
Strata: A Cross Media File System

Youngjin Kwon
The University of Texas at Austin

Henrique Fingler
The University of Texas at Austin

Tyler Hunt
The University of Texas at Austin

Simon Peter
The University of Texas at Austin

Emmett Witchel
The University of Texas at Austin

Thomas Anderson
University of Washington

ABSTRACT

Current hardware and application storage trends put immense

pressure on the operating system’s storage subsystem. On the

hardware side, the market for storage devices has diversified

to a multi-layer storage topology spanning multiple orders of

magnitude in cost and performance. Above the file system,

applications increasingly need to process small, random IO on

vast data sets with low latency, high throughput, and simple

crash consistency. File systems designed for a single storage

layer cannot support all of these demands together.

We present Strata, a cross-media file system that leverages

the strengths of one storage media to compensate for weak-

nesses of another. In doing so, Strata provides performance,

capacity, and a simple, synchronous IO model all at once,

while having a simpler design than that of file systems con-

strained by a single storage device. At its heart, Strata uses a

log-structured approach with a novel split of responsibilities

among user mode, kernel, and storage layers that separates

the concerns of scalable, high-performance persistence from

storage layer management. We quantify the performance ben-

efits of Strata using a 3-layer storage hierarchy of emulated

NVM, a flash-based SSD, and a high-density HDD. Strata has

20-30% better latency and throughput, across several unmod-

ified applications, compared to file systems purpose-built for

each layer, while providing synchronous and unified access

to the entire storage hierarchy. Finally, Strata achieves up

to 2.8× better throughput than a block-based 2-layer cache

provided by Linux’s logical volume manager.

CCS CONCEPTS

• Information systems → Hierarchical storage manage-

ment; Storage class memory; • Software and its engineer-

ing→ File systems management;

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for third-party

components of this work must be honored. For all other uses, contact the

owner/author(s).

SOSP’17, October 2017, Shanghai, China

© 2017 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06. . . $15.00

https://doi.org/10.475/123_4

KEYWORDS

File system, Non-volatile memory, Multi-layer storage

ACM Reference Format:

Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett

Witchel, and Thomas Anderson. 2017. Strata: A Cross Media File

System. In Proceedings of ACM Symposium on Operating Systems

Principles, Shanghai, China, October 2017 (SOSP’17), 18 pages.

https://doi.org/10.475/123_4

1 INTRODUCTION

File systems are being stressed from below and from above.

Below the file system, the market for storage devices has

fragmented based on a tradeoff between performance and

capacity, so that many systems are configured with local solid-

state drives (SSD) and conventional hard disk drives (HDD).

Non-volatile RAM (NVM) will soon add another device with

a third distinct regime of capacity and performance.

Above the file system, modern applications demand per-

formance and functionality far outside the traditional file

system comfort zone, e.g., common case kernel bypass [41],

small scattered updates to enormous datasets [12, 23], and

programmer-friendly, efficient crash consistency [42]. It no

longer makes sense to engineer file systems on the assumption

that each file system is tied to a single type of physical device,

that file operations are inherently asynchronous, or that the

kernel must intermediate every metadata operation.

To address these issues, we propose Strata, an integrated

file system across different storage media. To better leverage

the hardware properties of multi-layer storage Strata has a

novel split of user and kernel space responsibilities, storing

updates to a user-level log in fast NVM, while asynchronously

managing longer-term storage in the kernel. In so doing, Strata

challenges some longstanding file system design ideas, while

simplifying others. For example, Strata has no system-wide

file block size and no individual layer implements a stand-

alone file system. Although aspects of our design can be

found in NVM [1, 25, 50, 52] and SSD [31, 32]-specific file

systems, we are the first to design, build, and evaluate a file

system that spans NVM, SSD, and HDD layers.

Closest to the application, Strata’s user library synchronously

logs process-private updates in NVM while reading from

shared, read-optimized, kernel-maintained data and metadata.

In the common case, the log holds updates to both user data

SOSP’17, October 2017, Shanghai, China Y. Kwon et al.

and file system metadata, ensuring correct file system behav-

ior during concurrent access, even across failures. Client code

uses the POSIX API, but Strata’s synchronous updates obviate

the need for any sync-related system calls and their atten-

dant bugs [42]. Fast persistence and simple crash consistency

are a perfect match for modern RPC-based systems that must

persist data before responding to a network request [4, 12].

Strata tailors the format and management of data to im-

prove the semantics and performance of the file system as

data moves through Strata’s layers. For example, operation

logs are an efficient format for file system updates, but they

are not efficient for reads. To reflect the centrality of data

movement and reorganization in Strata, we coin the term di-

gest for the process by which Strata reads file system data and

metadata at one layer and optimizes the representation written

to its next (typically slower and larger) layer. Digestion is pe-

riodic and asynchronous. Digestion allows a multitude of opti-

mizations: it coalesces temporary durable writes (overwritten

data or temporary files, e.g., due to complex application-level

commit protocols [42]), it reorganizes and compacts data for

efficient lookup, and it batches data into the large sequential

operations needed for efficient writes to firmware-managed

SSD and HDD.

Strata’s first digest happens between a process-local log

and the system-shared area, both stored in NVM. For example,

a thread can create a file and a different thread can perform

several small, sequential writes to it. The file create and the

file data are logged in NVM. Each operation completes syn-

chronously and in order. On a system crash, Strata recovers

the latest version of the newly created file and its contents

from the log. Eventually, Strata digests the log into an extent

tree (optimized for reads) requiring physical-level file sys-

tem work like block allocation for the new file. It will also

merge the writes, eliminating any redundancy and creating

larger data blocks. Strata resembles a log-structured merge

(LSM) tree with a separate log at each layer, but a Strata digest

changes the format and the invariants of its data much more

than an LSM tree compaction. Strata minimizes re-writing

overhead (§5.1) and increases performance significantly in

cases where digestion can reduce the amount of work for the

lower layer (e.g., a mail server can avoid copying 86% of its

log §5.2). Strata currently also has limitations. For example,

Strata reduces mean time to data loss (MTTDL) by assum-

ing that all of its storage devices are reliable. It is optimized

for applications requiring fast persistence for mostly non-

concurrently shared data. Concurrent shared access requires

kernel mediation. For more limitations see §4.1.

We implemented our Strata prototype within Linux. The

Strata user-level library integrates seamlessly with glibc to

provide unmodified applications compatibility with the famil-

iar POSIX file IO interface. Our prototype is able to execute

a wide range of applications, successfully completing all 201

unit tests of the LevelDB key-value store test suite, as well

as all tests in the Filebench package. Microbenchmarks on

real and emulated hardware show that, for small (≤ 16 KB)

IO sizes, Strata achieves up to 33% better write tail-latency

and up to 7.8× better write throughput relative to the best

performing alternative purpose-built NVM, SSD, and HDD

file systems. Strata achieves 26% higher throughput than

NOVA [52] on a mailserver workload in NVM, up to 27%

lower latency than PMFS [25] on LevelDB, and up to 22%

higher SET throughput than NOVA on Redis, while providing

synchronous and unified access to the entire storage hierarchy.

Finally, Strata achieves up to 2.8× better throughput than a

block-based two-layer cache provided by Linux’s logical vol-

ume manager. These performance wins are achieved without

changing applications.

Starting with a discussion of the technical background (§2)

for Strata’s design, we then discuss its contributions.

• We present the Strata architecture (§3). We show how

maintaining a user-level operation log in NVM and asyn-

chronously digesting data among storage layers in the ker-

nel leads to fast writes with efficient synchronous behavior,

while optimizing for device characteristics and providing a

unified interface to the entire underlying storage hierarchy.

• We implement a prototype of Strata on top of Linux that

uses emulated NVM and commercially available SSDs and

HDDs on a commodity server machine (§4).

• We quantify the performance and isolation benefits of pro-

viding a unified file system that manages all layers of the

modern storage hierarchy simultaneously (§5).

2 BACKGROUND

We review current and near-future storage devices and discuss

how Strata addresses this diversified market. We then discuss

the demands of modern applications on the file system and

how current alternatives fall short.

2.1 Hardware storage trends

Diversification. Storage technology is evolving from a sin-

gle viable technology (that of the hard disk drive) into a

diversified set of offerings that each fill a niche in the design

tradeoff of cost, performance, and capacity. Three storage

technologies stand out as stable contenders in the near-future:

Non-volatile memory (NVM), solid state drives (SSDs), and

high-density hard disk drives (HDDs). While HDDs and SSDs

are already a commodity today, NVM is expected to be added

in the future (Intel’s 3D XPoint memory technology was re-

leased in March 2017, initially to accelerate SSDs [7, 11]).

