
Parameter-free Regression-based Autonomous Control of
Off-the-shelf Quadrotor UAVs

Rahul Peddi and Nicola Bezzo

Abstract— Autonomous flight in unmanned aerial vehicles
(UAVs) generally requires platform-specific knowledge of the
dynamical parameters and control architecture. Recently, UAVs
have become more accessible with off-the-shelf options that
are well-tuned and stable for user teleoperation but due to
unknown model parameters, they are typically not ready for
autonomous operations. In this paper, we develop a method
to enable autonomous flight on vehicles that are designed
for teleoperation with minimal knowledge of the dynamical
and controller parameters. The proposed method uses a basic
knowledge of the control and dynamic architecture along with
human teleoperated trajectories as demonstrations to train
a thin-plate spline (TPS) regression model, which is then
used to manipulate the pre-trained commands to generate
new autonomous input commands for autonomous navigation
over new trajectories. A statistical approach is also presented
together with a satisfiability modulo theories (SMT) solver to
assess the learned prediction error and correct to minimize
errors in the input generation. A robust control-based strategy
is also proposed to adjust autonomous input commands during
run-time for closed loop trajectory tracking. Finally, we validate
the proposed approach with trajectory-following experiments
on a quadrotor UAV.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have become
widespread for both civilian and military applications in
recent years. There are several applications for which UAVs
are uniquely suited over other robotic systems, such as
surveillance, delivery services, and search and rescue. All of
these applications require the UAV to autonomously follow
trajectories to different goal or task locations. For example,
a package delivery UAV may have to autonomously reach
multiple locations at certain times to deliver and receive
new packages.

The development of dedicated platforms for such au-
tonomous tasks can be expensive and not necessary since
hundreds of off-the-shelf UAVs are available nowadays and
for low cost (Fig. 1). These platforms are usually well
designed, very stable, and ready to fly out of the box but
are typically restricted to teleoperation usage.

Generating autonomous flight behavior – subject of this
paper – however, can be difficult since every UAV has differ-
ent dynamical parameters, which are typically not available,
and reverse engineering to obtain an estimate of such pa-
rameters is often not possible. Model-based approaches that
include system identification, model extraction, and control
design are well known procedures to deal with this issue,

Rahul Peddi and Nicola Bezzo are with the Department of Systems
and Information Engineering and the Charles L. Brown Department of
Electrical and Computer Engineering, University of Virginia, Charlottesville,
VA 22904, USA. Email: {rp3cy, nb6be}@virginia.edu

Fig. 1. Some examples of Off-the-Shelf UAVs, courtesy of the web.

however they are time demanding and often not precise,
requiring a lot of tuning and testing [1]. Even when these
approaches are successful, there can be model mismatch
among similar vehicles due to manufacturing error, different
usage, physical alterations, or aging, which can change pa-
rameters thus needing more tuning or sophisticated adaptive
control architectures to guarantee safe and reliable control.
On the other hand, data-driven machine learning techniques
like neural networks, reinforcement learning, and regression
techniques have recently emerged and have demonstrated to
be effective to learn from training data. The main drawbacks
of such procedures is that there is still not a clear reasoning
about how these techniques work and typically large and
dense training sets are required to obtain precise results.

Different from other supervised learning approaches, in
this work, we leverage the knowledge about the generalized
architecture for the UAV dynamics and their controller and
use regression-based techniques to extract a model for closed
loop trajectory tracking. The main contributions of this work
are: 1) a framework that combines both model-based and
data-driven theories to generate autonomous control for aerial
vehicles, 2) a statistical approach to evaluate the learning
error from which a satisfiability modulo theories (SMT)
solver is also leveraged to minimize the error in the generated
commands for autonomous flight, and 3) a robust control
technique to correct the generated commands and minimize
tracking error at run-time.

Fig. 2. Motivational representation of the proposed work. Photos courtesy
of the web.

In this work we propose a novel approach that lever-
ages both model-based and data-driven theories to generate
autonomous flight behavior for an aerial vehicle from few
user teleoperation demonstrations as motivated in Fig. 2. We
focus on off-the-shelf quadrotor UAVs which have a well

2019 International Conference on Unmanned Aircraft Systems (ICUAS)
Atlanta, GA, USA, June 11-14, 2019

978-1-7281-0332-7/19/$31.00 ©2019 IEEE 1168

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 31,2020 at 02:26:53 UTC from IEEE Xplore. Restrictions apply.

studied dynamical and control architecture and are by far
the most common UAVs because of the growing hobby and
DIY community. Even if the application focus of this paper
is on quadrotors, our framework can scale and apply to any
other teleoperated aerial vehicle. Fig. 1 shows some examples
of such quadrotors focus of this paper, all characterized by
having the same shape but different motors, propellers, boom
size, and electronics and hence different dynamic and control
models.

The remainder of the paper is organized as follows: In
Section II, we provide a review of the state of the art in the
literature on imitation and supervised learning. In Section
III, we formulate our problem statement. In Section IV,
we discuss the system dynamics and controller architecture,
which is then followed by our methodology in Section V.
Finally, we end with a discussion about our experimental
validation in Section VI, and we draw conclusions and
discuss future work in Section VII.

