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Abstract—In this paper, we present a fast run-time monitor-
ing framework for safety assurance during autonomous system
operations in uncertain environments. Modern unmanned vehi-
cles rely on periodic sensor measurements for motion planning
and control. However, a vehicle may not always be able to
obtain its state information due to various reasons such as
sensor failures, signal occlusions, and communication problems.
To guarantee the safety of a system during these circumstances
under the presence of disturbance and noise, we propose a novel
fast reachability analysis approach that leverages Gaussian
process regression theory to predict future states of the system
at run-time. We also propose a self/event-triggered monitoring
and replanning approach which leverages our fast reachability
scheme to recover the system when needed and replan its
trajectory to guarantee safety constraints (i.e., the system will
not collide with any obstacles). Our technique is validated
both with simulations and experiments on unmanned aerial
vehicles case studies in cluttered environments under the effect
of unknown wind disturbance at run-time.

I. INTRODUCTION

Autonomous systems with minimal/no supervision are
increasingly becoming a reality: autonomous cars and de-
livery robots are appearing around us especially in major
cities, while service and hobby robots are becoming as
common as household appliances. As they become more
commonplace, it becomes crucial to guarantee safety during
their deployment, especially in uncertain environments under
the effect of unknown noises and disturbances.

Typical autonomous vehicle operations require the system
to follow a trajectory and reach a goal position. However,
an autonomous vehicle may not always be able to obtain
its state information consistently due to various reasons,
including signal occlusions, limited sensor capabilities, and
sensor failures. For instance, an aerial vehicle may lose its
GPS signal while flying in between tall buildings or under
trees and may not be able to obtain its position information
unless it is above a certain altitude. In such cases, since
measurements are not available, the vehicle is not capable
of adapting its behavior according to its current state, which
may lead to unsafe states (e.g., collision with obstacles) due
to uncertainties and disturbances. Thus, it is necessary to
create proactive systems capable of predicting and assessing
future states and replan accordingly to avoid possible unsafe
conditions in the future. Reachability analysis is a well-
known approach to deal with such a problem and estimate
future states of a system under uncertainties; however, this
process can be computationally complex and thus not suit-
able for run-time applications.

To estimate the future states of a system at run-time and
fast, we leverage Gaussian process (GP) theory to obtain
a regression that is used online to estimate the maximum
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Fig. 1. Pictorial representation of the envisioned fast monitoring, replan-
ning, and recovery approach in which a UAV computes fast reachable sets
during run-time and predict recovery and replanning actions when necessary.

deviation for new trajectories. Guarantees for this reachable
set estimation approach are presented by showing that the
actual deviation is less than its GP-based estimation. By
using the proposed method, the system becomes capable
of predicting and assessing its future positions and taking
actions in a timely manner to guarantee safety (i.e., avoid
collision with any obstacle) and liveness (i.e., follow the de-
sired trajectory closely) when measurements are intermittent.
The proposed self/event-triggered monitoring, recovery, and
replanning framework schedules safe recovery maneuvers to
obtain state information and guarantee safety, and replans
the trajectory from the observed states whenever deemed
necessary. Fig. 1 shows a pictorial representation of the pro-
posed framework in which a quadrotor builds reachable sets
at run-time fast to estimate future states that it could cover in
GPS denied environments with sporadic pose observations,
also predicting recovery maneuvers whenever needed if the
reachable set intersects with any obstacle and no observations
are available before entering an unsafe state.

To summarize, we aim to solve the following challenges:

« how to perform fast reachable set estimation online and
assure that the system will be inside these sets;

o how to guarantee safety and liveness properties when
observations are intermittent in the presence of noise
and unknown disturbance effects in the environment.

The contribution of this work is twofold: 1) we introduce
a novel Gaussian process-based approach to predict the
future states of the system fast at run-time, 2) we propose a
self/event-triggered framework for monitoring, recovery, and
replanning of an autonomous system to guarantee safety and
liveness conditions.

