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Abstract

This paper focuses on methods that improve the performance of solution approaches for
multiple-ratio fractional 0—1 programs (FPs) in their general structure. In particular, we
explore the links between equivalent mixed-integer linear programming and conic quadratic
programming reformulations of FPs. Thereby, we show that integrating the ideas behind
these two types of reformulations of FPs allows us to push further the limits of the current
state-of-the-art results and tackle larger-size problems. We perform extensive computational
experiments to compare the proposed approaches against the current reformulations from the
literature.

Keywords Fractional 0-1 programming - Conic quadratic programming - Mixed-integer
linear programming - Polymatroid cuts - Binary-expansion - Assortment optimization

1 Introduction

We consider the general structure of fractional (hyperbolic) 0-1 programs
ajo + . aiiX:
(Fp) min S 40 2 jer i
xeX oy bio + Zjej b,'jxj

where I = {1,...,m}, J = {1,...,n}and X C B" for B = {0, 1}. In addition to the
assumption that FP is in minimization form, we also assume that all data are non-negative
integers, i.e., 40, 4;;, bio, b;j € Zy foralli € I, j € J.Both assumptions are without loss of
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generality provided that the weaker (and commonly used) assumption b;o+ Y
foralli € I and x € B" holds, see “Appendix A” for a discussion.

Fractional binary optimizations arise naturally in many contexts that involve optimization
of efficiency measures (e.g., maximizing the ratio of return/investment or profit/time and
minimizing the ratio of cost/time, see [10,27,32,34]), averages, probabilities and percentages,
among others. Fractional optimization models can be found in diverse application areas
including problems in data mining (such as feature selection [17,26] and biclustering [12,
37]), scheduling [31], retail assortment [13,25,35], set covering [2,3], facility location [36],
stochastic service systems [15], finding alternative solutions to binary linear programs [38],
clinical trials [7], and so on. For an overview of applications and solution methods for FPs
we refer to a recent survey in [10].

Problem FP is well-known to be N P-hard whenever m > 2, see [20,28,29]. To solve frac-
tional binary programs, several mixed-integer linear programming (MILP) reformulations of
FPs have been proposed (see, e.g., [22,36,41,42]) consisting of linearizing bilinear terms by
introducing additional O (nm) continuous variables and big-M constraints. The MILP for-
mulations are commonly used, but they do not handle well large-scale multiple-ratio (m > 2)
FPs, see, e.g., [11,16,25], due in part to the weak relaxations caused by the big-M constraints,
and also due to the large number of newly added variables and constraints.

Borreroetal. [9] recently proposed an alternative MILP reformulation based on performing
binary expansions of certain integer-valued expressions. The formulation can substantially
reduce the number of bilinear terms that require linearization, thus requiring much fewer vari-
ables and constraints than the original MILP formulations. As a consequence, the binarized
formulation scales better to large instances; however, binary expansion also leads to weaker
continuous (convex) relaxations, which in turn can hurt performance in branch-and-bound.

Noting that x; = x? for x j € B, recently Sen et al. [33] proposed a mixed-integer conic
quadratic programming (MICQP) reformulation for assortment optimization. Additionally,
Atamtiirk and Gémez [4] proposed another MICQP reformulation for FPs by explicitly
involving submodular functions, and used extended polymatroid cuts [5,23] to exploit the sub-
modular structure and strengthen the formulations. Both the aforementioned conic quadratic
reformulations result in stronger convex relaxations than the standard MILP counterparts, as
the latter requires linearization of bilinear terms with big-M constraints. Furthermore, thanks
to recent advances in commercial MICQP optimization softwares such as CPLEX [21] and
Gurobi [18], small- and medium-sized FPs can be solved efficiently. However, the solvers
still struggle with large-scale mixed-integer nonlinear optimization problems, and hence the
performance of the conic quadratic reformulations degrades considerably in larger instances.

jeJ b,“,-x‘,- >0

Our contributions and the structure of the paper The main goal in this paper is to develop for-
mulations for generally structured fractional O—1 programs that perform well for all instance
sizes, with special focus on large instances where current methods fail. Specifically, our
contribution is threefold:

(i) We perform a comprehensive review of MILP and MICQP formulations of FPs given
in the literature and explore the relationships between them.

(i) We demonstrate how to integrate MICQP and MILP formulations to obtain novel
formulations that simultaneously have strong convex relaxations, and a limited number
of variables and constraints.

(iii) By means of computational experiments, we show that the proposed formulations
outperform existing alternative formulations.

In order to achieve (i), in Sect. 2 we study the links between the classical MILP formula-
tions LF and LEF, originally proposed in [41] and [22,42], respectively; the binary-expansion
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Fig.1 Schematic representation of the ideas in this study. We exploit binary-expansion technique (from MILP)
and conic and polymatroid strengthening (from MICQP) to develop enhanced formulations for FPs

Table 1 Formulations studied in this paper

Formulation Version Linear-based Conic
Without cuts With cuts Without cuts With cuts
Compact Basic LF [41] LF? CF [4] cFP (+) [4]
Binary expansion LF10g [9] LFi’og (%) - -
Extended Basic LEF [22] LEF? (4) CEF (+) [33] CEF?
Binary expansion LEF10g [9] L:E:F]':Eog CEF10g CE]E‘]':EOg (*)

No citation is given for new formulations represented in bold. The symbols “+4” and “x” denote that the cor-
responding formulation has a superior performance in medium- and large-size instances of our computations,
respectively

MILP formulation LF1 o4 developed in [9]; the MICQP formulations CF and CEF given in [4]
and [33], respectively, as well as the MICQP formulation strengthened using polymatroids
CFPF, also given in [4].

In order to attain (ii), in Sect. 3 we show how to use binary expansions (emanated from
MILPs) in MICQP formulations; and how to use conic strengthening (originally proposed
in the context of CEF) and polymatroid cuts (originated from CF?) to strengthen the formu-
lations. More importantly, we show how to incorporate binary expansions and polymatroid
strengthening in a single (either MILP or MICQP) formulation. Figure 1 shows the schematic
representation of these ideas.

To achieve (iii), in Sect. 4, we conduct extensive computational results by using benchmark
test instances and observe that the incorporation of improvements leads to formulations that
perform better than the existing formulations in the literature.

In addition to the aforementioned formulations for FPs, several new formulations are
developed in this paper. We use the following naming conventions: names starting with
“L” correspond to linear formulations, while names starting with “C” correspond to conic
quadratic formulations; the letter “F” following the first letter indicates a compact formu-
lation while the letters “EF” following the first letter indicate an extended formulation, i.e.,
a (usually stronger) formulation with additional variables and/or constraints; the subscript
“log” indicates a formulation using binary expansions; finally, the superscript “P” indicates
a strengthened formulation using polymatroid cuts. Table 1 provides a short summary of all
formulations discussed in the paper, and Fig. 2 depicts the relationships between the convex
relaxations of the formulations. In order to better distinguish the formulations developed in
this paper from the existing ones in the literature we represent new formulations in bold
throughout the paper.