Table 1 shows each technology and its expected long-term

place in the design space. Latencies are from specifications

while sequential read/write bandwidth for 4KB IO sizes are

measured (see §5 for details). Prices are derived from the

Strata: A Cross Media File System SOSP’17, October 2017, Shanghai, China

Memory Latency Seq. R/W GB/s $/GB

DRAM 100 ns 62.8 8.6

NVM 300 ns 7.8 4.0

SSD 10 µs 2.2 / 0.9 0.25

HDD 10 ms 0.1 0.02

Table 1: Memory technology latency, bandwidth, and

$/GB as of April 2017. NVM numbers are projected (§5).

lowest device prices found via a Google Shopping search in

April 2017. The NVM price is derived from the current price

of Intel’s 3D XPoint-based Optane SSD DC P4800X. NVM

performance is based on a study [54]. Each storage technology

offers a unique tradeoff of latency, throughput, and cost, with

at least an order of magnitude difference relative to other

technologies. This diversity suggests that future systems are

likely to require several coexisting storage technologies.

Device management overhead. The physical characteris-

tics of modern storage devices often prevent efficient update

in place, even at a block level. SSDs have long needed a

multi-block erasure before a physical block can be re-written;

typical erasure region size has grown larger over time as

vendors optimize for storage density and add lanes for high

throughput. Although HDDs traditionally allowed efficient

sector overwrites at the cost of a disk head seek, recently

disks optimized for storage efficiency have adopted a shingle

write pattern, similar to SSDs in that an entire region of disk

sectors must be re-written to update any single sector.

To support legacy file systems, SSD and HDD device

firmware maintains a persistent virtual to physical block trans-

lation; blocks are written sequentially at the physical level

regardless of the virtual block write pattern. Depending on

the write pattern, this can carry a high cost, where blocks are

repeatedly moved and re-written to create empty regions for

sequential writes on both SSDs and HDDs. On SSDs, this

write amplification wears out the device more rapidly.

Even using a large block size is not enough to avoid the

overhead when the disk is in steady-state. For example, using

the Tang et al. methodology [46] on our testbed SSD (§5

for details), we observe a throughput slow-down of 12.2×

in steady-state for 8 MiB blocks written randomly to a full

disk. Similarly, write latency is inflated by a factor of 2.8× for

4 KiB random updates in steady state, and 10× for 128 KiB up-

dates. When writing sequentially within erasure block bound-

aries, performance does not decline. Write amplification can

also negatively affect IO tail latency and throughput isolation

among applications, as the overhead is observed due to past

use of the device, making it difficult to account performance

costs to the originating application.

We leverage the multi-layer nature of Strata to achieve

the full performance of the SSD and HDD layers, despite

firmware management. Migration of blocks from NVM to

SSD are made in full erasure block chunks (512 MiB on our

testbed SSD); this is only possible because Strata coalesces

data as it moves between persistent layers, with frequently

updated data filtered by the NVM layer.

2.2 Application demands on the file system

Many modern applications need crash consistency for their

files. The performance cost and complexity to achieve user-

level crash consistency for files has grown over the past

decade, with no relief in sight. Often, files are merely named

address spaces that contain many internal objects with fre-

quent, crash-consistent updates. Small, random writes are

common on both desktop machines [26] and in the cloud

through the use of key-value stores, data base backends,

such as SQLite [15] and LevelDB [23], revision manage-

ment systems, and distributed configuration software, such

as Zookeeper [4]. On many file systems, efficient crash con-

sistency for these applications is difficult and slow so many

applications sacrifice correctness for performance [42].

Strata provides in-order file system semantics (including

writes). This matches developer intuition [38] and simplifies

crash recovery, but is usually considered too slow to be a

practical goal for a file system. Given NVM devices, such

semantics are now possible to provide efficiently [52].

2.3 Current alternatives are insufficient

Existing file systems specialize to a storage technology.

Existing file systems make tradeoffs that are appropriate

for a specific type of storage device; no single file system

is appropriate across different storage media. For example,

NOVA [52] and PMFS [25] require byte-addressability, lim-

iting them to NVM; F2FS [32] uses multi-head logging and

a buffer cache that are unnecessary on NVM. Strata is built

to leverage the strengths of each storage device and compen-

sate for weaknesses. By contrast, layering independent file

systems on different media unnecessarily duplicates mecha-

nisms, such as block and inode allocation, and lacks expres-

sive inter-layer APIs. For example, block usage frequency

and fragmentation information are not easily relayed across

independent file systems (§5.3).

File system write amplification. As shown in §5, many

file systems pad updates to a uniform block size (e.g., setting

a bit in an in-use block bitmap will write an entire block),

and file systems often require metadata writes to complete

an update (e.g., a data write can update the file size in the

inode). As with device-level write amplification, file system

write amplification is often a major factor for application per-

formance, especially for NVM devices that support efficient

small writes. Using an operation log at the NVM layer that is

later digested into block updates, Strata is able to efficiently

aggregate repeated data and metadata updates, significantly

lowering file system write amplification.

SOSP’17, October 2017, Shanghai, China Y. Kwon et al.

Block stores are not the only answer. Strata provides a

file system rather than a block store interface to applications

because of the file system’s strong combination of backward

compatibility, performance and functionality. The file system

name space is a powerful persistent data structure with well

understood properties (and limitations); its storage costs are

moderate in time and space across a wide variety of access

patterns; and it is used to share data by millions of appli-

cations and system tools. Multi-layer cloud-persistent block

stores [3] face many of the same issues as Strata in managing

migration of data across multiple devices, and can be appropri-

ate for standalone applications that do their own block-level

operations. We focus our design and evaluation on the unique

opportunities provided by having a semantically rich view of

application file system behavior.

3 STRATA DESIGN

The goal of Strata is to design a new file system that man-

ages data across different storage devices, combining their

strengths and compensating for their weaknesses. In particu-

lar, we have the following design goals for Strata.

• Fast writes. Strata must support fast, random, and small

writes. An important motivation for fast small writes is sup-

porting networked server applications which must persist

data before issuing a reply. These applications form the

backbone of modern cloud applications.

• Efficient synchronous behavior. Today’s file systems cre-

ate a usability and performance problem by guaranteeing

persistence only in response to explicit programmer action

(e.g., sync, fsync, fdatasync). File systems use a

variety of complicated mechanisms (e.g., delayed alloca-

tion) to provide performance under the assumption of slow

device persistence. Strata supports a superior, programmer-

friendly model where file system operations persist in order,

including synchronous writes, without sacrificing perfor-

mance.

• Manage write amplification. Write amplification at the

device and file system level have a first-order effect on

performance, wear, and QoS. Examples include metadata

updates for EXT4 and PMFS or copies introduced by the

flash translation layer in SSDs [46]. Managing write am-

plification allows us to minimize its effect on performance

and QoS. Managing write amplification is simpler once it

is decoupled from the write fast-path.

• High concurrency. Strata supports concurrent logging from

multiple threads in a single process using atomic operations.

Logs from multiple processes can be digested in parallel

within the kernel because logs are guaranteed to be inde-

pendent (see §3.4).

• Unified interface. We provide a unified file system inter-

face to all devices in the entire underlying storage hierarchy.

Concept Explanation

Update log A per-process record of file system updates.

Shared area Holds file system data in NVM, SSD, and HDD.

Read-only for user code, written by the kernel.

File data

cache

Read-only cache; caching data from SSD or HDD.

Update log

pointers

An index into the update log; mapping file offsets to

log blocks.

Strata trans-

action

A unit of durability; used for file system changes

made by a system call.

Digest Apply changes from an update log to the shared area.

Lease Synchronizes updates to files and directories.

Table 2: Major concepts in Strata.

Strata is backward compatible with existing POSIX appli-

cations but easily customizable since the API is provided

entirely in a user-level library [41, 50].

Strata’s basic architecture resembles a log-structured merge

(LSM) tree [39]. Strata first writes data synchronously to an

operation log (logging) stored in NVM. Logging provides

persistence with low and predictable latency, efficiently rep-

resents small updates, serializes operations in order, and sup-

ports data consistency, crash recovery and operation atomicity.

Logs are highly desirable for writing, but are cumbersome

to search and read. Thus, logs are periodically digested into

a read-optimized tree format. In Strata, this format is based

on per-file extent trees [35]. Digests happen asynchronously,

and the log is garbage-collected. Table 2 summarizes major

concepts in Strata, and Figure 1 shows a high-level overview

of the Strata design which we now discuss.

