Strata: A Cross Media File System

Youngjin Kwon
The University of Texas at Austin

Simon Peter
The University of Texas at Austin

ABSTRACT

Current hardware and application storage trends put immense
pressure on the operating system’s storage subsystem. On the
hardware side, the market for storage devices has diversified
to a multi-layer storage topology spanning multiple orders of
magnitude in cost and performance. Above the file system,
applications increasingly need to process small, random IO on
vast data sets with low latency, high throughput, and simple
crash consistency. File systems designed for a single storage
layer cannot support all of these demands together.

We present Strata, a cross-media file system that leverages
the strengths of one storage media to compensate for weak-
nesses of another. In doing so, Strata provides performance,
capacity, and a simple, synchronous IO model all at once,
while having a simpler design than that of file systems con-
strained by a single storage device. At its heart, Strata uses a
log-structured approach with a novel split of responsibilities
among user mode, kernel, and storage layers that separates
the concerns of scalable, high-performance persistence from
storage layer management. We quantify the performance ben-
efits of Strata using a 3-layer storage hierarchy of emulated
NVM, a flash-based SSD, and a high-density HDD. Strata has
20-30% better latency and throughput, across several unmod-
ified applications, compared to file systems purpose-built for
each layer, while providing synchronous and unified access
to the entire storage hierarchy. Finally, Strata achieves up
to 2.8x better throughput than a block-based 2-layer cache
provided by Linux’s logical volume manager.

CCS CONCEPTS

* Information systems — Hierarchical storage manage-
ment; Storage class memory; * Software and its engineer-
ing — File systems management;

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).

SOSP’17, October 2017, Shanghai, China

© 2017 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06. .. $15.00

https://doi.org/10.475/123_4

Henrique Fingler
The University of Texas at Austin

Emmett Witchel

The University of Texas at Austin

Tyler Hunt

The University of Texas at Austin

Thomas Anderson
University of Washington

KEYWORDS

File system, Non-volatile memory, Multi-layer storage

ACM Reference Format:

Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. 2017. Strata: A Cross Media File
System. In Proceedings of ACM Symposium on Operating Systems
Principles, Shanghai, China, October 2017 (SOSP’17), 18 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION

File systems are being stressed from below and from above.
Below the file system, the market for storage devices has
fragmented based on a tradeoff between performance and
capacity, so that many systems are configured with local solid-
state drives (SSD) and conventional hard disk drives (HDD).
Non-volatile RAM (NVM) will soon add another device with
a third distinct regime of capacity and performance.

Above the file system, modern applications demand per-
formance and functionality far outside the traditional file
system comfort zone, e.g., common case kernel bypass [41],
small scattered updates to enormous datasets [12, 23], and
programmer-friendly, efficient crash consistency [42]. It no
longer makes sense to engineer file systems on the assumption
that each file system is tied to a single type of physical device,
that file operations are inherently asynchronous, or that the
kernel must intermediate every metadata operation.

To address these issues, we propose Strata, an integrated
file system across different storage media. To better leverage
the hardware properties of multi-layer storage Strata has a
novel split of user and kernel space responsibilities, storing
updates to a user-level log in fast NVM, while asynchronously
managing longer-term storage in the kernel. In so doing, Strata
challenges some longstanding file system design ideas, while
simplifying others. For example, Strata has no system-wide
file block size and no individual layer implements a stand-
alone file system. Although aspects of our design can be
found in NVM [1, 25, 50, 52] and SSD [31, 32]-specific file
systems, we are the first to design, build, and evaluate a file
system that spans NVM, SSD, and HDD layers.

Closest to the application, Strata’s user library synchronously
logs process-private updates in NVM while reading from
shared, read-optimized, kernel-maintained data and metadata.
In the common case, the log holds updates to both user data

SOSP’17, October 2017, Shanghai, China

and file system metadata, ensuring correct file system behav-
ior during concurrent access, even across failures. Client code
uses the POSIX API, but Strata’s synchronous updates obviate
the need for any sync-related system calls and their atten-
dant bugs [42]. Fast persistence and simple crash consistency
are a perfect match for modern RPC-based systems that must
persist data before responding to a network request [4, 12].

Strata tailors the format and management of data to im-
prove the semantics and performance of the file system as
data moves through Strata’s layers. For example, operation
logs are an efficient format for file system updates, but they
are not efficient for reads. To reflect the centrality of data
movement and reorganization in Strata, we coin the term di-
gest for the process by which Strata reads file system data and
metadata at one layer and optimizes the representation written
to its next (typically slower and larger) layer. Digestion is pe-
riodic and asynchronous. Digestion allows a multitude of opti-
mizations: it coalesces temporary durable writes (overwritten
data or temporary files, e.g., due to complex application-level
commit protocols [42]), it reorganizes and compacts data for
efficient lookup, and it batches data into the large sequential
operations needed for efficient writes to firmware-managed
SSD and HDD.

Strata’s first digest happens between a process-local log
and the system-shared area, both stored in NVM. For example,
a thread can create a file and a different thread can perform
several small, sequential writes to it. The file create and the
file data are logged in NVM. Each operation completes syn-
chronously and in order. On a system crash, Strata recovers
the latest version of the newly created file and its contents
from the log. Eventually, Strata digests the log into an extent
tree (optimized for reads) requiring physical-level file sys-
tem work like block allocation for the new file. It will also
merge the writes, eliminating any redundancy and creating
larger data blocks. Strata resembles a log-structured merge
(LSM) tree with a separate log at each layer, but a Strata digest
changes the format and the invariants of its data much more
than an LSM tree compaction. Strata minimizes re-writing
overhead (§5.1) and increases performance significantly in
cases where digestion can reduce the amount of work for the
lower layer (e.g., a mail server can avoid copying 86% of its
log §5.2). Strata currently also has limitations. For example,
Strata reduces mean time to data loss (MTTDL) by assum-
ing that all of its storage devices are reliable. It is optimized
for applications requiring fast persistence for mostly non-
concurrently shared data. Concurrent shared access requires
kernel mediation. For more limitations see §4.1.

We implemented our Strata prototype within Linux. The
Strata user-level library integrates seamlessly with glibc to
provide unmodified applications compatibility with the famil-
iar POSIX file IO interface. Our prototype is able to execute
a wide range of applications, successfully completing all 201

Y. Kwon et al.

unit tests of the LevelDB key-value store test suite, as well

as all tests in the Filebench package. Microbenchmarks on

real and emulated hardware show that, for small (< 16 KB)

10 sizes, Strata achieves up to 33% better write tail-latency

and up to 7.8X better write throughput relative to the best

performing alternative purpose-built NVM, SSD, and HDD
file systems. Strata achieves 26% higher throughput than

NOVA [52] on a mailserver workload in NVM, up to 27%

lower latency than PMFS [25] on LevelDB, and up to 22%

higher SET throughput than NOVA on Redis, while providing

synchronous and unified access to the entire storage hierarchy.

Finally, Strata achieves up to 2.8X better throughput than a

block-based two-layer cache provided by Linux’s logical vol-

ume manager. These performance wins are achieved without
changing applications.

Starting with a discussion of the technical background (§2)
for Strata’s design, we then discuss its contributions.

e We present the Strata architecture (§3). We show how
maintaining a user-level operation log in NVM and asyn-
chronously digesting data among storage layers in the ker-
nel leads to fast writes with efficient synchronous behavior,
while optimizing for device characteristics and providing a
unified interface to the entire underlying storage hierarchy.

o We implement a prototype of Strata on top of Linux that
uses emulated NVM and commercially available SSDs and
HDDs on a commodity server machine (§4).

e We quantify the performance and isolation benefits of pro-
viding a unified file system that manages all layers of the
modern storage hierarchy simultaneously (§5).

2 BACKGROUND

We review current and near-future storage devices and discuss
how Strata addresses this diversified market. We then discuss
the demands of modern applications on the file system and
how current alternatives fall short.

2.1 Hardware storage trends

Diversification. Storage technology is evolving from a sin-
gle viable technology (that of the hard disk drive) into a
diversified set of offerings that each fill a niche in the design
tradeoff of cost, performance, and capacity. Three storage
technologies stand out as stable contenders in the near-future:
Non-volatile memory (NVM), solid state drives (SSDs), and
high-density hard disk drives (HDDs). While HDDs and SSDs
are already a commodity today, NVM is expected to be added
in the future (Intel’s 3D XPoint memory technology was re-
leased in March 2017, initially to accelerate SSDs [7, 11]).
Table 1 shows each technology and its expected long-term
place in the design space. Latencies are from specifications
while sequential read/write bandwidth for 4KB IO sizes are
measured (see §5 for details). Prices are derived from the

Strata: A Cross Media File System

Memory Latency Seq. R/W GB/s $/GB

DRAM 100 ns 62.8 8.6
NVM 300 ns 7.8 4.0
SSD 10 ps 22/09 025
HDD 10 ms 0.1 0.02

Table 1: Memory technology latency, bandwidth, and
$/GB as of April 2017. NVM numbers are projected (§5).

lowest device prices found via a Google Shopping search in
April 2017. The NVM price is derived from the current price
of Intel’s 3D XPoint-based Optane SSD DC P4800X. NVM
performance is based on a study [54]. Each storage technology
offers a unique tradeoff of latency, throughput, and cost, with
at least an order of magnitude difference relative to other
technologies. This diversity suggests that future systems are
likely to require several coexisting storage technologies.

Device management overhead. The physical characteris-
tics of modern storage devices often prevent efficient update
in place, even at a block level. SSDs have long needed a
multi-block erasure before a physical block can be re-written;
typical erasure region size has grown larger over time as
vendors optimize for storage density and add lanes for high
throughput. Although HDDs traditionally allowed efficient
sector overwrites at the cost of a disk head seek, recently
disks optimized for storage efficiency have adopted a shingle
write pattern, similar to SSDs in that an entire region of disk
sectors must be re-written to update any single sector.

To support legacy file systems, SSD and HDD device
firmware maintains a persistent virtual to physical block trans-
lation; blocks are written sequentially at the physical level
regardless of the virtual block write pattern. Depending on
the write pattern, this can carry a high cost, where blocks are
repeatedly moved and re-written to create empty regions for
sequential writes on both SSDs and HDDs. On SSDs, this
write amplification wears out the device more rapidly.

Even using a large block size is not enough to avoid the
overhead when the disk is in steady-state. For example, using
the Tang et al. methodology [46] on our testbed SSD (§5
for details), we observe a throughput slow-down of 12.2x
in steady-state for 8 MiB blocks written randomly to a full
disk. Similarly, write latency is inflated by a factor of 2.8 for
4 KiB random updates in steady state, and 10x for 128 KiB up-
dates. When writing sequentially within erasure block bound-
aries, performance does not decline. Write amplification can
also negatively affect IO tail latency and throughput isolation
among applications, as the overhead is observed due to past
use of the device, making it difficult to account performance
costs to the originating application.