@ Springer



276 Journal of Global Optimization (2019) 75:273-339

Polymatroid cut

Linear-based Conic

Compact w,2? Y

Y
‘Extended
LEF LEF? GFP CEF
A1
[ A - |
CEF? )% CEF10g

Fig.2 Relationships between the strengths of the convex relaxations of the formulations studied in this paper.
Single rectangular frames and single lines indicate existing formulations and shown relations in the literature,
respectively. Double circle frames indicate new formulations, and double lines indicate relations shown in this
paper. The symbol S1 = S2 (or S1 — S2) indicates that formulation S2 has a stronger convex relaxation
than formulation S1; this type of relations are demonstrated analytically in Sects. 2 and 3. Additionally, the
symbol S1 == S2 (or S1 -» S2) indicates that S2 resulted in smaller root gaps than S1 in most of our
computations; this type of relations are shown experimentally by performing computational results in Sect. 4

2 Formulations

Herein, we review the MICQP and the (best-known) MILP reformulations of FPs existing
in the literature, and describe their interrelatedness. Toward this goal, following our naming
convention, in Sect. 2.1 we consider the compact formulations LF, CF and the strengthened
version of CF with polymatroid cuts, i.e., CFF. Then in Sect. 2.2 we discuss the extended
formulations LEF and CEF involving more variables and/or constraints than LF and CF,
respectively. Finally, in Sect. 2.3 we study the binary-expansion reformulations of MILPs.

2.1 Compact formulations

Foreachi € I let
. G0t D ey GijXj "
YT b+ X ey bijx

Then the substitution of variable #; for all i € I in FP yields

min ti 2a
xeX,1>0 Z ! (22)
iel
s.t.  bjot; + Zb,’jxj‘l‘[ > ajo + Zaijxj Viel (2b)
JjeJ jeJ
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in which (2b) holds at equality at any optimal solution. Observe that constraint (2b) is
nonlinear and non-convex (for x € [0, 1]") due to the presence of bilinear terms x ;¢;. In the
following, we take two convexification procedures. The first uses a concave over-estimator
of the left-hand side of inequality (2b), resulting in a MILP; see Sect. 2.1.1. The second uses
a convex underestimator of the right-hand side of inequality (2b) chosen to ensure convexity
of the ensuing constraint, resulting in a MICQP; see Sect. 2.1.2.

2.1.1 Compact MILP formulation (LF)

The first approach is based on the linearization of x ;#;, which can be accomplished by includ-
ing additional variables and linear constraints [1,36,42]. Specifically, the concave envelope
of x;t;, where x; € B and #; is bounded, can be described with the bound constraints and the
linear constraints z;; < tiUx jand z;; <t + tiL (xj — 1), where z;; is a variable representing
the hypograph of the bilinear term, and tiU and tiL are an upper bound and a lower bound on
t;, respectively. Note that under the data non-negativity assumption (see “Appendix A”) the
presence of the concave envelope of x; is sufficient for this linearization. Thus, problem
FP can be formulated as the MILP [36,41]:

(LF) min Y 4 (3a)
iel
s.t. bjot; + Zb,-jz,-j = ajo + Zaii,'x.,' Viel (3b)
jeJ jeJ
zij <txj, oz <ti+tFG—1) Viel, jel (3¢)
xeX, t,z=0. (3d)

Formulation LF exploits the integrality restriction on x (x € B") to construct the
concave overestimator of the left-hand side of (2b), but may be weak due to the used
big-M constraints (3c). Classical big-M values used are tl.U = (ajo + Zje] a;j)/bio and

tiL = ajo/ (b,’o + Zje] b,-j). Thus, LF is especially weak if either the entries a;; and b;; or
the number of variables (n) are large.

2.1.2 Compact MICQP formulations (CF and CFF)

An alternative approach to resolve the non-convexity of (2b) is using conic quadratic pro-
gramming. For each i € I, we define

ri =bio+ Y bijxj. “
jel
and
R = {x €B", (ri, ;) € RS | tiri > ajo + Zaijxj}-

jel

Thus, problem (2) is equivalent to minyex ; >0 { Diertil(@and (x,ri, 1) € R;, Vi € I},
that is still non-convex due to R;.

A simple convex relaxation of R; can be obtained by squaring the binary variables (and
relaxing the integrality constraints), i.e., constraint (2b) can be written as t;r; > ajo +
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D jes dijxXj = aio+ Y ey a,-.,-x?, where the equality holds for x; € B. Thus, problem (2)
can be posed as the MICQP [4]:

(CF) min t (5a)
xeX, ©
t,r>0 i€l
s.t. tiri = ajo + Zaijsz- Viel (5b)
jel
ri=b,-0+2bijxj Viel. (5¢)
jeJ

The nonlinear constraint (5b) is a rotated cone constraint, which can be directly used with
off-the-shelf solvers for MICQP. Observe that, unlike LF, formulation CF does not involve
big-M constraints. On the other hand, since x2 < x j for x; € [0, 1], we see that squaring
the variables may also lead to a weak relaxation. In fact, formulation CF only uses the upper
bounds on x to construct the relaxation, but does not exploit the integrality constraints to
derive stronger formulations.

A better convex relaxation of R; can be obtained by using the strongest convex relaxation
of R;, i.e., the convex hull of R;, denoted by conv(R;), see [4]:

cF? i ;
(cF) min Ztl
tr>0 i€l
s.t. (x,ri, t;) € conv(R;) Viel
ri:bi0+zbijxj Viel.

jeJ
Obviously, CF? has a tighter convex relaxation than CF. However, formulation CFF is
much larger than CF, as it requires a factorial number of constraints to construct conv(R;).

Specifically, let ¥ denote the set of all permutations forset {1, .. ., n}. For a given permutation
o:=((),...,0n)) € X,ielandje J,define

J j—1
Tio(j) = Zai,(r(k) - Zai,a(k),
k=0 k=0

where a; »0) = aj0, and consider the nonlinear extended polymatroid inequalities
n
2 .
tir;i 2 («/llio + Zﬂi,g(j)xg(j)) Vo € X,iel. (6)
j=1

Proposition 1 ([4]) The extended polymatroid inequalities and bound constraints describe
conv(R;), i.e., conv(R;) = [x e [0, 11", (ri, t;) € R%_ | (6)}.

Remark 1 In order to avoid adding all m - (n!) constraints of the form (6), Atamtiirk and
Goémez [4] add constraint (5b)—which is redundant for CF*—to the formulation, and
add a small number of constraints (6) in a cutting surface fashion. The separation of such
constraints can be done in O(nlogn) using the greedy algorithm for optimization
over polymatroids [14]. O

Remark 2 For each i € I, inequalities (6) can be implemented in a lifted formulation using
a single three-dimensional rotated cone inequality and »! linear inequalities—which can be
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added as cutting planes. Specifically, (x, r;, #;) € conv(R;) if and only if there exists s; € R
such that

n
tir; > Siz, and Jaio + Z]T,',(;(j)x(;(j) < s, Vo € .
j=1

Such a representation is preferable when using current off-the-shelf MICQP solvers, see [4]
for further discussions. 0

2.2 Extended formulations

Unlike compact formulations, which are based on convexifications of either the right-hand
side or the left-hand side of (2b), extended formulations simultaneously consider both sides
of (2b). Let

1 1

Vi = = Viel,
VT bio+ Xy bijxj i

where r; is given by (4). Then the substitution of variable y; for alli € I in FP yields

min ti 7
xeX,t,y>0 Z ! ( a)
B iel
s.t. i = ajoyi + Zainjyi Viel (7b)
jelJ
bioyi + Zbijxjyi > 1 Viel, (7c)
jelJ

where #; is given by (1). Both constraints (7b) and (7¢) hold at equality at any optimal solution.

Observe that (7b) and (7c) use non-convex bilinear terms x ; y; . In order to resolve the non-
convexity, we first review LEF, a classical MILP formulation based on formulation (7), see
Sect. 2.2.1. Then we review the conic quadratic formulation CEF, which is a strengthening of
the LEF. Moreover, we demonstrate that CEF is also a strengthening of CF, see Sect. 2.2.2—
in contrast, although LEF has been observed to be stronger than LF in practice, it does not
theoretically dominate LF.

