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Abstract. We describe strong convex valid inequalities for conic quadratic mixed 0-1 op-
timization. These inequalities can be utilized for solving numerous practical nonlinear
discrete optimization problems from value-at-risk minimization to queueing system design,
from robust interdiction to assortment optimization through appropriate conic quadratic
mixed 0-1 relaxations. The inequalities exploit the submodularity of the binary restrictions
and are based on the polymatroid inequalities over binaries for the diagonal case. We prove
that the convex inequalities completely describe the convex hull of a single conic quadratic
constraint as well as the rotated cone constraint over binary variables and unbounded
continuous variables. We then generalize and strengthen the inequalities by incorporating
additional constraints of the optimization problem. Computational experiments on
mean-risk optimization with correlations, assortment optimization, and robust conic
quadratic optimization indicate that the new inequalities strengthen the convex re-
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laxations substantially and lead to significant performance improvements.
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1. Introduction
Submodular set functions play an important role in
many fields and have received substantial interest in
the literature as they can be minimized in polynomial
time (Grotschel et al. 1981, Schrijver 2000, Orlin 2009).
Combinatorial optimization problems, such as the
min-cut problem, entropy minimization, matroids,
binary and quadratic function minimization with a
nonpositive matrix, are special cases of submodular
minimization (Fujishige 2005). The utilization of sub-
modularity, however, has been mainly restricted to 0-1
optimization problems although many practical prob-
lems involve continuous variables as well.

The goal in this paper is to exploit submodularity to
derive valid inequalities for mixed 0-1 minimization
problems with a conic quadratic objective:

mina’x + Qyx'Qx:x € X C {0, 1}" xR?, (1)
or a conic quadratic constraint:
ax+QyxQx<r, xe X< {0,1}" xR, (2

where Q € Ry, r € R, and Q is a symmetric positive
semidefinite matrix. Formulations (1) and (2) are
frequently used to model mean-risk problems. In
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particular, (1) is value-at-risk minimization, and (2) is
a probabilistic constraint for a random variable p’x
with 7 ~ N(a,Q). They are also used to model con-
servative robust formulations with an appropriate
value of Q if p is not normally distributed (Ben-Tal
et al. 2009). See Atamtiirk and Goémez (2019b) and
Buchheim and De Santis (2019) for specialized algo-
rithms for solving problem (1).

Introducing an auxiliary variable z to represent the
square root term vx’Qx in (1) and (2), we write

fx) =Vx’Qx <z, xe XC{0,1}" xR

The motivation for this study stems from the fact that
f is submodular for the simplest nontrivial nonconvex
case: when Q is diagonal and m = 0 (Shen et al. 2003).
Therefore, one may expect submodularity to play a
significant role in analyzing and solving optimization
problems with a general conic quadratic objective or
constraint as submodularity is contained in a basic form.

Toward this goal, we consider the conic quadratic
mixed-binary set

{(x y)eXzeR+.a+Zc1x,+Zd,yl < }
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where X €D ={0,1}" xR}, ceR},deR},and 6 > 0,
and derive strong inequalities for it. Note that Hy is
the mixed-integer epigraph of the function

flx,y) = \/o + i cixi + i diy?.
i=1 i=1

The set Hyx arises frequently in mixed-integer opti-
mization models, well beyond the natural extension
to mixed 0-1 mean-risk minimization or chance-
constrained optimization with uncorrelated random
variables. In particular, in Section 2, we describe
applications on optimization with correlated random
variables, inventory and scheduling problems, as-
sortment optimization, fractional linear binary opti-
mization, Sharpe ratio maximization, facility location
problems, and conic quadratic interdiction problems.

Let Hg denote the pure binary case of Hp withm =0
for which f is submodular. Although the convex hull
of Hg, conv(Hg), is a polyhedral set and well un-
derstood, that is not the case for the mixed-integer set
Hp. Note, however, that, for a fixed y, f is submodular
in x. By exploiting this partial submodularity for the
mixed-integer case, in this paper, we give a complete
nonlinear inequality description of conv(Hp). We
review the polymatroid inequalities for the pure bi-
nary case in Section 3.

Moreover, we show that the resulting nonlinear
inequalities are also strong for the rotated conic
quadratic mixed 0-1 set

n
Ry = {(x,y) €X,(w,z) €RL 0+ D
i=1

+ > diy; < 4wz}-
i1

Observe that, even for the binary case (m =0), the
definition of Rx has the product of two continuous
variables w,z on the right-hand side. Therefore, the
existing polymatroid inequalities from the binary
case cannot be directly applied to Rx. Several of the
applications in Section 2 are modeled using the ro-
tated cone set Ry.

1.1. Literature Review

A major difficulty in developing strong formulations
for mixed-integer nonlinear sets such as Hy is that the
corresponding convex hulls are not polyhedral even
though most of the theory and methodology devel-
oped for mixed-integer optimization focuses on the
polyhedral case. Recently, there has been an increas-
ing effort to generalize methods from the linear case to
the nonlinear case, including Gomory cuts (Cezik and
Iyengar 2005), MIR cuts (Atamtiirk and Narayanan
2007), cut-generating functions (Santana and Dey 2017),

minimal valid inequalities (Kiling¢-Karzan 2015), conic
lifting (Atamtiirk and Narayanan 2011), intersection
cuts, disjunctive cuts, and lift-and-project cuts (Ceria
and Soares 1999, Stubbs and Mehrotra 1999). Kiling
etal. (2010) and Bonami (2011) discuss the separation
of split cuts using outer approximations and non-
linear programming. Additionally, some classes of
nonlinear sets have been studied in detail: Belotti
et al. (2015) study the intersection of a convex set
and a linear disjunction, Modaresi and Vielma (2014)
study intersections of quadratic and conic quadra-
tic inequalities, Kiling-Karzan and Yildiz (2015) study
disjunctions on the second-order cone, Burer and
Kiling-Karzan (2017) study the intersection of a non-
convex quadratic and a conic quadratic inequality,
Dadush et al. (2011a, 2014) investigate the the Chvatal-
Gomory closure of convex sets, and Dadush et al.
(2011b) investigate the split closure of a convex set.
These inequalities are general and do not exploit any
special structure.

Another stream of research for mixed-integer non-
linear optimization involves generating strong cuts
by exploiting structured sets as they are common for
the linear integer case. Although the applicability of
such cuts is restricted to certain classes of problems,
they tend to be far more effective than the general cuts
thatignore any problem structure. Aktiirk et al. (2009,
2010) give second-order representable perspective cuts
for a nonlinear scheduling problem with variable
upper bounds, which are generalized by Giinliik and
Linderoth (2010) and Dong et al. (2015) to problems
with separable nonlinear functions and indicator
variables; although describing convex hulls of mixed-
integer sets with nonseparable nonlinear functions,
such as f(x,y), is significantly more difficult, there has
been recent progress in the context of quadratic op-
timization (e.g., Jeonetal. 2017; Atamtiirk and Gémez
2018, 2019a; Atamtiirk et al. 2018; Frangioni et al.
2020). Ahmed and Atamtiirk (2011) give strong lifted
inequalities for maximizing a submodular concave
utility function. Atamtiirk and Narayanan (2009) and
Atamtiirk and Bhardwaj (2015) study binary knap-
sack sets defined by a single second-order conic
constraint. Modaresi et al. (2016) derive closed-form
intersection cuts for a number of structured sets.
Atamtiirk and Jeon (2017) and Goémez (2018) give
strong valid inequalities for mean-risk minimization
with variable upper bounds.

Closely related to this paper, Atamtiirk and Narayanan
(2008) study Hp in the context of mean-risk minimi-
zation. Yu and Ahmed (2017) study the generaliza-
tion with a cardinality constraint, that is, Hy, where
Y = {x €{0,1}" : =, x; < k}. However, more gen-
eral sets have not been considered in the literature.
More importantly perhaps, the valid inequalities
derived for the pure binary case have limited use for
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mixed-integer problems or even for pure binary prob-
lems with correlated random variables (nondiagonal
matrix Q).

1.2. Notation

Let x denote an n-dimensional vector of binary var-
iables, y denote an m-dimensional vector of contin-
uous variables, and ¢ and d be nonnegative vectors of
dimension n and m, respectively. DefineN = {1,...,n}
and M ={1,...,m}. Let conv(X) denote the convex
hull of X. Given a vector ae R" and SC{1,...,n},
let diag(a) denote the n x n diagonal matrix A with
A;i=a;, and let a(S) = Yjsa;. Let B={0,1}" and
G ={0,1}"x[0,1]™.

1.3. Outline

The rest of the paper is organized as follows. In
Section 2, we discuss applications in which sets Hx
and Ry arise naturally. In Section 3, we review the
existing results for Hg and Hg. In Section 4, we show
that a nonlinear generalization of the polymatroid
inequalities is sufficient to describe the convex hull
of Hp. In Section 5, we study the bounded set Hg,
give an explicit convex hull description for the case
n=m =1, and propose strong valid inequalities for
the general case. In Section 6, we describe a strength-
ening procedure for the nonlinear polymatroid in-
equalities for any mixed-integer set X; the approach
generalizes the lifting method of Yu and Ahmed
(2017) for the pure binary cardinality-constrained
case. In Section 7, we discuss the implementation of
the proposed inequalities using off-the-shelf conic
quadratic solvers. In Section 8, we test the effective-
ness of the proposed inequalities for a variety of
problems discussed in Section 2. Section 9 concludes
the paper.

2. Applications
In this section, we present seven mixed 0-1 optimization
problems in which sets Hx and Ry arise naturally.