We leverage the multi-layer nature of Strata to achieve
the full performance of the SSD and HDD layers, despite
firmware management. Migration of blocks from NVM to
SSD are made in full erasure block chunks (512 MiB on our

SOSP’17, October 2017, Shanghai, China

testbed SSD); this is only possible because Strata coalesces
data as it moves between persistent layers, with frequently
updated data filtered by the NVM layer.

2.2 Application demands on the file system

Many modern applications need crash consistency for their
files. The performance cost and complexity to achieve user-
level crash consistency for files has grown over the past
decade, with no relief in sight. Often, files are merely named
address spaces that contain many internal objects with fre-
quent, crash-consistent updates. Small, random writes are
common on both desktop machines [26] and in the cloud
through the use of key-value stores, data base backends,
such as SQLite [15] and LevelDB [23], revision manage-
ment systems, and distributed configuration software, such
as Zookeeper [4]. On many file systems, efficient crash con-
sistency for these applications is difficult and slow so many
applications sacrifice correctness for performance [42].
Strata provides in-order file system semantics (including
writes). This matches developer intuition [38] and simplifies
crash recovery, but is usually considered too slow to be a
practical goal for a file system. Given NVM devices, such
semantics are now possible to provide efficiently [52].

2.3 Current alternatives are insufficient

Existing file systems specialize to a storage technology.
Existing file systems make tradeoffs that are appropriate
for a specific type of storage device; no single file system
is appropriate across different storage media. For example,
NOVA [52] and PMFS [25] require byte-addressability, lim-
iting them to NVM; F2FS [32] uses multi-head logging and
a buffer cache that are unnecessary on NVM. Strata is built
to leverage the strengths of each storage device and compen-
sate for weaknesses. By contrast, layering independent file
systems on different media unnecessarily duplicates mecha-
nisms, such as block and inode allocation, and lacks expres-
sive inter-layer APIs. For example, block usage frequency
and fragmentation information are not easily relayed across
independent file systems (§5.3).

File system write amplification. As shown in §5, many
file systems pad updates to a uniform block size (e.g., setting
a bit in an in-use block bitmap will write an entire block),
and file systems often require metadata writes to complete
an update (e.g., a data write can update the file size in the
inode). As with device-level write amplification, file system
write amplification is often a major factor for application per-
formance, especially for NVM devices that support efficient
small writes. Using an operation log at the NVM layer that is
later digested into block updates, Strata is able to efficiently
aggregate repeated data and metadata updates, significantly
lowering file system write amplification.

SOSP’17, October 2017, Shanghai, China

Block stores are not the only answer. Strata provides a
file system rather than a block store interface to applications
because of the file system’s strong combination of backward
compatibility, performance and functionality. The file system
name space is a powerful persistent data structure with well
understood properties (and limitations); its storage costs are
moderate in time and space across a wide variety of access
patterns; and it is used to share data by millions of appli-
cations and system tools. Multi-layer cloud-persistent block
stores [3] face many of the same issues as Strata in managing
migration of data across multiple devices, and can be appropri-
ate for standalone applications that do their own block-level
operations. We focus our design and evaluation on the unique
opportunities provided by having a semantically rich view of
application file system behavior.

3 STRATA DESIGN

The goal of Strata is to design a new file system that man-
ages data across different storage devices, combining their
strengths and compensating for their weaknesses. In particu-
lar, we have the following design goals for Strata.

o Fast writes. Strata must support fast, random, and small
writes. An important motivation for fast small writes is sup-
porting networked server applications which must persist
data before issuing a reply. These applications form the
backbone of modern cloud applications.

¢ Efficient synchronous behavior. Today’s file systems cre-
ate a usability and performance problem by guaranteeing
persistence only in response to explicit programmer action
(e.g., sync, fsync, fdatasync). File systems use a
variety of complicated mechanisms (e.g., delayed alloca-
tion) to provide performance under the assumption of slow
device persistence. Strata supports a superior, programmer-
friendly model where file system operations persist in order,
including synchronous writes, without sacrificing perfor-
mance.

e Manage write amplification. Write amplification at the
device and file system level have a first-order effect on
performance, wear, and QoS. Examples include metadata
updates for EXT4 and PMFS or copies introduced by the
flash translation layer in SSDs [46]. Managing write am-
plification allows us to minimize its effect on performance
and QoS. Managing write amplification is simpler once it
is decoupled from the write fast-path.

¢ High concurrency. Strata supports concurrent logging from
multiple threads in a single process using atomic operations.
Logs from multiple processes can be digested in parallel
within the kernel because logs are guaranteed to be inde-
pendent (see §3.4).

o Unified interface. We provide a unified file system inter-
face to all devices in the entire underlying storage hierarchy.

Y. Kwon et al.
Concept Explanation
Update log | A per-process record of file system updates.
Shared area | Holds file system data in NVM, SSD, and HDD.

Read-only for user code, written by the kernel.

File data Read-only cache; caching data from SSD or HDD.
cache
Update log | An index into the update log; mapping file offsets to
pointers log blocks.
Strata trans- | A unit of durability; used for file system changes
action made by a system call.
Digest Apply changes from an update log to the shared area.
Lease Synchronizes updates to files and directories.

Table 2: Major concepts in Strata.

Strata is backward compatible with existing POSIX appli-

cations but easily customizable since the API is provided

entirely in a user-level library [41, 50].
Strata’s basic architecture resembles a log-structured merge
(LSM) tree [39]. Strata first writes data synchronously to an
operation log (logging) stored in NVM. Logging provides
persistence with low and predictable latency, efficiently rep-
resents small updates, serializes operations in order, and sup-
ports data consistency, crash recovery and operation atomicity.
Logs are highly desirable for writing, but are cumbersome
to search and read. Thus, logs are periodically digested into
a read-optimized tree format. In Strata, this format is based
on per-file extent trees [35]. Digests happen asynchronously,
and the log is garbage-collected. Table 2 summarizes major
concepts in Strata, and Figure 1 shows a high-level overview
of the Strata design which we now discuss.

Log at user-level, digest in the kernel. To attain fast writes,
Strata separates the responsibilities of logging and digesting
and assigns them to user-level software and the kernel, respec-
tively. We call the user-level portion of Strata LibFS. Using
leases to manage concurrent file accesses (explained in §3.4),
the kernel grants LibFS direct access to a small private space
in NVM for efficient logging of file system updates (the up-
date log). The kernel also gives LibFS direct read-only access
to portions of the shared extent tree space and data blocks (the
shared area). Hardware, configured by the kernel, enforces
access control [41].

The kernel-level file system (KernelFS) is responsible for
digesting. Digesting is done in parallel across multiple threads
for high throughput and runs asynchronously in the back-
ground. The update log is deep to allow the digest to batch
log entries, amortizing and aggregating meta-data updates
over an entire sequence of operations. KernelFS checks and
enforces metadata integrity when digesting an application’s
log, such that when a digest completes, the digested data can
become visible to other processes. Upon a crash, the kernel
can recover file system state simply by re-digesting each appli-
cation’s remaining log. A log replay overwrites data structures

Strata: A Cross Media File System

SOSP’17, October 2017, Shanghai, China

(A Ve T ~N
Process Shared Kernel FS !
LibFS Global ' Perinode) Global | Perinode
Inode cache ! File data cache Inode cache
. ! NVM read/write i [Extent tree
Read LRU list [(Inode] ! . [Inode |
' [Updatelog ||Search LRU list - i cache
| .
pointers order |
. | - |
Directory cache ' [Extent tree SS?E{GS?/\Q’M@ |
i cache s !
\\ ! J 1
J - ! J
Update log (per process) b oo Shared area (per storage layer)
.) igest
Trans. Commit | Trans. Commit | |H___Z__ Free + ;
header Uppitze record | header Uppitze record %::)pcir bli)tlr?q(;kp F"Zieﬂtrircé:rﬁ:ézzksy
lStrata transaction o
Legend [pram NVM B sso Bl oo

Figure 1: Strata design. Writes go to the update log. Reads are served from the shared area. File data cache is a read-only

cache, containing data from SSD or HDD.

with their proper contents even if they were partially written
before the crash (log replay is idempotent). The log remains
authoritative until garbage collected after a completed digest.
Since data is updated in a log-structured way, synchronization
of log update and digest are simple. Writers make sure not to
overwrite already allocated log blocks, while only allocated
blocks are digested (and garbage collected). Write and digest
positions are kept in NVM.

Sequential, aligned writes. One benefit of digesting writes
in bulk is that, however they are initially written, file data can
be coalesced and written sequentially to the shared area, min-
imizing fragmentation and meta-data overhead. Digestion
minimizes device-level write amplification by enabling se-
quential, aligned writes. Below the NVM layer, all device
writes are sequential and aligned to large block boundaries
chosen to be efficient for the device, such as erasure blocks
for SSDs and write zones for shingled disks. These param-
eters are determined by Strata for each device [46]. When
data is updated, old versions are not immediately overwritten.
Instead, Strata periodically garbage collects cold blocks to
reclaim free space. Garbage collection consumes entire era-
sure/shingle block size units so that the device sees only full
block deletes, eliminating collection overhead from the de-
vice layer. This process is similar to what would occur within
device firmware but takes into account application data ac-
cess patterns and multiple layers, segregating frequently from
infrequently accessed data and moving them to appropriate
layers for better device utilization and performance isolation.

Use hardware-assisted protection. To bypass the kernel
safely and efficiently, Strata makes use of the hardware virtual-
ization capabilities available in modern server systems. Strata

specifies access rights for each application to contiguous sub-
sets of each device’s storage space, enforced by hardware. The
MMU trivially supports this feature at memory page gran-
ularity for NVM, while NVMe provides it via namespaces
that can be attached to hardware-virtualized SSDs [9]. Strata
moves all latency-sensitive mechanisms of the file system into
a user-level library. HDDs do not require kernel bypass.

We next describe each component of Strata and their interac-
tion. Since Strata breaks the responsibilities of a traditional
file system into LibFS and KernelFS, we organize our de-
scription along these lines. We start by describing Strata’s
principal meta-data structures.

3.1 Meta-data Structures

Strata keeps meta-data in superblocks, inodes, and per-layer
bitmaps of free blocks. These data structures are similar to
structures in other file systems and we only briefly describe
them here. Strata caches all recently accessed meta-data struc-
tures in DRAM.

Superblock. Strata’s superblock is stored in NVM and de-
scribes the layout of each storage layer and the locations of
all per-application logs. It is updated by KernelFS whenever
per-application logs are created or deleted.

Inodes and directories. Inodes store file meta-data, such
as access rights, owner, and creation times. As in EXT4, they
also store a root of each file’s extent tree, though for Strata, an
inode has multiple roots, one for each storage device. When
unfragmented, extent tree nodes point directly to a file’s data
blocks. As the extent tree fragments, nodes point to other
internal tree nodes before pointing to data blocks. Strata stores
inodes ordered by number in a hidden, sparse inode file and
manages it like a normal file: Strata accesses the inode file via

SOSP’17, October 2017, Shanghai, China

an extent tree and migrates blocks of the inode file to other
layers. An inode for the inode file is located in the superblock.