2.2.1 Extended MILP formulation (LEF)

The first approach is based on the linearization of x;y;. Unlike the approach discussed
in Sect. 2.1.1, both the concave and convex envelopes of the bilinear terms need to be
constructed, requiring four linear inequalities per term. Letting yl.U and yl.L be upper and
lower bounds on variable y;, and letting z;; := x;y;, we find the MILP formulation [22]:

(LEF) min » 1 (8a)
iel
stt;=aoyi + Y aijZij Viel (8b)
jel
bioyi + Y bijZij = 1 Viel (8¢)
jed
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Zij <yUxj. g = yExg Z <vi+yFag = D,
Zij2yi+yiu(xj—1) Viel,jeJ (8d)
xeX, t,y,7=0. (e)

Classical big-M values used are y = 1/bio and y* = 1/(bio + 3 jc ; bij). Thus, LEF
is especially weak if either the entries b;; or the number of variables (n) are large (but is not
sensitive to the values a;;).

2.2.2 Extended conic formulation (CEF)

Sen et al. [33] propose a conic strengthening of LEF in the context of the assortment problem
under mixed multinomial logit choice model, but we show that the strengthening can be used
for generally structured fractional binary programs. In particular, since z;; = x;y; forx; € B
and r; = 1/yj;, it follows that the constraint z;;r; > x; is valid for LEF; squaring the binary
variables, one obtains a convex (rotated cone) constraint that can be used to strengthen the
formulations. Moreover, constraint (7c) is in fact conic quadratic representable (y;r; > 1).
Thus, we obtain the formulation:

(CEF) min Z ti (9a)
iel
stti = aioyi + Y aijZij Viel (9b)
jeJ
bioyi + Y bijZij = 1 Viel (9¢)
jeJ

= U = L = L
Zij K Y7 Xj,Zij 2 yiXj,ij <y Hy(xj—1),

zij>yi+yiU(xj_1) Viel,jeJ (9d)

ri =bio+ Y _ bijx; viel ()
jelJ

Zijri >x12- viel, jeJ (9)

yiri > 1 Viel (9g)

xeX, t,y,r,z20. (%h)

Formulation CEF generalizes the conic quadratic formulation of [33] - developed for
the assortment problem under mixed multinomial logit choice model - for the general frac-
tional binary program FP. Formulation CEF is stronger than LEF as it includes additional
constraints. As we now show, formulation CEF is also stronger than CF.

Proposition 2 The natural convex relaxation of CEF is stronger than the relaxation of CF.

Proof We start from formulation CF. For each i € [ divide both sides of (5b) by r; > 0,
leading to the equivalent representation

2
aio Ay
> — + E ajj—.
T > ri
jeJ
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2
. . . - X5 . . .
Using the substitutions y; > rl and z;; > - foralli € 1, j € J we can write CF as

min t; 10a
nig ZI ; (10a)
1,1, Yi»2ij 20
Ut > a0y + ) aijZi) Viel (10b)
jeJ

Yiti > 1 Viel (10C)

Zijri > x; Viel, jelJ (10d)

ri =b0+bijxj Viel. (10e)

Observe that none of the transformations discussed exploit the integrality constraints, thus
formulation (10) above has the same continuous relaxation as CF. If formulation (10) is
strengthened using constraints (9¢) and (9d), then one obtains precisely CEF, thus proving
the proposition. O

Remark 3 (Extended formulation of CF) Formulations CF and (10) are equivalent, in the
sense that their natural convex relaxations (by relaxing integrality constraints in x) coincide.
However, formulation (10) requires m +nm additional variables. Moreover, (10) has m +nm
three-dimensional rotated cone constraints, while formulation CF has m (n +2)-dimensional
rotated cone constraints. The extended formulation (10) is preferable in the context of branch-
and-bound, as the corresponding linear outer approximations are stronger, see [40]. In fact,
modern conic quadratic branch-and-bound solvers will automatically reformulate CF into a
form similar to (10) in the presolve process. O

2.3 MILP binary-expansion formulation (LF1.4)

Under the data integrality assumption, the binary-expansion technique attempts to reduce the
number of bilinear terms (x;#; or x;y;) that need to be linearized in LF or LEF. Specifically,
for the binary-expansion reformulation of LF, let Gl.b = |log, (Zjej bij)] + 1, then by

. I 0b .
using the substitution Y_ ., b;jx; = Y., 2"'w’, in problem (2) we get

jeJ
min Zti (11a)
iel
ob
st bioti + Y 2wl = a0+ Y ayx; Viel (11b)
k=1 jeJ
o
D bijxy =) 2wl Viel (11c)
jelJ k=1
xeX,wheB, ;>0 Viel,kefl,...,0%). (11d)

Observe that, since x; € B, the left-hand side of constraint (11c¢) is integer for any feasible
solution of (11), and thus constraint (11c) can always be satisfied at equality. Using a similar
linearization as the one described in Sect. 2.1.1 to linearize the product terms wl].’k t;, we obtain
the MILP formulation [9]:

@ Springer



282 Journal of Global Optimization (2019) 75:273-339

(LF1og) min Y g (12a)
iel
6
stoobioti + Y 2 =ain+ ) ayx;, Yiel (12b)
k=1 jed
o
D bijxj = 2w, Viel (12¢)
jeJ k=1
do<ilwl, o<t 1) Vielke(l,...,0°) (12d)
xeX,wheB, 5 >0,4>0 Viel,kell,...,0°). (12)

When Hl.b << n, which is the case when n is large and the coefficients b;; are small,
formulation LF 1,4 requires substantially less (continuous) variables and big-M constraints
than LF, but the strength of the continuous relaxation of LF;4 is weaker. Nonetheless, by
performing computational experiments, see Sect. 4, we observe that for large instances formu-
lation LF1,g results in much more branch-and-bound nodes explored and better performance
overall.

Remark 4 1t is also possible to develop a binary-expansion reformulation for LEF. However,
based on the results in [9,24] such a formulation performs poorly. Thus, we omit LEF1 o4
from Fig. 2 and the discussion in this paper for the sake of brevity. (]

In Example 1 below, we evaluate the formulations discussed in Sect. 2 for a specific
instance.

Example 1 Consider unconstrained (X = B") two-ratio (m = 2) five-variate (n = 5) frac-
tional O—1 program

min 1+x1+x2+2x3+2x4+xs+2+2x1+3x2+x3+x4} (13)
xeBS U 24 x1 4+ x2 + X3+ x4 + X5 14 2x1 +2x2 + 3x3 ’

which has the optimal objective function value 1.75.

(i) The objective function values of convex relaxations, computed by CPLEX solver
12.7.1 [21], for the basic reformulations of (13), i.e., LF, CF, LEF, and CEF are: 0.482,
1.236, 1.484, and 1.639, respectively.

(i) For permutation ¢ = (1,2, 3,4, 5), polymatroid inequalities (6) for the first and
second ratios are, respectively,

nr1 > (14 V2= D+ (VB=v2m + (5=v3)x + (VT3 + («/§fﬁ>xs)2, (14a)
ors > (24 (VA= VD + (VT VA + (B VT + (O VBxi +0x5) . (14b)

If we add (14a) and (14b) to CF (without (5b)), then the objective function value of the convex
relaxation of the resulting formulation is improved to 1.349. Additionally, if inequalities (6)
for all 5! and 4! permutations of the first and second ratios’ numerators indices (in total 144
rotated cone constraints) are added to CF (without (5b)), then the resulting formulation is
CFF with an improved relaxation objective function value equal to 1.697. Thus, CF® results
in the best convex relaxation among the formulations of Sect. 2 in this particular instance.