II. RELATED WORK

In recent years, we have had many advancements in un-
manned aerial vehicles (UAVs). A very common and widely
researched task for UAVs is motion and path planning. The
authors in [2]–[4] provide well optimized approaches for
UAV trajectory generation and tracking by utilizing near
perfect knowledge of the controller and dynamical model
parameters. Access to these parameters, as they are in our
case, is often limited. In [5], the authors leverage exact
knowledge of the model dynamics and controller architecture
to identify necessary parameters for trajectory tracking. The
same authors perform parameter estimation using particle
swarm optimization, which can be a long and iterative pro-
cess, as for many other model-based parameter and system
identification approaches [1], [6].

Some of the more recent advancements in this area feature
machine learning and data-driven approaches, such as deep
learning (DL), imitation learning (IL), and reinforcement
learning (RL). In [7], the authors use DL to learn driv-
ing models for ground vehicles by using large-scale video
datasets, and in [8], the authors use RL over 1, 000 training
samples for accurate quadrotor trajectory tracking. These
methods are model and parameter free, but use very large
datasets to resolve that issue. In [9], the authors explore
the idea of observational imitation learning (OIL), where
learning is achieved from a relatively small number of
demonstrations, but knowledge of the controller architecture
is assumed and parameter estimation is performed, which
can be a daunting task without knowledge of the controller
architecture. The authors in [10] use apprenticeship learn-
ing, which is similar to IL, to train a UAV to perform
trajectories with a very simplified model while assuming
knowledge of several parameters, such as mass and moments
of inertia. Despite having to learn certain parameters, the
same authors show the ability to learn some maneuvers
using only important information from only 20 minutes of
flight time, however, they deal with an episodic task that
takes a significant amount of testing for convergence. The

understated desire for smaller training sets is prevalent in
many of the works in this area. Some works, such as [11]
use a stochastic method known as a Gaussian Process (GP) to
accurately tune a simplified UAV controller. Use of stochastic
or regression based methods, such as GPs have shown the
ability to execute imitation learning with limited training sets
and information [12], [13].

Our work leverages knowledge about the system dynamics
architecture combined with regression theory to learn to fly
autonomously aerial vehicles. Contrary to most model based
approaches, we assume no knowledge of specific dynamical
parameters, while only knowing the structure of the dynam-
ical model and controller architecture. Instead of estimating
parameters, we use information obtained from human-piloted
training demonstrations to directly generate control inputs
to track a trajectory, by way of training and analyzing a
regression model and implementing online corrections.

III. PROBLEM FORMULATION

In this work, we are interested in enabling autonomous
navigation for a UAV by leveraging knowledge about its
system dynamics and controller along with a set of human-
piloted demonstrations. Formally, the problem we investigate
in this work can be stated as:

Problem 1: Parameter-free Autonomous Control of
UAVs: Consider a pre-configured off-the-shelf ready-to-fly
UAV, with known model architecture ẋ = f(x,u) where x is
the state and with input u = g(x) and unknown physical and
control parameters. Design a policy to generate the sequence
of inputs u to track a user defined reference trajectory
xr(t), t ∈ [0, T] over a finite horizon T . Specifically the
policy should ensure that the UAV position p(t) is always
within a certain threshold δd from the generated trajectory
position pr(t)

||p(t)− pr(t)|| ≤ δd, ∀t ∈ [0, T] (1)

where || · || is the Euclidean norm.

IV. SYSTEM MODELS

As hinted in the introduction, we use knowledge about
the UAV dynamics and control architecture to extract useful
information about the system to guide a regression ap-
proach for the generation of autonomous control commands
for the UAV. We focus on off-the-shelf tuned and stable
quadrotors that typically are ready for teleoperation but
not for autonomous flight. The control architecture of the
off-the-shelf quadrotor is shown in Fig. 3. The presented

Fig. 3. Off-the-Shelf UAV teleoperation control architecture.

structure is a gray box model, where the only information
known include the teleoperation inputs, indicated by J =
[thrust, roll, pitch, yaw], the output, which is the position

1169

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 31,2020 at 02:26:53 UTC from IEEE Xplore. Restrictions apply.

of the vehicle, p(t), over time, and the basic model archi-
tecture (discussed below). The low level controller usually
consists of multiple PID loops [14], which are already
developed and tuned with certain specific control gains,
which can be very difficult to identify by analyzing the output
of the system. The quadrotor body dynamics can be modeled
using a 12th order state vector as follows:

q =
[
pᵀ φ θ ψ vx vy vz ωx ωy ωz

]ᵀ
where p = [x y z]T is the world frame position, vx, vy and
vz are the world frame velocities, φ, θ and ψ are the roll,
pitch and yaw Euler angles and ωx, ωy and ωz are the body
frame angular velocities.

The dynamics of the vehicle are then described as follows
[15]:

ṗT =
[
vx vy vz

]
⎡
⎣v̇xv̇y
v̇z

⎤
⎦ =

⎡
⎣ 0

0
−g

⎤
⎦+

1

m

⎡
⎣cosφ cosψ sin θ + sinφ sinψ
cosφ sin θ sinψ − cosψ sinφ

cos θ cosφ

⎤
⎦u1

⎡
⎣φ̇θ̇
ψ̇

⎤
⎦ =

⎡
⎣1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

⎤
⎦
⎡
⎣ωx

ωy

ωz

⎤
⎦

⎡
⎣ω̇x

ω̇y

ω̇z

⎤
⎦ =

⎡
⎢⎣

Iyy−Izz
Ixx

ωyωz
Izz−Ixx

Iyy
ωxωz

Ixx−Iyy

Izz
ωxωy

⎤
⎥⎦+

⎡
⎣

1
Ixx

0 0

0 1
Iyy

0

0 0 1
Izz

⎤
⎦
⎡
⎣u2

u3

u4

⎤
⎦

(2)
This dynamical model and the control architecture consist

of platform-specific parameters that are also difficult to
identify, much like the controller parameters/gains discussed
above. Moreover, these parameters often vary a lot between
UAVs, further complicating the identification problem. The
model and architecture above assume that the quadrotor is
moving at a constant z level with a zero yaw constraint, and
therefore, we are primarily concerned with two of the inputs,
u2 and u3. The equations for these two control inputs are as
follows:

u2 = kp,φ(φc − φ) + kd,φ(φ̇c − φ̇)