Strata directories are similar to EXT4, holding a chained
array of file names and associated inode numbers in their
data blocks. On file reads, LibFS first consults per-inode
update log pointers to find any updates in the log. The log
pointers are invalidated when the local log is digested. We
hash entire directory names [49] to improve our directory
cache hit rate, reducing full directory traversals by up to 60%.
Strata inodes fill 256 bytes. To efficiently protect inodes under
kernel-bypass, inodes with different access permissions have
to be stored on different pages or within different NVMe
namespaces. POSIX specifies that all inodes stored within a
directory have access permissions according to the directory
inode. Thus, Strata organizes inodes of the same directory
together by reserving consecutive inodes in multiples of 16 for
each directory. Unused inodes remain reserved until allocated.

Free block bitmap. Strata has a per-layer persistent bitmap
to indicate which of its blocks are allocated and free. For
high throughput, KernelFS digest threads allocate and free
blocks in large batches. These threads reserve blocks (e.g.,
the size of an erasure block) by adjusting a unit allocation
count in DRAM using compare-and-swap, and then marking
specific blocks as in use in the bitmap. Once the allocation
count reaches the maximum, digesting moves on to a new
erasure/shingle unit. Freed blocks are reset in the bitmap.

Multiple device instances. The Strata prototype supports
only a single storage device at each level, but the design would
generalize to multiple devices at each level, where devices are
logically concatenated. For example, Strata can treat two 8TB
SSDs as a single 16TB SSD. This approach allows Strata to
add capacity, while redundancy is left as future work.

3.2 Library File System (LibFS)

Strata’s library file system (LibFS) provides the application-
level mechanism to conduct file IO. Its goal is to provide fast,
crash-consistent, and synchronous read and write IO to the
entire underlying storage hierarchy and a unified API that is
fully compatible with existing POSIX applications and can
be put underneath an application by re-linking with LibFS.

Fast and synchronous persistence. Synchronous persis-
tence provides clear semantics (e.g., ordering guarantees and
crash recovery) to applications [38], but it is not widely used
under the assumption that storage devices are slow. Modern
NVM storage technology allows Strata to provide synchro-
nous IO semantics without sacrificing performance. In fact,
synchronous semantics can accelerate overall IO performance
for NVM. Strata writes data once to NVM and does not copy
it to a DRAM buffer cache. Memory copy latencies are com-
parable to NVM write costs [22], so eliminating the memory
copy approximately halves write latency.

Y. Kwon et al.

Upon an application write request, LibFS writes directly
to a per-application update log in NVM, bypassing the OS
kernel. Favoring the byte-addressable feature in NVM, LibFS
does blind write for small-sized writes (e.g., less than 4 KB).
A small write is written sequentially to the log and turned
into a block write when KernelFS digests it, maximizing 10
throughput and eliminating write amplification. Synchronous
semantics allow Strata to provide zero-copy IO—LibFS per-
forms IO directly between a user’s DRAM buffer and NVM.
Strata does not use a page cache which eliminates cache
lookup and data copy in the write path. However, LibFS does
maintain caches of the locations of logged file updates, as
well as meta-data, such as inodes, file sizes, and modification
times (inode and directory tables in Figure 1).

LibFS organizes the update log as an operation log. The
operation log reduces IO compared to a data log because the
data log usually contain blocks, which are the minimum-sized
addressable units for the file system. For example, when up-
dating a directory, the data log requires three (block) writes:
directory inode, directory block, and log header. The opera-
tion log requires only a record indicating the directory change
such as ADD filename, inode number. This infor-
mation is small enough to fit into the log header, resulting in
a single write for directory changes.

We arrange the log format so that its effects are idempotent;
applying the log multiple times results in the same file system
state. For example, log entries use both the inode and offset
to refer to locations modified in a file or directory. LibFS allo-
cates inode numbers eagerly to simplify logging. It requests
batches of inodes from the kernel, such that inode allocation
does not require a system call in the common case.

Crash consistent logging. LibFS logs changes to all file
system state, including file and directory meta-data. All data
is appended sequentially to the log, naturally capturing the
ordering of file system changes. Logging also provides crash
consistent updates efficiently. As shown in Figure 1, when
an application creates a file and then writes data to the file,
LibFS first logs a file creation record (with file length of 0)
followed by the data write record in causal order.

LibFS has a unit of durability, called Strata transaction.
Strata transactions provide ACID semantics up to an applica-
tion’s update log size, allowing Strata to atomically persist
multiblock write operations up to the size of the log. To do
so, LibFS wraps each POSIX system call in a Strata transac-
tion. However, single system calls with more data than the
per-application log size (on the order of GBs) cannot be per-
sisted atomically and are instead broken into multiple, smaller
Strata transactions. Many applications desire ordered, atomic
multiblock writes and can benefit from these semantics [42].

Each Strata transaction consists of a number of log entries:
a header, the relevant updates to file (meta-)data, followed

Strata: A Cross Media File System

by a commit record. The commit record contains a unique
and monotonically increasing Strata transaction number and
a checksum of the header contents. When a Strata transaction
commits, LibFS ensures atomicity and isolation by atomically
allocating log space using a compare-and-swap operation and
by first writing the header and data, waiting for persistence,
and then persisting the commit record. Log headers contain a
pointer to the next log header so the log can be easily replayed.

Digest and garbage collection. The log is a limited re-
source and needs to be periodically digested into the shared
area and garbage collected. Once the log fills beyond a thresh-
old (30% in our prototype), LibFS makes a digest request to
KernelFS. KernelFS digests the log asynchronously in the
background and replies to LibFS once the digest request is
complete. After completion, LibFS can safely reclaim log
entries (also in the background) by resetting each log header’s
valid bit. Strata data structures allow the user to add records
to a log that the kernel is concurrently digesting.

If an application completely fills its log, LibFS must wait
for an in-progress digest to complete before it can reclaim
log space and restart file system activity. Log garbage col-
lection involves trimming log headers (a device-level trim
operation zeroes the trimmed data blocks) and invalidating
the corresponding entries in the data cache. LibFS garbage
collects using a background thread. The application can con-
tinue to append log blocks during garbage collection. The
log’s idempotency ensures crash consistency. If the system
crashes during a digest, the log is re-digested on recovery,
resulting in the same file system state as a successful digestion
without a crash.

Fast reads. LibFS caches data and meta-data in DRAM.
However, data is only cached when read from SSD or HDD.
NVM does not require caching. The file data cache is man-
aged in 4 KB block units and evicted to the update log in an
LRU manner. Meta-data such as file access time and file data
locations (in the log and in the shared area) are cached in the
inode cache indexed by inode number. LibFS also records
update addresses in the log using the update log pointers and
it caches extent tree nodes. To optimize performance of se-
quential reads from SSD or HDD, LibFS uses a read-ahead
buffer in DRAM of 256 KB.

To resolve a file location with the most up-to-date data,
LibFS searches the file data cache, the update log, and then
the (cached) extent trees from highest (NVM) storage layer
to lowest (HDD), as shown in Figure 1. If the file data is
not found in the data cache, but in the update log pointers,
then the latest data is read from the log and (depending on
the read size) possibly merged with blocks from the shared
area. In that case, both log data and shared blocks are fetched
and merged before returning data to the read request. If a
lookup misses in the extent tree cache for a layer, then Strata

SOSP’17, October 2017, Shanghai, China

traverses the extent tree stored in that layer’s shared area and
updates the cache, before advancing to the next layer. Extent
trees in multiple layers can be present for a file if subsets
of its data blocks have been migrated. Extent trees indicate
which of a file’s data blocks are present at the tree’s layer.
Strata’s layered data storage is not inclusive and a data block
can be simultaneously present in any subset of layers. Strata’s
migration algorithm ensures that higher layers have the most
up-to-date block and thus, higher layers take precedence over
lower layers.

3.3 Kernel File System (KernelFS)

Strata’s kernel file system (KernelFS) is responsible for man-
aging shared data that can be globally visible in the system
and may reside in any layer of the storage hierarchy. To do
so, it digests application logs and converts them into per-
file extent trees. Digestion happens asynchronously in the
background, allowing KernelFS to batch Strata transactions
and to periodically garbage collect and optimize physical
layout. LibFS provides least-recently-used (LRU) informa-
tion to KernelFS to inform its migration policy among layers
of the storage hierarchy. KernelFS also arbitrates user-level
concurrent file access via leases (§3.4).

Digest. When the log size grows beyond a threshold, LibFS
makes a digest request to KernelFS. Digest latencies have an
impact on applications’ IO latencies as the log becomes full.
To reduce the digest latencies, KernelFS employs a number of
optimizations. KernelFS digests large batches of operations
from the log, coalescing adjacent writes, as well as identify-
ing and eliminating redundant operations. KernelFS begins
digestion by first scanning the submitted log and then com-
puting which operations can be eliminated and which can be
coalesced. For example, if KernelFS detects an inode creation
followed by deletion of the inode, it skips log entries related
to the inode.

These optimizations reduce digest overhead by eliminat-
ing work, batching updates to extent trees, and reducing the
number of tree lookups. Coalescing writes increases the aver-
age size of write operations, minimizing fragmentation and
thus extent tree depth. Optimizing the digest reduces band-
width contention for the storage device between KernelFS
and LibFS, as well as write amplification. Experiments with
the Filebench [47] benchmark show that optimizations reduce
digest latency up to 80%, improving application throughput
by up to 15%. Scanning the log before digesting allows Ker-
nelFS to determine which new data and metadata blocks are
required and to allocate them in large, sequential batches.
Log scanning also allows KernelFS to determine if two logs
contain disjoint updates and thus can be digested in parallel.

For all data updates, Strata writes new data blocks before
deleting old blocks. Even metadata structures like extent trees

SOSP’17, October 2017, Shanghai, China

are completely written before the updates are committed when
the inode’s root pointer is updated.

Data access pattern interface. To take advantage of the
entire storage hierarchy, KernelFS transparently migrates data
among different storage layers, keeping least recently used
blocks in better performing layers. In order to migrate data ef-
ficiently, KernelFS requires LRU information for each block.
Because reads bypass the kernel, LibFS must collect access
information on reads and communicate the information to
KernelFS via a kernel interface. LRU information is not per-
sisted and only maintained in DRAM, which conserves NVM
log space. Writes are observed by the kernel when digest-
ing update logs, so there is no need for LibFS to provide
additional metadata about writes.

The KernelFS maintains LRU lists for each storage layer
except for the last one. An LRU list is a sequence of arbitrary
length, of logical 4KB block numbers. LibFS can submit
access information as frequently as it wishes via a system
call. KernelFS transforms the LibFS-provided LRU lists into
coarser-grained lists for storage layers that have larger block
sizes (e.g., IMB blocks for NVM and 4MB for SSD).

