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Abstract. Deep learning-based medical image segmentation on the cloud
offers superb performance by harnessing the recent model innovation and
hardware advancement. However, one major factor that limits its over-
all service speed is the long data transmission latency, which could far
exceed the segmentation computation time. Existing image compression
techniques are unable to achieve an efficient compression to dramatically
reduce the data offloading overhead, while maintaining a high segmen-
tation accuracy. The underlying reason is that they are all developed
upon human visual system, whose image perception pattern could be
fundamentally different from that of deep learning-based image segmen-
tation. Motivated by this observation, in this paper, we propose a gen-
erative segmentation architecture consisting of a compression network,
a segmentation network and a discriminator network. Our design or-
chestrates and coordinates segmentation and compression for simultane-
ous improvements of segmentation accuracy and compression efficiency,
through a dedicated GAN architecture with novel loss functions. Ex-
perimental results on 2D and 3D medical images demonstrate that our
design can reduce the bandwidth requirement by 2 orders-of-magnitude
comparing with that of uncompressed images, and increase the accuracy
of remote segmentation remarkably over the state-of-the-art solutions,
truly accelerating the cloud-based medical imaging service.

1 Introduction

Recent advances in deep learning have significantly boosted the performance
of automatic medical image segmentations [9,26,6,9,22,7,13,31]. However, such
methods usually incur extremely high computational cost [36]. For example, seg-
menting a 3D Computed Tomography (CT) volume with a typical neural net-
work [5] involves 2.2 Tera floating-point operations (TFLOPs), making the real-
time service impossible with a resource-constraint local computing device. The
problem becomes more prominent considering the exponentially growing number
of medical images in the past decade [12]. A viable solution is to have the cloud
computing platforms to conduct the deep learning-based analyses [21,39,38].
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However, the modern medical imaging requires significantly large data vol-
ume to represent high resolution and graphical fidelity, posing severe challenges
on the data transmission from the local to the cloud. The latency overhead
brought by such data transmission could be much longer than that of deep learn-
ing computations which are accelerated by clusters of GPUs, hence dominates
the overall service time [18]. For example, as long as 13 seconds are required
to transmit one 3D CT image of size 300MB [24], whereas the state-of-the-art
segmentation network only takes about a hundred milliseconds to process on the
cloud [20,11,16].

A common practice to lower such excessive data transfer overhead would
be image compression. While many popular standards like JPEG [34], JPEG-
2000 [3,2], MPEG [15], as well as their enhanced versions [4,27,28,35,19], can
partially address this issue, the achievable compression rate improvement is lim-
ited because all the solutions need to guarantee the image’s visual quality for
human eyes, rather than deep learning systems. Image compression using neu-
ral network-based auto-encoders [1,23,33,17,8] can surpass aforementioned stan-
dards, however, the underlying constraint is still the human perceived image
quality measurement like PNSR and SSIM, instead of deep learning accuracy.
The most recent work [33] proposed to directly use the compressed represen-
tation from the encoder to accelerate the computation of image classification
and segmentation, unfortunately, there exist two drawbacks which make such a
solution very impractical on medical imaging : 1) limited compression rate due
to its focus on minimizing the pixel-wise difference between original image and
reconstruct image; 2) unacceptable accuracy loss comparing with that of un-
compressed images. Apparently, almost all the above compression methods are
designed to minimize the human visual distortion, however, when processing im-
age at the cloud side the image quality is usually judged by network performance
(e.g., segmentation accuracy) rather than human vision. As a result, it naturally
brings up several interesting questions: 1) Can we design a compression method
optimal for deep learning-based image segmentation instead of human vision?
2) If so, how should we design that? Is it possible to design a matched pair of
compression and segmentation network for the whole process? Will the achiev-
able compression rate and segmentation quality under such a method outperform
the existing solutions significantly?

