
Journal of Intelligent & Robotic Systems
https://doi.org/10.1007/s10846-020-01192-2

Computation-Aware Adaptive Planning and Scheduling for Safe
Unmanned Airborne Operations

Esen Yel1 · Tony X. Lin2 ·Nicola Bezzo1,3

Received: 1 October 2019 / Accepted: 26 March 2020
© Springer Nature B.V. 2020

Abstract
Modern unmanned aerial vehicles (UAVs) rely on high-frequency periodic sensor measurements in order to safely operate in
cluttered environments with both static and dynamic obstacles. However, periodic sensor checking operations are time and
computation consuming and they are often not needed, especially in situations where the UAV can operate without violating
the safety constraint (e.g., in uncluttered free space). In this paper, we introduce a computation-aware framework that limits
sensor checking and replanning operations to instances in which such operations could be necessary. To this end, we propose
an approach that utilizes reachability analysis to capture the future states of a UAV operating under the effects of noise
and disturbance and performs self-triggered scheduling for sensor monitoring and replanning operations while guaranteeing
safety. The replanning operation is further relaxed by performing an online reachable tube shrinking. This approach is
supplemented with an online speed adaptation policy based on the curvature of the planned path to minimize deviation from
the desired trajectory due to complex system dynamics and controller limitations. The proposed technique is validated with
both simulations and experiments focusing on a quadrotor motion planning operation in environments consisting of both
static and dynamic obstacles.

Keywords Self-triggered control · Reachability analysis · Scheduling and replanning · Unmanned aerial vehicles

1 Introduction

Unmanned aerial vehicles (UAVs) have been gaining a
lot of attention and popularity in the last decade thanks

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s10846-020-01192-2) contains
supplementary material, which is available to authorized users.

� Esen Yel
esenyel@virginia.edu

Tony X. Lin
tlin339@gatech.edu

Nicola Bezzo
nbezzo@virginia.edu

1 Autonomous Mobile Robots Lab, Link Lab,
Department of Engineering Systems and Environment,
University of Virginia, Charlottesville, VA, USA

2 School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA, USA

3 Department of Electrical and Computer Engineering,
University of Virginia, Charlottesville, VA, USA

to the myriad of operations in which they can be
deployed ranging both civilian and military applications.
Their technological advancements which include more
agile platforms, increasingly precise sensors and actuators,
have only augmented their popularity and deployment in
our daily lives. Although these vehicles have seen an
incremental technological improvement, a big challenge
still remains on how to guarantee safety during their
missions while the airspace is shared with other objects (i.e.,
other aerial vehicles and obstacles).

Typically, a vehicle periodically monitors 1) its pose
and configuration using pose sensors like IMU, GPS,
speedometers, motion capture systems and 2) its distance
to the obstacles using range sensors like lidar, radar, sonar,
and IR sensors, in order to avoid collisions under external
disturbances and noises. This information is then used to
plan and replan the vehicle motion accordingly to guarantee
the desired objective, in a robust, optimal, and safe fashion.
However, periodic sensor checking and planning brings
computational burden to the system, and can be relaxed if
the future states of the system under different uncertainties
can be predicted reliably. For example, let’s consider the
pictorial representation in Fig. 1: when a UAV moves in

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-020-01192-2&domain=pdf
https://doi.org/10.1007/s10846-020-01192-2
mailto: esenyel@virginia.edu
mailto: tlin339@gatech.edu
mailto: nbezzo@virginia.edu


J Intell Robot Syst

Fig. 1 Pictorial representation of the problem presented in this paper:
a quadrotor in navigating in a cluttered environment in which it needs
to avoid collision with both static and dynamic obstacles {o1, o2} while
minimizing periodic sensor checking under uncertainties like wind

disturbances, noise, and jitter. R represents the reachable region of the
UAV with tp+1 the first predicted time that a collision with o1 may
occur and tp+2 the time of a second possible collision with o2

an obstacle-free environment, it may act without checking
its sensors for a longer time and avoid collisions, whereas
when the vehicle gets close to the obstacles or to the
other aerial vehicles, it needs to monitor its sensors more
often. Furthermore, whereas the vehicle can move faster in
obstacle-free areas, it would need to slow down to closely
follow winding trajectories between obstacles.

To deal with these issues, we propose an online
adaptive framework which allows a UAV to limit its sensor
monitoring times to the instances in which it is necessary,
thus minimizing computation while guaranteeing safety
(i.e., something “bad” will never happen) and liveness (i.e.,
something “good” will eventually happen) . The proposed
approach addresses the following challenges:

1. how to minimize sensor monitoring and replanning
operations while satisfying safety and liveness condi-
tions in cluttered and dynamic environments;

2. how to plan and replan a UAV operation, including adapt-
ing its speed, while solving the previous challenge.

Our proposed approach leverages reachability analysis to
predict the future states of the system, utilizes self-triggered
scheduling methods to compute the next sensor monitoring
and replanning time, and introduces a replanning approach
to adapt the speed of the UAV that is navigating in cluttered
and unknown environments with static and dynamic obsta-
cles under the effect of noises and external disturbances.

The reminder of the paper is organized as follows:
Section 2 provides a brief background on related work.
Section 3 introduces the notation used throughout this
paper and formally defines the problem. The UAV motion,
noise and disturbance models are defined in Section 4. A
general framework of the proposed approach is introduced
in Section 5 and detailed discussion about the approach
along with extensive simulation and experimental results for

static and dynamic environments are provided in Sections 6
and 7 respectively. Finally, conclusions and future work are
discussed in Section 8.

2 RelatedWork

This work introduces a reachability-based self-triggered
scheduling and motion replanning approach in environ-
ments cluttered with static and dynamic obstacles. In this
section, we review motion planning approaches, particu-
larly the ones focusing on obstacle avoidance. Then we
provide a discussion about reachability analysis techniques
utilized for various kinds of UAV operations and we state
the contributions of this work.

2.1 Motion Planning

In the literature of mobile robotics, motion planning for
collision avoidance has been studied heavily to enable
safe and persistent autonomous operations in known
and unknown environments. Sampling-based methods are
commonly used in robotics operations to generate collision
free paths. Rapidly-exploring Random Tree (RRT) based
approaches, such as RRTX [21] and RRT∗ [5, 22] have
been leveraged for UAV navigation tasks. In [11], a
random waypoint sampling method is proposed to navigate
a vehicle in environments with dynamic obstacles by
predicting its future states. Other widely used motion
planning approaches for collision-free UAV navigation
are vector field-based methods. For example, potential
functions have been widely utilized to make autonomous
mobile robots move only in obstacle-free regions [25].
Similarly, in [23, 24], vector based navigation is used while
taking in consideration the field of view limitations of the



J Intell Robot Syst

range sensors for obstacle detection. In [28], the traditional
artificial potential field method is improved to deal with the
target unreachability problem while treating other vehicles
as obstacles in cooperative UAV operations. Recently,
trajectory optimization [20], model predictive control [19]
and reinforcement learning [8] techniques have also gained
popularity for UAV navigation in dynamic environments.
For the sake of safety guarantees, [13] introduces the
concept of Safe Flight Corridor (SFC) and generate motion
plans inside these corridors. For smoothness, [1, 30] take
curvature analysis into consideration. In all of these works,
obstacle detection is performed using different kinds of
sensors such as RGB-D cameras [19, 25, 26], fish-eye
cameras [23], low cost sensors [9] or lidars [13] all running
periodically at high frequency, which brings computational
burden to the systems. However, when there are no obstacles
present in the environment, this high-frequency periodic
sensor data acquisition and elaboration is too conservative
and can be relaxed while maintaining the same safety
constraints (i.e., obstacle collision). In the work presented
in this paper we elaborate this idea which to the best of our
knowledge is not well covered in the robotic literature and
propose methods to relax and adapt sensor checking.

2.2 Reachability Analysis

When dealing with safety, a well known theory is
reachability analysis which consists in predicting the future
states covered by a system over a certain future time
horizon under uncertainties. Hamilton-Jacobi reachability
has been widely used to compute the reachable sets of
hybrid systems and to provide safety guarantees for optimal
system trajectories [6]. Forward stochastic reachability
analysis is another method that leverages Fourier transforms
for LTI systems with uncertain dynamics [29]. In [16],
these stochastic forward reachable sets are utilized in a
roadmap-based approach to avoid moving obstacles. In [12],
an aircraft is tasked to avoid other aircrafts by detecting
collisions using reachable sets and sampling based methods
are used to generate new trajectories to avoid obstacles. In
[34], reachable sets are used to detect collisions with other
UAVs and to generate control laws for collision avoidance.
In [27], a region where the system is guaranteed to stay
while following a nominal trajectory is characterized offline
and utilized to plan safety-guaranteed trajectories at run-
time. In [15], funnels are created for motion primitives,
which are analogous to reachable tubes, and the motion
of the UAV is planned in real time, using the funnel
library. There are two main differences between these
previous works and our proposed approach: i) instead of
using reachable sets to design safe trajectories, we utilize
them to guarantee the safety of the planned trajectories
by detecting possible obstacle collisions under disturbances

and uncertainty and ii) we minimize unnecessary sensor
monitoring and replanning operations while satisfying
safety and liveness conditions. These ideas build on our
previous work [4], in which a self/event-triggered approach
was deployed to schedule the best time to replan a
UAV operation considering energy constraints. Similarly,
in [32], we proposed a self-triggered scheduling policy
to minimize computation while guaranteeing safety of a
UAV navigating in open-loop without state feedback. In
[33], we extended this work by introducing risk-based
replanning and self-triggered speed adaptation policies
and in [31] we considered dynamic obstacles. This paper
extends our previous studies and presents a complete and
unison framework for computation-aware adaptive planning
and scheduling of unmanned aerial vehicles, considering
different scenarios within static and dynamic environments.