KernelFS does not trust the LRU information provided by a
LibFS and enforces that blocks specified as recently used are
actually accessible by the process. Applications can misuse
the interface to get the kernel to place more blocks in NVM,
but this is equivalent to current systems where an application
can read data to get the kernel to place it in the DRAM page
cache. Resource allocation interfaces like Linux’s memory
cgroups [2] would further limit the impact of API misuse,
though integrating with cgroups is left as future work.

Data migration. To take advantage of the storage hierar-
chy’s capacity, the kernel transparently migrates data among
different storage layers in the background. To benefit from
concurrency and to avoid latency spikes due to blocking on
migration, Strata migrates data before a layer becomes full
(at 95% utilization in our prototype). Migration is conducted
in a block-aligned, log-structured way, similar to digestion.
To make migrations efficient and at the same time reduce
fragmentation, Strata moves SSD data in units of flash era-
sure blocks (order of hundreds of megabytes) and HDD data
in shingles (order of gigabytes). After migrating a unit, the
whole unit is trimmed (via the device TRIM command) to
make a large, unfragmented storage area available. When
migrating data, KernelFS tries to place hot data in higher lay-
ers of the storage hierarchy, while migrating cold data down
to slower layers. To maintain a log-structured write pattern,
KernelFS always reserves at least one migration unit on each
layer and writes blocks retained in that layer to the reserved
migration unit sequentially.

Y. Kwon et al.

3.4 Sharing (leases)

Strata supports POSIX file sharing semantics, while optimiz-
ing application access to files and directories that are not
concurrently shared. KernelFS supports leases on files and
sections of the file system namespace. Leases have low execu-
tion time overhead for coarse-granularity sequential sharing
of file data. We expect that processes that require fine-grained
data sharing will use shared memory or pipes—avoiding the
file system altogether due to its generally higher overhead.

Similar to their function in distributed file systems [27],
leases allow a LibFS exclusive write or shared read access to a
specific file or to a region of the file system namespace rooted
at a certain directory. For example, a LibFS can lease one or
more directories and then create nested files and directories.
Multiple LibFS may hold read leases, while only one write
lease may exist.

Write leases are strict, they function like an exclusive lock.
As long as a write lease is held, a thread in a process may
write to the leased namespace (or file) without kernel medi-
ation, while operations from other processes are serialized
before or after the lease period. Threads within the same pro-
cess see each others’ updates as soon as operations complete,
using fine-grained inode locks to synchronize file system up-
dates. Leases are independent from file system access control
checks, which occur when a file or directory is opened.

A process that holds a write lease is notified via an upcall
(via a UNIX socket in our prototype) if another process also
wants the write lease. Upon revocation of a write lease, ap-
plications can insist on the write-back of new data (via a log
digest) to the kernel’s shared file system area (e.g., to NVM).
Waiting for a digest operation will increase the latency of re-
voking the lease. Leases are also revoked when an application
is unresponsive and the lease times out. Because user-level
operations are transactional, Strata can abort any in-progress
file system operation upon revocation of a lease if necessary.
LibFS caches are invalidated upon loss of a lease.

Programs may acquire leases using explicit system calls,
which allows user-level control, but is not POSIX compatible.
Our prototype lazily acquires an exclusive (shared) lease on
the first write (read) to any file or directory (unless the process
already has a lease). This policy works for our benchmarks,
but other policies are possible. Bad policy choices lead to poor
performance, but do not compromise correct sharing seman-
tics because Strata can always fall back to kernel mediation
for all file system operations. If a file is opened read/write by
multiple processes, the kernel eliminates logging.

To show the worst-case performance overhead of sharing
through the file system, we measured update throughput of
two processes using a lock file to coordinate small (4KB)
updates to a shared data file. In one iteration, a process tries
to create the lock file. Once creation succeeds, the winning

Strata: A Cross Media File System

process writes a 4KB block to the data file, then it unlinks the
lock file. Note that neither file is ever synced. To guarantee
strict ordering and synchronous persistence, LibFS must first
acquire a lease in order to create the lock file and relinquish
the lease and perform a digest after the lock file is unlinked.
Strata achieves a throughput of 10,400 updates/s, 4.3x slower
than EXT4-DAX and 1.7X slower than NOVA. EXT4-DAX
can perform metadata updates in the buffer cache, but unlike
Strata and NOVA, it lacks synchronous, ordered file semantics.
Both NOVA and EXT4-DAX only write shared data once,
while Strata must write it again during digestion to make the
data globally visible. We thus view logging in Strata as an
optimization to accelerate infrequently shared data. However,
in situations with less strict ordering and atomicity guarantees,
logging could be used even when sharing frequently.

3.5 Protection and performance isolation

Protection with kernel bypass. Strata supports POSIX file
access control, enforced by MMU and NVMe namespaces.
The MMU provides protection for kernel-bypass LibFS op-
erations and Strata aligns each per-file extent tree on a page
boundary (and pads the page) to facilitate MMU protection.
The kernel maps all data and meta-data pages of the accessed
file read-only into the caller’s virtual address space. Extent
tree nodes refer to blocks using logical block numbers. An
entire device can be mapped contiguously, making the map-
ping from logical block number to address a simple addition
of the base address. However, more parsimonious mappings
are possible along with a table to track the mapping between
address and logical block number.

For SSD-resident data, Strata uses NVMe namespaces for
protected access to file data. File extent trees must be aligned
on a NVMe sector (512 bytes or 4KB, depending on how
the device is formatted). Upon opening a file on the SSD,
the kernel creates a read-only NVMe namespace for the file
if the namespace doesn’t already exist and attaches it to the
application’s NVMe virtual function. The NVMe standard
supports up to 232 namespaces, which limits the total number
of open files on the SSD to this number. If an SSD does
not support virtual functions, namespace management, or a
sufficient number of namespaces, this functionality can be
efficiently emulated in software, with an overhead of up to 3
us per system call [41]. HDD access is kernel mediated.

Performance isolation. Write amplification has an effect
on 10 performance isolation by inflating device bandwidth
utilization. When device firmware amplifies writes it can
throw off the operating system’s management algorithms.

SOSP’17, October 2017, Shanghai, China

Firmware-managed devices often have unpredictable and se-
vere write amplification from wear leveling and garbage col-
lection [46]. Since Strata minimizes firmware write ampli-
fication via aligned sequential writes, almost all amplifica-
tion occurs in software. This has the benefit that it can be
accurately observed and controlled by Strata. For example,
KernelFS can decide to stop digesting from an application if
the incurred write amplification would violate the QoS (spec-
ified as per-application I/O bandwidth allocations) of another
application.

3.6 Example

To summarize the design, we walk through an example of
overwriting the first 1 KB of data in an existing, non-shared
file and then reading the first 4 KB.

Open. The application uses the open system call to open
the file. Upon this call, LibFS first checks to see whether the
file exists and whether it can be accessed, by walking all path
components from the root. For each component, it acquires
read leases and checks the directory and inode caches for
cached entries. If a component is not found in a cache, LibFS
finds the inode by number from the inode file located in the
shared area. Assuming the data is in NVM, LibFS will map
the corresponding inode page read-only. The kernel allows
the mapping if the inode is accessible by the user running
the application. LibFS first copies the inode’s content to the
inode cache in DRAM. It then reads the inode (from cache)
to determine the location of the directory by walking the
attached extent tree, storing extent tree entries in the extent
tree cache. Finally, LibFS finds the correct entry within the
directory. The directory entry contains the inode number of
the file, which LibFS resolves in the same manner. The file is
now open, and LibFS allocates a file descriptor.

Write. The application issues the write system call to
write 1 KB to the beginning of the file. LibFS wraps the sys-
tem call in a Strata transaction and requests a write lease for
the corresponding inode. No other processes are accessing
the file, so the kernel grants the lease. The Strata transaction
can commit and LibFS appends the write request, including
payload to the update log, checks the file data cache for in-
validation, and updates the corresponding block in the update
log pointers with addresses of the update log. The write is
complete.

Read. The application issues a pread system call to read
the first 4 KB from the file. Like the write case, LibFS first
tries to obtain a read lease, waiting until KernelFS grants the
read lease. LibFS first searches the file data cache with offset
0 and finds that the block is not in the cache (invalidated by
the write above). Then, it searches the update log pointers
with offset 0, finding a block in the update log. However, the
update log does not contain the entire 4 KB (it has a 1 KB

SOSP’17, October 2017, Shanghai, China

partial update). In that case, LibFS first finds the 4 KB block
of the file by walking the extent tree at each layer from the
inode. It finds the block in the SSD. To read it, it requests a
new NVMe namespace for the block, which the kernel creates
on the fly. This allows LibFS to read the block bypassing the
kernel. LibFS allocates a file data cache entry (at the head
of LRU list), reads the block into the cache entry, patches it
with the update from the update log. LibFS can now return
the complete block from the file data cache to the user.

Close. The application closes the file. At this point, LibFS
relinquishes the lease to the KernelFS (if it still has it).

Digest. At a later point, the kernel digests the update log
contents. It reads the same 4KB block from the SSD, patches
the block with the 1 KB update from the log, and writes the
complete block to a new location in NVM (the block was
recently used). Next, it updates the extent tree nodes to point
to the new location by first reading them from the appropriate
layers and then writing them to NVM. Finally, it updates the
inode containing the extent tree root pointer in NVM. The
digest is done and LibFS garbage collects the update log entry.

4 IMPLEMENTATION

We have implemented Strata from scratch, using Intel’s Stor-
age Performance Development Kit (SPDK) [30] for fast ac-
cess to NVMe SSDs bypassing the Linux kernel and Intel’s
libpmem [10] to persist data to emulated NVM using non-
temporal writes to avoid polluting the processor cache and
the appropriate sequence of store fence and cache flush to
guarantee persistence [54] (our testbed does not support the
optimized CLWB instruction, so libpmem uses CLELUSH to
flush the cache to NVM). We also use the extent tree imple-
mentation of the EXT4 [35] file system and modified it for
log-structured update.

Our prototype of Strata is implemented in 21,255 lines
of C code. Shared data structures, such as lists, trees, and
hash tables, account for 4,201 lines. LibFS has 10,131 and
KernelFS has 6,923 lines of code. The main functionality
in LibFS is writing to the update log. In KernelFS it is the
extent tree update code and code for data migration. On top
of Strata’s low-level API, we implement a POSIX system call
interposition layer. To do so, we modify glibc to intercept
each storage-related system call at user-level and invoke the
corresponding LibFS version of the call. The interposition
layer is implemented in 1,821 lines of C code.

Our prototype is able to execute a wide range of appli-
cations. Strata successfully completes all 201 unit tests of
the LevelDB key-value store test suite, as well as all tests in
Filebench.