In this work, we propose to orchestrate medical image compression and seg-
mentation networks for efficient data transmission as well as high segmentation
accuracy. Particularly, our end-to-end method trains multiple neural networks
simultaneously for both image compression locally and segmentation in the cloud
using adversarial learning, thus to make the two steps matched to extract and
retain the most important features for segmentation. The neural network for
image compression is designed to be light-weighted, which fits well for local pro-
cessing. The main contributions of our work are as follows: 1) We propose a joint
method to integrate the compression network and the generative segmentation
network (with a discriminator network), so as to fully unleash the compression
potential on medical imaging; 2) We design a series of training loss functions to
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optimize the compressive segmentation in the proposed network architecture, to
achieve high compression rate while maintaining the segmentation accuracy; 3)
We conduct comprehensive evaluations on 2D and 3D medical images and report
that our method outperforms latest solutions in two aspects: for the same com-
pression rate, our method achieves better segmentation accuracy; for the same
level of segmentation accuracy, it offers remarkable compression rate improve-
ment compared with the state-of-the-art designs. These advantages demonstrate
great potentials for its applications in today’s deep neural network assisted med-
ical image segmentation.

2 Method

Fig. 1 depicts an overview of our proposed design, which consists of three inte-
grated components: the compression network (C ), the segmentation network (S )
and the discrimination network (D). Specifically, 1) C functions as a lossy image
compression engine to ensure efficient data transmission. Also, the compression
network should be light-weighted for fast processing on resource-constraint local
computing devices; 2) The segmentation network S could be any commonly-used
segmentor s with feature reconstruction layers g. Instead of reconstructing the
whole image, g only reconstructs the essential feature maps that will be used to
generate a probability label map by segmentor. 3) The discriminator D aims to
capture any difference between the predicted label map from S and the corre-
sponding ground truth label map. C, S and D are alternatively trained in an
adversarial fashion by solving a min-max optimization problem. The goal is to
achieve a high compression ratio, under the guidance of DNN-based segmen-
tation quality measurement (NOT human perceived image quality) , so as to
facilitate data transmission while providing similar or even higher segmentation
accuracy for better Quality-of-Service (QoS).

Note that the compressed bitstream sent to the cloud will be only used by
segmentation networks in order to generate accurate segmentation label maps.
Such predicted label maps, together with the local stored high-resolution image
copies, will assist doctors for medical diagnosis, surgical planning/treatment etc.
Therefore, the compression network does not necessarily preserve high image
visual quality, but to guarantee the correct segmentation results.

2.1 Network Architecture Design
Compression Network (C ): Unlike the existing neural network-based com-
pression methods which attempt to minimize the pixel-wise visual distortions be-
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Fig. 1. Orchestrated medical image compression and remote segmentation networks.
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Fig. 2. Illustrations of (a) Compression network; (b) Feature reconstruction layers and
(c) Discriminator network in our design.

tween original image and reconstructed image, our compression network focuses
on minimizing the difference between the predict label from S and ground truth
label y for an input x, as well as the number of required bits (−log2Q(C(x)),
where Q is a probabilistic model described in Section 2.2). This indicates that C
is dedicated to compress images in an DNN-favorable manner to filter out the un-
desired features and aggressively improve the compression ratio. Fig. 2(a) shows
the detailed network architecture to compress 2D medical images. The compres-
sion network for 3D images is designed following the similar approach. To gener-
ate a lightweight network for efficient local processing, we limit model parameters
by reducing the number of feature maps at each layer or directly dropping some
convolutional layers The network profiling on the number of parameters and the
number of computations required by C is 1.3M and 8.1 GFLOPs, which are
only 0.83% and 0.79% as that of a segmentation network [37]. For more details,
please see our supplemental material.