(iii) By using the binary-expansion technique, constraint (2b) in model (2) for the first
and second ratios, i.e.,

211 + (x1 +x2 + x3 + x4 +x5)11 = 1 4+ x1 + x2 + 2x3 + 2x4 + x5, and (15a)

@ Springer



Journal of Global Optimization (2019) 75:273-339 283

tr + (2x1 4+ 2x2 + 3x3)t2 = 2+ 2x1 4 3x2 + x3 + x4, (15b)
can be replaced, respectively, by

211+ %wh, + 2" wh, +22wh)e > 14 x1 + x2 + 2x3 4+ 2x4 + x5, and (16a)
4+ QOwh, +2'wh, + 22wh) > 2 4 2x1 + 3x2 4 x3 + x4 (16b)

Note that instead of linearizing 8 bilinear terms (x ;#;) in the left-hand sides of (15a) and (15b),
which results in LF, only 6 bilinear terms (wl.bk t;) are required to be linearized in the left-hand
sides of (16a) and (16b), which lead to formulation LF14. Recall that fewer linearizations
implies fewer number of additional continuous variables and big-M constraints. However,
LF104 has a weaker convex relaxation objective value than LF (0.405 vs. 0.482). Thus, LF1 04
results in the worst convex relaxation in this particular instance, but also in the smallest and
easiest to solve convex relaxation. O

3 Enhancements

None of the formulations presented in Sect. 2 consistently outperforms the others. MICQP
formulations are in general stronger and perform best in small- and medium-size problems;
however, due to the difficulties of optimization solvers to handle the nonlinear convex relax-
ations, they may fail to adequately process the root node in larger instances. In contrast,
the binarized MILPs tend to perform better than MICQPs in larger instances thanks to the
reduced formulation size and linear convex relaxations; however, they do not perform as well
in small instances. Finally, MILP formulations perform somewhat in between the MICQPs
and binarized MILPs.

In this section, we aim to further improve the performance of the existing formulations
for FPs. First, from the analysis in Sect. 2, it becomes apparent how to “mix” the ideas
behind these formulations to improve their performance, see Sect. 3.1. Then, in Sect. 3.2, we
develop binary-expansion techniques for conic quadratic formulations. By using the proposed
improvements, we obtain strong formulations of moderate sizes, which perform well across
all problem sizes and are particularly effective in larger instances.

3.1 “Mixing” formulations (CEF?, LF®, LEF?, and LFll’Og)

Herein, we employ polymatroid cuts in CEF. Then, more interestingly, we make MILP

formulations LF, LEF, and LF1 4 able to benefit from polymatroid strengthening, as well.
First, note that neither CEF nor CFF theoretically dominates the other in terms of strength

of the continuous relaxations. Moreover, in our computations (see Appendix 4), neither

consistently dominates the other. Nonetheless, we can obtain a stronger new formulation

simply by adding the nonlinear extended polymatroid inequalities to CEF, i.e.,

(CEF®) : min [Z’i | (9b) — (Oh), (x,ri, ;) € conv(R;) Vi € 1}.
iel

X, Y,2,0,r

Clearly, CEF? is stronger than CEF and based on Proposition 2, it is also stronger than
CFF. Indeed, formulation CEF? results in the best convex relaxations among the formulations
presented in this paper. However, due to its size, itis impractical in larger instances. We address
this issue by using the binary-expansion idea in Sect. 3.2 to moderate its size. We also point
out that several approaches to strengthen the MILP formulations have been proposed in the
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literature, see, e.g., [25,36]. Clearly, such approaches can naturally be used with any of the
formulations presented in Sect. 2, or the new formulations introduced in this section.

Second, as pointed out in Remark 1, previous implementations of CFF also added large-
dimensional conic quadratic constraints (5b), which substantially increases the computational
burden of solving the convex relaxations despite the recent advances in off-the-shelf opti-
mization solvers. An alternative is to use the nonlinear extended polymatroid constraints with
formulation LF, i.e.,

@) min {30410 =G 1y =bio+ Y bijxj. (xrist) € conv(Ry) Vi € 1],
iel

X, 52,01 .
jeJ

Clearly, LF® dominates both L.F and CF* in terms of the strength of the convex relaxation'.
More importantly, using the extended formulation described in Remark 2, LF® requires
only m three-dimensional rotated cone constraints, which are much easier to handle than
m (n + 2)-dimensional conic constraints of CFF. Alternatively, efficient polyhedral outer-
approximations of the rotated cone constraint can be easily constructed [6,39], and LFF can
be implemented in a pure MILP framework.

Similarly, one can use the nonlinear extended polymatroid constraints with formulations
LEF and LF1 g, yielding

X,Z2,0,9,1

(LEF®): min {Zzi | (8b) = (8e). r; =bio+ > bijxj. (x.ri,1;) € conv(R;) Vi € 1}, and
iel jeJ
(LFi’og) : min { Zfi | (12b) — (12e), r; = bijo + Zbi.fx.i’ (x,7i,t;) € coov(R;) Vi € 1}.

b b
x,w?,z% t,r ) )
WRILLT g jel

Formulation LEFF has (in our computations) a stronger convex relaxation than LFF while
maintaining easy-to-solve convex relaxations in small and medium instances. Formulation
LFlfog has a small size, but has weaker convex relaxations than LFF and LEFF.

By comparing LF? and LEFF with CF¥ we can conclude that the former both are stronger
than CF® as depicted in Fig. 2. Based on the discussion given in Sect. 2.2.2, we also conclude
that CEFP is stronger than LEFF.

Standout formulation Formulation LF11°og is one of the best formulations in our computations.

It was observed in [9] (and corroborated in our experiments) that while the continuous
relaxation of LF1,4 is weaker than LF, which in turn is much weaker than LEF, it may
result in better performance due to the faster exploration of the branch-and-bound tree. With
the inclusion of the nonlinear polymatroid inequalities, formulation LFll’c,g has a convex
relaxation strength similar to CFF, which is substantially stronger than LF and was also
observed to be stronger than LEF [4]. Moreover, using LF§_’°g results in small formulations
with a few nonlinearities, thus allowing for a much faster exploration of the branch-and-
bound tree than CF®, and performing well across all instance sizes. Intuitively, formulation
LF11°og benefits both from the advantages of the conic formulations (strength) and binarization
ideas (speed).

Remark5 We need to point out that conv(R;) is implemented in this paper using rotated
cone constraints instead of explicit polyhedral outer approximations. Hence, LFF, LEFF
and LFll’og are in fact MICQPs, see also Remarks 1 and 2; however, in contrast to other
MICQPs in the paper, they involve only a small number of “easy” 3-dimensional rotated

cone constraints. O

! The second domination statement holds only if all inequalities (6) are added. Nonetheless, LF® is able to
achieve excellent convex relaxations with a modest number of cuts.
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3.2 Enhancements on CEF

Next, we develop a binary-expansion reformulation for the conic quadratic program CEF,
which we call CEF1 o4, see Sect. 3.2.1. Then we extend the notion of polymatroid cuts to the
binary-expansion space in order to further strengthen CEFj g, see Sect. 3.2.2.

3.2.1 MICQP binary-expansion formulation (CEF;.g)

As pointed out earlier, the MICQP reformulations of FPs do not require the linearization
of bilinear terms. Nevertheless, we demonstrate that binarization technique—developed in
Sect. 2.3 for MILPs—still can be employed to reduce the number of variables and rotated
quadratic cone constraints in CEF as shown below.