Y. Kwon et al.

4.1 Limitations

Our current prototype has a few limitations, which we de-
scribe here. None of them impact our evaluation.

Kernel. Instead of loading our kernel module into the ker-
nel’s address space, we have placed it in a separate process
and use the sockets interface to communicate “system calls”
between LibFS and KernelFS. This results in higher overhead
for system calls in Strata due to the required context switches.
However, we believe the impact to be small, as a design goal
of Strata is to minimize kernel-level system calls.

Leases. Leases are not fully implemented. We have evalu-
ated their overhead, especially worst case performance (§3.4),
but the prototype does not implement directory consistency,
for example. Our benchmarks do not stress fine-grained con-
current sharing that would make lease performance relevant.

Memory mapped files. We did not implement memory
mapped files because they are not used by our target applica-
tions. Memory mapped files increase write amplification for
applications with small random writes. The hardware mem-
ory translation system is responsible for tracking updates to
memory mapped files via dirty bits that are available only at a
page granularity. A page is thus the smallest write unit. This
is a general problem for memory mapped files, in particular
as page sizes grow.

The common case of read-only mappings or writable pri-

vate mappings are easy to accommodate in Strata. NVM
pages can be mapped into a process’ address space just as cur-
rent OSes map page cache pages. The difficulty with shared
writable mappings is their requirement that writes into mem-
ory are visible to other processes mapping the file. If writes
must be immediately visible, Strata cannot do any user-level
buffering and logging, but if writes can be delayed, Strata can
buffer (and log) updates. On msync, LibFS writes updates
(pages on which the dirty bit is set) to the log, and they are
visible to other processes after digesting.
Fault tolerance. Strata currently does not contain any re-
dundancy to compensate for storage device failures. Because
it stores data across several devices, its mean time to data
loss (MTTDL) will be the minimum of all devices. It remains
future work to apply distributed reliability techniques to im-
prove MTTDL in Strata [20, 29]. With Strata it is also not
safe to remove individual storage devices from a powered
down machine, without advance warning.

S EVALUATION

We evaluate the performance and isolation properties of Strata.
To put the performance of Strata into context, we compare
it to a variety of purpose-built file systems for each storage
layer. For NVM, we compare with the Linux EXT4-DAX [1]
file system in its default ordered data mode, as well as to
PMEFS [25] and NOVA [52]. On the SSD, we compare to

Strata: A Cross Media File System

F2FS [32]. On the HDD, we compare to EXT4 [35], also in

ordered data mode. Ordered mode is the Linux default for

EXT4 because it provides the best tradeoff between perfor-

mance and crash consistency.

To evaluate the data management and migration capabili-
ties of Strata, we compare it to a user-space framework that
migrates files among layers without being integrated into the
file system, as well as to a block-level two-layer cache pro-
vided by Linux’s logical volume manager (LVM) [8]. The
user-space management framework uses the NOVA, F2FS,
and EXT4 file systems for the NVM, SSD, and HDD layers,
respectively.The LVM cache uses the NVM and SSD layers,
with a single F2FS file system formatted on top.

We seek to answer the following questions using our exper-
imental evaluation.

e How efficient is Strata when logging to NVM and digesting
to a storage layer? How does it compare to file systems
designed for and operating on a single layer?

e How do common applications perform using Strata? How
does performance compare on other file systems?

e How well does Strata perform when managing data across
layers, compared to solutions above (at user-level) and
below the file system (at the block layer)?

e What is the multicore scalability of Strata? How does it
compare to other file systems?

e How isolated are multiple tenants when sharing Strata, com-
pared to other file systems?

Testbed. Our experimental testbed consists of 2 X Intel
Xeon E5-2640 CPU, 64 GB DDR3 RAM, 400 GB Intel 750
PCle-SSD, 1 TB Seagate hard-disk, and a 40 GbE Mellanox
MT27500 Infiniband network card. All experiments are per-
formed on Ubuntu 16.04 LTS and Linux kernel 4.8.12. We
reserve 36 GB of DRAM to emulate NVM and leave the
remaining 28 GB as DRAM. The other devices are used to
capacity. Strata reserves 1 GB of write-only log area for each
running application within NVM, the rest is dedicated to the
shared area. To benefit from overlapping operations, LibFS
starts a digest when its update log is 30% full. This value
provided a good balance between digest overlap and log coa-
lescing opportunities in a sensitivity study we conducted. All
experiments involving network communication bypass the
kernel using the rsockets [13] library.

NVM emulation. To emulate the performance characteris-
tics of non-volatile memory, we have implemented a software
layer that uses DRAM but delays memory accesses and limits
memory bandwidth to that of NVM. The emulation imple-
ments an NVM performance model according to a recent
study [54] (we could not obtain the PMEP hardware emulator
used in the study).

The study predicts that NVM read latencies will be higher
than DRAM. As done in NOVA and other studies, our model

SOSP’17, October 2017, Shanghai, China

emulates this latency on all NVM reads by adding the latency
differential to a DRAM read. In reality, read latency would be
incurred only on a cache miss, but (like other studies) we do
not emulate this behavior (making our model conservative).
Due to write-back caching, writes do not have a direct latency
cost as they reside in the cache. The study investigates the
cost of a write barrier (e.g., Intel’s PCOMMIT instruction)
which ensures that flushed data does not remain in volatile
buffers within the memory controller. Intel deprecated this
write barrier from the x86 architecture [44], instead requiring
NVM controllers to be part of the system’s power-fail safe per-
sistence domain. Data flushed from the cache are guaranteed
to be made persistent on a power fail due to on-chip capac-
itors. Thus, our model does not require write barriers and
their attendant (non-trivial) latency. Strata uses the manda-
tory fences and cache flush to enforce ordering, incurring
that cost. Finally, NVM is bandwidth-limited compared to
DRAM by an estimated ratio of é Our performance model
tracks NVM bandwidth use and if a workload hits the device’s

bandwidth limit, the model applies a bandwidth-modeling de-

lay B = GX(l_N\{\Il\\/I/i\CIDRAM”) with o the size of the write
b

IO in bytes, NVM,, the NVM bandwidth, and DRAM,, the
DRAM bandwidth. The emulator resets the bandwidth limit

every 10ms, which provided stable performance in a sensitiv-

ity study. With % = é, we measure stable peak NVM
b

bandwidth of 7.8GB/s as shown in Table 1.

5.1 Microbenchmarks

Hardware 10 performance. To ensure that no other re-
source in our testbed system is a bottleneck, we first measure
the achievable IO latency and throughput for each memory
technology contained in our testbed server using sequential
I0. The measured hardware 1O performance matches the hard-
ware specifications of the corresponding device (see Table 1).
We measure DRAM using a popular memory bandwidth mea-
suring tool [5]. The reported NVM performance is in line
with our NVM performance model.

File system write efficiency. Write amplification is a major
factor in a file system’s common case performance. Most
file systems amplify writes by writing meta-data in addition
to user data, lowering their write efficiency (defined as the
inverse of write amplification). For example, if a program
writes and syncs 2 KB of data and the file system updates and
writes a 4 KB data block and a 4 KB metadata block, then the
write amplification is 4 and the write efficiency is 25%.
Figure 2 shows write efficiency for Zipfian (s = 1) ran-
dom writes until a total of 1 MB has been written. We can
see that for small writes (< 1 KB), write efficiency suffers
substantially for most file systems. Strata achieves the highest
write efficiency among all file systems regardless of write

SOSP’17, October 2017, Shanghai, China

Il F2FS [EXT4
[NOVA EXXX Strata

100

B EXT4-DAX
Strata+digest

=1 PMFS

80 1

60

40 -

201

Write Efficiency (%)

4KB 64KB 1MB
Write size

Figure 2: File system Zipf 1O write efficiency. Error bars

show minimum and maximum measurement.

1288 1KB

[EXT4-DAX =3 PMFS 3 NOVA BS8 Strata

=10 400

2 7 300

g s 200

g 2 ! 100
1288 1KB 4KB 16KB 1MB

Write size .

gﬁ 120 300

4 15 200

o 10

©

-0

1288 1KB 4KB 16KB 64KB 1MB
Read size . .
Figure 3: Average 10 latency to NVM. Error bars show
99th percentile.

sizes because Strata performs the minimal amount of 10 for
persisting data and meta-data changes with the operation log.
The Strata + digest result includes additional writes to di-
gest data into the shared area in the background. Depending
on IO properties, Strata can greatly improve write efficiency
by coalescing the digest (§5.2). In this case, write efficiency
declines as write size approaches total size and coalescing
opportunities diminish.

Latency. We compare the read and synchronous (fsync)
write latency of Strata and other NVM-optimized file systems
using various IO sizes on an otherwise idle system. This
experiment emulates the small, bursty writes often exhibited
by cloud application back ends, such as key-value stores.
Latency and tail-latency are of primary importance for these
applications as it determines the processing latency of a user’s
web request.

In this experiment, the burst size is 1 GB. For Strata, this
case is ideal as it fits into the update log. Hence, no digest
occurs during the experiment. Before the read phase, Strata

Y. Kwon et al.

1KB 4KB 64KB 1MB 4MB
EXT4-DAX 35 44 98 812 2947

PMFS 7 10 53 656 2408
NOVA 13 17 54 563 2061
Strata 5 8 49 569 2074
No persist 4 6 30 302 1157

Table 3: Latency (us) of (non-)persistent RPC.

Seq. Write Rand. Write
7.8 7.8
...... EXT4-DAX —— Strata+digest
V509 e 5.0{ --- NOVA
3 e]
2O s 2.01
0.0+ : 0.0
1 2 4 g 1
Seq. Read
7.8 ———ooug /.8
@50{ 2= 5.0
o F -
9501 20f
0.0 . . 0.0

1 2 4 g 1 2 4 8
Figure 4: NVM throughput scalability (4 KB 10). X-axis
= number of threads; Top Y-axis = NVM bandwidth.

digests the file, hence all reads are served directly from the
shared extent tree area. We assume this case to be common,
as most key-value stores cache data in DRAM and so it is
likely that recently written data can be served from DRAM.

Figure 3 shows read and write latencies. We can see that
Strata achieves equivalent latency to the best-performing alter-
native file system, regardless of 10 size. In the 99th-percentile
tail, Strata achieves up to 33% lower latency for small writes
and up to 12% for reads compared to the best-performing
alternative file system.

Strata’s performance comes from writing an operation log
using kernel-bypass. In the other file systems, IO either in-
volves copying data from user to kernel buffers (EXT4-DAX),
or various persistent file system structures are modified in-
place (PMEFES), or they copy-on-write (NOVA), while Strata
simply logs write operations using a single log write operation
with no DRAM copying.

Persistent RPC. Many cloud services use remote proce-
dure calls (RPCs) that must persist data before returning to
the caller. Table 3 shows a microbenchmark, where one client
sends an RPC to a server that logs it to stable storage. Strata
can synchronously persist 1KB of data for each RPC only 1
118 (25%) later than an RPC that persists no data. Strata makes
persistence cheap in terms of latency for the data sizes that
are common in RPCs (<4KB).