2.3 Contributions

The contribution of this work is fivefold: 1) We develop
a reachability-based self-triggered scheduling approach to
decide next sensor monitoring and replanning operations
and provide safety and liveness guarantees; 2) We propose a
method to update the reachable tubes based on the observed
state of the system to further minimize replanning operations
while guaranteeing safety; 3) We present a speed adapta-
tion approach that considers the curvature of the trajec-
tory to minimize drift; 4) We propose a reachability-based
self/event-triggered approach to deal with dynamic environ-
ments and minimize the number of sensor checking and
replanning operations while guaranteeing inter-agent colli-
sion avoidance; and 5) Our final contribution is on the val-
idation using realistic simulators and by experiments with
real aerial vehicles in both static and dynamic environments.

To the best of our knowledge, the aforementioned chal-
lenges in motion planning have not been extensively cov-
ered by the current literature. This work provides a complete
and unison framework to save computational resources in
autonomous operations in static and dynamic environments.

3 Problem Formulation

Through this paper, bold lower case italic letters (e.g., q) are
used to denote vectors and bold upper case italic letters (e.g,
A) are used to denote matrices. ‖.‖ represents the Euclidean
norm.

The state vector of the quadrotor is:

q = [pT
qΦθψvxvyvzωxωyωz]T

where pq = [x y z]T is the world frame position, vx , vy

and vz are the world frame velocities, Φ, θ and ψ are the
roll, pitch and yaw Euler angles and ωx , ωy and ωz are the



J Intell Robot Syst

body frame angular velocities. x ∈ R
4 refers to the position

and velocity part of the state in x-y direction and p ∈ R
2

denotes only the position in x-y direction [18].
In this work, we assume a standard UAV equipped

with sensors capable of observing its angular position and
velocity. It is also assumed that the UAV can observe its
position and velocity in the x − y plane (i.e. x) via pose
sensor at scheduled times. The position of an obstacle in the
x −y plane is denoted by o ∈ R

2 with a subscript indicating
the index of the obstacle and it is assumed to be observed via
an on-board range sensor at scheduled times. We neglect the
third dimension because we assume that the robot moves on
a plane at desired z level, however, the proposed approach
is still valid when the z position of the robot varies.

The problems that we address are formallydefined as follows:
Problem 1: Self-triggered Replanning: A UAV has

an objective to visit one or more goal locations in a
cluttered environment. The positions of the obstacles are
detected using an on-board range sensor and a trajectory to
the desired goals is generated online considering obstacle
locations. The UAV dynamics are a function of its state q,
input u, and disturbance d,

q̇(t) = f (q(t), u(t), d(t)) (1)

We consider two cases within the scope of this problem.
In the first case the UAV does not monitor its pose and
range sensors and moves with open loop controller between
planning times. Since monitoring the pose sensors is not
computationally as expensive as range sensors, we introduce
also a second case in which the vehicle monitors its pose
sensor periodically and moves with a closed loop controller
between replanning times.

Case 1: Open Loop Scheduling and Replanning: Find a
policy to schedule the next pose and range sensor monitor-
ing and replanning time tp+1, while the UAV is operating
with a precomputed sequence of inputs in open loop guaran-
teeing both safety and liveness constraints between replanning
operations as mathematically represented in Eqs. 2 and 3.

Case 2: Closed Loop Scheduling and Replanning:
Find a policy to schedule next range sensor monitoring
and replanning time tp+1, while the UAV is checking
periodically its pose sensor and operating in closed loop
guaranteeing both safety and liveness constraints between
replanning operations as mathematically represented in
Eqs. 2 and 3.

In both cases, the next replanning time is determined such
that the following safety and liveness requirements between
replanning operations are met:

1. Safety Constraint: Collisions with obstacles should be
avoided between two consecutive replanning times, or
mathematically:

‖p(t) − oi (t)‖ > ri
o,∀t ∈ [tp, tp+1],∀i ∈ {1, · · · , no} (2)

in which p(t) = [x(t), y(t)]T is the position of the
quadrotor and oi (t) = [

xi
o(t), y

i
o(t)

]T
is the position

of the ith obstacle in the x − y plane at time t with
no the number of obstacles in the environment and ri

o

is the radius of the ith obstacle. Note that in static
environments, the obstacle positions do not change over
time.

2. Liveness: The UAV should stay within a certain
proximity of the planned trajectory:

‖p(t) − pτ (t)‖ ≤ λd, ∀t ∈ [tp, tp+1] (3)

where pτ (t) is the desired position of the the quadrotor
on the trajectory at time t , and λd is the allowed
deviation threshold.

If the UAV is following its trajectory without deviating
too much, replanning operations can be relaxed while
still operating safely. To minimize unnecessary replanning
operations we introduce the following problem:

Problem 2: Replanning Relaxation: Given the assump-
tions in Problem 1, find a policy to decide next time ts+1 to
monitor the state of the system and postpone next replan-
ning time, obtained in Problem 1, to a later t∗p+1 ≥ tp+1 such
that tp+1 ≤ ts+1 ≤ t∗p+1 and the same safety and liveness
constraints hold:

1. Safety Constraint: ‖p(t) − oi (t)‖ > ri
o, ∀t ∈ [tp, ts+1],

∀i ∈ {1, · · · , no}
2. Liveness Constraint: ‖p(t)−pτ (t)‖<λd , ∀t ∈[tp, ts+1]
In cluttered environments, avoiding obstacles may require
a UAV to follow winding trajectories which may lead to
a significant drift from the planned trajectory, especially
when the speed of the vehicle is high. We formally cast this
problem as follows:

Problem 3. Speed Adaptation: Given Eq. 1, and
assumptions listed in the previous problems, at replanning
time tp, after defining a trajectory τ , find a policy to
determine the maximum speed v∗ such that the following
conditions are satisfied:

davg(κm, v∗) ≤ ξt , with v∗ ∈ [vmin, vmax]
where davg is the average deviation from the planned
trajectory with maximum curvature κm, ξt is a deviation
threshold defined by the user, and vmin and vmax are the
minimum and maximum allowed UAV speeds, respectively.

4 SystemModels

In this section, we present the dynamical model of the
system, and the noise and disturbance models considered for
reachability analysis.



J Intell Robot Syst

4.1 Quadrotor Dynamical Model

A quadrotor has four rotors with two rotating clockwise
and two rotating counter-clockwise. The angular speed of
each rotor is denoted by ωi . As also described in [4, 18],
the thrust (Fi) and moment (Mi) produced by each rotor is
proportional to their angular speed:

Fi = κf ω2
i , Mi = κmω2

i , i = 1, · · · , 4

where κf and κm are proportionality constant for thrust and
moment respectively. The net thrust and moments generated
on the quadrotor is calculated by:
⎡

⎢
⎢
⎣

F

Mx

My

Mz

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

u1

u2

u3

u4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

κf κf κf κf

0 dκf 0 −dκf

−dκf 0 dκf 0
κm −κm κm −κm

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

ω2
1

ω2
2

ω2
3

ω2
4

⎤

⎥
⎥
⎦

where d is the arm length of the quadrotor.
The dynamics of the quadrotor are then described as

follows:

ṗq
T = [

vx vy vz

]

[
v̇x

v̇y

v̇z

]

=
[

0
0
−g

]

+ 1

m

[
cos Φ cos ψ sin θ + sin Φ sin ψ
cos Φ sin θ sin ψ − cos ψ sin Φ
cos θ cos Φ

]

u1

⎡

⎣
Φ̇

θ̇

ψ̇

⎤

⎦ =
[

1 sin Φ tan θ cos Φ tan θ
0 cos Φ − sin Φ
0 sin Φ sec θ cos Φ sec θ

] [
ωx

ωy

ωz

]

[
ω̇x

ω̇y

ω̇z

]

=

⎡

⎢⎢
⎣

Iyy−Izz

Ixx
ωyωz

Izz−Ixx

Iyy
ωxωz

Ixx−Iyy

Izz
ωxωy

⎤

⎥⎥
⎦ +

⎡

⎢
⎣

1
Ixx

0 0

0 1
Iyy

0

0 0 1
Izz

⎤

⎥
⎦

[
u2
u3
u4

]

(4)

During the simulations, we linearized the dynamics of the
quadrotor [4].

4.2 High-Level Motion PlanningModel

In this work, we use the following high-level motion
planning model for the quadrotor to capture the evolution
of its position and velocity states in the x − y plane. This
simplified model will be used to compute the reachable
tubes in Section 6.1.

ẋ(t) = Ax(t) + B(u(t) + ηu + ηd)

y(t) = Cx(t) + ηy

(5)

where x = [
x y vx vy

]T
is the state, y is the position and

velocity measurement with sensor noise ηy . u is the input

acceleration with noise ηu and the effect of disturbance ηd .
A, B and C matrices are given by:

A =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ B =

⎡

⎢
⎢
⎣

0 0
0 0
1 0
0 1

⎤

⎥
⎥
⎦ C = I

where I is a 4×4 identity matrix.
This model assumes that the position of the quadrotor

along the z axis is constant and the yaw angle is equal to
zero.

4.3 Position, Low Level, and Attitude Controls

By adopting the framework in Fig. 2, in order to follow the
desired trajectory xτ = [

xτ yτ vx,τ vy,τ

]T
, the position

controller which is implemented as a series of PD loops
generates the desired acceleration inputs:

ẍdes(t) = Kp(xτ (t) − x(t)) + Kd(vx,τ (t) − vx(t))

ÿdes(t) = Kp(yτ (t) − y(t)) + Kd(vy,τ (t) − vy(t))

where Kp and Kd are proportional and derivative coeffi-
cients of the controller respectively. To provide these desired
acceleration inputs, low-level controllers generate the nec-
essary angle inputs to the attitude control. The necessary
angular speeds are calculated by the attitude controller and
the thrust and moment values that each rotor should pro-
vide are calculated through motor dynamics. Finally, the
response of the quadrotor to these thrust and moment values
in terms of its state is generated by rigid body dynamics.