Throughout the paper, we consider a navigation case study
with an unmanned aerial vehicle (UAV) aiming to reach a
goal position in a cluttered environment. The environment
can prevent the system from being able to observe its
state information constantly (e.g., because of trees or tall
buildings). The system can obtain its position information at
random times and can perform recovery actions (e.g., change
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its height) to get measurements when necessary.

The rest of the paper is organized as follows: in Section II
we summarize the related work and in Section III, we
formally define the problem. In Section IV, we present our
proposed approach, which is validated with simulations and
experiments in Sections V and VI, respectively. Finally, we
draw conclusions and discuss future work in Section VII.

II. RELATED WORK

Reachability analysis is a common approach used in
robotics to compute the possible future states of a system
and to guarantee safety. Hamilton-Jacobi (HJ) reachability
analysis is a widely used reachability approach for safety
guarantees of optimal system trajectories for hybrid systems
[1]. HJ reachability analysis offers flexibility by consider-
ing different system dynamics, uncertainties, and control
policies, however, it suffers from computational scalability
[2]. To deal with stochastic dynamics, Fourier transforms
have been used to perform stochastic reachability for linear
systems in [3], and to plan in dynamic environments [4].
In [5], SOS programming was used in order to numerically
calculate funnels, which are analogous to reachable tubes.
Matrix measures were used in [6], [7] to provide bounds on
the divergence from the trajectories, and hence were utilized
for reachability analysis.

Because the analytical calculation of reachable sets for
nonlinear systems with complex dynamics is computationally
expensive, the robotics community has recently started to
use machine learning to speed up the process. In [8], the
authors defined the reachability problem as an optimization
problem and compared linear regression and support vector
machine (SVM) methods to compute the optimal cost to
make reachability classifications. In [2], neural networks
were proposed to be used to approximate HJ reachability
in a computationally efficient way. In this work, we utilize
Gaussian Processes (GP) regression to estimate the reachable
sets of the system. GP regression is widely used in robotics,
for example, to learn and cancel the modeling error in model
reference adaptive control (MRAC) [9] or for model learning
as demonstrated in [10]. Different from these works, here,
we use GP regression to provide bounds to the maximum
deviation of the system from its desired trajectory based on
the time to complete the planned trajectory. In our previous
work [11], we introduced an adaptive reachability-based
self-triggered scheduling and replanning policy to minimize
the sensor monitoring operations for a UAV in a cluttered
environment under the effect of external disturbances and
system noises. In this work, we build on this previous work
and propose a self/event-triggered scheduling and planning
approach to guarantee the safety and liveness of a system
with intermittent state information, noise, and disturbance.

III. PROBLEM FORMULATION

In this paper, we are interested in finding a technique for
fast reachability to monitor the state of a system and recover
and replan accordingly to guarantee both safety and liveness
properties. Formally:

Problem 1: Fast Reachability: A UAV has the objective
to follow an obstacle-free trajectory in a cluttered environ-
ment with intermittent state measurement under disturbances.
Given the UAV dynamics &(t) = f(x(t),u(t),w(t)) as a
function of its state x, input w, and disturbance w, find a

policy to quickly estimate the reachable sets R(x,,t) of
the system at time ¢ while tracking a desired trajectory .
under the effect of unknown disturbance, measurement and
input noises during run-time. Both the disturbance and noise
values are assumed to be bounded in magnitude but unknown
at run-time.

Problem 2: Self/Event-triggered Monitoring, Recovery
and Replanning: Once reachable sets are obtained by solv-
ing Problem 1, find an online policy to schedule the time in
which the system needs to switch to a safe recovery mode
to observe its state, and to replan its trajectory in order to
satisfy the following safety and liveness conditions:

o Safety Constraint: The UAV should avoid collisions
with obstacles:

lp(t) — Poill > T0i, Yt € [tp, t, + T1,Vi € [0, N,] (1)

in which p(t) = [x,y]T is the position of the vehicle,
Poi = [asmv,y(,if is the position of the it" obstacle in
the x — y plane and r,; is its radius, N, is the number
of obstacles in the environment, ¢, is the planning time
of the operation, and T is the duration of the trajectory.
Obstacles are assumed to have circular shapes.

e Liveness Constraint: The UAV should stay within a
certain proximity of the planned trajectory:

p(t) — p- ()] < Aa, Vit € [tpatp + 1T (2)

where p(t) and p,(t) are the actual and desired po-
sitions of the vehicle along the trajectory at time ¢
respectively, and \; is the allowed deviation threshold.