Log size sensitivity. Log size is configurable on a per-log
basis. LibFS should configure log size according to expected
burst behavior of the application. We conduct a sensitivity
study to find how performance is affected by log size, ana-
lyzing the sequential write microbenchmark and the varmail
workload from the Filebench suite [47]. We vary the log size

Strata: A Cross Media File System

I F2FS;1 B F2FS;2 [F2FS;4 [F2FS;8
Strata+digest;1

w

2 1.0 —

e

5

a 0.5

<

o

=]

£ II

< 1

= 0.0

0_ FreTy
Seq.Read Rand.Read

0
Seq.Write Rand.Write
Figure 5: Average SSD throughput (4 KB I0) over num-
ber of threads. Horizontal lines = SSD bandwidth.

between 100 MB and 4 GB. We find that with a log size of 500
MB and larger, both workloads reach maximum performance.
A 100 MB log degrades performance by up to 6.4%. This
result confirms that Strata’s background digest and garbage
collection work efficiently even for small log sizes.

Throughput scalability. We compare sustained 1O through-
put using 4 KB IO size. When reading, update logs are clean.
This benchmark emulates common data streaming workloads
with sustained busy periods. Strata always logs data to NVM
and digests it to the evaluated layer and our results include
both operations. The other file systems operate directly on
their respective layer, but F2FS and EXT4 use a buffer cache
in DRAM. For Strata, we count LibFS (logging and reading)
and KernelFS (digesting) threads.

Figure 4 shows the result for NVM, varying the number of
threads from 1 to 8. Each benchmark run conducts 30 GB of
10, partitioned over the number threads and using a private
file for each thread to avoid application-level locking. PMFS
crashes when using multiple threads. With 4 threads, Strata
approaches NVM bandwidth. Since both workloads have no
locality, write efficiency is 50% for Strata, resulting in an
application-level throughput that is half the NVM bandwidth.
Strata is up to 26% slower than NOVA for sequential writes.
This is the worst case for Strata since KernelFS cannot im-
prove write efficiency via digest optimizations. However, for
random writes, Strata achieves 28% higher throughput than
NOVA with 8 threads and 3 higher throughput with 2 threads.
This is because LibFS blindly writes small, unaligned data
to the log, and KernelFS can merge them into block writes
when digesting the log, while NOVA has to read and modify
blocks. EXT4-DAX is up to 10% faster than Strata on reads,
but for a single-threaded workload Strata is 36% faster than
EXT4-DAX for random reads.

Figure 5 shows SSD throughput of Strata and F2FS. We
mount F2FS with the synchronous option to provide the same
guarantee as Strata. For writes, Strata achieves 7.8 better
throughput than F2FS by aggregating writes in the update log
and batching them to SSD on digest. For sequential reads,
both Strata and F2FS read ahead to achieve similar perfor-
mance (our Strata prototype implementation currently sup-
ports only single-threaded SSD access). When accessing the

SOSP’17, October 2017, Shanghai, China

[us] | EXT4-DAX | PMFS | NOVA | Stata

Mean | 4497 4514 [443 372[234 182] 158 144
99th 74 74| 7 6| 4 3| 2 2
999th | 84 84| 54 45| 5 41 3 3
99.99thf 95 95| 72 50| 10 6| 6 5

Table 4: (Tail-)latencies with two clients (4 KB 10).

HDD, Strata achieves ~10% better throughput than EXT4
for all operations (full device bandwidth for sequential 1O,
10 MB/s for random write and 3 MB/s for random read), but
with synchronous write semantics and without any of EXT4’s
complexity. For example, Strata does not require a journal,
delayed block allocation, or locality groups.

Using a portion of NVM as a persistent update log allows
Strata to perform similarly or better than file systems purpose-
built for each storage layer, while providing synchronous and
in-order write semantics.

Data migration. To show Strata’s read/write performance
on multiple layers, we run a Zipfian (s = 1) benchmark with
an 80:20 read/write ratio on a 120 GB file that fits in NVM
and SSD and compare to F2FS (4 KB IO size). Strata achieves
a throughput of 4.4 GB/s, while F2FS attains 1.3 GB/s. The
locality of the workload causes most 10 to be served from
NVM, a benefit for Strata because of NVM’s higher capacity
compared with the DRAM buffer cache used by F2FS.

Isolation. Clients want the write performance allotted to
them regardless of the activities of other clients. We run two
processes that write and fsync (and digest using a kernel
thread for each process in Strata) a burst of 4KB operations
concurrently and observe write (tail-)latency to evaluate how
well Strata isolates multiple clients, compared to other file sys-
tems. Table 4 shows latency experienced by two competing
clients. We can see that Strata provides equivalent latencies to
the single client case, while other file systems do not isolate
clients as well. EXT4-DAX provides equality, but slows down
under concurrent access. NOVA and PMFS do not provide
equal performance to both clients. Strata allocates fully iso-
lated per-client write logs that can be allocated on client-local
NUMA nodes, while other file systems use shared data struc-
tures for write operations that cause performance crosstalk
because of locks and memory system effects.

5.2 Filebench: Mail and Fileserver

Mail servers access and create/delete many small files and
are thus a good measure of Strata’s meta-data management.
File servers are similar, but operate on larger files and have
a higher ratio of file IO compared with the number of di-
rectory operations. To evaluate these workloads, we use the
Varmail and Fileserver profiles of the Filebench file system
benchmark suite that is designed to mimic common mail and
file servers. Both benchmarks operate on a working set of
10,000 files. Files are created with average sizes of 32 KB and

SOSP’17, October 2017, Shanghai, China

400

I EXT4-DAX
= PMFS

[NOVA

=3 Strata+digest

o
o

K Operations/s
= N w
o O
o O

0

Fileserver
Figure 6: Varmail and Fileserver throughput.

Varmail

128 KB for Varmail and Fileserver, respectively, though files
grow via 16 KB appends in both benchmarks. Both workloads
read and write data at 1 MB granularity. Varmail and File-
server have write to read ratios of 1:1 and 2:1, respectively.
In this configuration, all workloads fit into NVM and thus we
compare performance to NVM file systems.

Varmail uses a write-ahead log for crash consistency (sync
signifies Varmail waiting for persistence). Its application level
crash consistency protocol involves creating and writing the
write-ahead log in a separate file, syne, appending a mail to
the mailbox file, sync, and then garbage collecting the now
redundant write-ahead log by deleting the separate file. The
Fileserver workload is similar to the SPECsfs [14] benchmark.
It randomly performs file creates, deletes, appends, reads,
writes, and attribute operations on a directory tree.

Figure 6 shows the result. Varmail achieves 26% higher
write throughput on Strata versus NOVA: 57% of the time
is spent in Varmail; 18% is spent in reading application data
from NVM and 14% in writing application data to the log area.
Another 10% is spent searching directories. Less than 1% of
the time is spent in other Strata activities, such as searching
extent trees. Fileserver throughput improvements are smaller
(7% versus NOVA). This is expected; Fileserver has a larger
average write size and no crash consistency protocol.

Strata’s log compaction strategy is a good fit for Varmail,
which creates and deletes many temporary files and performs
many temporary durable writes. Strata digestion skips 86% of
the log records because those updates have been superseded
by subsequent workload updates: 50% are data writes, 24%
are directory updates, and 12% are file creates. For example,
if the workload creates a temporary file, it can write and read
the file, but if it deletes the file before digestion Strata does
not need to copy the file’s data and metadata to the shared
area. This optimization avoids 14 GB of data copying.

5.3 Data Migration

To show performance when Strata uses multiple storage de-
vices, we configure the Fileserver workload to do 1 MB ap-
pends with 1000 files. In this case, the working set starts out
operating in NVM, but then grows to incorporate the SSD
and HDD. Fileserver’s workload is uniform random. It has no
locality. Thus, all evaluated systems only migrate data down
towards slower layers.

Y. Kwon et al.
25
Q —— Strata+digest
2 201 === User-level data migration (NOVA+F2FS)
° e LVM block cache (F2FS on NVM+SSD)
¥ 151 , ,
5 a) Working set spills to SSD
o vy
£ FHATOA A
R e 5 M N T W
|-E ES Cae o . ,"
0 . : | . :
0 100 200 300 400 500

Time (s)
Figure 7: Fileserver throughput on multi-layer storage
over time. Vertical lines every 1 million operations.

We compare Strata to a user-space data migration (UDM)
framework using NOVA, F2FS, and EXT4 file systems on
the appropriate layers with default mount options. UDM mi-
grates files instead of blocks, which is a best case for UDM
because the Fileserver workload performs mostly complete
file I/O. We also compare to Linux’s logical volume man-
ager (LVM) cache target [8]. LVM caches blocks of a fixed
cache chunk size underneath the file system. We cache SSD
blocks in NVM, running F2FS on top (outperforming EXT4)
in synchronous mode (-o sync) for a fair comparison. We
cannot use EXT4-DAX or NOVA since LVM requires a block
abstraction. To keep crash-consistent block-to-device map-
pings, it persists cache meta-data to a separate partition. We
configure LVM to provide write-back caching with 64 KB
cache chunk, reserving 300 MB of NVM space to store the
cache meta-data.

Figure 7 shows the result. Both Strata and UDM start with
full throughput on NVM, but UDM demonstrates more jitter.
This is because of log garbage collection in NOVA. After 80
seconds, the working set sizes are large enough that data starts
migrating to SSD, and it quickly becomes the bottleneck. In
this period, digesting is slower than logging so the applica-
tion stalls on a full log (between spikes in Strata). UDM’s
throughput drops below that of Strata causing UDM to fall
behind (vertical lines). UDM lags because it migrates entire
files, rather than individual blocks. Strata’s workload grows
to include HDD after 310 seconds (90 seconds later for UDM
due to lower throughput) and throughput drops significantly.

Both Strata and UDM start out attaining 2.8 better through-
put than F2FS on top of LVM. Once the working set spills
to SSD, Strata is 2.0x faster than LVM. Note that LVM does
not use the HDD, which is why it maintains its throughput
throughout the duration of the experiment. LVM’s working set
never grows beyond the size of the SSD. Strata’s approach to
managing multi-layer storage offers higher throughput com-
pared to multi-layer caching at the block layer. Strata can
leverage the low latency and byte addressability of NVM
directly by providing a user-level update log, while LVM re-
quires a block-level interface in the kernel. LVM also adds
additional cache meta-data IO to every file system 10O.

Strata: A Cross Media File System

EXT4-DAX PMFS NOVA Strata

Werite sync. 49.2 18.9 352 171
Write seq. 8.7 54 15.0 4.9
Write rand. 19.5 15.2 25.0 11.1
Overwrite 28.0 20.9 377 173
Delete rand. 5.6 3.6 12.3 3.3
Read seq. 1.2 1.1 1.1 1.1
Read rand. 6.3 5.8 6.7 5.8
Read hot 1.6 1.5 1.5 1.5

Table 5: Latency [ps] for Level DB benchmarks.