2.1. Mean-Risk Minimization and Chance Constraints
with Uncorrelated Random Variables
Conic quadratic constraints are frequently used to
model probabilistic optimization with Gaussian dis-
tributions (e.g., Birge and Louveaux 2011). In par-
ticular, if a;, ¢; denote the mean and variance of ran-
dom variables p;, i€ N, and b;, d; the mean and
variance of random variables §;, i € M, and all vari-
ables are independent, then
min a'x+b'y +®(a)z
(x,y,2)€Hx

corresponds to the value-at-risk minimization prob-
lem over X, where @ is the cumulative distribution

function of the standard normal distribution and 0.5 <
a < 1. Alternatively, the chance constraint Pr(p’x +
gy <r)>a is equivalent to ax+by+d(a)z <7,
(x,y,z) € Hx. Models with Hy also arise in robust and
distributionally robust optimization problems with
ellipsoidal uncertainty sets (Ben-Tal and Nemirovski
1998, 1999; El Ghaoui et al. 2003; Ben-Tal et al. 2009;
Zhang et al. 2018).

2.2. Mean-Risk Minimization and Chance Constraints
with Correlated Random Variables

If p ~ N(a, Q), where a is the mean vector and Q > 0 is

the covariance matrix, then the value-at-risk minimiza-

tion or chance-constrained optimization with 0-1 vari-

ables involve constraints of the form v/x’Qx < z.

A standard technique in quadratic optimization
consists in utilizing the diagonal entries of matrices to
construct strong convex relaxations (e.g., Poljak and
Wolkowicz 1995, Anstreicher 2012). In particular, for
x € {0,1}", we have

¥'Qx <z & x'(Q—diag(c))x +c'x <z

with ¢ € R" such that Q —diag(c) > 0. This transfor-
mation is based on the ideal (convex hull) represen-
tation of the separable quadratic term x’diag(c)x as ¢’x
for x € {0,1}". Using a similar idea and introducing a
continuous variable y € R, we get

V¥'Qx <z © (x,y,2) € Hx and /x’(Q — diag(c))x < y.
@)

The approach presented here can also be used for
mixed binary sets X.

2.3. Robust Conic Quadratic Interdiction

Given a set of potential adverse event (e.g., natural
disasters, disruptions, enemy attacks) scenarios C,
consider the problem of minimizing the worst-case
cost when only a subset of the events can occur
simultaneously. If the nominal problem—when no
adverse event occurs—is a mixed-integer linear op-
timization problem, then the worst-case minimiza-
tion problem can be formulated as

. ’ ’
minmaxa,x + (a-x)u' LI
xeX uel 0 ]gcl ] ” ( )

where U = {u € {0,1} : Tjeg u; < T} is the uncertainty
set, I' € Z, is the maximum number of events that
may occur simultaneously, a4y is the nominal cost
vector and 4; € R is the additional cost vector if event
j occurs. Problem (LI) arises naturally in robust op-
timization (Bertsimas and Sim 2003, 2004), and it has
received a vast amount of attention in the context of
interdiction (e.g., Wood 1993, Cormican et al. 1998,
Israeli and Wood 2002, Lim and Smith 2007).
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We now consider the generalization, where the
nominal problem is a mixed-integer conic quadratic
optimization problem, for example, with a value-at-
risk minimization objective, considered in Atamtiirk
etal. (2019). In this case, the worst-case minimization
problem is

@" = minmaxajx + > (a x) U+ \/x’Qox + > (v Q)

xeX uell jeC jeC
(CQI

where Qp > 0 is the nominal covariance matrix and
Q; = 01is the matrix of increased covariances if event j
happens.

Problem (CQI) was studied by Atamtiirk and Gémez
(2017) for a convex feasible set X. They show that
solving the inner maximization problem is N'P-hard
for a fixed value of x and that feasible solutions with
objective values within 25% of the optimal can be
obtained by solving the optimization problem

1
w, = min Zw+a(’)x+20+Fy
st.y>ax+z VieC
Vie{0}uC

xeX,zeRLrC|+l,weR+,yeR+.

(IA)
X’ Q]x < z]-w

Formulations for the generalization in which U is set
of extreme points of an integral polytope are also
proposed but are omitted here for brevity.

If the set X is conic quadratic representable, then
(IA) can be tackled with off-the-shelf mixed-integer
conic quadratic solvers. Moreover, if all x variables
are continuous, then (IA) is a convex optimization
problem, thus polynomial time solvable. In contrast,
if some variables are discrete, then (IA) is much more
challenging, especially because of the rotated cone
constraints x’Q;x < z;w. Observe that, in this case, we
can introduce an additional variable y € R, and then
utilize the decomposition

X' Qx < zjw & (x,y,w,z) € Rx and
X' (Q —diag(c))x <y

to derive stronger formulations.

2.4. Lot-Sizing and Scheduling Problems

Inventory problems with economic order quantity in-
volve expressions of the form k£ where p € R, is the
demand, g € R, is the lot size, and k€ R, is a fixed cost
for ordering inventory. In simple settings, the optimal
lot size q* can be expressed explicitly (Nahmias and
Cheng 2005), but in more complex settings in which
the demand is a linear function of discrete variables,
for example, in joint location inventory problems
(Ozsen et al. 2008, Atamtiirk et al. 2012), this is not

possible. In such cases, the order costs involve ex-

pressions of the form
/

%Szcﬂx,q,z) € Rg. (4)

The ratio (4) also arises in scheduling, specifically
in the economic lot scheduling problem (Sahinidis and
Grossmann 1991, Bollapragada and Rao 1999, Pesenti
and Ukovich 2003, Bulut and Tasgetiren 2014). In this
context, ¢ is the vector to setup costs/times and g
denotes a production cycle length; thus, z in (4) corre-
sponds to setup costs/times per unit time. Expression (4)
also arises in the plant design and scheduling prob-
lems to model the profitability or productivity of the
plant (Castro et al. 2005, 2009).

2.5. Queueing System Design

The service system design problem, also referred to as
the facility location problem with stochastic demand
and congestion (Amiri 1997; Berman and Krass 2001;
Elhedhli 2005, 2006), aims to locate a set of service
facilities while balancing operational costs and service
quality. If a facility services too many customers, it may
become overly congested, resulting in long waiting
times for the customers and poor service quality overall.
Specifically, congestion is often modeled using queue-
ing theory. Givenan M/M/1 queue with mean demand
A and mean service rate y > A, the average time in the
system is —15. Additionally, in the service system design
problem, the demand atlocation i is of the form A; = ¢}x,
where x are binary decision variables modeling the as-
signments of customers to facilities; moreover, the ser-
vice rates are of the form p; = djy, where y are variables
representing the servers installed at location j. Thus,
the service system design problem is of the form

min ax+b’y+Q27,

DP
(xy,t)eX cix (SS )

i
where Q) > 01is the welght given to the service quality,
and each term _- - is the total time of servicing the

,y cx
customers at location j. Observe that

e

ay—cx z& (x,u—A,z) €Rp,

thus, strong formulations for R can be directly used
in the context of (SSDP).

2.6. Binary Linear Fractional Problems
Generalizing the models in Sections 2.4 and 2.5, bi-
nary linear fractional problems are optimization prob-
lems with constraints of the form

co+ 2 cix; 1
=SBV <z o0+ ) ox Szw, w=ag+ | 4iX;
ag+ 2, 4iX; i=1 i=1
n
& (x,w,z) € Rg, with w = ao + > a;x;,
P
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wherea;, ¢; > 0fori =0,...,n. Notethatalowerbound
on the ratio can also be expressed similarly by com-
plementing variables. Binary fractional optimization
arises in numerous applications, including assort-
ment optimization with mixtures of multinomial
logits (Désir et al. 2014, Méndez-Diaz et al. 2014, Sen
etal. 2018), WLAN design (Amaldietal. 2011), facility
location problems with market share considerations
(Tawarmalani et al. 2002), and cutting stock problems
(Gilmore and Gomory 1963), among others; see also
the survey Borrero et al. (2016a) and the references
therein.

Applications of binary linear fractional optimiza-
tion are abundant in network problems. For example,
given a graph G = (V, E), problems of the form

.o C.,x..
min{m sxy > |xi—xjl, (i, ) €E, x € X € {0, 1}V+E}
2iev AiXi
5)

arise in the study of expander graphs (Davidoff et al.
2003); in particular, the optimal value of (5) withc =1,
a=1and X = {x € {0,1}V*F : 1 < Tjev x; < 0.5|V} cor-
responds to the Cheeger constant of the graph. See
Hochbaum (2010) and Hochbaum et al. (2013) for
other fractional cut problems arising in image seg-
mentation, and see Prokopyev et al. (2009) for a dis-
cussion of other ratio problems in graphs arising
in facility location.

2.7. Sharpe Ratio Maximization

Let a;,¢; be the mean and variance of normally dis-
tributed independent random variables p;, i € N as in
Section 2.1. A natural alternative to mean-risk mini-
mization for a risk-adverse decision maker is, given a
budget r, to maximize the probability of meeting the
budget; that is,

maxPr(p'x < 7). (6)

xeX

Problems of the form (6) are considered in Nikolova
et al. (2006) in the context of the stochastic shortest
path problem.

Assuming thereis asolution x € Xsatisfyinga’x <,
note that

4 ’ ’ ’
Pr(p'x < 1) = Pr proax _r-ax) _o[r-ax)
\/c’_x \/@ c’'x
Because @ is monotone nondecreasing and r —a’x > 0
for any optimal solution, we see that (6) is equiva-
lent to maximizing r‘f,/;‘. Observe that the resulting
objective corresponds to maximizing the reward-to-
volatility or Sharpe ratio (Sharpe 1994), a commonly
used risk-adjusted performance measure in finance.