Log at user-level, digest in the kernel. To attain fast writes,

Strata separates the responsibilities of logging and digesting

and assigns them to user-level software and the kernel, respec-

tively. We call the user-level portion of Strata LibFS. Using

leases to manage concurrent file accesses (explained in §3.4),

the kernel grants LibFS direct access to a small private space

in NVM for efficient logging of file system updates (the up-

date log). The kernel also gives LibFS direct read-only access

to portions of the shared extent tree space and data blocks (the

shared area). Hardware, configured by the kernel, enforces

access control [41].

The kernel-level file system (KernelFS) is responsible for

digesting. Digesting is done in parallel across multiple threads

for high throughput and runs asynchronously in the back-

ground. The update log is deep to allow the digest to batch

log entries, amortizing and aggregating meta-data updates

over an entire sequence of operations. KernelFS checks and

enforces metadata integrity when digesting an application’s

log, such that when a digest completes, the digested data can

become visible to other processes. Upon a crash, the kernel

can recover file system state simply by re-digesting each appli-

cation’s remaining log. A log replay overwrites data structures

Strata: A Cross Media File System SOSP’17, October 2017, Shanghai, China

Application

LibFS

Application

LibFS

Shared Kernel FS

…

Process

LibFS

Trans.
header

Commit
record

UpdatesUpdates
Trans.
header

Commit
record

Update log (per process)

Search
order

Super
block

Free
block

bitmap

File & directory blocks,
extent tree nodes

Digest

NVM SSD HDD

Inode cache

Inode

Inode

…

Strata transaction

DRAM

Shared area (per storage layer)

Update log

pointers

Extent tree

cache

Extent tree

cache

 File data cache
Read LRU list

NVM read/write

LRU list

Global Per inode Global Per inode

SSD read/write

LRU list

Legend

Directory cache

Inode cache

Inode

Inode

…

Figure 1: Strata design. Writes go to the update log. Reads are served from the shared area. File data cache is a read-only

cache, containing data from SSD or HDD.

with their proper contents even if they were partially written

before the crash (log replay is idempotent). The log remains

authoritative until garbage collected after a completed digest.

Since data is updated in a log-structured way, synchronization

of log update and digest are simple. Writers make sure not to

overwrite already allocated log blocks, while only allocated

blocks are digested (and garbage collected). Write and digest

positions are kept in NVM.

Sequential, aligned writes. One benefit of digesting writes

in bulk is that, however they are initially written, file data can

be coalesced and written sequentially to the shared area, min-

imizing fragmentation and meta-data overhead. Digestion

minimizes device-level write amplification by enabling se-

quential, aligned writes. Below the NVM layer, all device

writes are sequential and aligned to large block boundaries

chosen to be efficient for the device, such as erasure blocks

for SSDs and write zones for shingled disks. These param-

eters are determined by Strata for each device [46]. When

data is updated, old versions are not immediately overwritten.

Instead, Strata periodically garbage collects cold blocks to

reclaim free space. Garbage collection consumes entire era-

sure/shingle block size units so that the device sees only full

block deletes, eliminating collection overhead from the de-

vice layer. This process is similar to what would occur within

device firmware but takes into account application data ac-

cess patterns and multiple layers, segregating frequently from

infrequently accessed data and moving them to appropriate

layers for better device utilization and performance isolation.

Use hardware-assisted protection. To bypass the kernel

safely and efficiently, Strata makes use of the hardware virtual-

ization capabilities available in modern server systems. Strata

specifies access rights for each application to contiguous sub-

sets of each device’s storage space, enforced by hardware. The

MMU trivially supports this feature at memory page gran-

ularity for NVM, while NVMe provides it via namespaces

that can be attached to hardware-virtualized SSDs [9]. Strata

moves all latency-sensitive mechanisms of the file system into

a user-level library. HDDs do not require kernel bypass.

We next describe each component of Strata and their interac-

tion. Since Strata breaks the responsibilities of a traditional

file system into LibFS and KernelFS, we organize our de-

scription along these lines. We start by describing Strata’s

principal meta-data structures.

3.1 Meta-data Structures

Strata keeps meta-data in superblocks, inodes, and per-layer

bitmaps of free blocks. These data structures are similar to

structures in other file systems and we only briefly describe

them here. Strata caches all recently accessed meta-data struc-

tures in DRAM.

Superblock. Strata’s superblock is stored in NVM and de-

scribes the layout of each storage layer and the locations of

all per-application logs. It is updated by KernelFS whenever

per-application logs are created or deleted.

Inodes and directories. Inodes store file meta-data, such

as access rights, owner, and creation times. As in EXT4, they

also store a root of each file’s extent tree, though for Strata, an

inode has multiple roots, one for each storage device. When

unfragmented, extent tree nodes point directly to a file’s data

blocks. As the extent tree fragments, nodes point to other

internal tree nodes before pointing to data blocks. Strata stores

inodes ordered by number in a hidden, sparse inode file and

manages it like a normal file: Strata accesses the inode file via

SOSP’17, October 2017, Shanghai, China Y. Kwon et al.

an extent tree and migrates blocks of the inode file to other

layers. An inode for the inode file is located in the superblock.

Strata directories are similar to EXT4, holding a chained

array of file names and associated inode numbers in their

data blocks. On file reads, LibFS first consults per-inode

update log pointers to find any updates in the log. The log

pointers are invalidated when the local log is digested. We

hash entire directory names [49] to improve our directory

cache hit rate, reducing full directory traversals by up to 60%.

Strata inodes fill 256 bytes. To efficiently protect inodes under

kernel-bypass, inodes with different access permissions have

to be stored on different pages or within different NVMe

namespaces. POSIX specifies that all inodes stored within a

directory have access permissions according to the directory

inode. Thus, Strata organizes inodes of the same directory

together by reserving consecutive inodes in multiples of 16 for

each directory. Unused inodes remain reserved until allocated.

Free block bitmap. Strata has a per-layer persistent bitmap

to indicate which of its blocks are allocated and free. For

high throughput, KernelFS digest threads allocate and free

blocks in large batches. These threads reserve blocks (e.g.,

the size of an erasure block) by adjusting a unit allocation

count in DRAM using compare-and-swap, and then marking

specific blocks as in use in the bitmap. Once the allocation

count reaches the maximum, digesting moves on to a new

erasure/shingle unit. Freed blocks are reset in the bitmap.

Multiple device instances. The Strata prototype supports

only a single storage device at each level, but the design would

generalize to multiple devices at each level, where devices are

logically concatenated. For example, Strata can treat two 8TB

SSDs as a single 16TB SSD. This approach allows Strata to

add capacity, while redundancy is left as future work.

3.2 Library File System (LibFS)

Strata’s library file system (LibFS) provides the application-

level mechanism to conduct file IO. Its goal is to provide fast,

crash-consistent, and synchronous read and write IO to the

entire underlying storage hierarchy and a unified API that is

fully compatible with existing POSIX applications and can

be put underneath an application by re-linking with LibFS.

Fast and synchronous persistence. Synchronous persis-

tence provides clear semantics (e.g., ordering guarantees and

crash recovery) to applications [38], but it is not widely used

under the assumption that storage devices are slow. Modern

NVM storage technology allows Strata to provide synchro-

nous IO semantics without sacrificing performance. In fact,

synchronous semantics can accelerate overall IO performance

for NVM. Strata writes data once to NVM and does not copy

it to a DRAM buffer cache. Memory copy latencies are com-

parable to NVM write costs [22], so eliminating the memory

copy approximately halves write latency.

Upon an application write request, LibFS writes directly

to a per-application update log in NVM, bypassing the OS

kernel. Favoring the byte-addressable feature in NVM, LibFS

does blind write for small-sized writes (e.g., less than 4 KB).

A small write is written sequentially to the log and turned

into a block write when KernelFS digests it, maximizing IO

throughput and eliminating write amplification. Synchronous

semantics allow Strata to provide zero-copy IO—LibFS per-

forms IO directly between a user’s DRAM buffer and NVM.

Strata does not use a page cache which eliminates cache

lookup and data copy in the write path. However, LibFS does

maintain caches of the locations of logged file updates, as

well as meta-data, such as inodes, file sizes, and modification

times (inode and directory tables in Figure 1).

LibFS organizes the update log as an operation log. The

operation log reduces IO compared to a data log because the

data log usually contain blocks, which are the minimum-sized

addressable units for the file system. For example, when up-

dating a directory, the data log requires three (block) writes:

directory inode, directory block, and log header. The opera-

tion log requires only a record indicating the directory change

such as ADD filename, inode number. This infor-

mation is small enough to fit into the log header, resulting in

a single write for directory changes.

We arrange the log format so that its effects are idempotent;

applying the log multiple times results in the same file system

state. For example, log entries use both the inode and offset

to refer to locations modified in a file or directory. LibFS allo-

cates inode numbers eagerly to simplify logging. It requests

batches of inodes from the kernel, such that inode allocation

does not require a system call in the common case.