4.4 Noise Models

The behavior of a quadrotor can be negatively affected
by various factors such as sensor and process noises,
and external disturbances which may cause the vehicle to
drift from its planned trajectory and possibly collide with
obstacles. Thus, to guarantee safety, these factors should be
taken into account during planning.

In this work, the effect of disturbances, noises and
uncertainties are assumed to be uniformly distributed and
bounded by ellipsoids ε. It should be noted that beside
simplifying the calculation of reachable sets, this is a
valid assumption because high uncertainties with very low
probability can be neglected and thus the value can be
bounded. For ease of discussion and computation, the noise

Fig. 2 The control diagram for a
quadrotor trajectory following
operation [18]



J Intell Robot Syst

Fig. 3 Periodic sensor
monitoring and obstacle
detection

values are drawn from a uniform distribution. Note that this
assumption is valid because we want to treat all uncertainty
values in the same way from a safety point of view.
It should be also noted that the presented framework is
independent from the distribution of the noise values as long
as they can be bounded by ellipsoids. The state uncertainty
caused by the sensor measurement noise is represented by
ηy ∈ ε(0, Y ) which represents an ellipsoid with center
around the origin and shape matrix Y . The combination
of the mechanical uncertainties from the rotors, gears and
propellers, and the low-level controllers ηu, as well as the
effect of the external wind disturbance ηd are considered
as noise on the applied input. The total uncertainty on the
input is assumed to be bounded by an ellipsoid (ηu + ηd) ∈
ε(0, U) centered around the origin with shape matrix U .

4.5 Sample Scenario

Throughout this work, we use a sample case study as a
baseline reference to our proposed approach: a UAV is
tasked to travel 40m along the x direction with constant
speed v = 1.0m/s in a cluttered environment under wind
disturbance d = [−0.1, 0.1]Tm/s. The UAV is equipped
with an omnidirectional range sensor with 10m range which
is used to detect the obstacles in the environment. It is
assumed that the vehicle is able to detect all the obstacles
within the sensor range.

In traditional motion planning methods, the state of the
system and the obstacle positions are monitored at high
frequency and replanning occurs whenever the UAV detects
a new obstacle along its path [2, 14]. Monitoring the range
or vision sensors to detect the obstacles at high frequency
brings unnecessary computational burden to the system.
In Fig. 3, the UAV travels to its goal position using this
traditional motion planning approach under the conditions
described in the sample scenario. The desired trajectory of
the UAV is shown by a red curve and its actual path is
shown by a blue dotted line. The maximum deviation from
its desired trajectory is recorded as 11.42cm. Replanning
(depicted by black cross marks ×) happens 13 times through
the execution of the operation. In order to detect and avoid
obstacles, pose and range sensor are monitored periodically
at 40Hz rate to resemble the rate of real lidars and are
depicted by magenta diamonds 1721 times in Fig. 3.

5 Framework

In order to solve the problems listed in Section 3, we
propose a reachability-based self-triggered scheduling and
replanning approach which can be broken down in to several
components, as depicted in the framework shown in Fig. 4.
The framework consists of reachability analysis both for
UAVs and dynamic obstacles, self-triggered scheduling,

Fig. 4 Overall reachability-
based self-triggered scheduling
and replanning framework for
dynamic and static environments



J Intell Robot Syst

Fig. 5 Our self-triggered
scheduling and replanning
framework with speed
adaptation

replanning relaxation, curvature-based speed adaptation
and event-triggered obstacle avoidance. These individual
components are analyzed in detail in Sections 6 and 7.

6 Self-Triggered Scheduling and Replanning
for Static Environments

In order to use the available computational resources in
an efficient way, we introduce scheduling policies to make
decisions about next sensor monitoring and replanning
times. Our approach leverages reachability analysis to
predict the future states of the system and utilizes self-
triggered control for scheduling. In this section, we also
introduce i) an approach to update reachable sets and relax
replanning operations to further minimize computation and
ii) a curvature-based speed adaptation method for better
tracking performance. The overall framework is shown in
Fig. 5.

6.1 Reachablity Analysis for Trajectory Tracking
on Quadrotors

A reachable set or reach set of a system is defined as the
set of states that can be reached from a given initial state
with an admissible input over a certain time horizon [10].
A reachable set computed at time t0 for a future time tf
and represented by R(x0, u(t), tf ) is an ellipsoid ε that
contains all the possible future states x(t) for t0 ≤ t ≤ tf
where the initial set ε(x0, X0) is an ellipsoid with center
x0 and shape matrix X0 and the input u(t) ∈ ε(u(t), U) is
bounded by an ellipsoid with center u(t) and shape matrix
U . R+(x0, u(t), tf ) is the external bound of the reachable
set and R+

p (x0, u(t), tf ) is the projection of the external
bound of the reachable set on the position space.

The external bound for the reach set at time tf starting
from an initial time t0 is calculated based on the initial state
ellipsoid, the plant model, and the input ellipsoid as follows:

R+(x0,u(t), tf ) = Φ(tf , t0)ε(x0,X0) ⊕
∫ tf

t0

Φ(tf , ζ )Bε(u(ζ ),U)dζ

where Φ(t, t0) = eA(t−t0), and the symbol ⊕ represents
geometric sum. A reachable tube R(x0, u(t), [t0, t0 + T ])

is the set of all reachable sets over the time interval �T =
[t0, t0 + T ] and its external bound is described as follows:

R+(x0,u(t))|t0+T
t0

= R+(x0,u(t), [t0, t0+T ]) =
t0+T⋃

t0

R+(x0,u(ζ ), ζ )dζ

which is the union of all reachable sets from time t0 to t0+T .
R+

p (x0, u(t), [t0, t0 + T ]) is the projection of the external
bound of the reachable tube on to the position space.

For a UAV following a desired trajectory xτ (tp : tp+1),
the reachable sets are generated over the time interval
�tp = [tp, tp+1] where tp is the current replanning time
and tp+1 is the next replanning time, initially set to tp + T

before the rescheduling operation. The desired trajectories
are computed minimizing jerk [17], and they contain the
desired positions and velocities that the UAV has to track
along the path. Using a PD controller, the acceleration input
required to track the trajectory is calculated as follows:

u(t) = KP (pτ (t) − p(t)) + KD(ṗτ (t) − ṗ(t))

where t ∈ [tp, tp+1]. In order to calculate the set of
inputs that would be applied to the UAV during its motion,
an online simulation is run as if there is no disturbance
and noise in the environment. The control input u(t) is
calculated using this PD controller and applied to the
simulated system for t ∈ [tp : tp+1]. As a result, a set of
control inputs u(tp : tp+1) is generated.

The set of inputs calculated using the online simulator
are used to construct the reachable tubes considering the

Fig. 6 The reachable tube (orange) associated with a planned
trajectory (red starred curve) for a quadrotor moving in the +x

direction over a time interval [0,1.0]s. The blue dotted curve indicates
the actual trajectory followed by the UAV drifted from the planned
trajectory due to wind disturbance but still contained inside the
reachable tube



J Intell Robot Syst

disturbances and uncertainties. A position reachable tube
constructed from tp = 0 to tp+1 = 1.0s for a quadrotor
following a straight 1m long trajectory in the +x direction
in open loop is shown in Fig. 6. The actual path of the
quadrotor (blue dotted curve) deviates from the desired
trajectory (red start curve) due to the presence of wind
disturbance d = [0, 0.45]m/s. Nevertheless, the path
of the quadrotor is contained inside the reachable tube
since the system uncertainties and disturbances are taken
into consideration during the reachable set computation.
To perform such reachability analysis, we leveraged the
Ellipsoidal Toolbox [10] for ease of integration with our
Matlab simulations and physical experiments. However, any
other reachability tool could be used within our framework.

6.2 Self-Triggered Scheduling

In order to schedule next sensor monitoring time while
guaranteeing safety and liveness between replanning oper-
ations, we leverage the reachable tubes calculated in the
previous section. In this section we introduce our self-
triggered scheduling approach to guarantee safety and live-
ness between aperiodic replanning operations.

6.2.1 Case 1: Open Loop Scheduling and Replanning

Our novel self-triggered scheduling policy consists of
deciding the next sensor monitoring and motion replanning
time tp+1 such that safety and liveness of the UAV are
guaranteed between replanning times tp and tp+1 without
monitoring its pose and range sensors between replanning
times, for example in case of GPS signal loss. The
safety requirement is violated whenever a collision with an
obstacle becomes possible. We calculate the first time in
which the UAV can collide with an obstacle, tc, using a
reachable tube as follows:

tc = min(t |R+
p (x(tp), u(t), t ∈ [tp, tp + T ]) ∩ O 
= ∅) (6)

where O is the set of obstacles detected at time tp.
As the UAV does not constantly check its range sensor

while moving towards its goal, it may leave the region that is
detected by the range sensor. This situation raises a potential
danger of obstacle collisions because the UAV does not
have information about the environment beyond its sensory
range. The earliest time that the UAV can leave the region
sensed by the range sensor field of view, tl is calculated as
follows:

tl = min(t |R+
p (x(tp), u(t), t ∈ [tp, tp + T ]) 
⊂ r(tp)) (7)

where r(tp) is the region covered by the field of view of the
range sensor of the UAV at the planning time tp.

Liveness constraint might be violated if it is possible for
the UAV to deviate more than a threshold λd from its desired

trajectory. The first time in which the liveness condition
might be violated, td , is calculated as follows:
td = min(t |‖R+

p (x(tp), u(t), t ∈ [tp, tp + T ]) − pτ (t)‖ > λd) (8)

where pτ (t) is the desired position of the UAV along the
computed trajectory at time t ∈ [tp, tp + T ].