Maximizing the Sharpe ratio is equivalent to mini-
Verx

r—a’x’

mizing Therefore, we can restate (6) as
min z

stw=r—-ax

Ve'x < wz (7)
xeX, w,z>0. (8)

Constraint (7) is not conic quadratic. Note, however,
for w,z > 0, we have

Ve'x < wz & \/4(\/4c’x)2+(w—z)2 <w+z

Then one gets a convex relaxation by replacing the
nonconvex term Vc'x by its convex lower bound
VZien cixt. The resulting conic quadratic represent-
able inequality can be written as

> cixt <wz.
ieN

As we show in Section 4.2, a nonlinear version of the
extended polymatroid inequalities corresponding to
the submodular function h(x) = 2v/c’x is sufficient to
describe the convex hull of the set given by (7) and (8)
for X = B, see Section 4.2.

3. Preliminaries

In this section, we review earlier results for the binary
and mixed 0-1 cases. Given ¢ >0 and ¢; >0, i € N,
consider the set

HB:{(x,z)eBxR+: /a+2c1xis,z}. 9)
ieN

Observe that Hg is the binary restriction of Hp ob-
tained by setting v = 0, and it is the union of a finite
number of line segments; therefore, its convex hull is
polyhedral. For a given permutation ((1),(2),..., (n))
of N, let

O(k) = C(k) t O(k=1)/ and o) =0,

Tk = VoK) — VO (k-1)/ (10)

and define the polymatroid inequality as

n
Z (X < Z— \/E (11)

i=1

Let I'l, be the set of such coefficient vectors 7t for all
permutations of N. The set function defining Hp
is nondecreasing submodular; therefore, I1; is the
set of extreme points of the extended polymatroid
(Edmonds 1970) associated with the submodular

function f(x) = Vo + Xien cixi. Then it follows from
Lovasz (1983) that the convex hull of Hp is given by
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the set of all polymatroid inequalities and the bounds
of the variables.

Proposition 1 (Convex Hull of Hp).
conv(Hp) = {(x, 2) e [0, 1]V xR, : 'x < 2 — Vo,

Ve Hg}.

Proposition 2 is a direct consequence of a result
by Edmonds (1970), showing the maximization of a
linear function over a polymatroid can be solved by
the greedy algorithm. Therefore, a point (¥,z) €[0,1]N xR,
can be separated from conv(Hg) via the greedy al-
gorithm by sorting X;,i€N in nonincreasing order in
O(nlogn) time.

Proposition 2 (Separation). A point (X,z) ¢ conv(Hp)
such that Xy > X() > -+ 2 X(y) is separated from conv(Hp)
by inequality (11).

Atamtiirk and Narayanan (2008) consider the mixed-
integer version of Hp:

Hg = {(x,y,z) e CxR, :\/a + e + > diy? < z},

ieN ieM

where d; > 0, i € M and give valid inequalities for Hg
based on the polymatroid inequalities. Without loss
of generality, the upper bounds of the continuous
variables in Hg are set to one by scaling.

Proposition 3 (Valid Inequalities for Hg). For T C M,
inequalities

w'x + ’O’ + Z d,ylz <z, TE Hg+d(T) (12)
ieT

are valid for Hg.

Inequalities (12) are obtained by setting the subset
T of the continuous variables to their upper bounds
and relaxing the rest, and they dominate any in-
equality of the form

Ex+ Jo+ Dldy? <z
i€T

with & € R". Although inequalities (12) are the stron-
gest possible among inequalities that are linear in
x and conic quadratic in y, they may be weak or
dominated by other classes of nonlinear inequalities.
In this paper, we introduce stronger and more general
inequalities than (12) for Hg.

4. The Case of Unbounded

Continuous Variables
In this section, we focus on the case with un-
bounded continuous variables, that is, on Hp, where
D = {0, 1} x R". In this case, because the continuous

variables have no upper bound, the only class of valid
inequalities of type (12) are the polymatroid inequalities

Vo+m'x<z, Vmell, (13)

themselves from the “binary-only” relaxation by let-
ting T = 0. Inequalities (13) ignore the continuous
variables and are, consequently, weak for Hp. Here,
we define a new class of nonlinear valid inequalities
and prove that they are sufficient to define the convex
hull of Hp.

Consider the inequalities

(\/5 + n’x)2 +> dy? <z, mell,. (14)
ieM

Proposition 4. Inequalities (14) are wvalid for Hp.

Proof. Consider the extended formulation of Hp
given by

Hp = {(x,y) €D, (z,5) eR: s>+ > diy; <27,
ieM

o+ > cix < sz}.

ieN

The validity of inequalities (14) for Hp follows di-
rectly from the validity of the polymatroid inequality
Vo + 'x <s, m € I1, (Proposition 1) for Hp. O

Remark 1. For M = (), inequalities (14) reduce to the
polymatroid inequalities (11).

Remark 2. Because inequalities (14) correspond to
polymatroid inequalities in an extended formulation,
the separation for them is the same as in the binary case
and can be done by sorting in O(n log 1) (Proposition 2).

Inequalities (14) are obtained simply by extracting a
submodular component from function f. The approach
can be generalized to sets of the form

U= {x €X,(y,2) € R h(x) + > diyf < zz},

ieM

and h: {0,1}" — R, is an arbitrary nonnegative func-
tion. Define

U0:<x€X,SZO:WSS}

and observe that, because U is a finite union of line
segments, conv(Uy) is a polyhedron. Moreover, valid
inequalities for conv(Up) of the form &'x <s, £ €&,
can be lifted into valid nonlinear inequalities for U of
the form

(&x)*+ > dy? < 2. (15)

ieM
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Proposition 5 implies inequalities of the form (15)
are sufficient to describe conv(U) if &’x <s, £ € E are
sufficient to describe conv(Up).

Proposition 5. The convex hull of U is described as

conv(U) = {(x, y,z) € R Js st (x,5) € conv(Uy)

and s> + > diy} < 22}-

ieM

Proof. Consider the optimization of an arbitrary linear
function over the extended formulation of U obtained
by adding a variable s > 0 and the constraint v/i(x) <,

min —a'x-by+rz
st.s?+ > dyf <2%, (x,s)€ Uy, yeR},z>0 (BP)
ieM
and over its convex relaxation,
min —a'x-b'y+rz
s.t.s? + D diy? < 2%, (x,s) € conv(Up),y € R,z > 0.
ieM
(P1)

We prove that, for any linear objective both (BP) and
(P1) are unbounded or (P1) has an optimal solution
that is integer in x. Without loss of generality, we can
assume that » > 0 (if r <0, then both problems are
unbounded, and if r = 0, then (P1) reduces to a linear
program over an integral polyhedron by setting z
sufficiently large and is equivalent to (BP)), r = 1 (by
scaling), b; > 0 (otherwise y; = 0 in any optimal so-
lution), and d; = 1 for all i € M (by scaling y;).

Eliminating the variable z from (P1) we restate the
problem as

min{—a’x —by+ |2+ D> y7: (x,5)
ieM

e conv(ly), y € ]R’f}- (P2)

Note that, if y = 0 in an optimal solution of (P2), then
(P2) reduces to a linear optimization over conv(l),
which has an optimal integer solution. Thus, we as-

sume that /s + Z;emy? >0, and in that case, the
objective function is differentiable, and by convexity
of (P2), optimal solutions correspond to Karush-
Kuhn-Tucker (KKT) points. Let u € R be the dual
variables for constraints y > 0. From the KKT condi-
tions of (P2) with respect to y, we see that

Yk VkeM.

V82 + Siemy;

However, the complementary slackness conditions
Yitr = 0imply that yi = 0 for all k as, otherwise, —p =
by contradicts the assumption that by > 0. Therefore,
it holds that

Ve =Dbe |2+ >y, VkeM.
ien

Defining g = X%, b?, we have

D byi=p [P+ >y
ieM ieM

A =ﬁ(sz +Zy?)- (16)

ieM ieM

and

Observe that, if f > 1, equality (16) cannot be satisfied
(unless p =1 and s = 0), and the feasible (P2) is dual
infeasible. Indeed, let A > 0 and y; = Ab; for alli e M
and observe that, for any value of s,

. - - - if f>1
lim -b'y+ [$2+ 2 = { <!
7YY %y, 0 ifp=1

Thus, if > 1, then both problems (BP) and (P2) are
unbounded. Moreover, if f =1, let
(x",s") € argmin -a'x
(x,5)econv(Up)
with a minimal value of s*; if s* = 0, then (x*, 1/, 5") is an
optimal solution of both (BP) and (P2) for any A > 0,
and if s* > 0, then there does not exist an optimal
solution for problems (BP) and (P2), but infima of
the objective functions are attained at x*, s", and y =

as A — oo.
If p <1, then we deduce from (16) that

_ P
Zy%_l—ﬁSZ.

ieM

Replacing the summands in the objective, we rewrite
(P2) as

min —a’x +sy1 - (P3)

s.t. (x,s) € conv(Uyp).

As <1, (P3) has an optimal solution, and it is in-
tegral in x. By projecting out the additional variables,
we obtain the desired result. O

Remark 3. From Proposition 5, we see that, with no
constraints on the continuous variables, describing the
mixed-integer set conv(Hx) reduces to describing a
polyhedral set. Moreover, strong inequalities from
pure binary sets (e.g., Yu and Ahmed 2017) can be
naturally lifted into strong inequalities for Hx.