IV. FAST RUN-TIME MONITORING, RECOVERY AND
REPLANNING

In this section, we describe our framework for fast
reachability analysis and online monitoring, recovery, and
replanning. The proposed architecture consists of offline and
online stages, as displayed in Fig. 2.

We estimate reachable sets online by using a novel Gaus-
sian Process (GP)-based regression technique. Training for
GP regression model is performed on a library of trajectory
primitives with different durations. These primitives are run
on the UAV offline under various disturbances, and their
corresponding maximum deviation values are also saved in
the library. At run-time, an obstacle-free trajectory is planned
from a given initial state to a goal state. The trained GP
regression model is then used to estimate the maximum
deviation of the vehicle for this new trajectory.

Because the state measurement is assumed to be intermit-
tently available as discussed in Section I, the UAV may not
be capable of observing its position information constantly.
Instead, when measurements are missing, the system will use
its model to calculate its position considering ideal conditions
(i.e., no disturbance and noise).

The task here is to estimate the maximum deviation over
time (i.e., the position reachable tube) due to noise and dis-
turbances during the interval of times in which the system is
running without receiving updated measurements. Based on
the estimated position reachable tube, a self-triggered mon-
itor is deployed to compute the first time that a system may
violate the safety constraint under the worst-case assumption
that it will never be able to obtain its position information.
At that time, the UAV will need to recover its position
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Fig. 2. Architecture of the proposed approach.

information by switching into a predefined safe maneuver,
which is defined as moving to an altitude above a certain
level in this work. In general, recovery may not always be
feasible, and it is subject to disturbance and uncertainties
as well. Therefore, during planning, the time required to
perform the recovery operation needs to be considered too.
Once a recovery operation is completed, the trajectory is
replanned using the obtained state information. If the position
information becomes available before the predicted unsafe
time (i.e., GPS information might be unavailable or available
depending on the position of trees, buildings, etc.), an event-
triggered procedure is deployed to assess the current state of
the vehicle. If the vehicle is within the close proximity of the
desired trajectory, the reachable sets are shrunk depending
on the deviation. If the vehicle deviates too much from the
desired trajectory, the trajectory is replanned for liveness.

The first step in our approach consists in using Gaussian
processes theory to estimate reachable sets, which will be
explained in detail in the following section.

A. Gaussian Process-based Fast Reachability

Given the premises in the previous section, the position
reachable set at time ¢ when the UAV is running without
state measurement is defined as:

R(p-,t) = {p(): [lp(t) —p- ()| <dn(@®)} 3

where d,,(t) is the maximum deviation at time ¢ from the
desired trajectory position p.

In order to estimate the position reachable sets fast
and avoid computationally expensive traditional reachability
analysis tools [11], [12], we leverage GP regression to
estimate d,,(t) based on a library of previously collected
trajectory primitives data.

1) Training Data Collection: GP regression training is
obtained by calculating and running primitive trajectories
offline and by generating a library of trajectories of different
duration. The trajectory library should be rich enough in
terms of the duration, length, initial, and final velocities to
model the maximum deviation behavior. For this reason, we
generated trajectories starting from the origin with various
initial velocities to different goal locations using minimum
jerk trajectory generation [13]. These trajectories were exe-
cuted using a PID controller without position measurements
under a rich wind disturbance set during training. The

wind disturbances inside the disturbance set WV are in four
main directions with constant or sinusoidal magnitudes with
different frequencies, and they are assumed not to change
direction during the operation. During the online stage, the
disturbance has unknown direction and magnitude; however,
its magnitude is assumed to be bounded by the maximum
magnitude value in W. The PID controller is assumed to
remain the same during the offline and online stages.