φc = −1

g
(ẍdes + kd,x(ẋdes − ẋ) + kp,x(xdes − x))

u3 = kp,θ(θc − θ) + kd,θ(θ̇c − θ̇)

θc = −1

g
(ÿdes + kd,y(ẏdes − ẏ) + kp,y(ydes − y)) (3)

where φc and θc are the desired roll and pitch angles,
respectively, and xdes, ẋdes, ẍdes refer to the desired
position, velocity, and acceleration in the x direction, while
ydes, ẏdes, ÿdes refer to the desired position, velocity, and
acceleration in the y direction, respectively.

In this work, the goal is to generate control inputs for
autonomous flight when the only information available for
training comes from human-piloted demonstrations. Given
these user demonstrations, we assume that the inputs and
outputs for the UAV are visible, i.e., we can obtain position
and velocity of the system during training as well as the input
commands sent to the vehicles from the user teleoperation.

In Fig. 4, we show data from a single flight demonstration
on a Parrot BeBop 2 quadrotor – the hobby-grade quadrotor
used in this paper to verify our results. The UAV was teleop-
erated forward manually over a distance of approximately 3
meters, with 0 initial and final velocities. The teleoperation
input command string, in this case, corresponds to pitch,
where a command of 0 would imply no pitch adjustment, and
1 corresponds to the UAV’s maximum allowable pitch. The
minimum allowable pitch command is −1, which flies the
UAV in the negative y-direction. The teleoperation command,
in this case, adheres to desired pitch angles, but the user
could be adjusting any value that affects motion of the
system, such as acceleration, torque, or even voltage provided
to the motors depending on the factory setting. The approach
presented in this paper is able to correlate any of these
commands to the change in position and velocity of the
system. From (3), we observe that the inputs u2 and u3

(a) Sample of a single demonstration.

(b) Sample distance traveled.

(c) Sample velocity.

Fig. 4. Sample demonstration, distance traveled, and velocity.

for roll and pitch rely on the change in the desired Euler
roll, φc, and pitch, θc, angles, and these desired roll and
pitch angles are a function of the desired positions and
velocities which are provided by the user, in our case. Hence,
each stroke of the joystick transforms into motion of the
vehicle which, in turn, affects its changes in the global x
and y position. Our first goal here is to understand this
mapping between user inputs and distance traveled by the
quadrotor to build an autonomous behavior. Instead of using
the entire string of commands, which could be large, not

1170

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 31,2020 at 02:26:53 UTC from IEEE Xplore. Restrictions apply.

uniform, and computationally expensive, in this work we
use the integral of the commands, in other words, the area
underneath the time series of commands, which is a compact
and representative measure for training a model. The shaded
area in Fig. 4(a) represents this integral.

Because the integral by itself may not be enough to char-
acterize a unique behavior of the UAV, as the same integral
can be achieved with commands strings for different traveling
distances and velocities, the average input command is also
of interest since (3) impacts changes in traveling velocity in
(2). By using the combination of integral and average input
commands, we present an approach to generate autonomous
commands during a mission defined by traveling through
multiple waypoints at specified distances and times.

V. METHODOLOGY

Fig. 5. Block diagram of the proposed framework.

Our framework, outlined in Fig. 5, consists of a training
phase with multiple demonstrations that are used to build
a regression model to identify the desired integral of the
input commands, gu, and desired average teleoperation input
command, j̄u, from which a sequence of commands are
synthesized to track a user-defined distance, du, in a time, tu.
The overall output of the regression is a sequence of com-
mands having the same form of the inputs used for training
which in our case are joystick teleoperation commands for
roll Jx(t) and pitch Jy(t), needed by the system to follow
the given planar trajectory. These actions are, however, open-
loop and prone to tracking errors. A statistical analysis is
applied to the training set and used to correct the input
generation error through an SMT-based approach. Tracking
error is farther reduced by using a robust control approach
to correct and adjust future inputs Jx(t+1) and Jy(t+1) to
obtain closed loop input commands Jcx(t+1) and Jcy(t+1).
Going back to the diagram in Fig. 5, in the next few sections
we will present details for each block beginning with the
training and regression analysis procedures.

A. Regression Training from Demonstrations

In order to build the appropriate policy for autonomous
command generation, we perform offline training on data
collected over m teleoperated trials i = 1, . . . ,m. As our
goal is to track any trajectory, we are interested in training
on the distance traveled in the demonstrated trajectory di,

the time ti needed by the pilot to traverse the ith trajectory,
and the associated sequence of user teleoperation input
commands Ji. The outputs of our training phase are

• The integral of the string of teleoperation input com-
mands, gi =

∫ ti
0

Ji

• The average teleoperation input command, j̄i ∈ Ji

• The position of the system occupied during its motion,
p(t)

The average command, in this case, provides information
about the pilot’s average in-flight velocity, and is obtained by
taking the mean of all entries in Ji. The integral, meanwhile,
describes the area under the string of commands, as discussed
in the previous section.