Let 6 := L10g2(2je] a;j)] + 1 and, by using the substitution Zje] ajjxj =

Z/f': 1 251w | we can rewrite (7) as
min Y 1 (17a)

iel

o
s.t. f; = ajoy;i + ZZk_lwfkyi Viel (17b)

k=1

o/
> ayxg = 2w Viel (17¢)

jel k=1
iy > 1 Viel (17d)
ri =bio+ »_ bijx; Viel (17¢)

jeJ

xeX,yi 20w} eB Viel kefl,...,00). (171)

Then by introducing variables z{, := w{, y; = w{}, /r; and exploiting the fact that (wfk)2 =
wi for wf, € B, problem (17) can be convexified as

min Y (18a)
iel
o/
st ti > aioyi + 21 Viel (18b)
k=1
2 > (ws)’ Vielke{l,...,60}  (18¢)
a
D ayxp = 2wy Viel (18d)
jelJ k=1
riyi > 1 Viel (186)
ri = bjo + Zb,‘jx./' Viel (18f)
jeJ

xeX.y 20wl eB, % >0 Vielke{l ... 0% (18
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Formulation (18) can be further strengthened by adding the linearization constraints
zi”j > yiL wi, and z?j >y + yiU (wf, — 1). The resulting conic quadratic binary-expansion
reformulation is

(CEF10g) min Y 1 (19a)
iel
o
st t = a0y + Y22 Viel (19b)
k=1
ri =bio+ »_ bijx; Viel (19¢)
jelJ
i = (wh)? Viel,kefl,...,6%) (19d)
yiri > 1 Viel (19¢)
oy
D aijxj =Y 2wl Viel (19f)
jelJ k=1
24 = yEwd 28 >y 4+ Y — 1) Viel ke{l,...,00 (19g)
wh €B,z% >0 Viel,ke(l,...,0% (19h)
xe X, t,y,r =20. (191)

Formulation CEF1g4 requires m + ), ; 6 rotated cone constraints, which can be signifi-
cantly less than the m + mn rotated cone constraints required by CEF.

Remark 6 1t is also possible to develop binary-expansion reformulations for CF and CFF.
However, since these formulations do not include any product term of a binary and a con-
tinuous variables, the binary expansion does not allow us to reduce neither the number of
their variables nor constraints. Therefore, we have excluded CF1,4 and CF{og from Table 1,
Fig. 2 and the discussion in this paper. (]

3.2.2 Polymatroid cuts in the binary-expansion space (CEFll’og)

Formulation CEF304 can be further strengthened by exploiting submodularity. Specifically,
observe that by multiplying constraint (17b) by r; and exploiting that y;7; = 1 in optimal
solutions of (17), we find that the constraints (wf’, ri ti) € R}Og can be added, where

o
I a —
RPE = {wf e B, (y.1) € BY i > aio+ ) 2 wii?].

i
k=1

An ideal formulation of R}Og can be found using polymatroid cuts, similarly to the approach
in Sect. 2.1.2, i.e.,

conv(RI™) = { i, i, 1) € [0. 117 x BY | ri > (Vaiw + Mu)%, Vi € A}, 20)
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where

ga
A; Z{ki ERY [ Xiow = S Viok) — Yioh-1)s
where ¥i o) = 27 + yi o1y and ;. 0.0) = a0,

for all permutations o € [0%],k € {1, ..., el.“}}.

Observe that 6 <« n (for all i € I) for large size problems with sufficiently small values

for a;;. Consequently, we have (6{")! < n!, for each i € I, and thus, conv(Rll.Og) can be
constructed using significantly fewer polymatroid cuts than conv(R;). Adding (w{, r;, t;) €

conv(Rl!Og) to CEF10g allows this binarized formulation to benefit from polymatroid cuts,
that is given by

(CEFfog):  min [0 190 = %), e, ri.1) € conn(R), Vi e 1.
R iel
Standout formulation Formulation CEF{'og is another of the best formulations in our com-
putations. Similarly to LF:I'L’og, formulation CEFll’og is able to strike a good balance between
the size and the strength of the convex relaxation by incorporating binary-expansion and
polymatroid cuts, resulting in a similar performance as CEF in small instances, but scales

much better to larger problems.

Example 1 (continued). Next, we evaluate the reformulations of (13) for the models proposed
in Sect. 3.

(iv) In order to take the advantage of polymatroid strengthening, we add to LF, LF 1 o4, LEF
constraints of the form (4),1.e.,71 = 24+x1+x2+x3+x4+x5andry = 14+2x1 +2x2 +3x3.
Additionally, we add 144 rotated cone constraints of the form (6) to the aforementioned
formulations and CEF. Then we obtain LF¥, LF] ., LEF®, and CEFF, that have improved
relaxation objective function values of 1.697 (vs. 0.482 of LF), 1.697 (vs. 0.405 of LF14),
1.702 (vs. 1.484 of LEF), and 1.702 (vs. 1.639 of CEF), respectively, and close most of the
gap to the optimal objective function value 1.75.

(v) By using the binary-expansion technique, constraint (7b) in model (7) for the first and
second ratios, i.e.,

1 2 y1 + (x1 + x2 4+ 2x3 + 2x4 + x5)y1, and (21a)

>
> 2y + (2x1 + 3x2 + x3 + x4)y2, (21b)

15}
can be replaced, respectively, by

1=y + Q% + 2w, + 22wis)y;, and (22a)

= 2ys + 2%ws, +2'ws, + 22wy (22b)

In order to obtain CEF we need to convexify 9 bilinear terms x;y; in the right-hand sides
of (21a) and (21b) as rotated cone constraints z;;r; > x%. In comparison, in order to achieve
CEF10g only 6 bilinear terms wy, y; in the right-hand sides of (22a) and (22b) are required to
be convexified as z{} r; > (wf,)~. Although CEF104 has 3 fewer rotated cone constraints than
CEF, it has a worse relaxation objective function value (1.244 vs. 1.639). Next, we improve
its relaxation by using polymatroid cuts in the binary-expansion space.

(vi) For permutation o = (1, 2, 3) inequalities #;7; > (/a0 + A} wl-“)2 in (20) for the first
and second ratios are, respectively,
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Table 2 The reformulation sizes (number of variables and constraints), where n and m are defined as in FP,
¢ is the number of constraints defining X, 07" = [logy (3_ ¢y aij)] + 1 and 0}’ = llogy (3 jey bip)] +1

Formulation Variables Constraints

Continuous Binary Linear Rotated cone

MILP-based reformulations

LF m(n+1) n mQR2n+1)+¢q -

LFP m(n +2) n m2n +2) + q + cuts® m

LFlog m+ Y 6 ntYie 60 2m+2Y¢,60 +4q -

LFi‘Og 2m+ Y e Gl.b n+ el Gl.b 3m+2) e 9l.b+q+cuts m

LEF m(n + 2) n m@n+2)+q -

LEF? m(n + 3) n m(4n 4 3) 4+ g + cuts m

MICQP reformulations

CF m(n + 3) n 2m +q m(n + 1)**
CcFF m(n + 3) n 2m + g + cuts m(n +2)
CEF m(n +3) n m@4n+3)+gq m(n+1)
CEFF m(n +3) n m(4n + 3) + g + cuts mn +2)
CEF1og 3m+ )y 6f n43 e 07 3423108 +4q mA+ i 6f
CEFi’og 3m A+ ey 6f n+3 e 67 3m+2% ¢y 68 +q+cuts 2m+ 3 e 6F

Subscript “1og” and superscript “P” are reserved for binary-expansion and polymatroid cuts, respectively
*Polymatroid cuts are added on the fly, implemented as discussed in Remark 2
**Formulations CF and CFF are based on extended formulation (10)

nry > (1 + (W2 = D, + (V4= V2wl + (V8 — ﬁ)wi‘3)2, and (23a)
try > (2 + (V3 = V2w, + (V5 = VB + (V9 — ﬁ)wg2)2. (23b)

If we add (23a) and (23b) to CEF1.g4, then its relaxation objective function value from 1.244
is improved to 1.311. If we add all 2 - 3! = 12 polymatroid inequalities to CEFj0g, then the
resulting formulation is CEF} with a better relaxation objective function value of 1.446.
Note that the number of cuts added to obtain CEFll’c,g is significantly fewer than the number
of cuts added in order to obtain any of the other formulations strengthened with polymatroid
cuts (12 vs. 144 cuts).