A set of sample trajectories from the UAV trajectory prim-
itive library can be seen in Fig. 3. The red curves correspond
to the desired trajectory, and the blue curves correspond to
the actual trajectories. In total, we collected 1250 different
trajectory primitives, which are assumed to be representative
enough to model the maximum deviation behavior at run-
time as they capture a wide range of durations, initial and
final velocities and lengths.
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Fig. 3.

To understand which factors affect the maximum deviation
from the desired trajectory, we have analyzed the relation-
ship between the maximum deviation and various trajectory
specifications such as the difference between initial and final
states, average velocity, trajectory length, and duration. For
example, consider the plot in Fig. 4(a). As can be noticed,
there is no correlation between the magnitude of the maxi-
mum deviation from the desired trajectory and the difference
between initial and final velocities. On the contrary, the
time duration of the trajectories has a definite impact on the
maximum deviation (Fig. 4(b)), and therefore, it is chosen
as the regression variable. The results of this analysis were
expected since deviation increases when a system is exposed
to a disturbance for a longer time, especially in open loop.

Example trajectories from the trajectory primitive library.
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Fig. 4. (a) Maximum deviation as a function of time (i.e.,duration of the
trajectory) and difference between initial and final velocities. (b) Maximum
deviation as a function of time.
For a given trajectory of duration 7', the maximum devi-
ation from the desired trajectory is calculated as follows:

p- ()|l 4)

dy(T) = max e 1Pw (t) —
where p,, (t) is the position of the vehicle at time ¢ which is
following the trajectory p.(t) under the disturbance w € W.
For each primitive trajectory, the corresponding dura-
tion and maximum deviation values are stored in a tra-
jectory primitive library. For a library consisting on m
different trajectories, the trajectory durations are saved in
a vector t = [T1,T»,---,T,»] and the corresponding
maximum deviation values are saved in a vector dy; =
[dar(T1),drs (T3), -+ -, da (Thn)]. Given this trajectory prim-
itive library, Gaussian process regression is utilized in the
following subsection to estimate the maximum deviation of
a new trajectory.
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Fig. 5. GP regression of maximum deviation as a function of the trajectory
duration implemented on Matlab using GPML toolbox [15].

2) Gaussian Process Regression: Gaussian process re-
gression is a nonparametric regression technique which is
used in this work to find a mapping between trajectory
duration 7' and maximum deviation d; (7). Given a tra-
jectory library containing the set of collected observations
D = {t,dp}, our goal is to predict the maximum deviation
for a new input t* by drawing dj}; from the posterior
distribution p(d},|D). By definition of GP [14], previous
observations dj; and function values dj, follow a joint
(multivariate) normal distribution:

dys ,u(t) K + 0‘621 K.

{ dy, ] “Nq () } ’ { K K. D ®)
where K € R™*™ has entries K(; ;) = k(t;,t;) for
1,7 € {1,---,m}, K, =] k(t1,t%) k(tm,t*) | €
R™*™ and K. = k(t., t,) € R™X™ 52 is the noise
level associated with the observations, m is the size of the
observation set, m, is the size of the test set, x4 is the mean
function and k is the covariance function. We chose to use the
widely known Matern kernel [14] as a covariance function.

The estimation of d}, conditioned on the observations D
is calculated using the properties of joint Gaussian distribu-
tions. Namely, the posterior probability is also a Gaussian
distribution:

p(dy |t t,dar) ~ N(p*, 3.) (6)

with the following mean and covariance:
p=pt) + KK +02L) Hda — p(t) (7
2, =K., - KI'K+¢*) 'K, (8)

In Fig. 5, the GP regression model learned using our
trajectory primitive library is shown. Learning is performed
using 1250 data points shown by black dots in Fig. 5, and
regression is performed on 1000 time duration data points
with values between 0 and 22 seconds. The red curve is the
mean for the data points and the shaded gray region is the
95% confidence interval. In order to verify this regression,
we performed a test on 110 untrained trajectories and we
observed that all of them had smaller maximum deviation
values than the upper bound of the confidence interval.