Corollary 1. Inequalities (14) and bound constraints com-
pletely describe conv(Hp).
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Proof. Follows from Proposition 5 with Uy = Hg, where
the convex hull of Hp is given in Proposition 1 and
substituting out the auxiliary variable s. O

4.1. Comparison with Inequalities in the Literature
As seen in this section, inequalities (14) give the
convex hull of Hp. Therefore, they are the strongest
possible inequalities for Hp. It is of interest to study
the relationships to inequalities previously given in
the literature. It turns out that, for the case of a single
binary variable, they can be obtained as either split
cuts or conic MIR inequalities based on a single
disjunction. The equivalence does not hold in higher
dimensions as, in such cases, Hp is a disjunction
of 2" sets, and neither split cuts nor conic MIR in-
equalities based on single disjunctions are sufficient
to describe conv(Hp).

To see the equivalence, we now consider the special
case of conic quadratic constraint with a single binary
variable x:

{(x y,2) € {0, 1} x R Jo+cx+ > dy? < z}.
ieM

4.1.1. Comparison with Split Cuts. We first compare
inequalities (14) with the split cuts given in Modaresi
et al. (2016). Following the notation used by the au-

thors, let
{(y,z) eR™2: Jo+y3+ Z diy? < Z}
ieM

be the base set, let F = {y e R"*!: 0 <y, < c} be the
forbidden set, and define K = B\ int(F), where int(F)
denotes the interior of F. Letting yo := vcx, we see that
H! and K are equivalent.

First, consider the case ¢ = 0. From Corollary 1, we
see that that

conv (H 1)

{(x y,z) €[0,1] x R™1 . \/—sz+—zdly2 < z}
ieM

Moreover, from corollary 5 of Modaresi et al. (2016),
because 0 ¢ (0, c), we find that conv(K) = B. Thus, the
results coincide in that the convex hulls of H' and K
are the natural convex relaxations of the sets.

Now consider the case ¢ > 0. From Corollary 1, we
see that

conv (Hl) = {(x, y,2)€[0,1] x R71:

NG + (VET5 - V3 ))? + 2 < }

ieM
(17)

Moreover, from proposition 8 of Modaresi et al.
(2016), we find that

cont = i1 0 (16 YTy

Ve
+ > diy; < zz}.

ieM

Thus, the results coincide again.

4.1.2. Comparison with Conic MIR Inequalities. We
now compare inequalities (14) with the simple non-
linear conic mixed-integer rounding inequality given in
Atamtiirk and Narayanan (2010). Letting a = vo +
Vo+cand b = g, we can write

= {(x,y, z) €{0,1} X R : (x = b)*+ > d; Z; < a_Z}

ieM

Note that, if 0 = 0, then b = 0, and the MIR inequalities
reduce to the original inequality, which defines the
convexhullof H!. If ¢ > 0, then |b] = 0, and the simple
mixed integer rounding inequality is

yi _ 7
((1—2b)x+b)2+§2d, 155

@((1_2f+\/«;m)“ﬁ)2+2dfy—’z<é

- 2 2
@((M)H\/E) cyate?

a a
and multiplying both sides by a* we get (17).

4.2. Set Ry with Rotated Cone
Here, we consider the set Ry and, more generally, sets
of the form written in conic quadratic form

Ur = {x € X, (y,w,z) € R™? : h(x)

+ > diyi + (w—2)* < (w+ z)z},
ieM
where h: X — R,.

Observe that the approach discussed in Section 4
can be used for Rx and Ug. For example, using in-
equalities (14) for Rx results in the valid inequalities

(\/5 + 7z’x)2 + > diy; + (w —z2)?
ieM

<(w+2)? mell,. (18)

We can also write inequalities (18) in rotated cone
form:

(\/E + n’x)2 + > diy; <4wz, mell,.

ieM
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Note, however, that the second-order cone constraint
defining Rx and Ug has additional structure, namely
the continuous nonnegative variables w and z in both
sides of the inequality. Nevertheless, as Proposition 6
states, inequalities (18) are sufficient to characterize
conv(Rx). The proof of Proposition 6 is provided in
Appendix A.

Proposition 6. The convex hull of Uy is described as

conv(UR) = {(x, y,w,z) € R™™2: Js st (x,5)

€ conv(Up) and s> + > diy* < 4wz}-
ieM
Remark 4. Consider again the set given by (7) and (8)
in Section 2.7 and observe that it corresponds to Ur
withm =0and Uy = {x € X, s € R, : 24/c’x < s}. Thus,
if X ={0,1}", then conv(Ug) is given by bound con-
straints and inequalities

(&'x)? <wz, & eTl(h),

where I() is the set of extreme points of the extended
polymatroid associated with the submodular func-

tion h(s) = 23/c'x.

5. The Case of Bounded

Continuous Variables

In this section, we study Hg with bounded continuous
variables, that is, by scaling G = {0, 1}"x[0, 1]". We first
give a description of conv(Hg) for the casen =m =1
and discuss the difficulties in obtaining the convex
hull description for the general case (Section 5.1). Then
we describe valid conic quadratic inequalities that
can be used with off-the-shelf solvers (Section 5.2).

5.1. Two-Variable Case with a Bounded
Continuous Variable
In this section, we study the three-dimensional set

L= {(x,y,z) €{0,1} X [0,1] X Ry : \Jo + cx + dy? SZ},

where o > 0is a constant. First, we give its convex hull
description.

Proposition 7. The convex hull of L is described as

conv(L) = {(x,y,2) € [0,1] X [0,1] x R, : g(x,y) < z},
where

81(0,9) = (VG + x(VEF 0~ V) P+ 2

ify<x+(1-x)%
2(x,y)=yo(l—x2 +dy—x)2+xVo+c+d
otherwise.

8(x/y) =

Proof. A point (x,y, z) belongs to conv(L) if and only if
there exist x1,x2,Y1,Y2,21,22, and 0 < A <1 such that
the system

x=(1-A)x; +Ax, (19)
y=0-yn+ Ay (20)
z=(1-A)z1 + Az (21)

z1 > AJo +dy? (22)
Zp > LJo+c+dy3 (23)

0<y1,12<1, x1=0, xp,=1 (24)

is feasible. Observe that, from (19) and (24), we can
conclude that A = x. Also observe that, from (19), (22),
and (23), we have that

z=(1-x)z1 +x2

©z>(1-x) o+dy%+x\/a+c+dy%.

Therefore, the system is feasible if and only if

z 2 min (1 -x) 0+dyfi'+x\/c7+c+dy§ (25)

Y2
sty=0-x)y1 +xy2 (»)
(CH) n <1 (1)
Y2 <1 (a2)
n=z=0 B1)
Y220, (B2)

and let y, a = (a1, a2), and = (1, B2) be the dual var-
iables of the optimization problem. Note that the
objective function is differentiable even if ¢ = 0 be-
cause, in that case, the function +/o + dy% reduces to
the linear function \/Eyl. Moreover, the optimization
problem is convex, and from KKT conditions for
variables y; and 1, we find that

—(1—x)&=y(1—x)+a1—,81

Vo +dy?

No + ¢+ dy3
SN [ S— ar—pr = 72 +a -2, (26)

where &, f correspond to a and B after scaling.
We deduce from (26) and complementary slackness
that y1,y» > 0 (unless y = 0) and that y; < y»;ify; =0
and y; >0, then a; =B, =0, and (26) reduces to
—Bl =1p/\Jo+c+ dy% + ap, which has no solution
because the right-hand side is positive. Letting 1/, = 0
and y; > 0 results in a similar contradiction, and if
0<ys<yi, then f1=ad =B, =0 and (26) reduces
to y1/+/o +dy? + a1 = y»/+o + ¢ +dy3, which has no

solution because y; >y, implies that yi/+/o +dy? >

Y2/No +dy3 > ya/Jo + ¢+ dy3.
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Therefore, for an optimal solution, either 0 <y <1

(anda=p=0)ory, =1 (and @, > 0). If & = p = 0, then

. Vo
N o+ (1-xvo
- VeFo

=Y Jeto+(1-0vo

satisfy conditions (20) and (26). Thus, if y; <1, then
Y1, Y5 also satisfy the bound constraints and corre-
spond to an optimal solution to problem (CH). Re-
placing (y1,y2) by their optimal values (y3,5) in (25),
we find that

and

z> \/(\/E+x(\/c+o— \/E))2+dy2.
The condition y; <1 is equivalent to

xVe+o+(1-x)Vo [ o
y < N =x+(1-x) o

On the other hand, if 5 > 1, an optimal solution to the
optimization problem (CH) is given by i, =1 and
1 =¥=. Substituting (y1,y2) by their optimal values

in (25),

zz\/a(l—x)2+d(y—x)2+x\/o+c+d

wheny>x+(1-x);5% O

Note that inequality g1(x,y) < z is a special case of
inequalities (14). If 0 = 0, then we find that g»(x,y) <z
reduces to Vdy + x(Vc +d — Vd) < z, which is a spe-
cial case of inequalities (12). However, inequality
g2(x,y) < z is not valid if ¢ > 0. In particular, it cuts
off the feasible point (x, y,z) = (1,0, Vo + ¢). Moreover,
it can be shown that the inequality g»(x, y) < z cuts off
portions of conv(L) whenever y < x + (1 —x) ‘/%

Figure 1. Functions g1, g witho=d=1,c=2 (x=0.5)
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Example 1. Consider the set L witho =d =1 and c = 2.
Figure 1 shows functions g; and g» when x =0.5 is
fixed and illustrates the comments. We see that the
function g, is always “above” the function g; and cuts
the convex hull of L (the shaded region) whenever

y<x+(1-x)3=

Unfortunately, Proposition 7 does not help to describe
the convex hull of Hg with more than one bounded vari-
able. Additionally, piecewise valid functions such as g(x, )
in Proposition 7 cannot be directly used with standard
algorithms for convex mixed-integer optimization. Thus,
we now turn our attention to deriving inequalities that
are valid and can be implemented as conic quadratic cuts
if not sufficient to describe conv(Hg) in general.