Before the end of the planning horizon tp + T , if one or
more of the following conditions occur:

– a collision with an obstacle becomes possible at tc <

tp + T

– the deviation could be larger than the permitted
threshold t time td < tp + T

– the vehicle may leave the region covered by the range
sensor at time tl < tp + T

then the UAV needs to check its state at one of these
three times, whichever is the earliest. Otherwise, the next
replanning time is scheduled at the end of the time horizon.

tp+1 =
{

min(tc, td , tl ) − tr , if tc < tp + T or td < tp + T or tl < tp + T

tp + T − tr , otherwise

(9)

where tr is the amount of time necessary for the replanning
calculation.

Lemma 1 Given tp+1 as defined in Eq. 9, the UAV is
guaranteed to stay within λd proximity of its planned
trajectory, not to collide with any obstacle and to stay within
the region covered by the range sensor field of view.

Proof By definition, R(x0, u(t), t ∈ [tp, tp + T ]) is the set
of all states x, such that there exists an input u ∈ ε(u(t), U)

and an initial state x0 ∈ ε(x0, X0) which steers the UAV
from x0 to x in time t [10]. R+

p (x0, u(t), t ∈ [tp, tp + T ])
is the projection of the external bound of R(x0, u(t), t ∈
[tp, tp + T ]) onto the position space. Considering a time
value t∗ between tp and tp+1, tp < t∗ < tc, tp < t∗ < tl ,
and tp < t∗ < td , by the definitions of tc in Eq. 6, tl in Eq. 7
and td in Eq. 8,

R+
p (x(tp), u(tk), t ∈ [tp, t∗]) ∩ O = ∅

‖R+
p (x(tp), u(t), t ∈ [tp, t∗]) − pτ (t)‖ < λd

R+
p (x(tp), u(t), t ∈ [tp, tp + T ]) ⊂ r(tp)

which proves that for a tp < t∗ < tp+1, there doesn’t exist
an input u(t∗) ∈ ε(u(t∗), U) and an initial state x(tp) ∈
ε(x(tp), X0) which makes the system reach a state x from
x(tp) such that the position of the system intersects with an
obstacle, or leaves the region sensed by the range sensor, or
deviates from the desired trajectory more than λd .

In Fig. 7, we demonstrate the results of this approach
for our sample case. The desired trajectory of the UAV is
shown by red curve and the actual trajectory followed by
the UAV is shown by blue dots. The deviation threshold is



J Intell Robot Syst

Fig. 7 Desired trajectory (red
curve) and actual path (blue
dots) of the quadrotor with
self-triggered for position,
velocity and obstacle monitoring

picked as λd = 50cm and the wind disturbance is constant
everywhere d = [−0.1, 0.1]Tm/s. The UAV checks its states
and replans its motion only at the points shown by black
crosses 46 times and travels with an open loop controller in
between replanning points. The maximum deviation along
the path is recorded as 16.69cm. As can be noticed, the UAV
never collides with an obstacle or deviates from its desired
trajectory more than the permitted threshold thanks to our
self-triggered approach.

6.2.2 Case 2: Closed Loop Scheduling and Replanning

Compared to monitoring range sensors, we note that mon-
itoring pose sensors is usually computationally negligible
and is necessary for closed loop trajectory-tracking oper-
ations. Here, we consider the case in which the UAV can
monitor its position and velocity periodically while check-
ing for obstacles is scheduled aperiodically at replanning
times. Since the UAV checks its position sensor constantly,
the liveness constraint is not taken into consideration in this
case. If it becomes possible for the UAV to collide with
an obstacle or to leave the region sensed by the range sen-
sor before the end of its time horizon, the UAV monitors
its range sensor and replans its trajectory at either tc or tl ,
whichever is earlier.

tp+1 =
{

min(tc, tl) − tr , if tc < tp + T or tl < tp + T

tp + T − tr , otherwise

(10)

Using this approach, the UAV is guaranteed to stay within
its sensor field of view and avoid collisions with an obstacle,
following the same reasoning in Lemma 1.

In Fig. 8, we demonstrate the sample case, where the
UAV monitors its position and velocity periodically and
schedules next obstacle monitoring time based on the
proposed self-triggered scheduling approach. The UAV
checks its range sensor to detect the obstacles and replans its
motion at points shown by black crosses only 37 times. The
desired trajectory is shown by a red curve and the actual path
of the UAV is shown by blue dots. The maximum deviation
from the desired trajectory is recorded as 11.61cm. To
further decrease the number of replanning operations, we
update the reachable tubes based on the observed state of
the system which is discussed in the next section.

6.3 Reachable Set Shrinking and Replanning
Relaxation

Reachable tubes are constructed to capture the worst case
scenario in terms of external disturbances and noises. In
ideal conditions, without disturbance, the system can follow
its desired behavior very closely, and therefore replanning
(i.e., computing a new reachable tube) at each time that
the reachable tube collides with an obstacle might be over-
conservative and computationally expensive. To overcome
this limitation and postpone next monitoring and replanning
operations, we leverage the deviation from the center of
the reachable set at the replanning time tp+1 to update the

Fig. 8 Self-triggered scheduling for obstacle detection approach applied to the sample scenario. a Desired trajectory (red curve) and actual path
(blue dots) of the quadrotor with selftriggered scheduling for obstacle monitoring. b Corresponding reachable tubes



J Intell Robot Syst

reachable tube without recalculating them. The deviation
from the center of the position reachable tube can be
calculated as follows:

d(tp+1) = ‖p(tp+1) − pr (tp+1)‖
where p(tp+1) is the position of the UAV at time tp+1

and pr (tp+1) is the center of the position reachable tube
at tp+1. In the ideal conditions (perfect system model and
controller), the position reachable tube would be centered
around the desired trajectory. The radius of the external

bound of the reachable tube R+
p (x(tp), u(t))|tp+T

tp
can be

reduced by rt (tp+1) − d(tp+1) − ηp where rt (tp+1) is the
radius of the position reachable tube at time tp+1 and ηp is
the position measurement uncertainty bound. The reasoning
behind this shrinking is that if the system has not deviated
from the center of the reachable set by a large amount, it
becomes impossible for the system to reach the previously
computed reachable set border.

By shrinking, we obtain an updated position reachable set
R̄+

p (x(tp+1), u(t), t) with a smaller external bound than the
original reachable set. Figure 9a is a pictorial representation
of the reachable tube update procedure where the original

position reachable tube R+
p (x(tp), u(t))|tp+T

tp
is shown

by green region and the updated position reachable tube

R̄+
p (x(tp+1), u(t))|tp+T

tp+1
is shown by dark orange region.

Using this approach, the UAV is guaranteed to stay
within the updated reachable tube, as formally described in
Lemma 2:

Lemma 2 Given that x(tp+1) ∈ R+(x(tp), u(t))|tp+T
tp

, the
state of the UAV is guaranteed to stay within the updated
reachable tube at any future time tp+1 ≤ t ≤ tp + T :

x(t) ∈ R̄+(x(tp+1), u(t))|tp+T
tp+1

, ∀t ∈ [tp+1, tp + T ]

Proof To prove this lemma, we leverage the geometric
properties of reachable sets following the representation in

Fig. 9b. The external bound for the reachable tube calculated
at planning time tp, R+

1 (x(tp), u(t), t) is given as follows:

R+
1 (x(tp), u(t), t) = eA(t−tp)ε(x(tp), X0)

⊕
t∫

tp

eA(t−ζ )Bε(u(ζ ), U)dζ

for tp ≤ t ≤ tp + T . At the time tp+1, a reachable set from
the measured state y(tp+1) with the same input sequence
can be calculated as follows:

R+
2 (y(tp+1), u(t), t) = eA(t−tp+1)ε(y(tp+1), X0)

⊕
t∫

tp+1

eA(t−ζ )Bε(u(ζ ), U)dζ

for tp+1 ≤ t ≤ tp+1 + T . The reachable set R+
1 after tp+1

can also be written as follows:

R+
1 (x(tp), u(t), t) = eA(t−tp+1)R+

1 (x(tp), u(t), tp+1)

⊕
t∫

tp+1

eA(t−ζ )Bε(u(ζ ), U)dζ

for tp+1 ≤ t ≤ tp + T . By definition, the reachable set at
R+

1 at time tp+1 contains the measured state:

R+
1 (x(tp), u(t), tp+1) ⊃ ε(y(tp+1), X0)

Therefore, at time tp+1, the reachable set R+
1 contains

R+
2 . By the definition of the external bounds of these

reachable sets, it can be seen that the radii of both reachable
sets grow exponentially over time and at time tp+1 the
radius of R+

1 is larger. Therefore, the difference between the
reachable set areas increases quadratically with the radius
of the reachable sets. Our shrinking procedure consists
in reducing the reachable set radius by a constant value
rt (tp+1)−d(tp+1)−ηp, therefore the initial shrunk set also
contains the measured state y(tp+1):

R̄+
1 (x(tp), u(t), t) ⊃ ε(y(tp+1), X0)

Fig. 9 Reachable tube update procedure. a Updating the reachable tubes based on the deviation from the reachable tube center. b Pictorial
explanation of the procedure to update the reachable tubes online



J Intell Robot Syst

Fig. 10 Replanning relaxation
approach applied to sample
scenario

As the shrinking is done with a constant reduction, the
difference between the reachable set R+

1 area and the shrunk
reachable set R̄+

1 area grows linearly with the reachable set
radius. This concludes that the shrunk reachable set always
contains the reachable set if a new set is calculated from the
observed state:

R̄+
1 (x(tp),u(t), t) ⊃ R+

2 (y(tp+1),u(t), t) ⊃ x(t), ∀t ∈ [tp+1, tp + T ]

The next scheduling time to update the reachable tube is
calculated as defined in Section 6.2. When the difference
between consecutive scheduling times gets smaller, a Zeno
phenomenon [7] may occur and lead to an infinite number
of reachable tube updates before t∗p+1. In order to prevent
such behavior, we consider time threshold δt and include
the following constraint:

t∗p+1 = ts+1 if ts+1 − ts ≤ δt (11)

Eq. 11 shows that when the scheduled times to update the
reachable tube become very close to each other, a new
reachable tube is calculated as described in Section 6.1,
which prevents infinite number of reachable tube updates
caused by the Zeno phenomenon.