At run-time, given a new trajectory of duration 7™, the
maximum deviation estimation is finally calculated as:

dy(T*) = i + 20, ©)

which corresponds to the upper bound of the 95% confidence
interval where ;* and o2 are calculated according to (7) and
(8) respectively for t, = T*.

From the collected training data, we observed that the
maximum deviation from the trajectory grows linearly over
time, as can be noted in Fig. 6. We have also observed that
the initial overshoot in the maximum deviation is due to the
aggressiveness of some trajectories. For ease of discussion in

this work, we are neglecting this behavior, but it can be easily
included in our model by setting an initial deviation offset.
Based on this linear dependency, the maximum deviation at
time ¢ is calculated as follows:

t
T*
The reachable set R(p.,t) for a trajectory of duration T* is
finally obtained according to (3) with d,, () in (10).

3

Ay (t) = dps (T7) (10)

20

dy(t)[m]

1t

0

0 _% IF] 15 20

t[s
Fig. 6. Maximum deviation values over time for trajectories with 20
seconds duration under the effect of a range of disturbances.

GP regression can be used to calculate reachable sets
because the maximum deviation from the desired trajectory
is bounded by its estimated value d;(T*) if the training set
includes the maximum possible deviations as will be shown
in Lemma 1 and 2:

Lemma 1: For two trajectories in the training set of con-
secutive durations 77 and 7% respectively, the difference
between their maximum possible deviation values |ds(T7)—
dpy(T3)| is bounded if the difference between their time
duration is also bounded: [T} — T3] < e.

Proof: The system state without the effect of distur-
bance &(t) and under disturbance x(t) evolves over time as
follows:

a(t) = g((t), u(t)) (11)
x(t) = f(z(t), u(t), w(t)) = g(x(t), u(t)) + Gw(t) (12)

where w(t) is the controller input, w(t) is the bounded
external disturbance: ||w(t)|| < W and G is the disturbance
matrix [16]. The initial conditions for both systems are the
same: x(0) = £(0) = xo. From (12) the disturbance effect
is additive. When there is no state measurement, the system
generates the control inputs with the assumption of ideal
conditions (i.e., no disturbance and noise), hence, the same
input w(t) is applied to both systems in (11) and (12).

The difference between the systems states with and with-
out the effect of disturbance at the end of a trajectory is
calculated based on the difference between the dynamics of
the two systems in (11) and (12):

T
3(T1) — a(Ty) = /Gw(r)dT (13)
0

Since the disturbance is bounded, the norm of the dif-
ference between the actual and the nominal state is also
bounded at the end of the trajectory.

12(T1) — =(T)|| < TiWe (14)

where W is the upper bound of the effect of the disturbance:
[Gw(t)|| < Wg,Vt € [0,T).

Thanks to the stability of the system [13], the deviation
between the desired state (desired trajectory) and the system
state without the effect of disturbance is bounded at the
end of the trajectory when there is no disturbance in the
environment:

(1) — 2 (T1)] < ¢ (15)
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Using (15) and (14), it can be shown that the distance
between the actual state and the desired state is bounded at
the end of the trajectory:

2(T1) — - (Th)|| = d(T1) < dm(Th) = §E+TiWe (16)

For a trajectory of duration 75 = T + € where € is a positive
real number, the deviation is bounded as follows:

[x(T2) — 2 (T2)|| = d(T2) < du(T2) =&+ (T1 + €)We

(17)

Therefore, if the difference in the durations of two dif-

ferent trajectories is bounded, the difference between their
maximum possible deviation values is also bounded:

dar(Ty) — du(Th) = W (18)
|
Lemma 2: Given a trajectory, the GP regression estima-

tion for the maximum deviation value dj; calculated as in

(9) is an upper bound to the actual maximum deviation dj;

from that trajectory.