5.2. The General (Multivariable) Case

To obtain valid inequalities for Hg, we write the
conic quadratic constraint in extended form for a
subset T C M of the continuous variables:

S+ > dy? <2,

ieM\T
o+ Z cixi + Z d;ylz < 52, (27)
ieN i€T

xe{0,1}",y€[0,1],5>0.

Applying inequality (12) to (27) and eliminating the
auxiliary variable s, we obtain the inequalities

2
( o+ > diy?+ n’x)
\ ieT

+ Z dzylz < ZZ, S Ha+d(T)~
ieM\T

(28)

Proposition8. For T C M, inequalities (28) are valid for H.

Note that inequalities (28) generalize or strengthen
the previous valid inequalities proposed in this paper
and other inequalities in the literature.
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Remark 5. For T =0, inequalities (28) coincide with
inequalities (14). For T = M, inequalities (28) coincide
with inequalities (12). If T ¢ M, then inequalities (28)
dominate inequalities (12).

Example 1 (Continued). We obtain from (28) the valid
inequality

g3(x/y)=\/0+dy2+X(\/a+c+d—\/a+d) <z

for L. As Figure 2 shows, the inequality provides a
good approximation of L for the example considered.

6. Valid Inequalities for General Hy

In this section, we derive inequalities that exploit the
structure for an arbitrary set X C ID. We first describe
a lifting procedure for obtaining valid inequalities
for any mixed binary set X, where computing each
coefficient requires solving an integer optimization
problem (Section 6.1). Then, we propose an approach
based on linear programming to efficiently compute
weaker valid inequalities (Section 6.2).

6.1. General Mixed Binary Set X

We now consider valid inequalities for Hx, where
X € D. The inequalities described here have a struc-
ture similar to the nonlinear extended polymatroid

inequalities (14) and (28). For a given a permutation
(1), (2),...,(m))of Nand T C M, let

h(x,y) = o + Z coxa + >, 47,

ieT
) = maX{hk(x Yoy €X,x =1}, and (29)

o = {w/c(k) + 00 — 0w if G < oo

(30)
otherwise.

619
Consider the inequality
( o+ > diyt+ Zp(ox(z)) + > dyi<Z2 (31
ieT iEM\T

Proposition9. For T C M, inequalities (31) are valid for Hx.

Proof. Let

Hx(T) = {(x,y) €X,s>0: \/a + > o+ > diy? < s},

ieN i€eT

and consider the extended formulation of Hx given by

x =3 y,s) €Hx(T),z=0: [s2+ > dy? <z
iEM\T

To prove the validity of (31) for Hy, it is sufficient to
show that

n
o+ Z diyiz + Z PoX@ <8

ieT i=1

(32)

is valid for Hx(T). In particular, we prove by induction
that

o+ > diy? +

i€T

k
2 PeX < \/‘7 + Z caxo + D, diy?
i=1

i€T
(33)

forall (x,y) e Xand k=0,...,n
Base case: k = 0. Inequality (33) holds trivially.
Inductive step: Let (X,9) € X, and suppose inequal-
ity (33) holds for k—1. Observe that, if X4 =0 or

Figure 2. Functions g1, g, and gz witho=d =1,c=2 (x =0.5)
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P = 0, then inequality (33) clearly holds for k. There-
fore, assume that Xy = 1 and ) < co. We have

k
\/0 + DX + D dil?
i=1

ieT

= (X, 7) +

N e (\/hk@, 7 + o - Vin®, y))

> Vhe®,9) + (VG + i — \/@) (34)

k
z ot 2L dii + > paXay, (35)
i€T i=1

where (34) follows from 6y > (X, i) (by definition of
0(k) and from the concavity of the square root func-
tion, and (35) follows from \/hk(a_c, y) = Vo + Sier diy? +
Sk pX i (induction hypothesis) and from the def-
inition of py). O

Remark 6. Note that o_1) = 0 + Xl ¢, and if T =0,
then
k-1
5 k) = + )X
O(k) I?S(X o Z C(i)Xi

=1 =

In particular, if T = 0, then 6 < 0¢—1) and pgy > 7T(k).
Thus, for T = @ and X = D, inequalities (31) reduce to
inequalities (14); for T = @ and X C D, inequalities (31)
dominate inequalities (14).

Remark 7. For X = G, inequalities (31) reduce to in-
equalities (28). For X C G, inequalities (31) dominate
inequalities (28).

Remark 8. For the case of the pure binary set defined
by a cardinality constraint, that is, ¥ = {x € {0,1}":
>, xi <k}and o = 0, Yuand Ahmed (2017) give facets
for conv(Hy). However, noting the computation burden
of constructing them, they propose approximate lifted
inequalities of the form X, mxa) + Zisk piyX) < 2,
where 7 are computed according to (10), and

P = \/C(T<i>) + ) — \/C(T<i>)

with T = argmax{c(T) : T € {(1),...,({ - 1)}, |T| =
k —1}. Thus, their approximate lifted inequalities
coincide with inequalities (31) and can be computed
in O(nlogn). If the set X has additional constraints,
then inequalities (31) are stronger than the approxi-
mate lifted inequalities of Yu and Ahmed (2017).

Remark 9. The strengthened extended polymatroid
inequalities described in this section can be used with

rotated cone constraints as well. In particular, for
the set

Ry = {(x,y) €EXw>0z20:0+ D¢
ieN

ieM

+ > diy; < 4wz},

we find that inequalities

n 2
( o+ > diyi + le P(z’)x(w) + > diy} <4dwz  (36)
i=

ieT ieM\T

are valid for Ry.

6.2. Relaxed Inequalities
Note that computing each coefficient of inequality (31)
requires solving a nonconvex mixed 0-1 optimization
problem (29), which may not be practical in most
cases. However, observe from Remarks 6 and 7 that
solving the optimization problem over any relaxation
of X that includes the bound constraints results in
valid inequalities at least as strong as the ones re-
sulting from using only the bound constraints.

In particular, assume in problem (29) that, fori € T,
y; has a finite upper bound (otherwise the problem
is unbounded and p; =0) and u; =1 (by scaling).
Moreover let Xp be a polyhedron such that X € Xp.
Convex constraints can also be included in Xp by
using a suitable linear outer approximation (Ben-Tal
and Nemirovski 2001, Tawarmalani and Sahinidis
2005, Hijazi et al. 2013, Lubin et al. 2018).

Given Xp, the approximate coefficients

Py = Vew + 0 — Vo), with

k-1
6(k) =0+ max{Z CiXa) + Zd,‘yi : (X,y) € Xp, X = 1}

i=1 i€T

(37)

can be computed efficiently by solving n linear pro-
grams. Moreover, the linear program required to
compute G differs from the one required for ¢y
in two bound constraints, corresponding to x(_1)
and x(), and one objective coefficient, corresponding
to X(-1). Therefore, using the simplex method with
warm starts, each 6 can be computed efficiently,
using only a small number of simplex pivots.

7. Computational Considerations

Table 1 presents a classification of the proposed in-
equalities, depending on whether the continuous
variables are bounded or not, on whether the in-
equalities are for the set with the conic quadratic
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cone Hy or the rotated cone Ry and on whether ad-
ditional constraints are used to strengthen the in-
equalities (strengthened) or not (polymatroid). Note
that there is a direct correspondence between the
inequalities for conic quadratic cones and for rotated
cones, and although not explicitly shown in the paper,
it is easy to construct the rotated cone version of in-
equality (28).

We now consider the implementation of the pro-
posed inequalities in branch-and-cut algorithms. First,
in Section 7.1, we discuss the difficulties in using the
inequalities for the (more general) bounded case;
then, in Section 7.2, we show how to efficiently use the
cuts for the unbounded case.

7.1. Bounded Case
For brevity, we only discuss inequalities (28) of the
form ¢(x,y) < z, where

2
ot =[S e 3
ieT ieM\T

All other inequalities for the bounded case have a
similar structure, so the discussion extends directly to
those cases as well. Inequalities (28) are nonlinear,
and can be added to the formulation as nonlinear
inequalities or can be implemented via linear cutting
planes using outer approximations. Unfortunately,
both approaches have drawbacks that may limit the
effectiveness of the inequalities in practice when used
with current off-the-shelf solvers.

7.1.1. Implementation as Nonlinear Cuts. The function
@ is conic quadratic representable; in particular, the
inequality @(x,y) < z is equivalent to the system

S% >0+ Z d,ylz (38)
i€l

S) =81 +71T'x

z>s5+ > dy? (39)
iEM\T

0<sy,52,

where (38) and (39) are conic quadratic inequalities
accepted by most solvers.

Observe that adding each inequality (28) requires
two additional variables and conic constraints; thus,

Table 1. Classification of the Proposed Inequalities

Polymatroid Strengthened
Continuous
variables Conic quad  Rotated  Conic quad Rotated
Unbounded (14) (16) 29),T=0 34), T=0
Bounded (26) (29) (34)

adding even a modest number of inequalities may
substantially increase the difficulty of solving the
convex relaxations at each node of the branch-and-
bound tree. Additionally, solvers rely on the dual
simplex method to solve the subproblems arising in
branch and bound (by constructing a linear approx-
imation of nonpolyhedral sets) because of its warm
start capabilities; adding nonlinear cuts such as (38)
and (39) may render the existing simplex tableau
ineffective and require solving the subproblems from
scratch. Finally, commercial solvers, currently, do not
allow adding nonlinear cuts during branching, and
inequalities (28) need to be added by the user at the
root node explicitly, giving up the benefits of built-in
cut-management strategies.