Segmentation Network (S) and Discriminator (D): We do not intention-
ally design new segmentors, instead, we adopt existing representative networks
for 2D and 3D segmentation tasks [37,14] so as to demonstrate the scalability
of our design. For this purpose, we add the feature reconstruction layers (g) to
ensure the output from compression network is compatible with any s. Note that
our g does not try to reconstruct the whole detailed image, but features required
information for s. Fig. 2(b) illustrates the detail network structure. To further
compensate the potential accuracy loss caused by the joint training of S and
C, our method incorporates a discriminator D after the S, shown as Fig. 2(c).
The ground truth label map and predicted label map from S will be fed into D
one by one, the output from each layer will concatenate together and then their
difference will be used as the label feature loss to train C, S and D. One thing
we’d emphasise is that the D is also segmentation accuracy guided, it only dis-
tinguish the label maps rather than the image quality, which is totally different
from the previous works.

2.2 Training Loss Design

After determining the network architectures, we now design the loss function
dedicated to each network for jointly training. Given a dataset with N training
images xn, and yn as the corresponding ground truth label map, the multi-scale
label feature loss (lossdis) and segmentation loss (lossseg) can be defined as
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follows:

lossdis = min
θC ,θS

max
θD

ζ(θC , θS , θD) =
1

N

N∑
n=1

`mae(φD(φS(φC(xn))), φD(yn)) (1)

lossseg = min
θC ,θS

ξ(θC , θS) = `mse(φS(φC(xn)), yn) (2)

where θC , θS and θD are weight parameters of C, S and D, respectively. `mae

is the mean absolute error or L1 distance inspired by [37], φS(φC(xn)) is the
prediction result of S after input xn is compressed by compression network C
and φD(·) represents the multi-scale hierarchical features extracted from each
convolutional layer in D. `mse is the MSE between predicted label from S and
ground truth label. φC(·), φS(·) and φD(·) represent the functionality of C, S
and D, respectively. Thus, the loss for the discriminator is formulated as:

−lossdis = − min
θC ,θS

max
θD

ζ(θC , θS , θD) (3)

We set this loss with a negative value to maximize the difference between the
predicted label and the ground truth label. On the contrary, we add the reserved
version of this loss (positive value) to C and S, with the goal of minimizing such
loss for the combined C and S. Therefore, the total loss for segmentor and
compression network is:

losstotal = lossdis + lossseg = min
θC ,θS

ξ(θC , θS) + min
θC ,θS

max
θD

ζ(θC , θS , θD) (4)

Finally, we introduce a compression loss (losscr) to optimize the output of C
for achieving the best compression rate. We use e to estimate the number of bits
for the representation after C, e.g. entropy coding. Since this coding process is
non-differentiable, we adopt a continuous differentiable Jensen’s inequality [29]
to estimate the upper bound of the number of required bits. This estimation is
used to train the compression network [30]. Then the total loss for C is:

losscr + lossseg + lossdis = min(e(f(xn)))︸ ︷︷ ︸
# of bits

+ min
θC ,θS

max
θD

ζ(θC , θS , θD) + min
θC ,θS

ξ(θC , θS)︸ ︷︷ ︸
Segmentation distortion

(5)

2.3 Training and Testing

Our training process follows an alternating fashion: for each training epoch, 1)
we fix the parameters of D and only train that of C and S for one step using
above designed loss functions, i.e. losstotal (Eq. 4) for g and segmentor s, and
C has an extra loss losscr (Eq. 5) to optimize the compression rate; Note that
a stochastic binarization algorithm [32] is applied to the encoded data, i.e. the
compressed representation is in binary format. 2) We fix the parameters of C
and S then train D by the gradients computed from its loss function (lossdis).
As Eq. 1 shows, this training process behaves more like a min-max game: while
C and S try to minimize lossdis, D attempts to maximize it. As a result, the
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network training gradually improves the segmentation results of S, as well as the
compression efficiency of C after each epoch until reaching convergence. At the
testing process, only C and S are used to predict the segmentation label maps
and D is not involved.