Proof: Let’s consider the data points in the training
set with maximum deviations dy;(Th) = £ + T1W¢ and
dy(To) = € + ToWg. Based on the system dynamics and
(16), the deviation at time 7% = T} 4+ ¢ < T5 is bounded:
d(T*) < dm(T*) =€+ (Th + €)W where € > 0.

The slope of the virtual line which connects these two data
points is: % and the deviation value on this line
for T* can be calculated as follows:

T — T

ﬁ(dM(TQ) —dym(Th))

(TQ — Tl)WG = dM(T1) + eWq

dy (T*) = dp (Th) +
&
T,—T,

For a GP regression with the upper bound of the confidence
interval above this virtual line, the maximum deviation esti-
mation is always larger than the actual maximum deviation:

Ay (T*) > dpg(T*) = dpg (Ty) + eWeg = dpr(T*) (19)

|
As shown in the previous lemma, if the training set contains
the maximum possible deviations for the given trajectory
durations, GP-based maximum deviation estimation can pro-
vide upper bounds to the actual deviation for any type of
stable system. With rich enough training sets, these upper
bounds can be tight whereas lack of enough training data
would cause over-conservative estimations. In any case, the
estimated reachable sets contain all the states that the system
can actually reach under bounded disturbance. Therefore,
these estimated reachable sets can be used to guarantee safety
as will be explained in the following section.

= dy(T)) +

B. Self/Event-triggered Monitoring, Recovery, and Replan-
ning

With the ability to estimate reachable sets at run-time,
we design a policy for online monitoring to assess how
long the system could continue its motion without a position
measurement and for scheduling the recovery which allows
the vehicle to obtain its position information. The system
needs to monitor its position before a collision may occur.
The earliest time that a collision may occur, here referred to
as monitoring time, is computed as:

ts+1 = min(tg|R(pr, tr € [tp, tp+T])NO # 0) —t, (20)

where ¢, is the amount of time necessary for a safe recovery
maneuver. At ¢, 1, the system switches to a recovery opera-
tion which allows it to observe its position information (e.g.,
by flying above a building). After recovering the position
information, the system replans its trajectory accordingly as
represented in Fig. 2.

After the start of the operation until the recovery ma-
neuver, the position information may become available at
random times t,,, € [t,,ts11] Which are unknown a priori.
According to the obtained position information, two proce-
dures (explained next) are implemented on the vehicle: either
1) reachable set shrinking if the deviation from the desired
trajectory is less than a predefined liveness threshold )4, or
2) trajectory replanning if the deviation is above Ag.

1) Reachable Set Shrinking: Reachable sets are estimated
with the worst case scenario assumptions in terms of dis-
turbance and noise. Therefore, when the disturbance in the
environment is not as strong as its maximum value, the
reachable set estimation might become over-conservative.
To have more accurate estimations about where the system
could reach and farther reduce computation, we leverage the
deviation from the desired trajectory at the time in which
the position information becomes available and shrink the
reachable sets [17] without the need to compute a new
reachable set. The deviation from the desired trajectory at
monitoring time is calculated as follows:

d(tm) = [|p(tm) — P (tm)]l

where p(t,,) is the position of the UAV at time ¢,, and
pr(tm) is the desired position on the planned trajectory at
L. If d(t,,) < Mg, the reachable sets are updated as follows:

R'(p-,t) = {p(t) : [p(t) = pr(O)|| < (dim(t) — d(tm))}
with ¢ € [tm,t, + T 22)

21

Fig. 7 displays the reachable set shrinking procedure
where the original position reachable tube R(p-,t € [t,,t,+
T]) is shown by a green region and the shrunk position
reachable tube R'(p,,t € [t,,,t,+T]) is displayed by a dark
orange region. As can be seen, the reachable sets become
smaller since the deviation from the desired trajectory is
smaller than the estimated maximum deviation value.

y[m]

0

2

z[m] 1)

0 05

1 t[s] 1.5

Fig. 7. Updating the reachable tubes based on the deviation from the
desired trajectory.