7.1.2. Implementation as Linear Outer Approximations.
Cutting planes based on a linear outer approximation
of the convex function ¢ can be added using gradi-
ents. Given a fractional solution (¥,¥), the linear
underestimator @(x,y) < z, where

P(x,y) = (X, 7) + Vo) (x - %) + Vy0(7) (v - )

is valid. In particular, we find

px,y) =y + % (1771'(36 —X)+C > diilyi — 1)
i€T

+ > difi(yi - J?i))/

ieM\T

where

n=_Jo+ > dyZ+n'%; (=

.
= Vo + Tier diy}’

v= P+ >0 A
ieM\T

Animplementation based on the linear cuts p(x,y) < z
leverages the existing capabilities of current commer-
cial solvers, including warm starts and cut-management
strategies. Nevertheless, each linear inequality ¢(x, y) < z
is often weak, and constructing a suitable approxima-
tion of the original nonlinear inequality @(x,y) <z
may require a prohibitive number of cuts.

In Appendix B we provide a comparison of both
approaches for a simple mean-risk minimization
problem with bounded continuous variables and no
correlations. Adding the nonlinear inequalities di-
rectly, as discussed in Section 7.1.1, results in sig-
nificantly better performance, both in terms of the
relaxation quality and the solution times. These re-
sults are consistent with the recent experience by the
authors using other classes of nonlinear inequalities;
see Atamtiirk and Goémez (2018) and Goémez (2018).
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7.2. Unbounded Case

In most of the applications discussed in Section 2, the
continuous variables are used to model covariance
terms, rotated cone constraints, or denominators in
fractional optimization. In such cases, the continu-
ous variables are unbounded, and the proposed in-
equalities can be implemented efficiently in such
settings. Observe that the conic quadratic inequality
arising in set Hy can be written in an extended for-
mulation as

$* > Z c,-xi2
ieN
2>+ > diy;
ieM
0<s.

Similarly, the rotated cone inequality arising in set Rx
can be written as

§* > Z cl-xi2
ieN
£ >5"+ > dy?
ieM
2
t* <wz
0<s,t.

In both cases, the polymatroid and strengthened in-
equalities can be added as linear cuts, n’x <s and
p’x <s, respectively. Thus, when adding the non-
linear inequalities as linear cuts in an extended for-
mulation, optimization algorithms benefit from the
warm starts and cut-management strategies without
sacrificing the strength of the inequalities. Such a for-
mulation cannot be used effectively for the bounded
case because an additional variable would be needed
for each subset T of M.

8. Experiments

In this section we report computational experiments
performed to test the effectiveness of the polymatroid
inequalities in solving second-order cone optimiza-
tion with a branch-and-cut algorithm. In Section 8.1,
we solve instances with general covariance matrices
(see application in Section 2.2); in Section 8.2, we
solve conic quadratic interdiction problems (see ap-
plication in Section 2.3); and in Section 8.3, we solve
binary linear fractional problems (see applications in
Section 2.6).

All experiments are done using CPLEX 12.6.2 solver
on a workstation with a 2.93 GHz Intel®Core™ i7 CPU
and 8 GB main memory and with a single thread. We
compare using default CPLEX without adding any
cuts (cpx), using the inequalities in Section 4 (poly-
matroid) and using the strengthened inequalities in

Section 6 (strengthened). Because, in all cases, the
continuous variables are unbounded, we implement
the inequalities as discussed in Section 7.2. The time
limit is set to two hours, and CPLEX'’s default settings
are used. The inequalities are added only at the root
node using callback functions, and all times reported
include the time required to add cuts.

8.1. Mean-Risk Minimization with Correlated
Random Variables

In this section, we test the effectiveness of the poly-

matroid inequalities in instances with correlated ran-

dom variables. In particular, we solve mean-risk min-

imization problems

n
xg}]lﬂ{ a'x + QJx’'Qx : ; x; < k}, (40)
where the matrix Q is generated according to a factor
model, that is, Q = ZFZ' + D, where F € R™ is the
factor covariance matrix, Z € R™" is the exposure
matrix, and D € R™" is the diagonal matrix with the
specific covariances. Observe that, in such instances,
we can set diag(c) = D in Equation (3).

In our experiments F= GG with GeR™ and
Gij ~ U[-1,1]; Z; ~ U[0,1] with probability 0.2 and
Zij =0 otherwise; D; ~ U[0,067], where 6>0 is a
diagonal dominance parameter and § =+ Xien Qosis
and a; ~ U[0.85v/Q;;, 1.154/Q;;]. We set the parameter
Q = ®'(a), where @ is the cumulative distribution
function of the normal distribution and a € {0.95,
0.975,0.99}. We let n =200, r = 40, and k equal 10%,
15%, and 20% of the number of the variables.

Tables 2 and 3 present the results for different
values of the diagonal dominance parameter 6. Each
row represents the average over five instances gen-
erated with the same parameters and shows the ini-
tial gap (igap), the root gap improvement (rimp), the
number of nodes explored (nodes), the time elapsed in
seconds (time), and the end gap (egap) [in brackets,
the number of instances solved to optimality (#)].

The initial gap is computed as igap =t"t|;g %100,

opt

where f,p; is the objective value of the best feasible
solution at termination and t,ejax is the objective value
of the continuous relaxation. The end gap is com-

puted as egap = t*’;ﬂ %100, where tp}, is the objective

value of the best lower bound at termination. The root
improvement is computed as rimpzmﬁ %100,
where foot is the value of the continuous relaxa-
tion after adding the valid inequalities to the for-
mulation. Figure 3 shows the corresponding perfor-
mance profiles.

Observe that adding inequalities polymatroid or

strengthened closes the initial integrality gaps by



Atamtiirk and Gomez: Submodularity in Conic Quadratic Mixed 0—1 Optimization

Operations Research, 2020, vol. 68, no. 2, pp. 609-630, © 2020 INFORMS 623
Table 2. Experiments with General Covariance Matrices (6 = 0.5)
cpx Polymatroid Strengthened

k a Igap  Rimp Nodes Time  Egap[#] Rimp  Nodes Time  Egap[#] Rimp Nodes Time  Egap[#]

20 0.95 1.7 22.6 9,557 74 0.0[5] 53.3 3,957 23 0.0[5] 55.6 2,367 17 0.0[5]
0.975 3.0 21.3 33,468 242 0.0[5] 53.5 13,316 86 0.0[5] 55.9 5,839 40 0.0[5]
0.99 5.2 15.2 164,568 1,845 0.0[5] 52.8 80,735 730 0.0[5] 55.3 23,577 269 0.0[5]
Average 19.7 69,198 720 0.0[15] 53.2 32,669 280 0.0[15] 55.6 10,594 109 0.0[15]

30 0.95 0.8 15.5 7,115 57 0.0[5] 53.3 1,656 11 0.0[5] 524 1,159 9 0.0[5]
0.975 1.3 149 18,901 135 0.0[5] 53.1 2,800 20 0.0[5] 54.0 2,095 15 0.0[5]
0.99 2.3 5.7 76,675 1,005 0.0[5] 61.1 8,265 48 0.0[5] 62.1 5,131 30 0.0[5]
Average 12.0 34,230 399 0.0[15] 55.8 4,240 26 0.0[15] 56.2 2,795 18 0.0[15]

40 0.95 0.4 23.3 2,910 18 0.0[5] 48.5 611 6 0.0[5] 50.5 577 6 0.0[5]
0.975 0.7 20.0 4,216 30 0.0[5] 54.3 884 7 0.0[5] 55.5 839 7 0.0[5]
0.99 1.1 13.5 46,030 514 0.0[5] 55.9 2,493 18 0.0[5] 56.7 2,144 14 0.0[5]
Average 18.9 17,719 187 0.0[15] 52.9 1,329 10 0.0[15] 54.2 1,187 9 0.0[15]

Notes. Bold indicates the average of the rows for each k. Igap, initial gap; cpx, default CPLEX without adding any cuts; Rimp, root gap

improvement; Egap, end gap.

45%-75%, resulting in significant performance im-
provement over default CPLEX. In particular, using
inequalities strengthened for instances with k =20
leads to a seven time speed-up with 0 =0.5 and
two time speed-up with 6 = 1) and lower end gaps.
Moreover, for instances with k > 30 using inequalities
strengthened results in at least an order of magni-
tude speed-up over default CPLEX. The impact of
both inequalities increases with higher diagonal dom-
inance as expected. In Figure 3, we see that, for
0 = 1.0, cpx requires close to 3,000 seconds to solve
70% of the instances, polymatroid requires 110 sec-
onds, and strengthened requires 50 seconds to solve
a similar number of instances; that is, strength-
ened is 50 times faster than cpx. In fact, strength-
ened solves in 60 seconds 73% of the instances, the
same quantity that cpx solves in two hours. Finally,
we see that the strengthened inequalities result in

consistently better performance than the simpler poly-
matroid inequalities.

8.2. Conic Quadratic Interdiction Instances
In this section, we test the effectiveness of the pro-
posed inequalities for the interdiction problem (CQI)
discussed in Section 2.3. In our computations, we
model a decision maker that seeks a path with min-
imal value at risk. After the decision maker decides on
a path, an adversary may attack a limited number of
arcs on the path, increasing the expectation and/or
covariance of travel times/costs.