1) Offline Training Data: The training data in this work
consists of multiple demonstrations of a human-pilot flying
forward, covering different distances with varying speeds.
In Fig. 6, we show the raw data received from the demon-
strations. Specifically, in Fig. 6(a), we have the teleoperation
commands sent by the pilot, and in Fig. 6(b), the correspond-
ing distances traveled are displayed.

(a) Training teleoperation
commands.

(b) Training distances travelled.

Fig. 6. Training set.

With this data, we can train a model for trajectories that
start and end with 0 speed. This training is only effective
if the desired trajectory involves stopping intermittently
throughout an operation. Although in this work for ease
of discussion, we focus on 0 initial and final velocities,
if a continuous motion throughout a trajectory is needed,
then training can be executed on smooth trajectories by
segmenting the existing training data to include trajectories
for demonstrations where the velocity does not start and end
at 0 speed. Three separate types of segments will need to be
evaluated in this case:

a. Start Trajectory, where the segment begins with a ve-
locity of 0 and ends with a given nonzero velocity v

b. Intermediate Trajectory, where the segment begins and
end with v velocity

c. End Trajectory, where the segment begins with v veloc-
ity and ends with 0 velocity

To expand the same data for this purpose, we train on por-
tions of the training set pictured in Fig. 6, which correspond
to each of the three outlined segments. The segments are
formed by cutting the training data and trajectories at the
start, the middle, and the end. Shown in Fig. 7 are four
samples from our training set of the velocities and trajectories
that correspond to the intermediary segments starting and
finishing with the same velocity v = 0.4m/s.

1171

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 31,2020 at 02:26:53 UTC from IEEE Xplore. Restrictions apply.

(a) Training intermediate velocities. (b) Training intermediate trajecto-
ries.

Fig. 7. Intermediate training set.

2) Thin-Plate Spline Regression: The offline training data
is applied to a thin-plate spline (TPS) [16] surface regression
to describe the relationship between training inputs and
integral and average input command. Given two inputs x,y,
and the output z (x, y, and z here are axis notations), the
general form of a thin-plate spline equation is

f(x,y) = a1 + axx+ ayy +
m∑
i=1

wiU(||(xi,yi)− (x,y)||)
(4)

where a1, ax, and ay are scalar coefficients, wi is a coef-
ficient that corresponds to each data point, subject to the
following smoothing condition:

m∑
i=1

wi =
m∑
i=1

wixi =
m∑
i=1

wiyi = 0 (5)

and the function U is of the form

U(r) = r2 log r (6)

where r = ||(xi,yi) − (x,y)||. Given the corresponding zi
for each (xi,yi) pair, we solve the following linear system
to obtain the coefficients wi, . . . , wm and a1, ax, ay,[

K P
PT 0

] [
w
a

]
=

[
z
o

]
(7)

where Kij = U(||(xi,yi) − (xj ,yj)||), each ith row of
P is (1,xi,yi), 0 ∈ R

3×3 is a matrix of zeros, o ∈ R
3×1

is a column vector of zeros, w ∈ R
m×1 and z ∈ R

m×1 are
formed from wi and zi, respectively, and a is the column
vector with elements a1, ax, ay.

Given the general framework for performing the thin-
plate spline, we develop two separate relationships for our
application. In our work, the first regression is applied to d
(distance traveled) and t (time) as inputs to obtain the integral
of the commands gi = f(di, ti) while the second has the
same inputs to obtain the average teleoperation command
j̄i = h(di, ti). With the functions that we have obtained,
we are able to find an estimated integral and average input
command, gu and j̄u, for any given desired distance and
time, du and tu, respectively,

gu = f(du, tu) (8)

j̄u = h(du, tu) (9)

In Figs. 8 and 9, we show the surfaces that represent the two
functions gi = f(di, ti) and j̄i = h(di, ti), respectively. The
points in these figures represent actual training data points,
all of which lay on the surface created with the thin-plate
splines just introduced.

Fig. 8. Integral vs distance and time.

Fig. 9. Average teleoperation input command vs distance and time

3) Regression Error Analysis: While a thin-plate spline
is continuous, and a result can be obtained with any com-
bination of distance and time as an input pair, the accuracy
of the results of any pair (du, tu) can suffer as the distance
between evaluation points and training points increases [17].
To deal with this problem, we consider the standard error of
the estimate, which is a statistic that can be used to measure
the accuracy of predictions given a certain type of regression
[18] with known values, which are our training points:

σest ≈ s√
m

(10)

where s is the sample standard deviation of all of the
points in the training set and m is the number of training
samples. The standard error, σest, is then used to determine
the t-statistic for different test values [19]. The t-statistic is
defined as the ratio of the distance between a test point from
a known training point to the standard error and is computed
as follows:

tβ̂ =
|β̂ − β̄|
σest

(11)

1172

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 31,2020 at 02:26:53 UTC from IEEE Xplore. Restrictions apply.

where β̂ is the test point and β̄ is the nearest training point.
In equation (11), tβ̂ ≥ 1 indicates that the test point β̂
propagates an error higher than the standard error. Therefore,
it is desirable to have tβ̂ < 1. After selecting a desired set-
point for the t-statistic, t∗, the maximum allowable departure
from known points is σestt

∗. This maximum departure,
σestt

∗, is used to set the bounds for each training data point,
for example:

βmin = β̄ − σestt
∗

βmax = β̄ + σestt
∗ (12)

where βmin and βmax are the lower and upper bounds for
any training point β̄.