2) Event-triggered Replanning: When the system state
information is obtained, the UAV may decide to replan its
trajectory if the observed state is too far from the desired tra-
jectory for the sake of liveness as defined in (2). Specifically,
a new trajectory is planned to the goal from the observed
position if the observed deviation is larger than the liveness
threshold: d(t,,) > Aq.

After replanning the trajectory: 1) the reachable sets are
regenerated using the GP-based approach in Section IV-A
and 2) self-triggered monitoring introduced in Section IV-B
is performed until the operation is completed.
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When the self-triggered monitor decides that the system
needs to check its state by performing a recovery action,
event-triggered replanning is again invoked to replan a tra-
jectory for recovery. From the recovered state, an obstacle-
free trajectory to the goal position is replanned again and
self-triggered monitoring, recovery and replanning continue
to be performed until reaching the desired goal position.

V. SIMULATIONS

We validate the proposed run-time monitoring, recovery
and replanning approach with quadrotor UAV simulations
for an autonomous navigation case study in a cluttered
environment. In this environment, the GPS signal is available
intermittently at the altitude that the system is required to fly
at, and it is always available at higher altitudes. During the
simulations, we use a quadrotor UAV modeled with a 12"
order system state and with linearized dynamics. The details
of this quadrotor UAV model can be found in [16], [11].

The proposed approach is run in ten different environments
with different obstacle configurations and under different
wind disturbances. As a representative case, we present an
environment with three cylindrical shaped obstacles as shown
in Fig. 8(a). The UAV is tasked to reach a goal position
Py = [24,0,1] with zero velocity. The obstacles are located
at po1 = [6,—0.2], po2 = [12,0.2], po,3 = [18,—0.2], all of
them are 1.2m tall with the radius of 0.2m. The velocity of
the wind disturbance is varying over time in the y direction:
w = [0,0.04 + 0.01sin(t), OJm/s.

In the beginning of its operation, the UAV creates an
obstacle free trajectory to the goal position and computes the
reachable sets based on the time to complete this trajectory
using the proposed GP approach in Section IV-A.2. The
reachable sets of the UAV are shown by the green and
orange tubes in Fig. 8(b). Whenever a new reachable tube
is generated (either for recovery, or because the deviation
at monitoring time is too large) the color of the reachable
tube in Fig. 8(b) swaps. At random points which are shown
by green x symbols in Fig. 8(a), the sensor measurement
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(a) Desired vs. actual trajectory of the UAV.
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(b) Estimated reachable sets of the vehicle during the entire operation.

Fig. 8. UAV simulation results in an environment with three obstacles.

for position becomes available and the reachable tubes are
updated based on the current observed position. At these
points, the reachable tubes shrink, but replanning doesn’t
occur (the color of the reachable tube in the figure remains
the same). If the observed position is deviated from the
desired trajectory more than the user defined threshold \; =
0.5m, the UAV replans its trajectory and recomputes the
corresponding reachable sets. This replanning point is shown
by a black x symbol in Fig. 8(a). At the point shown by
an orange x symbol, the reachable set collides with an
obstacle and the UAV triggers a recovery action to observe
its state information at z = 1.5m level. At the point shown
by a magenta x symbol, it obtains its state information and
replans a trajectory accordingly.

Through the course of the entire operation, the state
information of the UAV becomes available only 25 times,
and the vehicle performs recovery maneuver twice to obtain
its state information. A trajectory replanning due to deviation
is performed once at the black x point. Even though the
UAV is not able to observe its state continuously, it is able to
perform its planned operation safely (i.e. no collision with an
obstacle occurred) with a maximum deviation of 0.60m from
its desired trajectory. Similarly, in all the other simulations,
the UAV was able to finish its operation safely and the
mean and standard deviation of the maximum deviation were
recorded as 0.67m and 0.14m respectively.