Crash consistent logging. LibFS logs changes to all file

system state, including file and directory meta-data. All data

is appended sequentially to the log, naturally capturing the

ordering of file system changes. Logging also provides crash

consistent updates efficiently. As shown in Figure 1, when

an application creates a file and then writes data to the file,

LibFS first logs a file creation record (with file length of 0)

followed by the data write record in causal order.

LibFS has a unit of durability, called Strata transaction.

Strata transactions provide ACID semantics up to an applica-

tion’s update log size, allowing Strata to atomically persist

multiblock write operations up to the size of the log. To do

so, LibFS wraps each POSIX system call in a Strata transac-

tion. However, single system calls with more data than the

per-application log size (on the order of GBs) cannot be per-

sisted atomically and are instead broken into multiple, smaller

Strata transactions. Many applications desire ordered, atomic

multiblock writes and can benefit from these semantics [42].

Each Strata transaction consists of a number of log entries:

a header, the relevant updates to file (meta-)data, followed

Strata: A Cross Media File System SOSP’17, October 2017, Shanghai, China

by a commit record. The commit record contains a unique

and monotonically increasing Strata transaction number and

a checksum of the header contents. When a Strata transaction

commits, LibFS ensures atomicity and isolation by atomically

allocating log space using a compare-and-swap operation and

by first writing the header and data, waiting for persistence,

and then persisting the commit record. Log headers contain a

pointer to the next log header so the log can be easily replayed.

Digest and garbage collection. The log is a limited re-

source and needs to be periodically digested into the shared

area and garbage collected. Once the log fills beyond a thresh-

old (30% in our prototype), LibFS makes a digest request to

KernelFS. KernelFS digests the log asynchronously in the

background and replies to LibFS once the digest request is

complete. After completion, LibFS can safely reclaim log

entries (also in the background) by resetting each log header’s

valid bit. Strata data structures allow the user to add records

to a log that the kernel is concurrently digesting.

If an application completely fills its log, LibFS must wait

for an in-progress digest to complete before it can reclaim

log space and restart file system activity. Log garbage col-

lection involves trimming log headers (a device-level trim

operation zeroes the trimmed data blocks) and invalidating

the corresponding entries in the data cache. LibFS garbage

collects using a background thread. The application can con-

tinue to append log blocks during garbage collection. The

log’s idempotency ensures crash consistency. If the system

crashes during a digest, the log is re-digested on recovery,

resulting in the same file system state as a successful digestion

without a crash.

Fast reads. LibFS caches data and meta-data in DRAM.

However, data is only cached when read from SSD or HDD.

NVM does not require caching. The file data cache is man-

aged in 4 KB block units and evicted to the update log in an

LRU manner. Meta-data such as file access time and file data

locations (in the log and in the shared area) are cached in the

inode cache indexed by inode number. LibFS also records

update addresses in the log using the update log pointers and

it caches extent tree nodes. To optimize performance of se-

quential reads from SSD or HDD, LibFS uses a read-ahead

buffer in DRAM of 256 KB.

To resolve a file location with the most up-to-date data,

LibFS searches the file data cache, the update log, and then

the (cached) extent trees from highest (NVM) storage layer

to lowest (HDD), as shown in Figure 1. If the file data is

not found in the data cache, but in the update log pointers,

then the latest data is read from the log and (depending on

the read size) possibly merged with blocks from the shared

area. In that case, both log data and shared blocks are fetched

and merged before returning data to the read request. If a

lookup misses in the extent tree cache for a layer, then Strata

traverses the extent tree stored in that layer’s shared area and

updates the cache, before advancing to the next layer. Extent

trees in multiple layers can be present for a file if subsets

of its data blocks have been migrated. Extent trees indicate

which of a file’s data blocks are present at the tree’s layer.

Strata’s layered data storage is not inclusive and a data block

can be simultaneously present in any subset of layers. Strata’s

migration algorithm ensures that higher layers have the most

up-to-date block and thus, higher layers take precedence over

lower layers.

3.3 Kernel File System (KernelFS)

Strata’s kernel file system (KernelFS) is responsible for man-

aging shared data that can be globally visible in the system

and may reside in any layer of the storage hierarchy. To do

so, it digests application logs and converts them into per-

file extent trees. Digestion happens asynchronously in the

background, allowing KernelFS to batch Strata transactions

and to periodically garbage collect and optimize physical

layout. LibFS provides least-recently-used (LRU) informa-

tion to KernelFS to inform its migration policy among layers

of the storage hierarchy. KernelFS also arbitrates user-level

concurrent file access via leases (§3.4).

Digest. When the log size grows beyond a threshold, LibFS

makes a digest request to KernelFS. Digest latencies have an

impact on applications’ IO latencies as the log becomes full.

To reduce the digest latencies, KernelFS employs a number of

optimizations. KernelFS digests large batches of operations

from the log, coalescing adjacent writes, as well as identify-

ing and eliminating redundant operations. KernelFS begins

digestion by first scanning the submitted log and then com-

puting which operations can be eliminated and which can be

coalesced. For example, if KernelFS detects an inode creation

followed by deletion of the inode, it skips log entries related

to the inode.

These optimizations reduce digest overhead by eliminat-

ing work, batching updates to extent trees, and reducing the

number of tree lookups. Coalescing writes increases the aver-

age size of write operations, minimizing fragmentation and

thus extent tree depth. Optimizing the digest reduces band-

width contention for the storage device between KernelFS

and LibFS, as well as write amplification. Experiments with

the Filebench [47] benchmark show that optimizations reduce

digest latency up to 80%, improving application throughput

by up to 15%. Scanning the log before digesting allows Ker-

nelFS to determine which new data and metadata blocks are

required and to allocate them in large, sequential batches.

Log scanning also allows KernelFS to determine if two logs

contain disjoint updates and thus can be digested in parallel.

For all data updates, Strata writes new data blocks before

deleting old blocks. Even metadata structures like extent trees

SOSP’17, October 2017, Shanghai, China Y. Kwon et al.

are completely written before the updates are committed when

the inode’s root pointer is updated.

Data access pattern interface. To take advantage of the

entire storage hierarchy, KernelFS transparently migrates data

among different storage layers, keeping least recently used

blocks in better performing layers. In order to migrate data ef-

ficiently, KernelFS requires LRU information for each block.

Because reads bypass the kernel, LibFS must collect access

information on reads and communicate the information to

KernelFS via a kernel interface. LRU information is not per-

sisted and only maintained in DRAM, which conserves NVM

log space. Writes are observed by the kernel when digest-

ing update logs, so there is no need for LibFS to provide

additional metadata about writes.

The KernelFS maintains LRU lists for each storage layer

except for the last one. An LRU list is a sequence of arbitrary

length, of logical 4KB block numbers. LibFS can submit

access information as frequently as it wishes via a system

call. KernelFS transforms the LibFS-provided LRU lists into

coarser-grained lists for storage layers that have larger block

sizes (e.g., 1MB blocks for NVM and 4MB for SSD).

KernelFS does not trust the LRU information provided by a

LibFS and enforces that blocks specified as recently used are

actually accessible by the process. Applications can misuse

the interface to get the kernel to place more blocks in NVM,

but this is equivalent to current systems where an application

can read data to get the kernel to place it in the DRAM page

cache. Resource allocation interfaces like Linux’s memory

cgroups [2] would further limit the impact of API misuse,

though integrating with cgroups is left as future work.

Data migration. To take advantage of the storage hierar-

chy’s capacity, the kernel transparently migrates data among

different storage layers in the background. To benefit from

concurrency and to avoid latency spikes due to blocking on

migration, Strata migrates data before a layer becomes full

(at 95% utilization in our prototype). Migration is conducted

in a block-aligned, log-structured way, similar to digestion.

To make migrations efficient and at the same time reduce

fragmentation, Strata moves SSD data in units of flash era-

sure blocks (order of hundreds of megabytes) and HDD data

in shingles (order of gigabytes). After migrating a unit, the

whole unit is trimmed (via the device TRIM command) to

make a large, unfragmented storage area available. When

migrating data, KernelFS tries to place hot data in higher lay-

ers of the storage hierarchy, while migrating cold data down

to slower layers. To maintain a log-structured write pattern,

KernelFS always reserves at least one migration unit on each

layer and writes blocks retained in that layer to the reserved

migration unit sequentially.

3.4 Sharing (leases)

Strata supports POSIX file sharing semantics, while optimiz-

ing application access to files and directories that are not

concurrently shared. KernelFS supports leases on files and

sections of the file system namespace. Leases have low execu-

tion time overhead for coarse-granularity sequential sharing

of file data. We expect that processes that require fine-grained

data sharing will use shared memory or pipes—avoiding the

file system altogether due to its generally higher overhead.