In our case, there are two inputs we are primarily con-
cerned about for prediction; distance and time, as in (8)
and (9). The distance and time values are used together as
input pairs, so we take the convex hull around standard error
ellipses to connect the two together [20]. The standard error
ellipse, in general, is computed as follows:(

d

σd,estt∗

)2

+

(
t

σt,estt∗

)2

= 1 (13)

where d and t represent values corresponding to the axes
for distance and time, respectively, and σd,est and σt,est, are
standard error values for distance and time, representing the
x and y axes of the TPS regression, respectively. The ellipses
at each point in our training data are calculated using the
following equations:

di = di + σd,estt
∗ cos θ

ti = ti + σt,estt
∗ sin θ (14)

where θ is an angle from [0, . . . , 2π], and di and ti are all of
the points on the perimeter of the ellipse for training point
(di, ti), and i = 1, . . . ,m where m reflects the total number
of training points. A convex hull is then computed around
the ellipses to provide a concise measure for the combination
of distances and times that result in low error outputs when
input into the TPS regression. This convex hull is generated
using the Quickhull algorithm [21], in which we take the
outermost points of the ellipses and form a boundary denoted
Conv(M), where M represents the set of all points on the
perimeters of all ellipses: {di, . . . ,dm}, {ti, . . . , tm}.

In Fig. 10(a), the convex hull around standard error ellipses
created with t∗ = 0.5 around each training point is depicted.
Fig. 10(b) is the TPS regression model for the integral (8)
overlaid with the convex hull [22] created from the ellipses
on Fig. 10(a).

(a) Prediction bounds. (b) Prediction bounds on surface.

Fig. 10. Prediction intervals and bounds.

An alternate method would have been to use standard error
rectangles [20] instead, which create rectangular intervals
around each data point. Rectangular regions are however not
necessarily accurate for smoothed surfaces, as they have non-
differentiable corners, which are incongruous with smoothing
conditions met by the TPS regression.

With this analysis, we are able to provide boundary
conditions for our training set, when determining what kind
of trajectories we can follow. In the next section, we discuss
how we build trajectories and how we use these boundaries
with a satisfiability modulo theories (SMT) solver [23] to
ensure that our UAV can indeed track generated trajectories.

B. Trajectory Generation and Decomposition

In this section, we discuss how we generate, discretize,
and decompose smooth trajectories, subject to the regression
error analysis presented in the previous section. Relating
back to the system dynamics, we have established that input
commands are responsible for specific motions of the system.
Roll enables lateral motion while pitch enables longitudinal
motion. Therefore, any planar motion assuming constant z
and ψ can be represented as a combination of roll and
pitch commands, or commands that move the vehicle along
the global x and y coordinates. Hence when considering a
planar x, y trajectory we perform a decomposition in the
x and y directions and generate independent roll and pitch
commands to follow simultaneously trajectories in the x and
y directions, respectively. In order to generate a trajectory,
we first select waypoints through which the UAV should
travel. The optimal path is then determined by using a
minimum snap trajectory. Minimum snap trajectories are
associated with low control effort as they are based on
the fourth derivative of position and ensure smoothness on
quadrotors which have been proven to be 4th order systems
[2]. The general equation for a minimum snap trajectory is
the solution of the following functional [2]:

p∗(t) = argmin
p(t)

∫ T

0

(
....
p)2dt (15)

The obtained smooth trajectory is then discretized into n
segments.

Each segment will have a time-step of Δt = T
n , where T is

the total amount of time allotted for the full trajectory. The
discretization is done using linear interpolation within the
trajectory over each interval [p∗(ti),p∗(ti+Δt)], where ti is
the time at the start of a segment i = 1, . . . , n−1. Here t1 =
0 and tn = T . From the discretized trajectory, we can obtain
the x and y components of each leg of the trajectory. All
components can then be composed in a sequence obtaining
two trajectories in the x and y directions as follows:

p∗
x = [p∗

x(t1),p
∗
x(t2), . . . ,p

∗
x(tn)]

p∗
y =

[
p∗
y(t1),p

∗
y(t2), . . . ,p

∗
y(tn)

]
(16)

Fig. 11(a) shows an example of a generated trajectory
with its discretization while Fig. 11(b) displays the x and
y sequences together.

1173

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 31,2020 at 02:26:53 UTC from IEEE Xplore. Restrictions apply.

(a) Discretized Trajectory (b) X and Y Components

Fig. 11. Example of a generated trajectory with its x, y decomposition.

These components, when executed simultaneously, corre-
spond to the discretized trajectory pictured in Fig. 11(a).
The smaller Δt is, the better is the approximation of the
smooth trajectory. Each of the components are then evaluated
with the prediction bounds from Fig. 10. If the error regions
are violated, there is a possibility that the UAV will not
reach the points in the discretized trajectory. To resolve this
issue, we use an SMT solver, which is a verification tool
that solves a first order satisfiability problem. In our work,
the condition that we want to satisfy is that each of the
distances and their corresponding time is within the convex
hull, Conv(M) presented in Section V-A.3. Using an SMT
solver, we check if all the distances in both components
dx,i = ||p∗

x(ti+1)−p∗
x(ti)|| and dy,i = ||p∗

y(ti+1)−p∗
y(ti)||

are attainable in time-step Δt subject to Conv(M) :

