v. Faster crosswind flight almost always correlates
with greater energy generation. Most importantly, it can
be seen from these figures that the performance is indeed
improving (and converging) as the iterations progress.

Fig. 8 shows the progression of flight paths at selected
iterations. This figure shows that small changes in the flight
path between waypoints can lead to significant (nearly 20
percent) additional energy augmentation.

Finally, Fig. 9 provides the instantaneous value of
|~vwind(t)−~v(t)|3
|~vwind(t)|3 , which can be termed the power augmenta-

tion ratio, over the course of a lap. In addition to the later laps
exhibiting a higher average power augmentation ratio, it can
be observed that these laps are completed in a shorter amount
of time (approximately 90 percent of the time taken in the
initial lap). This underscores the importance of a flexible-
time ILC update strategy.



Fig. 6: Performance index vs. iteration number.

Fig. 7: EAR vs. iteration number, as calculated by (34).

Fig. 8: Example figure 8 path at 1st, 11th, and 21st iteration.

Fig. 9: Instantaneous PAR at 1st, 11th, and 21st iteration.

V. CONCLUSIONS

In this paper, we presented a flexible-time ILC formulation
wherein the ILC update is performed in an entirely spatial
domain, for the purposes of maximizing (or minimizing) an
economic metric. Flexibility in total iteration time is achieved
through the relaxation of waypoint following constraints. The
framework was then applied to a simplified 2D model of an
AWE system, where we demonstrated in simulation that the
approach leads to significantly increased energy generation.
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