Therefore, from this example, we observe that there is a trade-off between using polyma-
troid cuts and binarization. The former improves the relaxation objective function value at
the expense of a larger problem, and the latter reduces the number of (continuous) variables
and (either linear or rotated cone) constraints at the cost of a weaker relaxation. However, the
incorporation of these ideas leads to moderate size formulations, i.e., CEF:I‘L’L.,g and LFfog,
that benefit from strong convex relaxations. (]

3.3 Problems sizes

Table 2 shows the number of continuous and binary variables as well as the number of linear
and rotated cone constraints for MILP and MICQP formulations discussed in Sects. 2 and
3. By comparing each binarized formulation with the corresponding basic formulation, it is
seen that the binary-expansion technique can potentially decrease the number of continuous
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variables and also the number of linear/rotated cone constraints—especially for large values
of n—with a moderate increase in the number of binary variables. We also observe that
adjusting the formulations to enable them to use polymatroid cuts only slightly increases the
number of variables or constraints.

4 Computational Experiments

We perform extensive computational experiments to evaluate the performances of the cur-
rently existing formulations in the literature presented in Sect. 2 and to compare them versus
the enhancements developed in Sect. 3. We outline the structure and parameters of the
computational experiments in Sect. 4.1. We discuss the obtained results in Sect. 4.3 and
“Appendix B”.

4.1 Computational environment and test instances

All of the computational instances are solved using CPLEX 12.7.1 [21] on a 32-core
CPU (2.90 GHz) with 160 GB of RAM; we allocate a single thread and 8 GB of RAM
for each individual experiment, and use a time limit of 1 h (3600 s). To avoid running-out-of-
memory difficulties we use the “node-file storage-feature” of CPLEX to store some parts of
the branch-and-cut tree on disk when the size of the tree exceeds the allocated memory. The
polymatroid inequalities are added at the root node by using callback functions of CPLEX
as described in Remarks 1 and 2.

Test instances We consider three classes of instances: “small” (n € {25, 50, 100}) and
“medium” (n € {200, 500, 1000}) size instances with m = [10% - n], and “large” size
instances (n € {2000, 5000, 10000}) with m = 100. For each choice of n and each of the
following data generation settings five instances are sampled and the results are averaged.

o Assortment data set. For the first setting, we consider the assortment optimization prob-
lems that naturally arise in many applications such as online advertising, retailing, and revenue
management [30]. Under the mixed multinomial logit model (see, e.g., [25,33,35]) we are
givenI = {1, 2, ..., m}classes of customers and J = {1, 2, ..., n} available products. Then
the assortment optimization problem is defined as the problem of deciding which assortment
of products S € J must be offered to customers in order to maximize the expected revenue. In
particular, let ;; and u;; denote the revenue and customer preference weight associated with
selling product j to customer class i, respectively, and w;¢ is the no-purchase preference in
class i. Then, for a given assortment .S, the probability that customer class i chooses product
J €8s pwij/(mio + > jes i 7). Thus, the problem of maximizing the expected revenue for
all classes of customers under the mixed multinomial logit model can be formulated as the
multiple-ratio fractional binary program of the form

i
max 2 jes TiiMii] . (24)
XEX A= uio + X je g WijXj

In (24) variable x; is 1 if and only if the decision maker offers product j. Note that (24)
is a special case of the generally structured FPs, since in each ratio i € I the coefficient of
xj, forall j € J in the numerator, i.e., a;; = r;jj;j, is proportional to its coefficient in the
denominator, b;; = w;;; moreover, a;o = 0 and b;o = w;o.
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Problem (24) can be transformed into an equivalent minimization problem. Specifically,
based on equation (26) and the related discussion in “Appendix A”, for each customer class
i € I we have

DjesTijhijXj  kipio + 25 rijiij + kipi)x;
0 + D ey HijXj Ii0 + 2 ey HijXj

i»

for any k; € R. Letk; = —r; = —max ey i}, then

3 —Tilio + 2 ey Tijitij — Tilkij)X; L7

max ri
xeX o= 1io + D ey MijXj
. Fitio + ey mij(Fi —rij)xj
= —min = jel T W + 7. (25)
reX — 1io + X je g MijXj

Transformation (25) is precisely the transformation used in [33] and satisfies the data non-
negativity assumption. To satisfy the data integrality assumption, we multiply by 10 each of
the terms o7, wij(r; —rij), mio, and w;;, foralli € I and j € J, and round them down
to the nearest integer values.

For our test instances, we generate the data as in the assortment optimization problem
considered in [33]. Specifically, the product prices are the same across the customer classes,
ie., r;j =rjforalli € I and drawn from a U[1, 3] distribution. Moreover, the preferences
wij are drawn from a U[0, 1] distribution, and p;o = 5 foralli € 1.

Moreover, Sen et al. [33] consider X = {x c B" | ZT}':] xj < /c}. We let « € {10% -
n, 20% - n, n}. The cardinality constraints: k = 10% - n and k = 20% - n correspond to a
“small” and “large” retailer, respectively, where there is a physical limitation on the number
of products that can be offered to customers. Additionally, « = n indicates the unconstrained
case, i.e., X = B", and it corresponds to an online retailer with the ability to sell many
products [24].

Sen et al. [33] consider only the combinations n = 200, m = 20 and n = 500, m = 50.
For these combinations we use the the same data (now part of the conic benchmark library,
CBLIB) available at http://cblib.zib.de. For the other combinations of n and m
tested in the paper we generate the data randomly in the aforementioned fashion.

e Uniformly generated data set. For the second setting, we use data generated similarly
to [9,24]. Specifically, the coefficients a;; and b;; are each sampled from a (discrete) U[0, 20]
distribution, except for b;o which is sampled from a U[1, 20]. The feasible region is given
by X = {x € B" | Yj_,x; = «} with & € {10% - n, 20% - n}; we also consider the
unconstrained case (X = B").

For constrained instances, since in both settings X contains a single cardinality constraint,
the number of variables added in the binary-expansion formulations can be reduced by setting
0 := logy (3—y airj))]+1and 0! := |log, (=1 bigjp) +1,foralli € I, where ;)
and b;[ ;) denote the j-th largest element of a; and b;, respectively. For all the formulations—
except LF, LF1 g, and LFi’og—we use yiL =1/(bjo+ Zj’:l bij1) and yl.U = 1/b;( as valid
lower and upper bounds for linearization, respectively. For LF, LF14, and LFiog we use
tiL =0 and tl.U = (a;o + Zle aifj1)/bio as valid bounds.
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Metrics For each of the formulations we define, z*: the objective function value of an optimal
integer solution (or the best-found integer solution if an optimal solution could not be found
by the formulation within the time limit), z81*: the optimal objective function value of the
continuous relaxation, zR°P: the objective function value obtained after processing the root
node (i.e., after adding polymatroid cuts and considering other strengthening techniques used
by CPLEX)z, and zBP": the best lower-bound at the termination of the solver. Moreover, we
define Z* as the objective function value of the best-known integer solution over all solution
methods.