(dx,i,Δt) ∧ (dy,i,Δt) ∈ Conv(M), with i = 1, . . . , n− 1
(17)

If this condition is satisfied, then the trajectory is feasible. If
not, and if there exists a solution, the solver returns a time-
step Δt∗ for each segment of the trajectory that satisfies the
condition in (17) together with the following constraint

n∑
i=1

(ti+1 − ti) = T (18)

to ensure that the sum of the new time-steps is the total
time allotted for the trajectory T , while also ensuring that
any segment has a distance-time pair within the convex hull
Conv(M). If the solver still cannot obtain a result, it is
indicative of an unattainable distance or distances within
the trajectory, meaning that the trajectory as a whole is
unattainable, and the waypoints need to be changed for
example by increasing n and reducing Δt. Provided that
all of the conditions for the SMT solver are met, we
can obtain the correct x and y trajectory components and
their corresponding times. We now discuss the command
generation procedures that we use to enable autonomous
tracking of trajectories.

C. Autonomous Input Generation

In order for the system to autonomously reach a waypoint
generated by the discretized trajectory, gu and j̄u are obtained
using equations (8) and (9) with each component of our
trajectory, and the offline training samples are leveraged to
generate a new string of commands. From the training set of
m samples, we select the trial that has the closest integral,

gi, to the estimated integral gu. This is done by forming an
error vector, e ∈ R

m, where each element is defined by

ei = |gi − gu|, i = 1, . . . ,m (19)

The lowest error in e = {e1, . . . , em} is then found and
paired with the appropriate pre-trained sample, J∗,

J∗ = Ji ∈ J |ei = min
e

(e) (20)

This closest pre-trained sample is then adjusted to reflect
the user-set time, tu by performing bicubic interpolation, so
that important features in the optimal command vector are
not lost. Interpolation methods are often used for re-sizing
complex images, and have shown effectiveness in minimizing
feature loss [24]. Bicubic interpolation is the chosen method
for re-sizing, as it performs better than nearest-neighbor
and bilinear interpolation methods, while only marginally
increasing computational complexity [25]. The general form
of a bicubic interpolation equation is:

b(j) =
3∑

i=0

cij
i (21)

where j is an entry in vector J∗ and ci represents the
coefficients of the best-fit cubic function at each point.
Bicubic interpolation takes the weighted sum of the four
nearest neighbors of each entry in the command vector in
order to identify a function for the intermediate points around
each entry in J∗. This method is a result from [24], where it
is described in more detail. After resizing, the time adjusted
input vector J ′ is obtained.

The next step is to adjust the input vector such that the
system reaches the waypoint at distance du by leveraging the
average input command information j̄u. Because we have
identified in Section IV that distance is a function of this
average input command and time, the time-adjusted vector
J ′ is scaled such that its mean is equivalent to j̄u:

J ′′ = J ′
(
j̄u
j̄′

)
(22)

Lastly, we correct for integral error. While using the fitted
average input, j̄u, scales the commands, there may still be
some error between the integral of our new command string
and the desired integral, gu. The ratio between the two
integrals is leveraged to re-scale the command string:

Ja = J ′
(

gu∫ tu
0

J ′′dt

)
(23)

In Fig. 12, each step of the command generation process
is visualized, starting with the original pre-trained command
string in Fig. 12(a). This flight lasted approximately 4.4
seconds for 3 meters. For testing purposes, the user input
values are du = 3.5m and tu = 3.75s. As indicated, a time
adjustment is made first; this is shown in Fig. 12(b). It is
important to note that the average command, indicated by the
dashed line, is still the same, which is a verification of feature
retention aspect of bicubic interpolation from (21). If the
command string were adjusted without using an interpolation

1174

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 31,2020 at 02:26:53 UTC from IEEE Xplore. Restrictions apply.

method, there may be slight variation in the mean, which
could damage the integrity of the final input command string,
shown in Fig. 12(c), which is obtained using (22) and (23).
At this point we have obtained the autonomous command
string Ja, which is then sent to the UAV to reach a waypoint
within the generated trajectory.

(a) Original string. (b) Time adjustment. (c) Final commands.

Fig. 12. Command generation process.

From the autonomous command, the expected path of the
vehicle is generated. The integral of the final command string
is taken at each time-step to determine the expected position
at all times:

gJ(t) =

∫ t

0

Jadt (24)

Because we know the relationship between the integral and
the distance travelled at all times, we are able to leverage
the equation from the TPS regression for the integral, (8),
such that the inputs are time elapsed and integral of the
autonomous command string and the output is the distance
traveled:

dJ(t) = f−1(gJ(t), t) (25)

where gJ(t) is the integral of the string of generated com-
mands at time t, and dJ(t) is the resultant distance travelled
at t. The operation outlined in this section is performed twice
to obtain autonomous command strings for each input that
we are controlling, u2 and u3, which represent roll and pitch,
respectively.