In Fig. 10, using the same sample case described in
Section 4.5, we demonstrate the results of the UAV motion

where the next obstacle monitoring time is scheduled using
the shrunk tubes similar to the one shown in Fig. 9a. The
UAV checks its range sensor to detect the obstacles and
replans its motion at points shown by black crosses only
17 times whereas without replanning relaxation, replanning
occurs 37 times as shown in Section 6.2.2. The desired
trajectory is shown by red curve and the actual path of the
UAV is shown by blue dots. The maximum deviation from
the desired trajectory is recorded as 11.80cm.

6.4 Curvature Based Speed Adaptation

In order to guarantee liveness constraints, the UAV
needs to follow its desired trajectory closely. In cluttered
environments, trajectories may become very curvy in order
to avoid the obstacles. Even though a UAV can perform
better tracking performance with low speeds, it becomes
very hard to achieve tracking with high speeds without
drifting from the planned trajectory. In contrast, trajectories
with low curvatures can be closely followed even with high
speeds. For example, in Fig. 11, the actual path of a UAV is
compared when it is following the same desired trajectory
(red curve) with different speeds: v = 1m/s in Fig. 11a and
v = 0.25m/s in Fig. 11b. As expected and can be noticed
by comparing the two figures, the UAV is able to follow its
trajectory with less deviation with a lower speed.

Fig. 11 Effects of the velocity on the deviation, [33]. a The path of the
UAV moving with v = 1m/s on a path with high curvature, drifting
on average 9.05cm. b The path of the UAV moving with v = 0.25m/s

on the same path, drifting on average 1.50cm. c The experimental
relationship between velocity, avoid distance from obstacle and the
average deviation from the trajectory



J Intell Robot Syst

In order to decide the optimal speed to use for a given
path, we create a policy which adapts the desired speed to
follow an obstacle avoidance path based on the maximum
curvature along the path. For curvature computation, we
leverage the analysis presented in [1], as follows:

κi = 4A

d(i−1)idi(i+1)d(i−1)(i+1)

, i ∈ {1, · · · , n − 1} (12)

where dij is the distance between two waypoints i and j ,
A is the area of the triangle formed by three consecutive
waypoints, and n is the total number of waypoints. Here,
waypoints are the points that the UAV needs to visit in
order to avoid the obstacle. In Fig. 11c, the experimental
results demonstrating the relationship between the velocity,
desired avoiding distance from the obstacle (which closely
affects the curvature of the path) and average deviation
from desired trajectory are shown. As can be noticed, the
average deviation from the desired trajectory increases with
the velocity. When the avoid distance from the obstacles
are set around 0.3m, the curvature becomes the maximum,
resulting in more average deviation from the trajectory
for the same speed. These results suggest an exponential
relationship between the estimation of average deviation
from the desired trajectory and the maximum curvature of
the path and the speed of the UAV as follows:

davg(κm, v) = 1

�
eκm·v (13)

where davg is the average deviation from the trajectory
during its motion. The parameter � is determined using
the experimental data so that the estimation is an over-
approximation, and it is different for different types of
vehicles. κm is the maximum curvature along the trajectory:

κm = max
i∈[1,n−1] κi

The objective of the UAV is to finish its task as fast
as possible without deviating too much from the planned
trajectory. Therefore, the optimal velocity for the UAV v∗ is
calculated as the largest possible velocity which keeps the
average deviation under a given threshold ξt :

V = {
v : davg(κm, v) < ξt , vmin < v < vmax

}

v∗ = max(V) (14)

where V is the set of allowable velocities between vmin and
vmax , that keeps the average deviation davg below ξt .

6.5 Simulation Results

In this section, we show and compare the simulation results
of each approach presented above for a UAV waypoint
navigation case study under sensor and process noises, and
wind disturbance in an environment cluttered with circular
obstacles. The quadrotor UAV that we considered during
these simulations uses a localization sensor (e.g., GPS) to

Fig. 12 Comparison between
the simulation results of
different techniques.
a Open-loop. b Self-triggered
scheduling for position, velocity
and obstacle monitoring.
c Self-triggered scheduling for
obstacle monitoring.
d Replanning relaxation



J Intell Robot Syst

monitor its position in the environment and a range sensor
(e.g., a lidar) with a limited 10m range and a 360◦ field of
view to detect the obstacles. The UAV is initialized at the
origin with zero velocity. Its mission consists in navigating
a square trajectory with 25m sides. The wind disturbance
d = [−0.1, 0.1]T is present everywhere in the environment
and its value is unknown to the vehicle.

In Fig. 12a, the trajectory of a quadrotor is planned in the
beginning of its motion assuming that the exact positions
of all the obstacles are known a priori. The trajectory with
constant desired speed of 0.5m/s is controlled in open-loop
without getting feedback from neither the localization nor
the range sensors. Since the quadrotor does not observe
its position while moving under the effect of disturbance,
it deviates from its planned trajectory significantly and
collides with multiple obstacles.

In the simulations demonstrated in Fig. 12b–d the UAV
does not have any prior knowledge about the obstacle
locations in the environment. In Fig. 7, the UAV computes
its reachable sets considering the disturbance and noise
bounds and uses these reachable sets to schedule the times
that it needs to monitor its range and pose sensor as
described in Section 6.2.1. The quadrotor moves in open
loop between replanning times and follows a trajectory
with constant desired speed of 0.5m/s. In this case, the
replanning occurs 194 times at points shown by black
‘×’ symbols in Fig. 12b. Even though the UAV does not
monitor its sensors between replanning times, it is able
to complete its task without colliding with any obstacles
or deviating too much from the desired trajectory. In
Fig. 12c, the pose sensor is monitored periodically (usually
not computationally demanding) and the range sensor is
monitored aperiodically at times scheduled according to
proposed self-triggered approach described in Section 6.2.2.
Additionally, depending on the curvature of the trajectory,
the speed of the vehicle is also adapted between vmin =
0.25m/s and vmax = 1.25m/s as explained in Section 6.4.
The replanning and range sensor detection happens only
70 times at the points shown by black ‘×’ symbols and
the vehicle completes its task without colliding with any
obstacles. To further minimize the sensor checking and
replanning operations, we apply the proposed reachable
set update method presented in Section 6.3 in the case
shown in Fig. 12d. At the points shown by magenta ‘�’
symbols, the UAV updates the reachable sets based on its
position and schedules the next raplanning time. With the
proposed approach, the UAV completed its task by planning
its trajectory only 47 times (black ‘×’) and by tracking
its desired trajectory closely with an average deviation of
6.18cm. If instead, the UAV was using periodic sensor
monitoring, it would have needed over 4000 range sensor
checks, which is avoided thanks to our proposed self-
triggered approach.

Table 1 Comparison between the different cases simulated in Fig. 12

Number of replanning Max. deviation Avg. deviation

and sensor monitoring

Fig. 12a 1 2878.84cm 1432.67cm

Fig. 12b 194 16.71cm 4.27cm

Fig. 12c 70 13.66cm 5.63cm

Fig. 12c 47 14.61cm 6.18cm

The number of replanning operations, number of range
sensor checks, and the maximum and average deviation
values for different cases are compared in Table 1. The
best results are achieved using the self-triggered replanning
approach with relaxation (Fig. 12d). The UAV performs a
reasonably good tracking performance with the minimum
number of sensor monitoring and replanning operations.

6.6 Experimental Results

In order to validate our proposed self-triggered replanning
approach, we implemented a series of experiments: i)
self-triggered scheduling for both pose and range sensor
monitoring (Case 1 presented in Section 6.2.1) and ii) self-
triggered scheduling for only range sensor monitoring (Case
2 presented in Section 6.2.2).

6.6.1 Case 1: Open Loop Scheduling and Replanning

The proposed self-triggered approach to schedule the pose
sensor monitoring times was validated using an AscTec
Hummingbird quadrotor UAV. The range sensor scheduling
is not addressed during this experiment. As shown by the
framework in Fig. 13, the Matlab ellipsoidal toolbox [10]
is used to calculate the reachable sets and the control
commands to the quadrotor are sent through ROS. The
communication between Matlab and ROS was bridged
using the Robotics System Toolbox. The self-triggered
scheduling and replanning framework was implemented in
Matlab and the position and the velocity of the quadrotor
in x − y plane at each scheduled monitoring time were
monitored using a Vicon motion capture system. During
this experiment, the obstacle is assumed to be static with a
known position.

The starting position of the robot is at (−1.75, −0.4, 1)m
and the goal is located at (1.75, −0.4, 1)m. The quadrotor
aims to track the planned obstacle-free trajectory without
performing periodic sensor monitoring for its position and
velocity in x − y plane. The next sensor monitoring time
is scheduled considering only the safety condition during
this experiment. In Fig. 14a, a sequence of snapshots of
the quadrotor is shown in which the quadrotor monitor
its position with the rate of 40Hz. In Fig. 15a, the



J Intell Robot Syst

Fig. 13 Framework of the
experimental setup, [32]

Fig. 14 Obstacle avoidance experiment results with a periodic position and velocity monitoring and b self-triggered scheduling for sensor
monitoring and replanning considering only safety constraint, [32]

Fig. 15 The desired and actual path of the quadrotor for the experiments shown in Fig. 14. a periodic position and velocity monitoring and
b self-triggered scheduling and replanning with only safety constraint, [32]

Fig. 16 Framework of the experiment setup, [33]



J Intell Robot Syst

corresponding obstacle-free desired trajectory (red curve)
and the actual path of the UAV (blue curve) are shown.
Thanks to periodic sensor checking, the actual and the
desired trajectory are very close to each other. In Fig. 14b,
a sequence of snapshots of the quadrotor while it is
performing self-triggered scheduling and replanning is
presented. In Fig. 15b, the actual and the desired trajectory
of the quadrotor is shown. The quadrotor monitors its state
and replans its trajectory only 13 times at points shown
by black ‘×’ symbols. Lack of periodic sensor monitoring
caused the quadrotor to deviate from its planned trajectory
by nearly 0.5m, however our proposed approach prevented it
from colliding with any obstacles. These experiments show
that even though periodic sensor monitoring provides better
trajectory tracking, it is not necessary as the safety can
be guaranteed using the proposed approach with aperiodic
monitoring.