3 Experiments and Results

3.1 Experimental Setup

Dataset We use ISIC 2017 challenge dataset [10] to evaluate the 2D image
segmentation. This fully annotated dataset provides 2000 training images, 150
validation images for the Lesion segmentation task. For 3D image segmentation,
we select the HVSMR 2016 challenge dataset [25], which consists of 5 3D car-
diac MR scans for training and 5 scans for testing. Each image includes three
segmentation labels: myocardium, blood pool and background. Note that di-
rectly training with the large-size 3D medical images is not feasible, instead, we
randomly crop the original image to many smaller pieces of data to facilitate
training and overcome the overfitting, which is consistent with [18].

Target Designs Our network architectures are realized by heavily modifying
the adversarial segmentation network from SegAN [37] and incorporating our
compression network, replacing the discriminator network, etc. Specifically, our
networks include: D1 with only segmentator S and discriminator D ; D2 with
compression network C and segmentation network S but no discriminator; D3
with all of the compression network C, segmentation network S and discrimina-
tor D, without considering the compression loss. This design is expected to offer
the best segmentation accuracy, but limited compression efficiency; D4 with
compression loss upon D3 . This design should achieve aggressive compression
rate with slightly degraded segmentation accuracy. For a fair comparison, we
adopt the traditional JPEG-2000, H.264, the auto encoder-based and the latest
machine vision-based compression [18] in our evaluations. Note that the auto
encoder-based compression (Auto/Seg) is implemented to reconstruct original
image for segmentor. As such, we expect Auto/Seg should suffer from promi-
nent segmentation accuracy loss at high compression rates. All the methods are
evaluated under four aspects: segmentation performance, compression efficiency,
cloud-based service latency and visual analysis.
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Fig. 3. (a) Segmentation results under different network configurations. (b) Segmen-
tation accuracy and bpp comparisons with prior methods.
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Table 1. 3D segmentation results on HVSMR 2016 challenge dataset [25]

Myocardium Blood Pool
Dice IoU Dice IoU

Uncomp. [18] Ours Uncomp. [18] Ours Uncomp. [18] Ours Uncomp. [18] Ours

Img.1 0.895 0.868 0.899 0.809 0.756 0.817 0.915 0.876 0.927 0.844 0.818 0.864

Img.2 0.829 0.798 0.831 0.708 0.681 0.711 0.951 0.903 0.948 0.916 0.875 0.921

Img.3 0.811 0.782 0.815 0.672 0.652 0.674 0.883 0.858 0.888 0.807 0.754 0.808

Img.4 0.877 0.853 0.874 0.780 0.758 0.776 0.955 0.906 0.956 0.913 0.872 0.915

Img.5 0.809 0.778 0.810 0.679 0.647 0.681 0.883 0.849 0.881 0.806 0.779 0.788

Average 0.844 0.816 0.846 0.729 0.699 0.732 0.918 0.878 0.920 0.857 0.820 0.859

bpp Uncompressed (∼1.1) H.264 (∼0.15) [18](∼0.04) Ours(∼0.014)

3.2 Evaluation Results

2D segmentation Figure 3(a) reports the Dice/IoU score of 2D segmentation
on the selected designs with different architectures and component combina-
tions. Our methods, instead of degrading any accuracy, can even improve the
segmentation performance after image compression. In particular, D1 achieves
higher score over SegAN, indicating that the proposed predict-oriented discrim-
inator can better improve the segmentation accuracy with the combination of
Lossseg and Lossdis than the baseline adversarial segmentation network on un-
compressed images. With the consideration of compression, D3 and D4 shows
the best Dice and IoU. This is because our joint training process attempts to
learn as many features as possible with the compression network, segmentation
network and discriminator. As expected, Auto/Seg, which is designed under the
guidance of human visual quality loss (e.g. MSE), achieves the lowest Dice/IoU
among all the methods. Figure 3(b) shows the average bpp (bits per pixel) of
each compression approaches. D4 which is trained with additional compression
loss Losscr, gives the best average bpp of 0.012. That is to say, our method
significantly improves the image compression rate by almost two orders of mag-
nitude than that of uncompressed images (average bpp of 1.24), by one order of
magnitude than that of JPEG-2000 (average bpp of 0.12) and > 3× than that
of the latest [18] (average bpp of 0.04).