Similar to their function in distributed file systems [27],

leases allow a LibFS exclusive write or shared read access to a

specific file or to a region of the file system namespace rooted

at a certain directory. For example, a LibFS can lease one or

more directories and then create nested files and directories.

Multiple LibFS may hold read leases, while only one write

lease may exist.

Write leases are strict, they function like an exclusive lock.

As long as a write lease is held, a thread in a process may

write to the leased namespace (or file) without kernel medi-

ation, while operations from other processes are serialized

before or after the lease period. Threads within the same pro-

cess see each others’ updates as soon as operations complete,

using fine-grained inode locks to synchronize file system up-

dates. Leases are independent from file system access control

checks, which occur when a file or directory is opened.

A process that holds a write lease is notified via an upcall

(via a UNIX socket in our prototype) if another process also

wants the write lease. Upon revocation of a write lease, ap-

plications can insist on the write-back of new data (via a log

digest) to the kernel’s shared file system area (e.g., to NVM).

Waiting for a digest operation will increase the latency of re-

voking the lease. Leases are also revoked when an application

is unresponsive and the lease times out. Because user-level

operations are transactional, Strata can abort any in-progress

file system operation upon revocation of a lease if necessary.

LibFS caches are invalidated upon loss of a lease.

Programs may acquire leases using explicit system calls,

which allows user-level control, but is not POSIX compatible.

Our prototype lazily acquires an exclusive (shared) lease on

the first write (read) to any file or directory (unless the process

already has a lease). This policy works for our benchmarks,

but other policies are possible. Bad policy choices lead to poor

performance, but do not compromise correct sharing seman-

tics because Strata can always fall back to kernel mediation

for all file system operations. If a file is opened read/write by

multiple processes, the kernel eliminates logging.

To show the worst-case performance overhead of sharing

through the file system, we measured update throughput of

two processes using a lock file to coordinate small (4KB)

updates to a shared data file. In one iteration, a process tries

to create the lock file. Once creation succeeds, the winning

Strata: A Cross Media File System SOSP’17, October 2017, Shanghai, China

process writes a 4KB block to the data file, then it unlinks the

lock file. Note that neither file is ever synced. To guarantee

strict ordering and synchronous persistence, LibFS must first

acquire a lease in order to create the lock file and relinquish

the lease and perform a digest after the lock file is unlinked.

Strata achieves a throughput of 10,400 updates/s, 4.3× slower

than EXT4-DAX and 1.7× slower than NOVA. EXT4-DAX

can perform metadata updates in the buffer cache, but unlike

Strata and NOVA, it lacks synchronous, ordered file semantics.

Both NOVA and EXT4-DAX only write shared data once,

while Strata must write it again during digestion to make the

data globally visible. We thus view logging in Strata as an

optimization to accelerate infrequently shared data. However,

in situations with less strict ordering and atomicity guarantees,

logging could be used even when sharing frequently.

3.5 Protection and performance isolation

Protection with kernel bypass. Strata supports POSIX file

access control, enforced by MMU and NVMe namespaces.

The MMU provides protection for kernel-bypass LibFS op-

erations and Strata aligns each per-file extent tree on a page

boundary (and pads the page) to facilitate MMU protection.

The kernel maps all data and meta-data pages of the accessed

file read-only into the caller’s virtual address space. Extent

tree nodes refer to blocks using logical block numbers. An

entire device can be mapped contiguously, making the map-

ping from logical block number to address a simple addition

of the base address. However, more parsimonious mappings

are possible along with a table to track the mapping between

address and logical block number.

For SSD-resident data, Strata uses NVMe namespaces for

protected access to file data. File extent trees must be aligned

on a NVMe sector (512 bytes or 4KB, depending on how

the device is formatted). Upon opening a file on the SSD,

the kernel creates a read-only NVMe namespace for the file

if the namespace doesn’t already exist and attaches it to the

application’s NVMe virtual function. The NVMe standard

supports up to 2
32 namespaces, which limits the total number

of open files on the SSD to this number. If an SSD does

not support virtual functions, namespace management, or a

sufficient number of namespaces, this functionality can be

efficiently emulated in software, with an overhead of up to 3

µs per system call [41]. HDD access is kernel mediated.

Performance isolation. Write amplification has an effect

on IO performance isolation by inflating device bandwidth

utilization. When device firmware amplifies writes it can

throw off the operating system’s management algorithms.

Firmware-managed devices often have unpredictable and se-

vere write amplification from wear leveling and garbage col-

lection [46]. Since Strata minimizes firmware write ampli-

fication via aligned sequential writes, almost all amplifica-

tion occurs in software. This has the benefit that it can be

accurately observed and controlled by Strata. For example,

KernelFS can decide to stop digesting from an application if

the incurred write amplification would violate the QoS (spec-

ified as per-application I/O bandwidth allocations) of another

application.

3.6 Example

To summarize the design, we walk through an example of

overwriting the first 1 KB of data in an existing, non-shared

file and then reading the first 4 KB.

Open. The application uses the open system call to open

the file. Upon this call, LibFS first checks to see whether the

file exists and whether it can be accessed, by walking all path

components from the root. For each component, it acquires

read leases and checks the directory and inode caches for

cached entries. If a component is not found in a cache, LibFS

finds the inode by number from the inode file located in the

shared area. Assuming the data is in NVM, LibFS will map

the corresponding inode page read-only. The kernel allows

the mapping if the inode is accessible by the user running

the application. LibFS first copies the inode’s content to the

inode cache in DRAM. It then reads the inode (from cache)

to determine the location of the directory by walking the

attached extent tree, storing extent tree entries in the extent

tree cache. Finally, LibFS finds the correct entry within the

directory. The directory entry contains the inode number of

the file, which LibFS resolves in the same manner. The file is

now open, and LibFS allocates a file descriptor.

Write. The application issues the write system call to

write 1 KB to the beginning of the file. LibFS wraps the sys-

tem call in a Strata transaction and requests a write lease for

the corresponding inode. No other processes are accessing

the file, so the kernel grants the lease. The Strata transaction

can commit and LibFS appends the write request, including

payload to the update log, checks the file data cache for in-

validation, and updates the corresponding block in the update

log pointers with addresses of the update log. The write is

complete.

Read. The application issues a pread system call to read

the first 4 KB from the file. Like the write case, LibFS first

tries to obtain a read lease, waiting until KernelFS grants the

read lease. LibFS first searches the file data cache with offset

0 and finds that the block is not in the cache (invalidated by

the write above). Then, it searches the update log pointers

with offset 0, finding a block in the update log. However, the

update log does not contain the entire 4 KB (it has a 1 KB

SOSP’17, October 2017, Shanghai, China Y. Kwon et al.

partial update). In that case, LibFS first finds the 4 KB block

of the file by walking the extent tree at each layer from the

inode. It finds the block in the SSD. To read it, it requests a

new NVMe namespace for the block, which the kernel creates

on the fly. This allows LibFS to read the block bypassing the

kernel. LibFS allocates a file data cache entry (at the head

of LRU list), reads the block into the cache entry, patches it

with the update from the update log. LibFS can now return

the complete block from the file data cache to the user.

Close. The application closes the file. At this point, LibFS

relinquishes the lease to the KernelFS (if it still has it).

Digest. At a later point, the kernel digests the update log

contents. It reads the same 4KB block from the SSD, patches

the block with the 1 KB update from the log, and writes the

complete block to a new location in NVM (the block was

recently used). Next, it updates the extent tree nodes to point

to the new location by first reading them from the appropriate

layers and then writing them to NVM. Finally, it updates the

inode containing the extent tree root pointer in NVM. The

digest is done and LibFS garbage collects the update log entry.

4 IMPLEMENTATION

We have implemented Strata from scratch, using Intel’s Stor-

age Performance Development Kit (SPDK) [30] for fast ac-

cess to NVMe SSDs bypassing the Linux kernel and Intel’s

libpmem [10] to persist data to emulated NVM using non-

temporal writes to avoid polluting the processor cache and

the appropriate sequence of store fence and cache flush to

guarantee persistence [54] (our testbed does not support the

optimized CLWB instruction, so libpmem uses CLFLUSH to

flush the cache to NVM). We also use the extent tree imple-

mentation of the EXT4 [35] file system and modified it for

log-structured update.