6.6.2 Case 2: Closed Loop Scheduling and Replanning

The proposed self-triggered scheduling for range sensor
monitoring and replanning approach with speed adaptation
was validated using an AscTec Pelican quadrotor UAV. The
UAV has an i7 CPU on board for computation and a Hokuyo
Lidar range sensor for obstacle detection. The framework
presented in Fig. 16 was followed during the experiments in
which our Vicon motion capture system was used to monitor
the state of the UAV. The quadrotor used its on-board lidar
to estimate the positions of the obstacle. Our self-triggered
approach was implemented in Matlab similar to the previous
case study.

The UAV was tasked to complete a rectangular trajectory
by visiting the corners in order: {O → A → B →
C → D → A → O}. Two obstacles (inflated poles) were
positioned on the top edge of the rectangle. At runtime, the
quadrotor built a trajectory to move to the desired waypoints
and to avoid the obstacles and computed its reachable sets.
Using the proposed approach, the next sensor monitoring
and replanning time was scheduled to the instance in which

the reachable sets collide with an obstacle for the first time.
Since the range of the lidar sensor is long enough to cover
the workspace, the time that the system can leave the field
of view of the lidar is not considered during this experiment.
The speed of the UAV was also adapted when it was moving
around the obstacles.

Figure 17a shows an overlapped sequence of snapshots
of this experiment and Fig. 17b shows the actual path
(blue curve) and the desired trajectory (red curve) of the
UAV. The average deviation is recorded as 5.35cm and its
speed is adapted in the range of 0.125 − 0.5 m/s. Sensor
checking and replanning occurred only 11 times and the
UAV was able to complete its trajectory without colliding
with any obstacles. We compared the results of our approach
with results of traditional replanning approach with periodic
sensor monitoring shown in Fig. 17c. The UAV moved with
constant speed v = 0.125m/s and it monitored for the
obstacles periodically with 40Hz frequency. In this case the
average deviation decreased to 3.10cm. However, with the
proposed approach, the CPU utilization decreased to 2.7%
from 9% with periodic 40Hz lidar monitoring.

7 Self/Event-Triggered Scheduling
and Replanning in Dynamic Environments

So far, we have considered scheduling and replanning of
UAV operations in static environments, however the UAV
may operate in dynamic environments, for example in the
presence of other aerial vehicles. For safe operations in
dynamic environments, we extend the framework discussed
in the previous sections and propose a self/event-triggered
scheduling and replanning approach which follows the
framework depicted in Fig. 18 [31].

Based on the initial observations about the obstacle
positions, a trajectory to the desired goal position pg is
generated. The future states of the UAV are predicted using
the reachable tubes calculated as outlined in Section 6.1.
If the distance do(tp) between the UAV and the closest

Fig. 17 Waypoint navigation experimental results, [33]. a Overlapped sequence of snapshots. b Desired vs. actual trajectories of the UAV during
the experiment. c Desired vs. actual trajectories of the UAV with periodic obstacle detection



J Intell Robot Syst

Fig. 18 Overall
self/event-triggered scheduling
and replanning framework in
dynamic environments

mobile obstacle is smaller than a user defined threshold ξ ,
a collision avoidance behavior is triggered in which sensor
checking switches to periodic. Collision avoidance is then
performed using repulsive potential fields, [3].

7.1 Dynamic Obstacle Reachability Analysis

In order to guarantee safety of the UAV operations in
dynamic environments without monitoring the sensors
periodically, it is required to predict the future states of the
dynamic obstacles. To capture the possible future states of a
dynamic obstacle, its reachable sets are calculated based on
the available information about its state, maximum velocity
and direction of movement. For the sake of simplicity,
we assume that the obstacle has a known maximum
speed vo,max , and a heading which is not known a priori.
Therefore, at the initial planning time t0, the position
reachable set of the obstacle, Ro

p(oi (t0), [t0 +T ]), is a circle
centered around the obstacle position as shown in Fig. 19b,
which contains all the points that can be reached within
the planning horizon T . The direction and velocity of the
mobile obstacle at time tp, �voi(tp), can be estimated based
on previous observations about its position, as follows:

�voi(tp) = oi (tp) − oi (tp−1)

‖oi (tp) − oi (tp−1)‖ , ∀i ∈ [0, no] (15)

Its reachable set can be constructed along its trajectory
while taking the estimation errors and noise into account

as depicted in Fig. 19c. Due to the measurement noise and
uncertainties, the actual direction of the mobile obstacle
might be different from the estimated one. The minimum
and maximum limits of its direction of motion can be
calculated as follows:

�v+
oi(tp) = o+

i (tp)−oi (tp−1)

‖o+
i (tp)−oi (tp−1)‖ , ∀i ∈ [0, no] (16)

�v−
oi(tp) = o−

i (tp)−oi (tp−1)

‖o−
i (tp)−oi (tp−1)‖ , ∀i ∈ [0, no] (17)

where �v+
oi(tp) and �v−

oi(tp) are upper and lower limits of
the direction of the obstacle where o+

i (tp) and o−
i (tp) are

two extreme points where the obstacle can be at tp due
to uncertainties. o+

i (tp) and o−
i (tp) are shown in Fig. 19a,

where ηx is the maximum measurement noise.
The updated reach set of the obstacle for the time horizon

T is shown in Fig. 19c with a blue shaded region. As can
be noticed, the reachable set of the obstacle grows along its
direction with a rate proportional to the maximum velocity
of the vehicle.

7.2 Self/Event-Triggered Scheduling and Replanning

In a dynamic environment, the first time a collision may
occur, tc,o, is calculated as follows:

tc,o = min(tk|R+
p (x(tp), u(tk), tk ∈ [tp, tp + T ])

∩ Ro
p(oi (tp), tk ∈ [tp, tp + T ]) 
= ∅)

Fig. 19 Reachable tube calculation for dynamic obstacles. a Calculation of the obstacle direction based on the previous position of the obstacle
and the magnitude of uncertainties. b Initial reach set of the obstacle. c Reach set of the obstacle updated based on the observed direction



J Intell Robot Syst

where Ro
p(oi (tp), tk ∈ [tp, tp + T ]) is the geometric sum

of the position reachable sets of the obstacle between tp
and tp + T . In Fig. 20, reachable sets of the UAV (blue
circles) and reachable sets of the obstacle (magenta region)
are shown at tc,o, the time that they collide for the first time.

Similar to the case with static obstacles, the next sensor
checking time is scheduled to tl (which is calculated in
Eq. 7) or to tc,o whichever is minimum:

tp+1 =
{

min(tc,o, tl) − tr , if tc,o < tp + T or tl < tp + T

tp + T − tr , otherwise

(18)

where tr is the amount of time necessary for the replanning
calculation. In case that the UAV doesn’t detect any obstacle
in the environment, next sensor checking time can be
computed considering the worst case scenario, that is when
the obstacle is right on the boundary of the sensor field of
view.

It should be noted that the same safety guarantees
presented in the static case apply while minimizing sensor
checking operations also in the dynamic environments.

7.3 Dynamic Obstacle Repulsive Potential Field
Collision Avoidance

If do(tp) < ξ a collision avoidance is initiated following
a repulsive potential filed approach. The repulsive potential
field around the reachable set of the obstacle WO(p(t)) can
be computed as follows:

WO(p(t))=
{

1
2αi

(
1

ρ(p(t))
− 1

ρ0

)2
, if ρ(p(t)) ≤ ρ0

0, if ρ(p(t)) > ρ0

(19)

Fig. 20 Collision between the reachable tube of the UAV and
reachable set of the obstacle at time tc,o

where ρ(p(t)) is the shortest distance to the obstacle
reachable tube from the UAV position p(t), ρ0 is the
distance threshold for the repulsive field and αi is a positive
constant. Then the repulsive force FO(p(t)) is equal to the
negative gradient of WO(p(t)):

FO(p(t)) = αi

(
1

ρ(p(t))
− 1

ρ0

)
1

ρ(p(t))2
∇ρ(p(t)) (20)

The attractive potential field WG(p(t)) to go to the goal
position is calculated as follows:

WG(p(t)) = 1

2
ζi(‖p(t) − pg‖2) (21)

where pg is the position of the goal and ζi is a positive
constant. The attractive force is the gradient of the attractive
field at p(t):

FG(p(t)) = −ζi(p(t) − pg) (22)

Finally, the UAV moves with the combination of repulsive
and attractive forces:

F(p(t)) = FG(p(t)) + FO(p(t)) (23)

As soon as do(tp) ≥ ξ the UAV switches back to the
self/event-triggered scheduling policy presented above.

7.4 Simulation Results

The case study investigated in this section is a UAV
waypoint navigation through a simple environment with one
mobile obstacle. We consider a similar UAV described in
Section 6.5, with sensor range of 20m. The same wind
disturbance described in Section 6.5 is used during these
simulations.