We have used an Intel Core i7-6700HQ CPU at 2.60GHz
to run these simulations and it took 0.248s on average to
estimate the maximum deviation reachable set for a given
trajectory, which is independent from the length of the trajec-
tory. The simulations in order to generate the reachable sets
offline for training takes 3.50s for 10 second long trajectory
on an average, and this time increases/decreases linearly
with the trajectory duration. Similarly, the reachable tube
calculation with Ellipsoidal Toolbox increases linearly with
the number of time steps used [12], and it took 2.618 seconds
on an average to generate the reachable sets for a 10 second
long trajectory at 40Hz. These results demonstrate that the
proposed approach is able to reduce the time for reachability
computation significantly toward an online implementation.

VI. EXPERIMENTS

The proposed GP-based fast reachability and replanning
approach was validated experimentally using an AscTec
Hummingbird quadrotor UAV where the control commands
are communicated using ROS. The ground truth state infor-
mation is obtained using a Vicon motion capture system.

The training data for GP regression was collected by
running a set of trajectories with different durations. During
training, the quadrotor did not observe its position and the
control inputs were generated as if it was following the
trajectory perfectly (i.e., closing the loop with the desired
states along the trajectory). Wind disturbance was created
using a 24” industrial heavy duty drum fan placed on
top of a mobile ground vehicle as seen in Fig. 10(a) and
moved to follow the motion of the quadrotor from both
sides of the room. The duration of the trajectories and the
corresponding maximum deviation values were recorded and
the GP regression model was built using these data following
the same procedure outlined in Section IV. The resultant GP
regression is displayed in Fig. 9.

Similar to the simulations, the quadrotor is tasked to
visit a goal following a new previously unseen trajectory
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Fig. 9.
duration.

with unknown intermittent measurements under unknown
disturbances. Fig. 10(a) shows an overlapped sequence of
snapshots for a waypoint navigation experiment in which
the UAV is tasked to go to a goal position at [2.5,0, 1]m
under the wind disturbance generated by the fan at a fixed
position. It should be noted that fixing the fan position
generates a disturbance whose magnitude is different from,
but bounded by the magnitude of the disturbance used during
training. Two obstacles (inflated poles) are present along the
path at the following positions: p,; = [—0.5,0.4], po2 =
[1.5,—0.4]. In Fig. 10(b), the actual path of the quadrotor
and its desired trajectory are shown by blue and red curves
respectively. Similar to the simulations, at the points marked
by magenta “x”” symbols in Fig. 10(b), the quadrotor obtains
its position information and the reachable sets are shrunk. At
the points shown by black “x” symbols, the UAV replans
its trajectory since the observed position is off more than the
liveness threshold A\; = 0.4m, thus new reachable sets are
computed. Note that the actual path of the quadrotor stays
inside the associated reachable sets at all the times during
the experiment.

By using our approach, the quadrotor was able to complete
its task without colliding with any obstacle and with a
maximum deviation of 0.4109m. The position information
became available only 11 times during this experiment and
the quadrotor replanned its trajectory 3 times.

~ TN

(—Actual trajectory
\—Desired trajectory

(a) Overlapped sequence of snapshots (b) Desired vs. actual trajecto-
during the experiment. ries of the UAV.

Actual trajectory
- Desired trajectory

A —
2, 10 t[s] 20 30 40
(c) The reachable sets associated to the experiment in (a).

Fig. 10. Waypoint navigation experimental results.
VII. CONCLUSION AND FUTURE WORK

In this work, we have presented a fast monitoring and
replanning framework for autonomous systems under inter-
mittent and not constant sensing and under the effect of
disturbances and noises. Our approach leverages Gaussian

processes theory for fast reachability. A self/event-triggered
monitoring and replanning approach is also presented to
guarantee safety of the system when measurements are not
always available.

As a future work, we are planning to apply the proposed
run-time monitoring and replanning framework to other
applications focusing in particular on underwater vehicles
where the problem of intermittent measurements and distur-
bances is particularly evident. Further, we plan to extend our
work to more complicated environments with other vehicles
and dynamic obstacles.
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