Our prototype of Strata is implemented in 21,255 lines

of C code. Shared data structures, such as lists, trees, and

hash tables, account for 4,201 lines. LibFS has 10,131 and

KernelFS has 6,923 lines of code. The main functionality

in LibFS is writing to the update log. In KernelFS it is the

extent tree update code and code for data migration. On top

of Strata’s low-level API, we implement a POSIX system call

interposition layer. To do so, we modify glibc to intercept

each storage-related system call at user-level and invoke the

corresponding LibFS version of the call. The interposition

layer is implemented in 1,821 lines of C code.

Our prototype is able to execute a wide range of appli-

cations. Strata successfully completes all 201 unit tests of

the LevelDB key-value store test suite, as well as all tests in

Filebench.

4.1 Limitations

Our current prototype has a few limitations, which we de-

scribe here. None of them impact our evaluation.

Kernel. Instead of loading our kernel module into the ker-

nel’s address space, we have placed it in a separate process

and use the sockets interface to communicate “system calls”

between LibFS and KernelFS. This results in higher overhead

for system calls in Strata due to the required context switches.

However, we believe the impact to be small, as a design goal

of Strata is to minimize kernel-level system calls.

Leases. Leases are not fully implemented. We have evalu-

ated their overhead, especially worst case performance (§3.4),

but the prototype does not implement directory consistency,

for example. Our benchmarks do not stress fine-grained con-

current sharing that would make lease performance relevant.

Memory mapped files. We did not implement memory

mapped files because they are not used by our target applica-

tions. Memory mapped files increase write amplification for

applications with small random writes. The hardware mem-

ory translation system is responsible for tracking updates to

memory mapped files via dirty bits that are available only at a

page granularity. A page is thus the smallest write unit. This

is a general problem for memory mapped files, in particular

as page sizes grow.

The common case of read-only mappings or writable pri-

vate mappings are easy to accommodate in Strata. NVM

pages can be mapped into a process’ address space just as cur-

rent OSes map page cache pages. The difficulty with shared

writable mappings is their requirement that writes into mem-

ory are visible to other processes mapping the file. If writes

must be immediately visible, Strata cannot do any user-level

buffering and logging, but if writes can be delayed, Strata can

buffer (and log) updates. On msync, LibFS writes updates

(pages on which the dirty bit is set) to the log, and they are

visible to other processes after digesting.

Fault tolerance. Strata currently does not contain any re-

dundancy to compensate for storage device failures. Because

it stores data across several devices, its mean time to data

loss (MTTDL) will be the minimum of all devices. It remains

future work to apply distributed reliability techniques to im-

prove MTTDL in Strata [20, 29]. With Strata it is also not

safe to remove individual storage devices from a powered

down machine, without advance warning.

5 EVALUATION

We evaluate the performance and isolation properties of Strata.

To put the performance of Strata into context, we compare

it to a variety of purpose-built file systems for each storage

layer. For NVM, we compare with the Linux EXT4-DAX [1]

file system in its default ordered data mode, as well as to

PMFS [25] and NOVA [52]. On the SSD, we compare to

Strata: A Cross Media File System SOSP’17, October 2017, Shanghai, China

F2FS [32]. On the HDD, we compare to EXT4 [35], also in

ordered data mode. Ordered mode is the Linux default for

EXT4 because it provides the best tradeoff between perfor-

mance and crash consistency.

To evaluate the data management and migration capabili-

ties of Strata, we compare it to a user-space framework that

migrates files among layers without being integrated into the

file system, as well as to a block-level two-layer cache pro-

vided by Linux’s logical volume manager (LVM) [8]. The

user-space management framework uses the NOVA, F2FS,

and EXT4 file systems for the NVM, SSD, and HDD layers,

respectively.The LVM cache uses the NVM and SSD layers,

with a single F2FS file system formatted on top.

We seek to answer the following questions using our exper-

imental evaluation.

• How efficient is Strata when logging to NVM and digesting

to a storage layer? How does it compare to file systems

designed for and operating on a single layer?

• How do common applications perform using Strata? How

does performance compare on other file systems?

• How well does Strata perform when managing data across

layers, compared to solutions above (at user-level) and

below the file system (at the block layer)?

• What is the multicore scalability of Strata? How does it

compare to other file systems?

• How isolated are multiple tenants when sharing Strata, com-

pared to other file systems?

Testbed. Our experimental testbed consists of 2 × Intel

Xeon E5-2640 CPU, 64 GB DDR3 RAM, 400 GB Intel 750

PCIe-SSD, 1 TB Seagate hard-disk, and a 40 GbE Mellanox

MT27500 Infiniband network card. All experiments are per-

formed on Ubuntu 16.04 LTS and Linux kernel 4.8.12. We

reserve 36 GB of DRAM to emulate NVM and leave the

remaining 28 GB as DRAM. The other devices are used to

capacity. Strata reserves 1 GB of write-only log area for each

running application within NVM, the rest is dedicated to the

shared area. To benefit from overlapping operations, LibFS

starts a digest when its update log is 30% full. This value

provided a good balance between digest overlap and log coa-

lescing opportunities in a sensitivity study we conducted. All

experiments involving network communication bypass the

kernel using the rsockets [13] library.

NVM emulation. To emulate the performance characteris-

tics of non-volatile memory, we have implemented a software

layer that uses DRAM but delays memory accesses and limits

memory bandwidth to that of NVM. The emulation imple-

ments an NVM performance model according to a recent

study [54] (we could not obtain the PMEP hardware emulator

used in the study).

The study predicts that NVM read latencies will be higher

than DRAM. As done in NOVA and other studies, our model

emulates this latency on all NVM reads by adding the latency

differential to a DRAM read. In reality, read latency would be

incurred only on a cache miss, but (like other studies) we do

not emulate this behavior (making our model conservative).

Due to write-back caching, writes do not have a direct latency

cost as they reside in the cache. The study investigates the

cost of a write barrier (e.g., Intel’s PCOMMIT instruction)

which ensures that flushed data does not remain in volatile

buffers within the memory controller. Intel deprecated this

write barrier from the x86 architecture [44], instead requiring

NVM controllers to be part of the system’s power-fail safe per-

sistence domain. Data flushed from the cache are guaranteed

to be made persistent on a power fail due to on-chip capac-

itors. Thus, our model does not require write barriers and

their attendant (non-trivial) latency. Strata uses the manda-

tory fences and cache flush to enforce ordering, incurring

that cost. Finally, NVM is bandwidth-limited compared to

DRAM by an estimated ratio of 1

8
. Our performance model

tracks NVM bandwidth use and if a workload hits the device’s

bandwidth limit, the model applies a bandwidth-modeling de-

lay B =
σ×(1−NVMb /DRAMb)

NVMb

, with σ the size of the write

IO in bytes, NVMb the NVM bandwidth, and DRAMb the

DRAM bandwidth. The emulator resets the bandwidth limit

every 10ms, which provided stable performance in a sensitiv-

ity study. With
NVMb

DRAMb

=
1

8
, we measure stable peak NVM

bandwidth of 7.8GB/s as shown in Table 1.

5.1 Microbenchmarks

Hardware IO performance. To ensure that no other re-

source in our testbed system is a bottleneck, we first measure

the achievable IO latency and throughput for each memory

technology contained in our testbed server using sequential

IO. The measured hardware IO performance matches the hard-

ware specifications of the corresponding device (see Table 1).

We measure DRAM using a popular memory bandwidth mea-

suring tool [5]. The reported NVM performance is in line

with our NVM performance model.

File system write efficiency. Write amplification is a major

factor in a file system’s common case performance. Most

file systems amplify writes by writing meta-data in addition

to user data, lowering their write efficiency (defined as the

inverse of write amplification). For example, if a program

writes and syncs 2 KB of data and the file system updates and

writes a 4 KB data block and a 4 KB metadata block, then the

write amplification is 4 and the write efficiency is 25%.

Figure 2 shows write efficiency for Zipfian (s = 1) ran-

dom writes until a total of 1 MB has been written. We can

see that for small writes (≤ 1 KB), write efficiency suffers

substantially for most file systems. Strata achieves the highest

write efficiency among all file systems regardless of write

SOSP’17, October 2017, Shanghai, China Y. Kwon et al.

uses per-core logs and operation commutativity properties to

improve multicore file system scalability. Strata can leverage

these same techniques to improve scalability if needed.

Multi-layer block stores. Various efforts have studied the

use of caching among different storage technologies. Strata

leverages similar ideas, in the context of a read-write file sys-

tem. Operating with a file system API allows us to support,

and requires us to handle, a broader class of application ac-

cess patterns. For example, RIPQ [46] is a novel caching layer

that minimizes write amplification when using local SSD as

a read-only cache for remote photo storage. FlashStore [24]

is a key-value store designed to use SSD as a fast cache be-

tween DRAM and HDD, similarly minimizing the number

of reads/writes done to SSD. Nitro [33] is an SSD caching

system that uses data deduplication and compression to in-

crease capacity. Dropbox built a general-purpose file system

that uses Amazon S3 for data blocks, but keeps metadata in

SSD/DRAM [36]; technical details on its operation are not

public. RAMcloud [40] uses disk as a back up for data in

replicated DRAM. It applies log structure to both DRAM and

disk [45], achieving higher DRAM utilization.