In the simulations shown in Fig. 21, the UAV is tasked
to go to a goal point pg = [10, 10]m shown by a green
circle. The red circle represents a dynamic obstacle which
and both the vehicle and the obstacle move towards the
center of the environment to reach their goal. As the obstacle
moves faster than the UAV, their trajectories do not collide
with each other. The obstacle and UAV positions before,
near and after the intersection point of their paths are
displayed in the first three figures in Fig. 21. As can be
seen, since the obstacle passes the intersection point before
the UAV, the UAV doesn’t perform any avoidance action
and it keeps following its originally planned trajectory. The
replanning occurs only 3 times at the points shown by black
‘×’ symbols in Fig. 21d. At the points shown by magenta
’diamond’ symbols, the UAV checks its sensors, updates
its reachable sets but it does not replan its trajectory. In
this simulation, the average and maximum deviation from
the desired trajectory is recorded as 6.36cm and 9.53cm
respectively.



J Intell Robot Syst

Fig. 21 Simulation Results in which the paths of the UAV and the obstacle intersects but collision doesn’t happen because the obstacle passes the
intersecting point earlier than the UAV. a Before the intersection point. b Near the intersection point. c After the intersection point. d Complete
path of the UAV

In the case presented in Fig. 22, the UAV is tasked to
the same goal location pg = [6, 10]. A dynamic obstacle
starting from a different position move towards the path
of the UAV and this case a collision would occur at the
intersection point if the trajectory of UAV is not replanned.
The first three figures in Fig. 22 shows the movement
of UAV and the obstacle. When the distance between the
UAV and the obstacle gets smaller than the threshold,
the obstacle avoidance behavior is triggered by our event-
triggered replanning approach and the UAV performs an
obstacle avoidance maneuver. Once the obstacle is passed
and far away, the UAV original self-triggered planning
approach moving towards the goal. In this case, the UAV
replans its trajectory only 3 times and checks its sensors
at the points shown by magenta ’diamond’ symbols in
Fig. 22d. As can be noticed, while avoiding the obstacle, the
UAV periodically checks its sensor. In this simulation, the
average and maximum deviation from the desired trajectory
is recorded as 4.02cm and 9.01cm respectively.

In Fig. 23, the UAV is tasked to go to a goal point
pg = [10, 10]m. A dynamic obstacle approaches the UAV
from the opposite direction. The first figure in Fig. 23 shows
the paths of the obstacle and the UAV before reaching the

intersection point. Similar to the previous case, as they
get closer to each other, our event-triggered replanning
approach triggers a collision avoidance behavior. After the
UAV passes the obstacle, as shown in Fig. 23c, it goes back
to the original self-triggered behavior towards its goal. In
this case, the UAV replans its trajectory only 4 times at
the black ‘×’ marks in Fig. 23d. In this simulation, the
average and maximum deviation from the desired trajectory
is recorded as 5.25cm and 9.76cm respectively.

7.5 Experimental Results

The self/event-triggered scheduling and replanning
approach in dynamic environments was validated using two
AscTec Hummingbird quadtrotor UAVs. The second UAV
has a predefined trajectory to follow and the first UAV
needs to update its trajectory according to our self-triggered
scheduling and replanning approach to avoid the second
UAV when necessary. The framework followed in this
experiment is shown in Fig. 24. Similar to the previous sec-
tions, the reachable tubes for the first UAV are calculated
using Matlab ellipsoidal toolbox [10] and both UAVs are
controlled using ROS framework. A Vicon motion capture

Fig. 22 Simulation results of collision avoidance. The obstacle and the UAV could collide with each other without replanning. a Before the
intersection point. b Near the intersection point. c After the intersection point. d Complete path of the UAV



J Intell Robot Syst

Fig. 23 Simulation results of collision avoidance in which the obstacle and the UAV move towards each others. a Before the intersection point.
b Near the intersection point. c After the intersection point. d Complete path of the UAV

system was used to track the position and velocity of both
UAVs at the scheduled times.

In Fig. 25a, a sequence of overlapped snapshots of the
two quadrotors is shown. The first UAV starts its motion
at (−2.0, 0.0, 1.0)m and it is tasked to navigate to its goal
position at (2.0, 0.0, 1.0)m and the second UAV starts its
motion at (0.0, 1.0, 1.0)m and it is tasked to go to its goal
position at (0.0, −1.0, 1.0)m. During the experiments, it is
assumed that the direction of the movement of the second
UAV is known and it does not change over time. Both
UAVs travel with average velocity 0.3m/s in this case. Since
the trajectory of the second UAV is shorter, it passes the
intersection point before the first UAV. Therefore, the first
UAV doesn’t need to update its trajectory to avoid the
second one. In Fig. 25c, we compare the desired and actual
trajectories of the two UAVs during the mission. The first
UAV checks for the position of the second UAV only 7 times
at the points shown by black ‘×’ symbols. At these points,
since the first UAV is following its trajectory closely, it
keeps following the existing trajectory and it recalculates the
reachable tubes of both vehicles. The average and maximum
deviation from its desired trajectory are recorded as 5.28cm
and 12.41cm.

In Fig. 25b, both UAVs have the same initial and goal
positions as in the previous case. The first UAV moves with
the average velocity 0.3m/s and the second UAV moves
with 0.05m/s. In this case, a collision between two UAVs
would have occurred but the first UAV adapts its trajectory
to avoid the second UAV to prevent collision when the
distance between the two vehicles is less than ρ0 = 1.5m
and when they are approaching each others. In Fig. 25d,
we compare the desired and actual trajectories of the two
UAVs during the mission. When the reachable sets of the
two UAVs collides and when they are close to each other, the
first UAV monitors the position of the second UAV at points
shown by magenta color, which happens 122 times, while
following the adapted trajectory. Similar to the previous
case, at the points shown with black × symbols, the UAV
monitors the position of the second UAV only 8 times and
it recalculates the reachable tubes of both vehicles. The
average and maximum deviation of the first UAV from its
desired trajectory are recorded as 2.88cm and 8.75cm in this
case. If instead, traditional periodic monitoring was used,
the deviation would have been less, however it would have
required to monitor the position of the second UAV 2225
times as opposed to 130 times with our approach.

Fig. 24 Framework of the experiment setup



J Intell Robot Syst

Fig. 25 Comparison of experimental results with self/event-triggered
approach in dynamic environments. a Overlapped sequence of
screenshots for non-colliding trajectories. b Overlapped sequence of

screenshots for colliding trajectories. c Trajectories of the both UAVs
for noncolliding trajectories. d Trajectories of the both UAVs for
colliding trajectories

8 Conclusions and FutureWork

In this work, we have presented an adaptive scheduling
and replanning framework for UAV operations in cluttered
and dynamic environments. The future states of the system
under bounded external disturbances and system noises are
computed by leveraging reachability analysis. Reachable
sets are utilized to schedule next sensor monitoring and
replanning times while guaranteeing safety and liveness. We
also presented a computationally effective way of updating
the reachable tubes based on the monitored system state
to further minimize the replanning and sensor checking
operations. The speed of the vehicle is also adapted using
a curvature based approach to limit the deviation while the
system is moving in cluttered environments.

In our future work, we plan to consider more realistic
dynamics for the moving obstacles and use a similar
framework to optimize energy consumption by leaving
sensors in idle mode when not in use. Currently we are also
exploring machine learning techniques for fast reachability
analysis for more complex system dynamics at runtime, and
to perform replanning for safety guaranteed operations in
partially known environments. We also plan to extend this
approach to systems with uncertain models, and to cases in
which the model of the system changes over time.

Acknowledgements This material is based upon work supported
by the Air Force Research Laboratory and the Defense Advanced
Research Projects Agency under Contract No. FA8750-18-C-0090,
ONR under agreement number N000141712012, and NSF under grant
#1816591. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of the Air Force Research Laboratory
(AFRL), the Defense Advanced Research Projects Agency (DARPA),
the Department of Defense, or the United States Government.

References

1. Ahmadzadeh, A., Jadbabaie, A., Kumar, V., Pappas, G.J.: Stable
multi-particle systems and application in multi-vehicle path
planning and coverage. In: 46th IEEE Conference on Decision and
Control, pp. 1467–1472 (2007)

2. Al-Kaff, A., Meng, Q., Martı́n, D., de la Escalera, A.,
Armingol, J.M.: Monocular vision-based obstacle detec-
tion/avoidance for unmanned aerial vehicles. In: IEEE
Intelligent Vehicles Symposium (IV), pp. 92–97 (2016).
https://doi.org/10.1109/IVS.2016.7535370

3. Bezzo, N., Griffin, B., Cruz, P., Donahue, J., Fierro, R., Wood, J.:
A cooperative heterogeneous mobile wireless mechatronic system.
IEEE/ASME Trans. Mechatron. 19(1), 20–31 (2014)

4. Bezzo, N., Mohta, K., Nowzari, C., Lee, I., Kumar, V., Pappas, G.:
Online planning for energy-efficient and disturbance-aware uav
operations. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 5027–5033 (2016)

https://doi.org/10.1109/IVS.2016.7535370


J Intell Robot Syst

5. Bouzid, Y., Bestaoui, Y., Siguerdidjane, H.: Quadrotor-uav
optimal coverage path planning in cluttered environment with a
limited onboard energy. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 979–984 (2017).
https://doi.org/10.1109/IROS.2017.8202264

6. Ding, J., Gillula, J.H., Huang, H., Vitus, M.P., Zhang, W., Tomlin,
C.J.: Hybrid systems in robotics. IEEE Robot. Autom. Mag. 18(3),
33–43 (2011)

7. Egerstedt, M., Johansson, K.H., Sastry, S., Lygeros, J.: On the
regularization of zeno hybrid automata. Syst. Control Lett. 38,
141–150 (1999)

8. Faust, A., Chiang, H.T., Rackley, N., Tapia, L.: Avoiding moving
obstacles with stochastic hybrid dynamics using pearl: Preference
appraisal reinforcement learning. In: IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 484–490 (2016)

9. Gageik, N., Benz, P., Montenegro, S.: Obstacle detection
and collision avoidance for a uav with complemen-
tary low-cost sensors. IEEE Access 3, 599–609 (2015).
https://doi.org/10.1109/ACCESS.2015.2432455