The feasible region X is given by path constraints on
a 40 x 40 grid network. There is a potential adverse
event corresponding to each arc, and each event re-
sults in an increase in the nominal duration/cost and
variance of that arc: in particular, for i=1,...,n,
a; ~ U[0,2]¢!, where ¢ is the vector that has value one

Table 3. Experiments with General Covariance Matrices (6 = 1.0)

cpx Polymatroid Strengthened
k a Igap Rimp  Nodes  Time Egap[#] Rimp Nodes Time Egap[#] Rimp Nodes Time Egap[#]
20 095 2.9 21.6 64,283 927 0.0[5] 55.1 14,984 165  0.0[5] 59.1 6,233 68  0.0[5]
0.975 5.0 15.5 240,224 3,975 0.4[3] 44.4 189,826 3,390 0.4[3] 50.9 102,053 1,915 0.1[4]
0.99 9.0 64 378116 7,200  2.2[0] 357 477553 7,200  1.9[0] 431 430,707 5966  0.6[2]
Average 14.5 227,541 4,034 0.9[8] 45.1 227,454 3,585 0.8[8] 51.0 179,664 2,650 0.2[11]
30 095 11 17.1 32,629 316  0.0[5] 77.2 1,082 12 0.0[5] 78.2 682 10 0.0[5]
0.975 2.0 12.5 150,756 2,046 0.1[4] 72.9 12,202 107 0.0[5] 75.5 4,896 39 0.0[5]
0.99 35 105 258,866 3,679  0.5[3] 67.8 115507 1,510  0.1[4] 70.6 59,106 511  0.0[5]
Average 13.4 147,417 2,014 0.2[12] 72.6 42,930 543 0.0[14] 74.8 21,561 187 0.0[15]
40 095 0.6 23.9 6,522 64  0.0[5] 72.3 270 9  0.0[5] 74.8 192 8  0.0[5]
0.975 1.0 24.0 31,022 414 0.0[5] 71.0 823 12 0.0[5] 72.1 695 11 0.0[5]
0.99 1.6 176 122,568 2,907  0.2[3] 73.9 4,416 37 0.0[5] 75.1 2,543 26 0.0[5]
Average 21.8 53,371 1,128 0.1[13] 72.4 1,836 19 0.0[15] 74.0 1,143 15 0.0[15]

Notes. Bold indicates the average of the rows for each k. Igap, initial gap; cpx, default CPLEX without adding any cuts; Rimp, root gap

improvement; Egap, end gap.
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Figure 3. Percentage of Instances Solved Within a Given Time Limit for Mean-Risk Minimization with Correlated Random
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in the ith position and zero elsewhere, and the ith row
and column of Q; is drawn from U[0, 2] and Q; has zero
entries elsewhere. Each element of the nominal cost
vector ag is drawn from U[0, 1], and the squared roots
of every diagonal element of Q are also generated
from U[0, 1]. The parameter Q) is set as in Section 8.1.

Table 4 shows the results for different values of «
and the parameter controlling the number of at-
tacks I', and Figure 4 shows the corresponding per-
formance profile. Observe that the strengthened
cuts result in a better root improvement of 55%—
compared with 30%-37% achieved by default CPLEX.
Moreover, when using the strengthened inequalities,
37 instances are solved to optimality, and default
CPLEX is able to solve only 22 instances. We also
see that, in these path instances, the polymatroid
inequalities result in longer solution times than cpx
(despite better root improvements). On the other hand,
the strengthened inequalities are effective in reducing
both the integrality gaps and solution times.

8.3. Binary Fractional Optimization Instances

We now test the inequalities in a binary fractional
problem arising in assortment optimization with cardi-
nality constraint:

(FP) max Zm]MZx<k xef{0,1)" b
Hag+Xiap ST ’

The data are generated as in the assortment optimi-
zation problems considered in Sen et al. (2018): a;; ~
U[O, 1] for all i,j, Cij = aijrij with l’i]‘ ~ U[1,3], n= 200,
m =20and ap; = ap forallj=1,...,m with ag € {5,10},
and k € {10,20,50}.

Binary fractional problems (FP) are usually solved
by linearizing the fractional terms (see Tawarmalani
et al. 2002, Prokopyev et al. 2005, Bront et al. 2009,
Méndez-Diaz etal. 2014, Borrero etal. 2016b, Sen et al.
2018), which requires the addition of O(nm) addi-
tional variables and big-M constraints. On the other
hand, the rotated cone reformulation outlined in
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Table 4. Experiments with Robust Conic Instances
cpx Polymatroid Strengthened

r o Igap  Rimp Nodes Time  Egap[#] Rimp Nodes Time  Egap[#] Rimp Nodes Time  Egapl[#]

4 0.95 22.6 35.1 65,533 3,124 0.6[4] 443 72,322 5,220 1.2[3] 56.8 17,057 917 0.0[5]
0.975 24.1 30.2 95,337 4,239 0.8[4] 411 87,697 7,200 3.5[0] 55.2 53,022 2,648 0.0[5]
0.99 25.7 26.6 153,481 7,200 2.2[0] 37.9 80,160 7,200 7.6[0] 53.5 102,578 4,452  0.0[5]
Average 30.6 104,117 4,854 1.2[8] 41.1 80,060 6,540 4.1[3] 55.2 57,552 2,672 0.0[15]

6 095 26.9 38.8 73,898 3,422 0.4[4] 45.0 89,319 5771 2.0[3] 56.2 33,364 1,644  0.0[5]
0.975 28.1 34.6 138,231 5,676 1.8[2] 41.3 96,917 7,200 5.5[0] 54.1 113,745 4,895 0.0[5]
0.99 29.7 32.0 160,074 6,823 4.2[1] 38.9 94,762 7,200 7.2[0] 52.2 113,954 6,091 2.0[1]
Average 35.1 124,068 5,307 2.1[7] 41.7 93,666 6,704 4.9[2] 54.2 87,021 4,210 0.7[11]

8 0.95 30.2 40.9 143,946 5474 0.8[4] 46.4 112,279 6,822 1.6[1] 55.2 53,942 2,234 0.0[5]
0.975 31.3 36.3 145,582 5,967 1.92] 427 107,432 7,200 4.8[0] 53.4 99,904 4,679 0.4[4]
0.99 32.7 34.2 123,325 6,512 3.5[1] 39.5 94,691 7,200 8.2[0] 51.1 136,632 6,162 2.4[2]
Average 371 137,618 5,984 2.1[7] 42.8 104,801 7,055 4.9[1] 53.2 96,826 4,358 0.9[11]

Notes. Bold indicates the average of the rows for each I Igap, initial gap; cpx, default CPLEX without adding any cuts; Rimp, root gap

improvement; Egap, end gap.

Figure 4. Percentage of Instances Solved Within a Given Time Limit for Interdiction Problems
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Table 5. Experiments with Binary Fractional Optimization
cpx-milo cpX-conic Polymatroid
ao k Rgap Nodes Time  Egapl[#] Rgap Nodes Time  Egapl[#] Rgap  Nodes  Time  Egap[#]
5 10 50.9 20,737 7,200 43.6[0] 3.1 24,073 572 0.0[5] 0.1 46 19 0.0[5]
20 18.0 51,180 7,200 17.0[0] 2.7 123,655 7,200 1.9[0] 0.0 118 54 0.0[5]
50 0.9 621,742 6,010 0.5[1] 49 55,155 7,200 4.5[0] 0.1 15,465 263 0.0[5]
Average 23.3 231,220 6,803 20.4[1] 3.2 67,628 4,991 2.1[5] 0.1 5,210 112 0.0[15]
10 10 46.8 380,700 7,200 15.9[0] 22 48,541 972 0.0[5] 0.0 6 14 0.0[5]
20 39.8 23,770 7,200 37.4[0] 3.7 206,603 7,200 1.4[0] 0.0 61 37 0.0[5]
50 5.6 136,382 7,200 5.2[0] 5.1 52,700 7,200 4.6[0] 0.1 36,959 396 0.0[5]
Average 30.7 180,284 7,200 19.5[0] 4.3 102,615 5,124 2.0[5] 0.0 12,342 149 0.0[15]

Notes. Bold indicates the average of the rows for each a0. cpx-milo, classical big M linear formulation used in Bront etal. (2009) and
Méndez-Diaz etal. (2014); cpx-conic, conic formulation without adding inequalities; Rgap, root gap; Egap, end gap.

Section 2.6 requires adding only m additional vari-
ables and avoids big M constraints altogether.

We test the classical big M linear formulation used
in Bront et al. (2009) and Méndez-Diaz et al. (2014)
(cpx-milo), the conic formulation without adding
inequalities (cpx-conic), and the conic formulation

strengthened with polymatroid inequalities.' Table 5
shows the results. Each row represents the average
over five instances generated with the same param-
eters and for each combination of the parameters ay
and k and for each formulation, the root gap (rgap),
the number of nodes explored (nodes), the time elapsed
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in seconds (time), and the end gap (egap)[in brackets,
the number of instances solved to optimality (#)]. The

root gap is computed as rgap = % x 100, where
opt

topt is the objective value of the best feasible solution at
termination, and f;,0¢ is the objective value of the re-
laxation obtained after processing the root node
(i.e., after user cuts and cuts added by CPLEX).

We see that the conic formulation with polymatroid
inequalities results in substantially faster solution
times than the other formulations. In particular,
CPLEX with the classical big M linear optimization
formulation cpx-milo can only solve 1/30 instances
after two hours of branch and bound, and the average
end gaps are 20%; the conic formulation with ex-
tended polymatroid cuts is able to solve all instances
to optimality in less than three minutes (on average).
We see that root gaps for polymatroid are very small
in all instances (less than 0.1%), and optimality can be
proven in instances with small cardinality parameter k
after few branch-and-bound nodes (e.g., in instances
with k =10 and a4y = 5 optimality is proven after 46
nodes, and cpx-conic requires 24,000 nodes to prove
optimality).