D. Online Adaptation of Generated Commands
The commands generated in the previous section are

generated and sent to the UAV in open-loop. While the open-
loop autonomous controls generated in this manner may be
reasonably accurate when there is no noise and disturbance,
we desire more assured trajectory tracking by controlling for
any possible error, thereby closing the loop. While executing
the generated command string, Ja(t), we monitor the error
between the position of the vehicle, p(t) and the reference
position as per the generated trajectory, pr(t):

ξ(t) = ||pr(t)− p(t)|| (26)

This error at time t, ξ(t), is attributed to the most recent
command sent to the system. A proportional controller is
implemented to adjust the subsequent command, Ja(t+ 1),
to obtain the closed-loop command Jc(t+ 1) as follows:

Jc(t+ 1) = Ja(t+ 1) + kpξ(t) (27)

In our work, the controller gain, kp, is a static value that
is set based on the input being provided to the system as
follows:

kp = rpj̄a (28)

where j̄a is the average input from the open loop commands
and rp is a constant value applied to the average input. The
gain is chosen in this manner as to avoid drastic corrections
that would affect the stability of the system. If the error at
time t, ξ(t), is very high, then having rp ≥ 1 could result in a
drastic and unstable change in the control input. The set value
of the correction ratio depends on the amount of adjustment
desired by the user, which depends on constraints, such as
flight time and flight conditions, i.e., different correction
ratios may be desirable for indoor and outdoor flight. Using
this controller, the position error is lowered to ensure that the
UAV does indeed reach the generated waypoint as expected.

VI. EXPERIMENTS

The proposed approach was validated experimentally us-
ing a Parrot BeBop 2 quadrotor UAV, which is tuned and
stable for teleoperation off-the-shelf. Since experiments were
conducted indoors, a Vicon motion capture system was
used to obtain the position and velocity of the vehicle.
Alternatively, one could use GPS and IMU data to obtain
similar features in different conditions.

The training set was generated by having a human teleop-
erate the system 12 times with motion that only consisted
of forward pitch commands. The user was instructed to
fly different distances with different speeds to diversify the
training set. We also used this same training set to generate
roll commands for our UAV since the vehicle is symmetric.

The regression and error analysis was done in Matlab to
obtain the surfaces pictured in Section V-A, and shown in
Figs. 8, 9, and 10. The experiments were conducted using
ROS in conjunction with the Robotics System Toolbox in
Matlab to interface our regression models and generated
commands for the UAV.

The first experiment consisted of tracking a diagonal path,
to validate that x and y components can be attained accu-
rately, as discussed in Section V-B. Starting from the world
frame origin (0,0), we set the target goal to (−1.7, 2.3). The
time set for this trajectory was 5.25s. Using the regression
training, we obtained the open-loop commands for the x
and y directions, which are pictured in red in Figs. 13(a)
and 13(c), respectively. The open-loop commands yield the
trajectory in Fig. 14(a).

To show the effect of the proposed online adaptation pro-
cedure, we ran the same experiment with our controller, and
compared results obtained in open and closed loop systems.
In Fig. 13, the adapted inputs and the error associated with
each of the trials in the x and y directions are shown. Using
the adapted commands, we obtain the trajectory pictured in
Fig. 14(b), where it is clear that the UAV reaches the target
goal. Fig. 14(c), show the overlayed sequence of snapshots
for the closed loop diagonal experiments in Fig. 14(b).

To further validate the approach, a square-shaped tra-
jectory was tested, and the experimental data and actual
quadrotor experiments are shown in Fig. 15 and Fig. 16,
respectively.

Lastly, the letters U, V, and A were created and tracked
with the UAV. using the same approach and the results are

1175

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 31,2020 at 02:26:53 UTC from IEEE Xplore. Restrictions apply.

(a) x commands. (b) x error.

(c) y commands. (d) y error.

Fig. 13. The generated commands and the error in the x and y directions

(a) Open loop results. (b) Closed loop results. (c) Experiment.

Fig. 14. Diagonal experiment results.

(a) Open loop square. (b) Closed loop square.

Fig. 15. Square-shaped trajectory in open and closed loop.

(a) Open loop square. (b) Closed loop square.

Fig. 16. Square-shaped trajectory experiments.

demonstrated in Fig. 17. For all of our tests we recorded
a maximum error of 23% over the entire trajectory when
running our approach in open loop and 4% when closing the
loop.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a complete framework
to enable autonomous flight on off-the-shelf quadrotors that
are primarily tuned for teleoperation. Our approach shows
that we can use a small training set along with a regression
analysis to generate commands for any trajectory, along with
adapting and closing the loop during run-time to reduce
tracking error. Besides a framework for generating com-
mands for autonomous operations, we have also proposed a
statistical approach to estimate the error in the prediction and
an SMT-based technique to minimize this error and generate
safe inputs. Our experimental results show that the generated
commands in open loop can get very close to the desired
behavior but as expected they are not enough to guarantee
robust tracking due to noise and disturbances at run-time.
By adding a corrective procedure, however, we demonstrated
that we can achieve good trajectory tracking.

This work brings together data driven and model based
approaches and leverages both worlds to speed-up the learn-
ing and the deployment of autonomous vehicles. In our
current and future work we plan to use onboard cameras and
leverage machine vision techniques to enable autonomous
flight and predict and bound future estimates about the
reachable states of the system. The online adaptation part
will be also expanded to consider safety critical situations
like obstacle avoidance. More experiments with smoother
trajectories are also in our agenda.

VIII. ACKNOWLEDGEMENT

This work is based on research sponsored by NSF under
grant #1816591 and DARPA under Contract No. FA8750-
18-C-0090.

REFERENCES

[1] R. Louali and A. Benghezal, “An incremental model-based method
for the implementation of an uav linear control system,” in 2016
8th International Conference on Modelling, Identification and Control
(ICMIC), Nov 2016, pp. 792–799.