Then, in our experiments, we report the following metrics of interest: the continu-

ous relaxation gap, Rlx-gap = |Z*_27§Rlx| x 100%; the root node gap, Ron-gap =
* on * bn

M}izf‘ x 100%; the end gap, End-gap = @ x 100%; the best bound gap,

Bbn-gap= M*}ii%nl x 100%; and the optimality gap, Opt-gap= |Z'Z_f*| x 100%. In

addition, we report the Time in seconds required to solve the problems, and the number of
branch-and-bound Nodes explored. In all cases we report the averages over five instances
generated with the same parameters (n, m, k).

4.2 Preliminary analysis

Here, we briefly analyze the results for the MILP and MICQP formulations outlined in Sect. 2.
More detailed results are omitted from the current discussion for the sake of brevity and are
reported in “Appendix B”.

In particular, the extended formulations LEF and CEF are stronger (they have better
Rlx-gap) than the corresponding compact formulations LF and CF, respectively. The
extended formulations also have better t ime and End-gap than the corresponding com-
pact formulations; see Tables 7 and 8 for the results and “Appendix B.1” for an additional
discussion.

Although LF has a poor performance even for small instances, its “binarization”, i.e.,
LF10g, leads to significant improvements in the running time due to the reduction in the size
of the formulation, see Tables 9 and 10 and the discussion in “Appendix B.2”. These results
are consistent with the previous results in the literature (see, e.g., [9,24]) that LF1,4 has a
superior performance over LF and LEF1g.

Additionally, recall that among the existing formulations in the literature the polymatroid
cuts have been employed only for the strengthening of CF and the resulting formula-
tion, i.e., CFF significantly outperforms CF with respect to the metrics time, End-gap,
and Ron-gap. See [4] and our results presented in Tables 13 and 14; we also refer to
“Appendix B.3” for an additional discussion.

4.3 Standout versus the state-of-the-art formulations

In this section, we further compare the performance of the state-of-the-art formulations avail-
able in the literature identified in Sect. 4.2, i.e., the extended MILP formulation LEF and the
compact binary-expansion formulation LF 1,4 as well as the extended MICQP formulation
CEF and the compact MICQP formulation with polymatroid cuts CFF. In addition, we report
the results of the two standout formulations derived in Sect. 3: the binary-expansion MILP and

2 For MILP formulations, zR1¥ < zROM a5 additional constraints are added at the root node. For MICQP
formulations, this is not necessarily the case: ZR1% s found via interior point methods, while ZROn i5 obtained

after solving a linear outer approximation—which may have a weaker continuous relaxation.
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MICQP formulations strengthened with polymatroid cuts, i.e., LFll’og and CEFrl'og, respec-

tively. In “Appendix B”, we present additional computational results and discuss in detail our
extensive experiments to evaluate the individual and combined effects of the enhancements
developed in the paper.

Tables 3 and 4 show the results for the assortment and the uniformly generated instances,
respectively, and for different values of n, m and « with respect to the running time and the
end gap. A detailed comparison of the standout and the state-of-the-art formulations with
respect to all the metrics defined in Sect. 4.1 is provided in Tables 5 and 6 of “Appendix B”.
In the tables, we use the “{” symbol to denote that CPLEX was unable to fully process the
root node of the branch-and-bound tree within the time limit of 1 h for a given formula-
tion.

Observe that, overall, the uniformly generated instances used in [9], see Table 4, are
much more difficult to solve than the assortment instances used in [33], see Table 3. In
particular, only uniformly generated instances with n < 50 can be solved to optimality (by
any formulation), while assortment instances with n < 500 can in general be handled well
by MICQP formulations.

Figure 3 shows the number of continuous and binary variables as well as the number
of linear and rotated cone constraints of the formulations as a function of dimension (7).
Figure 4 depicts the performance profile of solution methods and can be used to evaluate the
effectiveness of each formulation in easy instances (the instances that are solved to optimality
by at least one solution method). Figure 5 portrays the end gaps across all instances as a
function of the dimension and can be utilized to explore the effectiveness of each formulation
in hard, larger, instances (the instances that are not solved to optimality by any solution
method in the time limit). Figures 6 and 7 show the relaxation gaps and the root node gaps,
respectively, across all instances as a function of the dimension and can be used to evaluate
the strengths of the convex relaxations.

In the easy instances, we see from Fig. 4 that CEF performs best. Formulation CEF also
has the best relaxation strength among the formulations presented (Figs. 6 and 7). In fact, in
most of the instances that CEF solves to optimality, Ron-gap is nearly 0 and optimality is
proven with a few branch-and-bound nodes (see Table 5 with n < 500).

However, when hard instances are also taken into account CEF is not necessarily the best
formulation, mainly due to the fact that its large size (Fig. 3) hampers its performance, and
other formulations match or improve upon the end gaps of CEF even for 100 < n < 500; see
Fig. 5. Indeed, in the uniformly generated instances (Table 6), CEF is not able to fully close
the root node gap, and the performance in branch-and-bound is substantially impaired due
to the difficulty of solving the large, nonlinear convex subproblems. Additionally, existing
conic formulations CF¥ and CEF scale the worst among the formulations presented, and
CPLEX is unable to process the root node for those formulations in large settings with
n > 1000.

On the other hand, LF 1,4 has the best scaling properties among the previously proposed
formulations in the literature. Notably, unlike LEF, CEF and CFF, it is able to fully process
the root node in all instances with n > 1000 and explore thousands of branch-and-bound
nodes or more. Moreover, it is competitive with the other formulations in terms of end gaps
for n < 100 and outperforms other existing formulations at n = 100; see Fig. 5. However,
it has substantially weaker convex relaxations than all the other formulations (see Figs. 6
and 7), and as a consequence it struggles on the easy instances (Fig. 4) and has worse end
gaps for 200 < n < 500 than the other previously proposed formulations.

The new formulations LF{og and CEF{og, which combine the binary-expansion tech-
nique, conic strengthening and polymatroid strengthening, perform well across all dimen-
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Table 3 Computational results to evaluate the best existing methods in the literature against the standout
formulations for the assortment data set [33]

n,m K 10% - n 20% - n Unconstrained
Ref. Time End-gap Time End-gap Time End-gap
25,2% LF1og 0 0.0% 0 0.0% 1 0.0%
LEF 0 0.0% 0 0.0% 0 0.0%
crP 0 0.0% 0 0.0% 1 0.0%
CEF 0 0.0% 0 0.0% 0 0.0%
LFY g 0 0.0% 0 0.0% 0 0.0%
CEF g 1 0.0% 0 0.0% 2 0.0%
50,5* LF1og 1 0.0% 2 0.0% 18 0.0%
LEF 0 0.0% 1 0.0% 0 0.0%
crP 1 0.0% 2 0.0% 4 0.0%
CEF 1 0.0% 1 0.0% 1 0.0%
LFY g 0 0.0% 1 0.0% 6 0.0%
CEF{ g 0 0.0% 2 0.0% 21 0.0%
100,10* LF1og 979 0.0% 3155 0.4% 3600 1.6%
LEF 3357 1.6% 2190 0.2% 1 0.0%
crP 10 0.0% 20 0.0% 25 0.0%
CEF 6 0.0% 4 0.0% 6 0.0%
LFY g 1 0.0% 6 0.0% 3600 0.8%
CEF} 4 2 0.0% 22 0.0% 3600 0.3%
200,20* LF1og 3600 6.7% 3600 8.7% 3600 24.1%
LEF 3600 8.6% 3600 1.1% 29 0.0%
crP 27 0.0% 64 0.0% 1562 0.2%
CEF 73 0.0% 40 0.0% 59 0.0%
LFY g 710 0.0% 3400 0.3% 3600 6.3%
CEF} g 2353 0.5% 3600 2.2% 3600 6.4%
500,50* LF1og 3600 39.8% 3600 54.0% 3600 55.7%
LEF 3600 8.3% 2520 0.2% 3501 0.4%
crP 1194 0.0% 3452 0.3% 3600 7.7%
CEF 3611 0.2% 2620 0.0% 3604 0.5%
LFY g 3600 0.8% 3600 3.3% 3600 15.2%
CEF] g 3600 4.7% 3600 12.2% 3601 26.1%
1000,100** LF1og 3600 55.9% 3600 62.7% 3600 76.5%
LEF 3600 13.9% 3722 0.9% 3600 1.7%
crP 3600 ¥ 3600 + 3600 +
CEF 3605 ¥ 3600 i 3600 +
LFY g 3601 ¥ 3601 20.9% 3601 26.1%
CEF g 3601 10.0% 3600 22.6% 3600 33.8%
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Table 3 continued