Strata’s cross-layer approach also performs well compared
to a solution operating above the file system, treating each
layer as a black box. Strata benefits from combining appli-
cation access pattern knowledge and cross-layer block allo-
cation. Hence, Strata can maintain more meta-data in faster
layers to speed up file system data structure traversal.

5.4 Key-value Store: LevelDB

Modern cloud applications use key-value stores like Lev-
elDB [23]. LevelDB exports an API allowing applications to
process and query structured data, but uses the file system
for data storage. We run a number of Level DB benchmarks,
including sequential, random, and random IO with 1% of hot
key-value pairs with a key size of 16 bytes and a value size of
1 KB on a working set of 300,000 objects. We measure the
average operation latency. This workload fits into NVM and
we compare against NVM file systems. To achieve higher per-
formance, LevelDB does not wait for persistence after each
write operation, but Strata guarantees persistence due to its
synchronous semantics. We introduce a synchronous random
write category (bold font in Table 5) to show a case where
persistence is requested upon every operation by LevelDB.

Table 5 shows the result. We can see that LevelDB achieves
lower latency on Strata than on any of the other NVM file
systems, regardless of workload. In particular for random
writes and overwrites, Strata performs 27% and 17% better
than PMFES, respectively, while providing synchronous write
semantics. NOVA does not perform well on this workload,
as it uses a copy-on-write approach, which has high latency
overhead, while EXT4-DAX incurs kernel overhead.

Our experiment demonstrates that a file system with a
simple, synchronous IO interface can provide low latency IO
if the underlying storage device is fast. Modern applications
struggle to make logically consistent updates that are crash
recoverable [42] and Strata helps such systems by providing
simple recovery semantics. For example, SQLite must call
fsync repeatedly to persist data to its log, to persist the log’s
entry in its parent directory, and to persist its data file so it can
reclaim the log. All of these £syncs are unnecessary when
file system operations become persistent synchronously.

SOSP’17, October 2017, Shanghai, China

400 250

[EXT4-DAX

[EXT4-DAX
[NOVA
=1 Strata+digest

[NOVA 200
= Strata+digest

o
o

150
100
50

K Requests/s
= N W
o
o

o
o

0 ' 0
128B 1KB 4KB 8KB 128B 1KB 4KB 8KB
Object Size Object Size
(a) Standalone (b) Replicated

Figure 8: Redis SET throughput.
5.5 Redis

Redis [12] is an example of a key-value store that is typically
used in a replicated, distributed scenario. Redis either logs
operations to an append-only-file (AOF) or uses an asynchro-
nous snapshot mechanism. Only the AOF provides persistence
guarantees for all operations, as snapshots are only persisted
at larger time intervals.

Standalone. We start by benchmarking a single Redis in-
stance. We configure it to use AOF mode and to persist data
synchronously, before acknowledging a user’s request. Fig-
ure 8a shows the throughput of SET operations using 12 byte
keys and with various value sizes. Redis achieves up to 22%
higher throughput on Strata, compared to NOVA for small
values, which is the common case for key-value stores [18].

Replication. Redis supports replication for fault tolerance.
Figure 8b shows the throughput of Redis with a single replica,
which must persist its record before the master can acknowl-
edge a request. Redis throughput drops by about half relative
to the non-replicated case due to the extra network round-trip
(see Table 3 for round-trip and persistence latencies). Strata
improves throughput by up to 29% relative to EXT4-DAX
and retains a 5% improvement over NOVA. Persistence in
Strata is fast enough for use in high-performance network
servers, and Strata’s cross-layer management provides more
capacity than an NVM-only file system.

6 RELATED WORK

Logging and coherence in file systems. WAFL [28] and
ZFS [51] both have the capability to use logging to a low-
latency medium (non-volatile RAM in WAFL’s case) to re-
duce the latency of file system writes. Similarly, Frangi-
pani [48] uses logging to support synchronous persistence
of file metadata, but not data, in a distributed file system.
xFS [17] uses an invalidation-based write-back cache coher-
ence protocol to minimize communication overhead among
applications and a centralized network server. Strata extends
these ideas to provide low-latency kernel-bypass for applica-
tions on the local machine, synchronous persistence for data
and metadata, and a lease mechanism to provide coherence
among applications managing data at user-level. McoreFS [19]

SOSP’17, October 2017, Shanghai, China

uses per-core logs and operation commutativity properties to
improve multicore file system scalability. Strata can leverage
these same techniques to improve scalability if needed.

Multi-layer block stores. Various efforts have studied the
use of caching among different storage technologies. Strata
leverages similar ideas, in the context of a read-write file sys-
tem. Operating with a file system API allows us to support,
and requires us to handle, a broader class of application ac-
cess patterns. For example, RIPQ [46] is a novel caching layer
that minimizes write amplification when using local SSD as
aread-only cache for remote photo storage. FlashStore [24]
is a key-value store designed to use SSD as a fast cache be-
tween DRAM and HDD, similarly minimizing the number
of reads/writes done to SSD. Nitro [33] is an SSD caching
system that uses data deduplication and compression to in-
crease capacity. Dropbox built a general-purpose file system
that uses Amazon S3 for data blocks, but keeps metadata in
SSD/DRAM [36]; technical details on its operation are not
public. RAMcloud [40] uses disk as a back up for data in
replicated DRAM. It applies log structure to both DRAM and
disk [45], achieving higher DRAM utilization.

NVM/SSD optimized block storage/file systems. Much
recent work proposes specialized storage solutions for emerg-
ing non-volatile memory technologies. BPFS [22] is a file sys-
tem for non-volatile memory that uses an optimized shadow-
paging technique for crash consistency. PMFS [25] explores
how to best exploit existing memory hardware to make ef-
ficient use of persistent byte-addressable memory. EXT4-
DAX [1] extends the Linux EXT4 file system to allow direct
mapping of NVM, bypassing the buffer cache. Aerie [50] is an
NVM file system that also provides direct access for file data
IO, using a user-level lease for NVM updates. Unlike Strata,
none of these file systems provide synchronous persistence
semantics, as they require system calls for metadata opera-
tions. Only NOVA [52] goes one step further and uses a novel
per-inode log-structured file system to provide synchronous
file system semantics on NVM, but requires system calls for
every operation. F2FS [32] is a SSD-optimized log-structured
file system that sorts data to reduce file system write amplifica-
tion; lacking NVM, it does not provide efficient synchronous
semantics. Decibel [37] is a block-level virtualization layer
that isolates tenants accessing shared SSDs by observing
and controlling their device request queues. Strata general-
izes these ideas to provide direct and performance-isolated
access to NVM for both meta-data and data 1O using a per-
application update log, along with providing efficient support
for much larger SSD and HDD storage regions. Strata also
coalesces logs to minimize write amplification, which is new
compared to these existing systems.

Managed storage designs. All storage hardware technolo-
gies require a certain level of software management to achieve

Y. Kwon et al.

good performance. Classic examples include elevator schedul-
ing [6] and log-structured file systems [16]. Modern examples
include log-structured merge trees [39] (LSM-trees) and B€-
trees, used by various storage systems [34, 43, 53]. All of
these systems rely on a particular layout of the stored data to
optimize read or write performance or (in the case of LSM-
trees) both. Unlike all of these systems, Strata specializes its
data representation to different storage layers, changing the
correctness and performance properties on a per-device basis.

Strong consistency. A number of approaches propose to
redesign the file system interface to provide stronger con-
sistency guarantees for slow devices. Rethink the sync [38]
proposes the concept of external synchrony, whereby all file
system operations are internally (to the application) asynchro-
nous. The OS tracks when file system operations become
externally visible (to the user) and synchronizes operations at
this point, allowing it to batch them. Optimistic crash consis-
tency [21] introduces a new API to separate ordering of file
system operations from their persistence, enabling file sys-
tem crash consistency with asynchronous operations. Strata
instead leverages fast persistence in NVM to provide ordered
and atomic operations.

7 CONCLUSION

Trends in storage hardware encourage a multi-layer storage
topology spanning multiple orders of magnitude in cost and
performance. File systems should manage these multiple stor-
age layers to provide advanced functionality like efficient
small writes, synchronous semantics, and strong QoS guaran-
tees.

Acknowledgments. For their insights and valuable com-
ments, we thank the anonymous reviewers and our shepherd
Ashvin Goel. We acknowledge funding from NSF grants
NSF-1518702 and CNS-1618563.

REFERENCES

[1] 2014. Supporting filesystems in persistent memory. https://lwn.net/
Articles/610174/. (Sept. 2014).

[2] 2015. Linux control group v2. https://www.kernel.org/doc/
Documentation/cgroup-v2.txt. (Oct. 2015).

[3] 2017. Amazon S3. (Aug. 2017). https://aws.amazon.com/s3/.

[4] 2017. Apache ZooKeeper. https://zookeeper.apache.org. (Aug. 2017).

[5] 2017. Bandwidth: a memory bandwidth benchmark. (Aug. 2017).
http://zsmith.co/bandwidth.html.

[6] 2017. Elevator algorithm. https://en.wikipedia.org/wiki/Elevator_
algorithm. (Aug. 2017).

[7] 2017. Intel Optane Memory. (Aug. 2017). http:
/Iwww.intel.com/content/www/us/en/architecture-and-technology/
optane-memory.html.

[8] 2017. lvmcache — LVM caching. http://man7.org/linux/man-pages/
man7/lvmcache.7.html. (Aug. 2017).

[9] 2017. NVM Express 1.2.1. http://www.nvmexpress.org/wp-content/
uploads/NVM_Express_1_2_1_Gold_20160603.pdf. (Aug. 2017).

[10] 2017. Persistent Memory Programming. (Aug. 2017). http://pmem.io/.

Strata: A Cross Media File System

(11]
[12]
[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

2017. Product Brief: Intel Optane SSD DC P4800X Series. (Aug.
2017). http://www.intel.com/content/www/us/en/solid-state-drives/
optane-ssd-dc-p4800x-brief.html.

2017. Redis. http://redis.io. (Aug. 2017).
2017. rsockets library. (Aug. 2017).
librdmacm.

2017. SPECsfs2014. (Aug. 2017). https://www.spec.org/sfs2014/.
2017. SQLite. https://sqlite.org. (Aug. 2017).

2017. The Sprite Operating System. https://www2.eecs.berkeley.edu/
Research/Projects/CS/sprite/sprite.html. (Aug. 2017).

T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S.
Roselli, and R. Y. Wang. 1995. Serverless Network File Systems. In
Proceedings of the Fifteenth ACM Symposium on Operating Systems
Principles (SOSP ’95). ACM, New York, NY, USA, 109-126. https:
/ldoi.org/10.1145/224056.224066

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. 2012. Workload analysis of a large-scale key-value store. In
Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint in-
ternational conference on Measurement and Modeling of Computer Sys-
tems. London, England, UK, 53-64. https://doi.org/10.1145/2254756.
2254766

Srivatsa S. Bhat, Rasha Eqbal, Austin T. Clements, M. Frans Kaashoek,
and Nickolai Zeldovich. 2017. Scaling a file system to many cores using
an operation log. In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP ’17).

Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz,
and David A. Patterson. 1994. RAID: High-performance, Reliable
Secondary Storage. ACM Comput. Surv. 26, 2 (June 1994).

Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2013. Optimistic
Crash Consistency. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles (SOSP ’13). ACM, New York,
NY, USA, 228-243. https://doi.org/10.1145/2517349.2522726
Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin
Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Bet-
ter I/O Through Byte-addressable, Persistent Memory. In Proceed-
ings of the ACM SIGOPS 22Nd Symposium on Operating Systems
Principles (SOSP ’09). ACM, New York, NY, USA, 133-146. https:
//doi.org/10.1145/1629575.1629589

J. Dean and S. Ghemawat. 2011. LevelDB: A Fast Persis-
tent Key-Value Store. https://opensource.googleblog.com/2011/07/
leveldb-fast-persistent-key- value-store.html. (2011).

Biplob Debnath, Sudipta Sengupta, and Jin Li. 2010. FlashStore: High
Throughput Persistent Key-value Store. Proc. VLDB Endow. 3, 1-2
(Sept. 2010), 1414-1425. https://doi.org/10.14778/1920841.1921015
Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System
Software for Persistent Memory. In Proceedings of the Ninth European
Conference on Computer Systems (EuroSys '14). ACM, New York, NY,
USA, Article 15, 15 pages. https://doi.org/10.1145/2592798.2592814
Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. 2011. A File is Not a
File: Understanding the I/O Behavior of Apple Desktop Applications.
In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (SOSP ’11). ACM, New York, NY, USA, 71-83.
https://doi.org/10.1145/2043556.2043564

T. Haynes and D. Noveck. 2015. Network File System (NFS) Version
4 Protocol. (March 2015). https://tools.ietf.org/html/rfc7530.

Dave Hitz, James Lau, and Michael Malcolm. 1994. File System Design
for an NFS File Server Appliance. In Proceedings of the USENIX
Winter 1994 Technical Conference on USENIX Winter 1994 Technical
Conference (WTEC’94). USENIX Association, Berkeley, CA, USA,

https://github.com/ofiwg/

[29]

[30]

[31]

[32]

(33]

(34]

[35

—_

(36]

[37]

[38]

(39]

[40]

[41]

[42]

SOSP’17, October 2017, Shanghai, China

19-19. http://dl.acm.org/citation.cfm?id=1267074.1267093

Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder,
Parikshit Gopalan, Jin Li, and Sergey Yekhanin. 2012. Erasure Cod-
ing in Windows Azure Storage. In Proceedings of the 2012 USENIX
Conference on Annual Technical Conference (USENIX ATC’12).

Intel Corporation. 2017. Storage Performance Development Kit. (Aug.
2017). http://www.spdk.io.

William K. Josephson, Lars A. Bongo, Kai Li, and David Flynn. 2010.
DES: A File System for Virtualized Flash Storage. Trans. Storage 6,
3, Article 14 (Sept. 2010), 25 pages. https://doi.org/10.1145/1837915.
1837922

Changman Lee, Dongho Sim, Joo-Young Hwang, and Sangyeun Cho.
2015. F2FS: A New File System for Flash Storage. In Proceedings
of the 13th USENIX Conference on File and Storage Technologies
(FAST’15). USENIX Association, Berkeley, CA, USA, 273-286. http:
//dl.acm.org/citation.cfm?id=2750482.2750503

Cheng Li, Philip Shilane, Fred Douglis, Hyong Shim, Stephen Smal-
done, and Grant Wallace. 2014. Nitro: A Capacity-optimized SSD
Cache for Primary Storage. In Proceedings of the 2014 USENIX Con-
ference on USENIX Annual Technical Conference (USENIX ATC’14).
USENIX Association, Berkeley, CA, USA, 501-512. http://dl.acm.org/
citation.cfm?id=2643634.2643686

Mike Mammarella, Shant Hovsepian, and Eddie Kohler. 2009. Modular
Data Storage with Anvil. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles (SOSP '09). ACM, New
York, NY, USA, 147-160. https://doi.org/10.1145/1629575.1629590
Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dil-
ger, Alex Tomas, and Laurent Vivier. 2007. The new ext4 filesystem:
current status and future plans. In Proceedings of the Linux Symposium,
Vol. 2. Ottawa, ON, Canada.

Cade Metz. 2016. The Epic Story of Dropbox’s Exodus From the
Amazon Cloud Empire. (March 2016). https://www.wired.com/2016/
03/epic- story-dropboxs-exodus-amazon-cloud-empire/.

Mihir Nanavati, Jake Wires, and Andrew Warfield. 2017. Decibel: Isola-
tion and Sharing in Disaggregated Rack-Scale Storage. In /4th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
17). USENIX Association, Boston, MA, 17-33. https://www.usenix.
org/conference/nsdil7/technical-sessions/presentation/nanavati
Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen,
and Jason Flinn. 2006. Rethink the Sync. In Proceedings of the
7th Symposium on Operating Systems Design and Implementation
(OSDI ’06). USENIX Association, Berkeley, CA, USA, 1-14. http:
/fdl.acm.org/citation.cfm?id=1298455.1298457

Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil.
1996. The Log-Structured Merge-Tree (LSM-Tree). In Acta Informat-
ica.

John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin
Lee, Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry Qin,
Mendel Rosenblum, Stephen Rumble, Ryan Stutsman, and Stephen
Yang. 2015. The RAMCloud Storage System. ACM Trans. Comput.
Syst. 33, 3, Article 7 (Aug. 2015), 55 pages. https://doi.org/10.1145/
2806887

Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos,
Arvind Krishnamurthy, Thomas Anderson, and Timothy Roscoe. 2014.
Arrakis: The Operating System is the Control Plane. In Proceedings
of the 11th USENIX Conference on Operating Systems Design and
Implementation (OSDI’14). USENIX Association, Berkeley, CA, USA,
1-16. http://dl.acm.org/citation.cfm?id=2685048.2685050
Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2014. All File Systems Are Not Created
Equal: On the Complexity of Crafting Crash-consistent Applications.

SOSP’17, October 2017, Shanghai, China

[43]

[44]

[45]

[46]

(471

[48]

In Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation (OSDI’14). USENIX Association, Berke-
ley, CA, USA, 433-448. http://dl.acm.org/citation.cfm?id=2685048.
2685082

Kai Ren and Garth Gibson. 2013. TABLEFS: Enhancing Meta-
data Efficiency in the Local File System. In Proceedings of the
2013 USENIX Conference on Annual Technical Conference (USENIX
ATC’13). USENIX Association, Berkeley, CA, USA, 145-156. http:
//dl.acm.org/citation.cfm?id=2535461.2535480

Andy M Rudoff. 2016. Deprecating the PCOMMIT Instruction.
(Sept. 2016). https://software.intel.com/en-us/blogs/2016/09/12/
deprecate-pcommit-instruction.

Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout. 2014.
Log-structured Memory for DRAM-based Storage. In Proceedings
of the 12th USENIX Conference on File and Storage Technologies
(FAST’14). USENIX Association, Berkeley, CA, USA, 1-16. http:
//dl.acm.org/citation.cfm?id=2591305.2591307

Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar, and Kai Li.
2015. RIPQ: Advanced Photo Caching on Flash for Facebook. In Pro-
ceedings of the 13th USENIX Conference on File and Storage Technolo-
gies (FAST’15). USENIX Association, Berkeley, CA, USA, 373-386.
http://dl.acm.org/citation.cfm?id=2750482.2750510

Vasily Tarasov, Erez Zadok, and Spencer Shepler. 2016. Filebench: A
Flexible Framework for File System Benchmarking. USENIX ;login:
41,1 (2016).

Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. 1997.
Frangipani: A Scalable Distributed File System. In Proceedings of the
Sixteenth ACM Symposium on Operating Systems Principles (SOSP
'97). ACM, New York, NY, USA, 224-237. https://doi.org/10.1145/

[49]

[50]

(51]

[52]

(53]

(54

Y. Kwon et al.

268998.266694

Chia-Che Tsai, Yang Zhan, Jayashree Reddy, Yizheng Jiao, Tao Zhang,
and Donald E. Porter. 2015. How to Get More Value from Your File
System Directory Cache. In Proceedings of the 25th Symposium on
Operating Systems Principles (SOSP ’15). ACM, New York, NY, USA,
441-456. https://doi.org/10.1145/2815400.2815405

Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and Michael M.
Swift. 2014. Aerie: Flexible File-system Interfaces to Storage-class
Memory. In Proceedings of the Ninth European Conference on
Computer Systems (EuroSys '14). ACM, New York, NY, USA, Article
14, 14 pages. https://doi.org/10.1145/2592798.2592810

Scott Watanabe. 2009. Solaris 10 ZFS Essentials. Prentice Hall.

Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File
System for Hybrid Volatile/Non-volatile Main Memories. In Proceed-
ings of the 14th Usenix Conference on File and Storage Technolo-
gies (FAST’16). USENIX Association, Berkeley, CA, USA, 323-338.
http://dl.acm.org/citation.ctm?id=2930583.2930608

Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey, Amogh
Akshintala, Kanchan Chandnani, Pooja Deo, Zardosht Kasheff, Leif
Walsh, Michael Bender, Martin Farach-Colton, Rob Johnson, Bradley C.
Kuszmaul, and Donald E. Porter. 2016. Optimizing Every Opera-
tion in a Write-optimized File System. In /4th USENIX Conference
on File and Storage Technologies (FAST 16). USENIX Association,
Santa Clara, CA, 1-14. https://www.usenix.org/conference/fast16/
technical-sessions/presentation/yuan

Yiying Zhang and Steven Swanson. 2015. A study of application
performance with non-volatile main memory. In 31st Symposium on
Mass Storage Systems and Technologies (MSST).

	Abstract
	1 Introduction
	2 Background
	2.1 Hardware storage trends
	2.2 Application demands on the file system
	2.3 Current alternatives are insufficient

	3 Strata Design
	3.1 Meta-data Structures
	3.2 Library File System (LibFS)
	3.3 Kernel File System (KernelFS)
	3.4 Sharing (leases)
	3.5 Protection and performance isolation
	3.6 Example

	4 Implementation
	4.1 Limitations

	5 Evaluation
	5.1 Microbenchmarks
	5.2 Filebench: Mail and Fileserver
	5.3 Data Migration
	5.4 Key-value Store: LevelDB
	5.5 Redis

	6 Related Work
	7 Conclusion
	References