[2] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation
and control for precise aggressive maneuvers with quadrotors,”
The International Journal of Robotics Research, vol. 31, no. 5,
pp. 664–674, 2012. [Online]. Available: https://doi.org/10.1177/
0278364911434236

[3] G. Farid, H. Hamid, S. Karim, and S. Tahir, “Waypoint-based genera-
tion of guided and optimal trajectories for autonomous tracking using
a quadrotor uav,” Studies in Informatics and Control, vol. 27, 06 2018.

[4] D. Invernizzi, M. Lovera, and L. Zaccarian, “Geometric trajectory
tracking with attitude planner for vectored-thrust vtol uavs,” in 2018
Annual American Control Conference (ACC), June 2018, pp. 3609–
3614.

[5] L. Yang and J. Liu, “Parameter identification for a quadrotor helicopter
using pso,” in 52nd IEEE Conference on Decision and Control, Dec
2013, pp. 5828–5833.

[6] M. Liu, G. K. Egan, and F. Santoso, “Modeling, autopilot design,
and field tuning of a uav with minimum control surfaces,” IEEE
Transactions on Control Systems Technology, vol. 23, no. 6, pp. 2353–
2360, Nov 2015.

[7] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of driving
models from large-scale video datasets,” 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 3530–3538,
2017.

[8] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor
with reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 2, pp. 2096–2103, 2017.

1176

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 31,2020 at 02:26:53 UTC from IEEE Xplore. Restrictions apply.

(a) Planned U trajectory. (b) Planned V trajectory. (c) Planned A trajectory.

(d) Real U trajectory. (e) Real V trajectory. (f) Real A trajectory.

Fig. 17. U-V-A trajectory planning and execution.

[9] G. Li, M. Mueller, V. Casser, N. Smith, D. L. Michels, and
B. Ghanem, “Teaching uavs to race with observational imitation
learning,” CoRR, vol. abs/1803.01129, 2018. [Online]. Available:
http://arxiv.org/abs/1803.01129

[10] P. Abbeel, A. Coates, and A. Y. Ng, “Autonomous helicopter
aerobatics through apprenticeship learning,” The International Journal
of Robotics Research, vol. 29, no. 13, pp. 1608–1639, 2010. [Online].
Available: https://doi.org/10.1177/0278364910371999

[11] F. Berkenkamp, A. P. Schoellig, and A. Krause, “Safe controller
optimization for quadrotors with gaussian processes,” 2016 IEEE
International Conference on Robotics and Automation (ICRA), pp.
491–496, 2016.

[12] K. Graeve, J. Stueckler, and S. Behnke, “Learning motion skills from
expert demonstrations and own experience using gaussian process
regression,” in ISR 2010 (41st International Symposium on Robotics)
and ROBOTIK 2010 (6th German Conference on Robotics), June 2010,
pp. 1–8.

[13] M. Vaandrager, R. Babuka, L. Buoniu, and G. A. D. Lopes, “Imitation
learning with non-parametric regression,” in Proceedings of 2012
IEEE International Conference on Automation, Quality and Testing,
Robotics, May 2012, pp. 91–96.

[14] E. Yel, T. X. Lin, and N. Bezzo, “Self-triggered adaptive planning and
scheduling of uav operations,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA), May 2018, pp. 7518–7524.

[15] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The grasp
multiple micro-uav testbed,” IEEE Robotics Automation Magazine,
vol. 17, no. 3, pp. 56–65, Sep. 2010.

[16] G. Donato and S. Belongie, “Approximate thin plate spline mappings,”
07 2001.

[17] K. C. Assi, H. Labelle, and F. Cheriet, “Modified large margin nearest

neighbor metric learning for regression,” IEEE Signal Processing
Letters, vol. 21, no. 3, pp. 292–296, March 2014.

[18] S. Gonalves and H. White, “Bootstrap standard error estimates for
linear regression,” Journal of the American Statistical Association,
vol. 100, no. 471, pp. 970–979, 2005. [Online]. Available:
https://doi.org/10.1198/016214504000002087

[19] T. Kyun Kim, “T test as a parametric statistic,” Korean Journal of
Anesthesiology, vol. 68, p. 540, 11 2015.

[20] J. Gong, “Clarifying the standard deviational ellipse,”
Geographical Analysis, vol. 34, no. 2, pp. 155–167, 2002.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.
1538-4632.2002.tb01082.x

[21] S. Srungarapu, D. P. Reddy, K. Kothapalli, and P. J. Narayanan, “Fast
two dimensional convex hull on the gpu,” in 2011 IEEE Workshops
of International Conference on Advanced Information Networking and
Applications, March 2011, pp. 7–12.

[22] A. P. Renold and S. Chandrakala, “Convex-hull-based boundary de-
tection in unattended wireless sensor networks,” IEEE Sensors Letters,
vol. 1, no. 4, pp. 1–4, Aug 2017.

[23] Y. Fu and M. H. Shuvo, “An approach to analyzing adaptive intelligent
vehicle system using smt solver,” in 2016 International Conference on
Control, Decision and Information Technologies (CoDIT), April 2016,
pp. 313–319.

[24] Z. Dengwen, “An edge-directed bicubic interpolation algorithm,” in
2010 3rd International Congress on Image and Signal Processing,
vol. 3, Oct 2010, pp. 1186–1189.

[25] H. Prashanth, H. Shashidhara., and K. B. Murthy, “Image scaling
comparison using universal image quality index,” 2009 International
Conference on Advances in Computing, Control, and Telecommunica-
tion Technologies, pp. 859–863, 2009.

1177

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 31,2020 at 02:26:53 UTC from IEEE Xplore. Restrictions apply.