10. Kurzhanskiy, A.A., Varaiya, P.: Ellipsoidal toolbox (et). In:
Proceedings of the 45th IEEE Conference on Decision and
Control, pp. 1498–1503 (2006)

11. Lin, Y., Saripalli, S.: Sampling based collision avoidance for uavs.
In: American Control Conference (ACC), 2016, pp. 1353–1358.
IEEE (2016)

12. Lin, Y., Saripalli, S.: Sampling-based path planning for uav
collision avoidance. IEEE Trans. Intell. Transport. Syst. PP(99),
1–14 (2017). https://doi.org/10.1109/TITS.2017.2673778

13. Liu, S., Watterson, M., Mohta, K., Sun, K., Bhattacharya, S.,
Taylor, C.J., Kumar, V.: Planning dynamically feasible trajectories
for quadrotors using safe flight corridors in 3-d complex
environments. IEEE Robot. Autom. Lett. 2(3), 1688–1695 (2017).
https://doi.org/10.1109/LRA.2017.2663526

14. Mac, T.T., Copot, C., Hernandez, A., Keyser, R.D.: Improved
potential field method for unknown obstacle avoidance using uav
in indoor environment. In: IEEE 14th International Symposium on
Applied Machine Intelligence and Informatics (SAMI), pp. 345–
350 (2016)

15. Majumdar, A., Tedrake, R.: Funnel libraries for real-time robust
feedback motion planning. Int. J. Robot. Res. 36(8), 947–982
(2017)

16. Malone, N., Lesser, K., Oishi, M., Tapia, L.: Stochastic reachabil-
ity based motion planning for multiple moving obstacle avoidance.
In: Proceedings of the 17th International Conference on Hybrid
Systems: Computation and Control, HSCC ’14, pp. 51–60. ACM,
New York (2014). https://doi.org/10.1145/2562059.2562127

17. Mellinger, D., Kumar, V.: Minimum snap trajectory generation
and control for quadrotors. In: IEEE International Conference on
Robotics and Automation, pp. 2520–2525 (2011)

18. Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The grasp
multiple micro-uav testbed. IEEE Robot. Autom. Mag. 17(3),
56–65 (2010)

19. Odelga, M., Stegagno, P., Bulthoff, H.H.: Obstacle detection,
tracking and avoidance for a teleoperated uav. In: IEEE
International Conference on Robotics and Automation (ICRA),
pp. 2984–2990 (2016)

20. Oleynikova, H., Burri, M., Taylor, Z., Nieto, J., Siegwart, R.,
Galceran, E.: Continuous-time trajectory optimization for online
uav replanning. In: 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5332–5339 (2016)

21. Otte, M., Frazzoli, E., RRT, X.: Real-time motion plan-
ning/replanning for environments with unpredictable obstacles. In:
Algorithmic Foundations of Robotics XI, pp. 461–478. Springer
(2015)

22. Pereira, G.A.S., Choudhury, S., Scherer, S.: A frame-
work for optimal repairing of vector field-based motion
plans. In: 2016 International Conference on Unmanned
Aircraft Systems (ICUAS), pp. 261–266 (2016).
https://doi.org/10.1109/ICUAS.2016.7502525

23. Roelofsen, S., Gillet, D., Martinoli, A.: Reciprocal collision
avoidance for quadrotors using on-board visual detection. In:
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 4810–4817 (2015)

24. Roelofsen, S., Martinoli, A., Gillet, D.: 3d collision avoidance
algorithm for unmanned aerial vehicles with limited field of view
constraints. In: IEEE 55th Conference on Decision and Control
(CDC), pp. 2555–2560 (2016)

25. Santos, M.C.P., Rosales, C.D., Sarcinelli-Filho, M., Carelli, R.:
A novel null-space-based uav trajectory tracking controller with
collision avoidance. IEEE/ASME Trans. Mechatron. 22(6), 2543–
2553 (2017). https://doi.org/10.1109/TMECH.2017.2752302

26. Santos, M.C.P., Santana, L.V., Brandão, A.S., Sarcinelli-Filho,
M.: Uav obstacle avoidance using rgb-d system. In: International
Conference on Unmanned Aircraft Systems (ICUAS), pp. 312–
319 (2015). https://doi.org/10.1109/ICUAS.2015.7152305

27. Singh, S., Majumdar, A., Slotine, J.J., Pavone, M.: Robust
online motion planning via contraction theory and con-
vex optimization. In: IEEE International Conference on
Robotics and Automation (ICRA), pp. 5883–5890 (2017).
https://doi.org/10.1109/ICRA.2017.7989693

28. Sun, J., Tang, J., Lao, S.: Collision avoidance for
cooperative uavs with optimized artificial potential
field algorithm. IEEE Access 5, 18382–18390 (2017).
https://doi.org/10.1109/ACCESS.2017.2746752

29. Vinod, A.P., Homchaudhuri, B., Oishi, M.M.K.: Forward stochas-
tic reachability analysis for uncontrolled linear systems using
fourier transforms. arXiv:abs/1610.04550 (2016)

30. Yang, K., Sukkarieh, S.: An analytical continuous-curvature path-
smoothing algorithm. IEEE Trans. Robot. 26(3), 561–568 (2010).
https://doi.org/10.1109/TRO.2010.2042990

31. Yel, E., Bezzo, N.: Reachability-based adaptive uav scheduling
and planning in cluttered and dynamic environments. In:
Workshop on Informative Path Planning and Adaptive Sampling
at ICRA (2018). http://robotics.usc.edu/wippas/program.html

32. Yel, E., Lin, T.X., Bezzo, N.: Reachability-based self-triggered
scheduling and replanning of uav operations. In: NASA/ESA
Conference on Adaptive Hardware and Systems (AHS), pp. 221–
228 (2017)

33. Yel, E., Lin, T.X., Bezzo, N.: Self-triggered adaptive planning and
scheduling of uav operations. In: IEEE International Conference
on Robotics and Automation (ICRA) (2018)

34. Zhou, Y., Raghavan, A., Baras, J.S.: Time varying control set
design for uav collision avoidance using reachable tubes. In: IEEE
55th Conference on Decision and Control (CDC), pp. 6857–6862
(2016)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Esen Yel is currently a Ph.D. student in System Engineering at the
Autonomous Mobile Robots Laboratory and the Link Lab at the
University of Virginia under the supervision of Prof. Nicola Bezzo.
She received the B.S. and M.S degrees in Electrical and Electronics
Engineering from Boğaziçi University, Istanbul, Turkey in 2014 and
2016 respectively. Her current research interests include safe motion
planning, reachability analysis, runtime monitoring, and self-triggered
scheduling and control of autonomous aerial vehicles.

https://doi.org/10.1109/IROS.2017.8202264
https://doi.org/10.1109/ACCESS.2015.2432455
https://doi.org/10.1109/TITS.2017.2673778
https://doi.org/10.1109/LRA.2017.2663526
https://doi.org/10.1145/2562059.2562127
https://doi.org/10.1109/ICUAS.2016.7502525
https://doi.org/10.1109/TMECH.2017.2752302
https://doi.org/10.1109/ICUAS.2015.7152305
https://doi.org/10.1109/ICRA.2017.7989693
https://doi.org/10.1109/ACCESS.2017.2746752
http://arxiv.org/abs/1610.04550
https://doi.org/10.1109/TRO.2010.2042990
http://robotics.usc.edu/ wippas/program.html


J Intell Robot Syst

Tony X. Lin is currently a Ph.D. student in the School of Electrical
and Computer Engineering at the Georgia Institute of Technology. He
earned his M.S. degree in Computer Engineering in May 2018 and
B.S. degree in Mechanical Engineering from the University of Virginia
in May 2016. He is currently conducting research on bio-inspired
decentralized autonomy algorithms.

Nicola Bezzo is an Assistant Professor with the Department of Engi-
neering Systems and Environment and the Department of Electrical
and Computer Engineering at the University of Virginia (UVA). Prior
to joining UVA in 2016, he was a Postdoctoral Researcher at the PRE-
CISE Center, in the Department of Computer and Information Science
at the University of Pennsylvania (UPenn) where he worked on topics
related to robotics and cyber-physical systems security. He received a
Ph.D. degree in Electrical and Computer Engineering from the Univer-
sity of New Mexico where he focused on the development of theories
for motion planning of heterogeneous aerial and ground robotic sys-
tems under communication constraints. Prior to his Ph.D., he received
both M.S. and B.S. degrees in Electrical Engineering with honors
(summa cum laude) from Politecnico di Milano, Italy. At UVA he leads
the Autonomous Mobile Robots Lab with research focused on safe and
resilient motion planning and control of autonomous vehicles under
uncertainties. He is also part of the Link Lab.


	Computation-Aware Adaptive Planning and Scheduling for Safe Unmanned Airborne Operations
	Abstract
	Introduction
	Related Work
	Motion Planning
	Reachability Analysis
	Contributions

	Problem Formulation
	System Models
	Quadrotor Dynamical Model
	High-Level Motion Planning Model
	Position, Low Level, and Attitude Controls
	Noise Models
	Sample Scenario

	Framework
	Self-Triggered Scheduling and Replanning for Static Environments
	Reachablity Analysis for Trajectory Tracking on Quadrotors
	Self-Triggered Scheduling
	Case 1: Open Loop Scheduling and Replanning
	Case 2: Closed Loop Scheduling and Replanning

	Reachable Set Shrinking and Replanning Relaxation
	Curvature Based Speed Adaptation
	Simulation Results
	Experimental Results
	Case 1: Open Loop Scheduling and Replanning
	Case 2: Closed Loop Scheduling and Replanning


	Self/Event-Triggered Scheduling and Replanning in Dynamic Environments
	Dynamic Obstacle Reachability Analysis
	Self/Event-Triggered Scheduling and Replanning
	Dynamic Obstacle Repulsive Potential Field Collision Avoidance
	Simulation Results
	Experimental Results

	Conclusions and Future Work
	References