9. Conclusions

We propose new convex valid inequalities that exploit
submodularity for conic quadratic mixed 0-1 sets.
The studied sets arise in a variety of risk-adverse
decision-making problems (e.g., chance-constrained
optimization with correlated variables, robust opti-
mization with ellipsoidal or discrete uncertainty sets)
as well as in models of other problems commonly
arising in operations research (e.g., lot sizing, sched-
uling, assortment, fractional linear optimization). The
unbounded version of the convex inequalities, which
arise naturally in most applications, can be efficiently
implemented as linear cuts in an extended space,
which make them particularly effective. Moreover, the
inequalities can be strengthened to take advantage of
other constraints in a problem through approximate
lifting without affecting this convenient property.
Computational experiments performed on correlated
mean-risk minimization, robust interdiction, and as-
sortment optimization problems indicate that the
proposed inequalities improve the performance of
branch-and-bound solvers substantially; in some cases,
problems for which no efficient algorithms were known
are now solved in seconds.
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Appendix A

Proof of Proposition 6. Consider the optimization of an
arbitrary linear function over the convex relaxation of the
extended formulation of Ur given by

min a’x + b’y + pw + gz
(Pr) s.t.s*+ Z dy? + (w —2)* < (w+z)
ieM
(x,8) € conv(Uy)
yeRY,w>0,z>0.

(A1)

Without loss of generality, we can assume that p >0
and q > 0 (if p < 0 or g <0, then the problem is unbounded,
and if p =0 or g = 0, then (Pg) reduces to a linear program
over an integral polyhedron). Moreover, observe that, if
w = z in an optimal solution, then the problem reduces to a
linear optimization over conv(U), which has an optimal in-
tegral solution (Proposition 5). Thus, we can assume that
w # z, in which case, the left-hand side of (A.1) is differen-
tiable, and we infer from KKT conditions with respect to w
and z that

Cpe a4 w-z
P \/5 + Yiem dzy, +(w - 2)2 A2)
Ch——A-2 w-z
L V% + Siemdiy? + (w —z)2 ' (A-3)

where A is the dual variable associated with con-
straint (A.1). We deduce from (A.2) that

A-p
w—z:T\/52+Zd,-y%+(w—z)2,

ieM

and from (A.3) that

_1-4
w—z—T\/sz+Zd,»yf+(w—z)2.

(A4)

ieM

In particular, we find that A = % Moreover, we obtain from
(A.4) that

(w-2)* = A (s + Z d,yl + (w — z)z)

ieM

$°+ d,,+w—z2
q+p( %]Ay ( ))
Letting
-2
()
—p\2’
- ()

we deduce that

ieM

(w—z)* = ﬁ(sz + Zdiyf).
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Therefore, we have that

\/52 + > di + (w =22 =1+B_[s2+ > diy?.

ieM ieM

Moreover, because, in any optimal solution of (Pg), con-
straint (A.1) is binding, we have

w+z=1+p_[s2+ > dy?.

ieM

Multiplying equality (A.2) by w in both sides, and multi-
plying equality (A.3) by z in both sides, we find that

_2
pw+qgz=Mw +z) - (w=2)
V&2 + Siemdiy? + (w — 2
B(s* + Siem div?)
=AVI+B (24 > diy? -
% VI+BVs? + Siemdiy;
s> + Siemdiy?

\/1 + VS + Siem diy?

2+ >\ diy?. (A.5)

V ieM

Therefore, substituting pw + 7z in the objective function of
(Pr) by (A.5) and using that A = 77, we see that problem (Pg)
reduces to

(Pr) mind'x+by+-——=

s2+ > dy?
Ny AR

s.t. (x,s) € conv(Uy),y € RY.

Moreover, (Py) is of the form of (P,) in Proposition 5 (after
scaling) and, thus, has an optimal integer solution. Therefore,
after projecting out the additional variable s, we find the
desired result. O

Appendix B

Here, we test the effectiveness of the unbounded poly-
matroid inequalities (14) and bounded inequalities (28) in
solving optimization problems with bounded continuous
variables of the form

min{-a'x - b’y + Qz : (x,y,2) € Hg}. (B.1)

For two numbers ¢ < u, let U[{,u] denote the continuous
uniform distribution between ¢ and u. The data for the
model is generated as follows: a; ~ 1], +/fc; ~ U[0.85a;,
1.15a;] fori € N, b; ~ U[0,1], \/—; ~ U[0.85b;,1.15b;] for j € M,
and Q is the solution® of

—a(N) - b(M) + Qye(N) + d(M) = 0

These instances have large integrality gaps with a single
conic quadratic constraint.

The unbounded inequalities are added as linear cuts in
an extended formulation as described in Section 7.2. The
bounded inequalities are either added directly as nonlin-
ear inequalities as described in Section 7.1.1 (bounded-
nonlinear) or using outer approximations as described in
Section 7.1.2 (bounded gradient). A greedy heuristic is used
to choose T C M for inequalities (28): given a fractional point
(x,9,2) with §q) 2 Y@ = ... 2> Jum, we check for violation

Table B.1. Experiments with Bounded Continuous Variables

Bounded gradient Bounded nonlinear

Unbounded

cpx

Igap Rimp Nodes Time  Egap[#] Rimp Nodes Time  Egap[#] Rimp Nodes Time  Egap[#] Rimp Nodes Time Egap[#]
1,554.7

m

0.0[5]
0.0[5]
0.0[5]

45
219

1
30
55
29

100.0

0.0[5]
0.0[5]
53.8[0]

74
4,375

25
1,985

99.7

0.0[5]
72.5[0]
83.3[0]
51.9[5]
72.9[0]

100.7[0]

112
7,200

9,617
853,671

90.0

0.0[5]
0.0[5]
16.6[1]

162
1,644
6,850

441,520
2,126,713
8,922,545
3,830,259
15,133,028
11,650,607

4,970,327
10,584,654

0.0
0.0
0.0
0.0

20

50

100
Average

100

99.9

9
100.0
100.0

99.2

76.0

724.6
267.8

84
116
475
395

9.9

7,200

81.0

7,200

726,361
529,883
127,408

62.1

0.0[15]
0.0[5]
0.0[5]
0.0[5]

17.9[10]

3,874

670

93.3

4,804

76.0

5.6[11]
352.7[0]
397.3[0]
114.4[0]
205.2[0]

2,885

52
140
183
125

3.5[3]
133.2[0]

6,253

85

99.5

89.3 7,200

7,200

40 987.1 0.0

100

200
Average

200

99.9
9
9

79.7 7,200

7,200

57,742
1,647,845

7,200 73.9

0.0
0.0
0.0

396.6

710
527

9.8
9.9

690.5[0] 22 2,034,862 7,200 181.6[0]
64.6 64.6[3]

213.1[0]

18.3 7,200

7,200

217.6

0.0[15]

6,845

581,419

7,200

610,998

60.5

7,200

Notes. Bold indicates the average of the rows for each n. Igap, initial gap; cpx, default CPLEX without adding any cuts; Rimp, root gap improvement; Egap, end gap.
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inequalities for each T; of the form T; = {(1),(2), ..., (i)} for
i=0,...,m. When using the nonlinear inequalities bounded
nonlinear, we iteratively solve the continuous relaxations
and explicitly add the most violated inequality (28) found,
and the process is repeated until the relative violation of the
inequality found is less than 10783, that is,

NN e R

-1<107°.

z

This process requires solving many continuous relaxa-
tions of (B.1) using the barrier algorithm (which is the
default algorithm for convex conic quadratic optimization).
For bounded gradient, the inequalities are added at the root
node of the branch-and-bound tree using CPLEX callbacks.

Table B.1 presents the results. Each row represents the
average over five instances generated with the same pa-
rameters and shows the number of discrete (1) and con-
tinuous (m) variables, the initial gap (igap), the root gap
improvement (rimp), the number of nodes explored (nodes),
the time elapsed (including the time used adding the in-
equalities) in seconds (time), and the end gap (egap)[in
brackets, the number of instances solved to optimality (#)].
The initial gap is computed as igap = “"lfﬁ % 100, where

ope|
topt is the objective value of the best feasible solution at
termination and t,.ax is the objective value of the continuous

relaxation. The end gap is computed as egap = % x 100,
opt

where t,}, is the objective value of the best lower bound
at termination. The root improvement is computed as
rimp = keer=fetax %100, where t,oo is the value of the con-

fopt—Frotax
tinuous relaxation after adding the valid inequalities to
the formulation.

Observe in Table B.1 that the use of the unbounded in-
equalities, which do not exploit the upper bounds of the
continuous variables, closes 68.2% of the initial gap on
average, but the gap improvement does not necessarily
translate to better solution times or end gaps. The perfor-
mance of the bounded inequalities, when added as gradi-
ents, is adequate when m is small, achieving close to 100%
root gap improvement. However, the performance degrades
substantially as m increases; in particular, for m = 100, the
full two hours are spent at the root node adding cuts, and
the root improvement of close to 80% is still far from 99.9%,
achieved by bounded nonlinear. Moreover, for n = 200 and
m = 200, both unbounded and bounded-gradient inequal-
ities are ineffective at closing the root gap, with root im-
provements of 18.3% and 2.2%, respectively. In contrast,
adding the bounded inequalities as nonlinear inequalities
results in all cases in the best performance with root im-
provements close to 100%, significantly fewer branch-and-
bound nodes explored, and better solution times than the
other formulations.

Endnotes

"For these instances, the strengthened inequalities perform very
similarly to polymatroid because the simpler inequalities already
achieve close to 100% root gap improvements. Therefore, we only
present the results with inequalities polymatroid.

2This choice of Q ensures that the linear and nonlinear components
are well balanced, resulting in challenging instances with large in-

tegrality gap.
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