3D Segmentation Table 1 shows the evaluation results on 3D image segmen-
tation. We test 3D CMR volumes with segmentation targets “Myocardium” and
“Blood Pool”, and compare the Dice/IoU scores with the uncompressed design
and the method in [18]. For a fair comparison, we keep the compression rate at
the same level as ours (bpp = 0.014). Compared with the uncompressed image
segmentation, our design improves the average Dice/IoU score by 0.002/0.003
and 0.002/0.002 on “Myocardium” and “Blood Pool”, respectively. Moreover, we
demonstrate a significant improvement on Dice/IoU score comparing with the
latest work [18], for the reason that this method cannot keep high segmentation
accuracy at a high compression rate. These results show great scalability and
outstanding segmentation performance of our design for 3D images.

Cloud-based service latency Table 2 shows a detailed latency breakdown to
process a 3D CT image of size 300MB. The computation latency on the cloud is
evaluated by Nvidia GeForce GTX 1080 GPUs, while the image compression runs
on an Intel Core i7-6850 CPU to emulate a resource-constraint local computing
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Table 2. Latency breakdown of the cloud-based service

Volume(MB) Trans.(s) Compression(s) Reconstruction(s) Segmentation(s) Total(s)

JPEG 30 1.4 0.0013 0.0013 0.1 1.5026

[18] 10 0.53 0.0015 0.0015 0.1 0.633

Ours 3.3 0.16 0.003 0.0003 0.1 0.2633

device and the data transmission speed is retrieved from [24]. Putting them
together, our design only takes a total latency of 0.26s, which achieves 5.7× and
2.4× speedup over the JPEG-based design and [18], respectively. Since the data
transmission time dominates the total service latency, significantly improving
compression rate with our solution is essential for service speedup. Considering
the impressive performance and low compression overhead, our solution will be
very attractive for ever-increasing DNN based medical image analyses.

Visual Analysis The second row from Figure 4 represents the visualization
results from feature reconstruction layers g before feeding into a segmentor s.
Compared with original images, the reconstructed feature maps preserve lim-
ited visual quality for human vision, however guarantee a correct segmentation.
These results also indicate that: 1) the original images with RGB channels or
with an intensity channel are not always the optimal, instead, our single-channel
reconstructed feature maps fit well with the segmentation tasks. 2) some unde-
sired features have been removed. For example, the hairs in the original image
of first column are eliminated, which actually make the segmentations more ac-
curate. 3) all the reconstructed feature maps from both 2D or 3D images, are
formed by many small blocks with the same patterns and such patterns can
further improve compression rate.

4 Conclusion
This work presents a generative segmentation architecture for compressed med-
ical images. We propose to leverage the compression network and different loss
function designs to enhance the cloud-based segmentation performance and effi-
ciency by synthetically considering segmentation accuracy and compression rate.
We conducted comprehensive evaluations on both 2D RGB and 3D CMR images
and compared our design with state-of-the-art solutions. Experimental results
show that our design not only significantly improves compression rate, but also
increases the segmentation accuracy, outperforming the existing solutions by
offering better efficiency on cloud-based image segmentation.

Original 
Images:

Reconstructed
Feature 
Maps:

Predictions:

Ground 
Truths: 

Fig. 4. The comparison between original images from 2D RGB dataset (left 2 columns)
and 3D cardiovascular magnetic resonance (CMR) dataset (right 3 columns), recon-
structed feature maps from feature reconstruction layers and the corresponding pre-
dicted label maps and ground truth label maps.
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