NVM/SSD optimized block storage/file systems. Much

recent work proposes specialized storage solutions for emerg-

ing non-volatile memory technologies. BPFS [22] is a file sys-

tem for non-volatile memory that uses an optimized shadow-

paging technique for crash consistency. PMFS [25] explores

how to best exploit existing memory hardware to make ef-

ficient use of persistent byte-addressable memory. EXT4-

DAX [1] extends the Linux EXT4 file system to allow direct

mapping of NVM, bypassing the buffer cache. Aerie [50] is an

NVM file system that also provides direct access for file data

IO, using a user-level lease for NVM updates. Unlike Strata,

none of these file systems provide synchronous persistence

semantics, as they require system calls for metadata opera-

tions. Only NOVA [52] goes one step further and uses a novel

per-inode log-structured file system to provide synchronous

file system semantics on NVM, but requires system calls for

every operation. F2FS [32] is a SSD-optimized log-structured

file system that sorts data to reduce file system write amplifica-

tion; lacking NVM, it does not provide efficient synchronous

semantics. Decibel [37] is a block-level virtualization layer

that isolates tenants accessing shared SSDs by observing

and controlling their device request queues. Strata general-

izes these ideas to provide direct and performance-isolated

access to NVM for both meta-data and data IO using a per-

application update log, along with providing efficient support

for much larger SSD and HDD storage regions. Strata also

coalesces logs to minimize write amplification, which is new

compared to these existing systems.

Managed storage designs. All storage hardware technolo-

gies require a certain level of software management to achieve

good performance. Classic examples include elevator schedul-

ing [6] and log-structured file systems [16]. Modern examples

include log-structured merge trees [39] (LSM-trees) and Bϵ -

trees, used by various storage systems [34, 43, 53]. All of

these systems rely on a particular layout of the stored data to

optimize read or write performance or (in the case of LSM-

trees) both. Unlike all of these systems, Strata specializes its

data representation to different storage layers, changing the

correctness and performance properties on a per-device basis.

Strong consistency. A number of approaches propose to

redesign the file system interface to provide stronger con-

sistency guarantees for slow devices. Rethink the sync [38]

proposes the concept of external synchrony, whereby all file

system operations are internally (to the application) asynchro-

nous. The OS tracks when file system operations become

externally visible (to the user) and synchronizes operations at

this point, allowing it to batch them. Optimistic crash consis-

tency [21] introduces a new API to separate ordering of file

system operations from their persistence, enabling file sys-

tem crash consistency with asynchronous operations. Strata

instead leverages fast persistence in NVM to provide ordered

and atomic operations.

7 CONCLUSION

Trends in storage hardware encourage a multi-layer storage

topology spanning multiple orders of magnitude in cost and

performance. File systems should manage these multiple stor-

age layers to provide advanced functionality like efficient

small writes, synchronous semantics, and strong QoS guaran-

tees.

Acknowledgments. For their insights and valuable com-

ments, we thank the anonymous reviewers and our shepherd

Ashvin Goel. We acknowledge funding from NSF grants

NSF-1518702 and CNS-1618563.

REFERENCES
[1] 2014. Supporting filesystems in persistent memory. https://lwn.net/

Articles/610174/. (Sept. 2014).

[2] 2015. Linux control group v2. https://www.kernel.org/doc/

Documentation/cgroup-v2.txt. (Oct. 2015).

[3] 2017. Amazon S3. (Aug. 2017). https://aws.amazon.com/s3/.

[4] 2017. Apache ZooKeeper. https://zookeeper.apache.org. (Aug. 2017).

[5] 2017. Bandwidth: a memory bandwidth benchmark. (Aug. 2017).

http://zsmith.co/bandwidth.html.

[6] 2017. Elevator algorithm. https://en.wikipedia.org/wiki/Elevator_

algorithm. (Aug. 2017).

[7] 2017. Intel Optane Memory. (Aug. 2017). http:

//www.intel.com/content/www/us/en/architecture-and-technology/

optane-memory.html.

[8] 2017. lvmcache – LVM caching. http://man7.org/linux/man-pages/

man7/lvmcache.7.html. (Aug. 2017).

[9] 2017. NVM Express 1.2.1. http://www.nvmexpress.org/wp-content/

uploads/NVM_Express_1_2_1_Gold_20160603.pdf. (Aug. 2017).

[10] 2017. Persistent Memory Programming. (Aug. 2017). http://pmem.io/.

Strata: A Cross Media File System SOSP’17, October 2017, Shanghai, China

[11] 2017. Product Brief: Intel Optane SSD DC P4800X Series. (Aug.

2017). http://www.intel.com/content/www/us/en/solid-state-drives/

optane-ssd-dc-p4800x-brief.html.

[12] 2017. Redis. http://redis.io. (Aug. 2017).

[13] 2017. rsockets library. (Aug. 2017). https://github.com/ofiwg/

librdmacm.

[14] 2017. SPECsfs2014. (Aug. 2017). https://www.spec.org/sfs2014/.

[15] 2017. SQLite. https://sqlite.org. (Aug. 2017).

[16] 2017. The Sprite Operating System. https://www2.eecs.berkeley.edu/

Research/Projects/CS/sprite/sprite.html. (Aug. 2017).

[17] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S.

Roselli, and R. Y. Wang. 1995. Serverless Network File Systems. In

Proceedings of the Fifteenth ACM Symposium on Operating Systems

Principles (SOSP ’95). ACM, New York, NY, USA, 109–126. https:

//doi.org/10.1145/224056.224066

[18] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike

Paleczny. 2012. Workload analysis of a large-scale key-value store. In

Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint in-

ternational conference on Measurement and Modeling of Computer Sys-

tems. London, England, UK, 53–64. https://doi.org/10.1145/2254756.

2254766

[19] Srivatsa S. Bhat, Rasha Eqbal, Austin T. Clements, M. Frans Kaashoek,

and Nickolai Zeldovich. 2017. Scaling a file system to many cores using

an operation log. In Proceedings of the 26th Symposium on Operating

Systems Principles (SOSP ’17).

[20] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz,

and David A. Patterson. 1994. RAID: High-performance, Reliable

Secondary Storage. ACM Comput. Surv. 26, 2 (June 1994).

[21] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2013. Optimistic

Crash Consistency. In Proceedings of the Twenty-Fourth ACM Sympo-

sium on Operating Systems Principles (SOSP ’13). ACM, New York,

NY, USA, 228–243. https://doi.org/10.1145/2517349.2522726

[22] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin

Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Bet-

ter I/O Through Byte-addressable, Persistent Memory. In Proceed-

ings of the ACM SIGOPS 22Nd Symposium on Operating Systems

Principles (SOSP ’09). ACM, New York, NY, USA, 133–146. https:

//doi.org/10.1145/1629575.1629589

[23] J. Dean and S. Ghemawat. 2011. LevelDB: A Fast Persis-

tent Key-Value Store. https://opensource.googleblog.com/2011/07/

leveldb-fast-persistent-key-value-store.html. (2011).

[24] Biplob Debnath, Sudipta Sengupta, and Jin Li. 2010. FlashStore: High

Throughput Persistent Key-value Store. Proc. VLDB Endow. 3, 1-2

(Sept. 2010), 1414–1425. https://doi.org/10.14778/1920841.1921015

[25] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip

Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System

Software for Persistent Memory. In Proceedings of the Ninth European

Conference on Computer Systems (EuroSys ’14). ACM, New York, NY,

USA, Article 15, 15 pages. https://doi.org/10.1145/2592798.2592814

[26] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C. Arpaci-

Dusseau, and Remzi H. Arpaci-Dusseau. 2011. A File is Not a

File: Understanding the I/O Behavior of Apple Desktop Applications.

In Proceedings of the Twenty-Third ACM Symposium on Operating

Systems Principles (SOSP ’11). ACM, New York, NY, USA, 71–83.

https://doi.org/10.1145/2043556.2043564

[27] T. Haynes and D. Noveck. 2015. Network File System (NFS) Version

4 Protocol. (March 2015). https://tools.ietf.org/html/rfc7530.

[28] Dave Hitz, James Lau, and Michael Malcolm. 1994. File System Design

for an NFS File Server Appliance. In Proceedings of the USENIX

Winter 1994 Technical Conference on USENIX Winter 1994 Technical

Conference (WTEC’94). USENIX Association, Berkeley, CA, USA,

19–19. http://dl.acm.org/citation.cfm?id=1267074.1267093

[29] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder,

Parikshit Gopalan, Jin Li, and Sergey Yekhanin. 2012. Erasure Cod-

ing in Windows Azure Storage. In Proceedings of the 2012 USENIX

Conference on Annual Technical Conference (USENIX ATC’12).

[30] Intel Corporation. 2017. Storage Performance Development Kit. (Aug.

2017). http://www.spdk.io.

[31] William K. Josephson, Lars A. Bongo, Kai Li, and David Flynn. 2010.

DFS: A File System for Virtualized Flash Storage. Trans. Storage 6,

3, Article 14 (Sept. 2010), 25 pages. https://doi.org/10.1145/1837915.

1837922

[32] Changman Lee, Dongho Sim, Joo-Young Hwang, and Sangyeun Cho.

2015. F2FS: A New File System for Flash Storage. In Proceedings

of the 13th USENIX Conference on File and Storage Technologies

(FAST’15). USENIX Association, Berkeley, CA, USA, 273–286. http:

//dl.acm.org/citation.cfm?id=2750482.2750503

[33] Cheng Li, Philip Shilane, Fred Douglis, Hyong Shim, Stephen Smal-

done, and Grant Wallace. 2014. Nitro: A Capacity-optimized SSD

Cache for Primary Storage. In Proceedings of the 2014 USENIX Con-

ference on USENIX Annual Technical Conference (USENIX ATC’14).

USENIX Association, Berkeley, CA, USA, 501–512. http://dl.acm.org/

citation.cfm?id=2643634.2643686

[34] Mike Mammarella, Shant Hovsepian, and Eddie Kohler. 2009. Modular

Data Storage with Anvil. In Proceedings of the ACM SIGOPS 22Nd

Symposium on Operating Systems Principles (SOSP ’09). ACM, New

York, NY, USA, 147–160. https://doi.org/10.1145/1629575.1629590

[35] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dil-

ger, Alex Tomas, and Laurent Vivier. 2007. The new ext4 filesystem:

current status and future plans. In Proceedings of the Linux Symposium,

Vol. 2. Ottawa, ON, Canada.

[36] Cade Metz. 2016. The Epic Story of Dropbox’s Exodus From the

Amazon Cloud Empire. (March 2016). https://www.wired.com/2016/

03/epic-story-dropboxs-exodus-amazon-cloud-empire/.

[37] Mihir Nanavati, Jake Wires, and Andrew Warfield. 2017. Decibel: Isola-

tion and Sharing in Disaggregated Rack-Scale Storage. In 14th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

17). USENIX Association, Boston, MA, 17–33. https://www.usenix.

org/conference/nsdi17/technical-sessions/presentation/nanavati

[38] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen,

and Jason Flinn. 2006. Rethink the Sync. In Proceedings of the

7th Symposium on Operating Systems Design and Implementation

(OSDI ’06). USENIX Association, Berkeley, CA, USA, 1–14. http:

//dl.acm.org/citation.cfm?id=1298455.1298457

[39] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil.

1996. The Log-Structured Merge-Tree (LSM-Tree). In Acta Informat-

ica.

[40] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin

Lee, Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry Qin,

Mendel Rosenblum, Stephen Rumble, Ryan Stutsman, and Stephen

Yang. 2015. The RAMCloud Storage System. ACM Trans. Comput.

Syst. 33, 3, Article 7 (Aug. 2015), 55 pages. https://doi.org/10.1145/

2806887

[41] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos,

Arvind Krishnamurthy, Thomas Anderson, and Timothy Roscoe. 2014.

Arrakis: The Operating System is the Control Plane. In Proceedings

of the 11th USENIX Conference on Operating Systems Design and

Implementation (OSDI’14). USENIX Association, Berkeley, CA, USA,

1–16. http://dl.acm.org/citation.cfm?id=2685048.2685050

[42] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-

natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. 2014. All File Systems Are Not Created

Equal: On the Complexity of Crafting Crash-consistent Applications.

SOSP’17, October 2017, Shanghai, China Y. Kwon et al.

In Proceedings of the 11th USENIX Conference on Operating Systems

Design and Implementation (OSDI’14). USENIX Association, Berke-

ley, CA, USA, 433–448. http://dl.acm.org/citation.cfm?id=2685048.

2685082

[43] Kai Ren and Garth Gibson. 2013. TABLEFS: Enhancing Meta-

data Efficiency in the Local File System. In Proceedings of the

2013 USENIX Conference on Annual Technical Conference (USENIX

ATC’13). USENIX Association, Berkeley, CA, USA, 145–156. http:

//dl.acm.org/citation.cfm?id=2535461.2535480

[44] Andy M Rudoff. 2016. Deprecating the PCOMMIT Instruction.

(Sept. 2016). https://software.intel.com/en-us/blogs/2016/09/12/

deprecate-pcommit-instruction.

[45] Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout. 2014.

Log-structured Memory for DRAM-based Storage. In Proceedings

of the 12th USENIX Conference on File and Storage Technologies

(FAST’14). USENIX Association, Berkeley, CA, USA, 1–16. http:

//dl.acm.org/citation.cfm?id=2591305.2591307

[46] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar, and Kai Li.

2015. RIPQ: Advanced Photo Caching on Flash for Facebook. In Pro-

ceedings of the 13th USENIX Conference on File and Storage Technolo-

gies (FAST’15). USENIX Association, Berkeley, CA, USA, 373–386.

http://dl.acm.org/citation.cfm?id=2750482.2750510

[47] Vasily Tarasov, Erez Zadok, and Spencer Shepler. 2016. Filebench: A

Flexible Framework for File System Benchmarking. USENIX ;login:

41, 1 (2016).

[48] Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. 1997.

Frangipani: A Scalable Distributed File System. In Proceedings of the

Sixteenth ACM Symposium on Operating Systems Principles (SOSP

’97). ACM, New York, NY, USA, 224–237. https://doi.org/10.1145/

268998.266694

[49] Chia-Che Tsai, Yang Zhan, Jayashree Reddy, Yizheng Jiao, Tao Zhang,

and Donald E. Porter. 2015. How to Get More Value from Your File

System Directory Cache. In Proceedings of the 25th Symposium on

Operating Systems Principles (SOSP ’15). ACM, New York, NY, USA,

441–456. https://doi.org/10.1145/2815400.2815405

[50] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,

Venkatanathan Varadarajan, Prashant Saxena, and Michael M.

Swift. 2014. Aerie: Flexible File-system Interfaces to Storage-class

Memory. In Proceedings of the Ninth European Conference on

Computer Systems (EuroSys ’14). ACM, New York, NY, USA, Article

14, 14 pages. https://doi.org/10.1145/2592798.2592810

[51] Scott Watanabe. 2009. Solaris 10 ZFS Essentials. Prentice Hall.

[52] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File

System for Hybrid Volatile/Non-volatile Main Memories. In Proceed-

ings of the 14th Usenix Conference on File and Storage Technolo-

gies (FAST’16). USENIX Association, Berkeley, CA, USA, 323–338.

http://dl.acm.org/citation.cfm?id=2930583.2930608

[53] Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey, Amogh

Akshintala, Kanchan Chandnani, Pooja Deo, Zardosht Kasheff, Leif

Walsh, Michael Bender, Martin Farach-Colton, Rob Johnson, Bradley C.

Kuszmaul, and Donald E. Porter. 2016. Optimizing Every Opera-

tion in a Write-optimized File System. In 14th USENIX Conference

on File and Storage Technologies (FAST 16). USENIX Association,

Santa Clara, CA, 1–14. https://www.usenix.org/conference/fast16/

technical-sessions/presentation/yuan

[54] Yiying Zhang and Steven Swanson. 2015. A study of application

performance with non-volatile main memory. In 31st Symposium on

Mass Storage Systems and Technologies (MSST).

	Abstract
	1 Introduction
	2 Background
	2.1 Hardware storage trends
	2.2 Application demands on the file system
	2.3 Current alternatives are insufficient

	3 Strata Design
	3.1 Meta-data Structures
	3.2 Library File System (LibFS)
	3.3 Kernel File System (KernelFS)
	3.4 Sharing (leases)
	3.5 Protection and performance isolation
	3.6 Example

	4 Implementation
	4.1 Limitations

	5 Evaluation
	5.1 Microbenchmarks
	5.2 Filebench: Mail and Fileserver
	5.3 Data Migration
	5.4 Key-value Store: LevelDB
	5.5 Redis

	6 Related Work
	7 Conclusion
	References