n,m K 10% - n 20% - n Unconstrained
Ref. Time End-gap Time End-gap Time End-gap
2000,100** LF1og 3600 57.8% 3600 70.5% 3600 78.3%
LEF 3601 T 3600 T 3601 T
cr? 3600 T 3600 T 3600 T
CEF 3600 T 3600 T 3600 T
L.FliOg 3601 T 3600 41.4% 3601 33.1%
CEFEOg 3600 16.1% 3600 30.7% 3600 53.4%
5000,100** LF1og 3600 78.1% 3600 80.6% 3601 83.5%
LEF 7807 T 8155 T 7241 T
crP 3600 T 3600 T 3600 T
CEF 3600 T 3600 T 3600 T
LF%’Og 3601 29.2% 3601 49.0% 3601 50.7 %
CEFfOg 3600 39.3% 3600 40.6% 3600 58.4%
10000,100** LF1og 3600 88.4% 3600 83.1% 3602 93.0%
LEF 4225 T 4026 T 3603 T
cFP 3600 T 3600 T 3600 T
CEF 3600 F 3600 ¥ 3600 F
LFEOg 3601 55.4% 3601 53.2% 3601 54.7%
CEF]iDOg 3600 33.4% 3601 45.4% 3601 T

For each combination of n, m, k and each formulation, we present averages over five instances for time (Time)
in seconds and end gap (End-gap). For each choice of n, m, and x, among the solution methods, the best
average time and the best average End-gap (if Time> 3600 s) are in bold

*easy instances

**hard instances

sions. Binarization leads to a significant size reduction especially in larger instances, e.g.,
for n = 10, 000 the number of rotated cone constraints of 1,000,100 (corresponding to CEF)
reduces to 1750 (corresponding to CEF{og); see Fig. 3d. On the other hand, polymatroid
cuts improve the convex relaxation quality of the formulations. In particular, from Fig. 7 we
observe that LF} and CEF}, are able to achieve a substantial root node strengthening
over the simple binary-expansion formulation LF1 .4, and approximately match the strength
of LEF. As a consequence, in the easy instances (Fig. 4), they also match the performance of
LEF and consistently outperform LF1 .4, but still lag behind the stronger conic formulations
CEF and CFF.

However, once hard instances are also taken into account, we see from Fig. 5 that they
achieve the best performance overall. Notably, they match the performance of the best for-
mulations for n < 500, but they scale to instances with # in the thousands and consistently

outclass LF104 (the only other formulation that scales to those instances).
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Table 4 Computational results to evaluate the best existing methods in the literature against the standout
formulations for the uniformly generated data set [9]

n,m K 10% - n 20% - n Unconstrained
Ref. Time End-gap Time End-gap Time End-gap
25,2* LF1og 0 0.0% 1 0.0% 1 0.0%
LEF 0 0.0% 0 0.0% 0 0.0%
cr? 3 0.0% 4 0.0% 4 0.0%
CEF 0 0.0% 0 0.0% 1 0.0%
LFY g 0 0.0% 1 0.0% 1 0.0%
CEF:}_L’og 1 0.0% 1 0.0% 6 0.0%
50,5* LF1og 3 0.0% 20 0.0% 52 0.0%
LEF 2 0.0% 13 0.0% 43 0.0%
crP 78 0.0% 3601 6.5% 2903 3.0%
CEF 0.0% 18 0.0% 100 0.0%
LFlfog 0.0% 27 0.0% 85 0.0%
CEF{Og 0.0% 26 0.0% 86 0.0%
100,10** LF1og 3600 5.0% 3600 5.0% 3600 11.2%
LEF 3600 12.3% 3600 17.1% 3600 38.5%
crP 3600 43.5% 3600 44.3% 3600 42.0%
CEF 3600 10.7% 3600 15.5% 3600 40.1%
LF%og 3600 7.5% 3600 6.1% 3600 17.2%
CEF%’Og 3600 7.2% 3603 5.2% 3600 10.9%
200,20** LF10g 3600 41.7% 3600 37.7% 3600 58.2%
LEF 3600 30.0% 3600 31.1% 3600 70.6%
crP 3600 65.8% 3600 61.6% 3600 70.9%
CEF 3600 30.9% 3600 30.0% 3600 76.4%
LF]i:og 3600 41.6% 3600 35.6% 3600 58.0%
CEFlfog 3600 35.5% 3600 34.3% 3600 54.4%
500,50** LF10g 3600 48.7% 3600 48.7% 3600 87.0%
LEF 3600 42.8% 3600 41.1% 3600 90.3%
cr? 3600 T 3600 T 3600 84.9%
CEF 3603 42.8% 3604 41.8% 3603 93.4%
LF%’og 3600 48.4% 3600 48.1% 3600 82.9%
CEFlljOg 3600 46.3% 3600 43.1% 3600 86.7%
1000,100** LF1og 3600 50.3% 3600 50.1% 3600 96.6%
LEF 3601 T 3601 T 3601 i
cr? 3600 F 3600 T 3600 95.6%
CEF 3600 F 3600 t 3600 +
LFlfog 3600 50.2% 3600 50.2% 3600 91.9%
CEF]fog 3600 48.0% 3600 44.5% 3600 92.2%
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Table 4 continued

n,m K 10% - n 20% - n Unconstrained
Ref. Time End-gap Time End-gap Time End-gap
2000,100** LF1og 3600 50.7% 3600 50.6% 3600 97.8%
LEF 3601 T 3602 T 3601 T
cr? 3600 T 3600 T 3600 T
CEF 3600 T 3600 T 3600 T
L.FliOg 3600 50.8% 3600 50.7% 3600 94.8 %
CEFEOg 3600 47.8% 3600 44.6 % 3600 96.6%
5000,100** LF1og 3600 67.9% 3600 65.0% 3601 98.8%
LEF 4755 T 3938 T 3603 T
crP 3600 T 3600 T 3600 T
CEF 3600 T 3600 T 3600 T
LF%’Og 3600 68.8% 3600 67.9% 3601 96.9 %
CEFfOQI 3600 46.7% 3601 45.2% 3601 98.3%
10000,100** LF1og 3600 68.6% 3600 68.2% 3601 99.4%
LEF 9500 T 6022 T 5619 T
cFP 3600 T 3600 T 3600 T
CEF 3600 F 3600 ¥ 3600 F
LFEOg 3601 68.5% 3601 68.4% 3601 97.8%
CEF]iDOg 3601 47.5% 3600 44.8% 3600 T

For each combination of n, m, k and each formulation, we present averages over five instances for time (Time)
in seconds and end gap (End-gap). For each choice of n, m, and x, among the solution methods, the best
average time and the best average End-gap (if Time> 3600 s) are in bold

*easy instances

**hard instances

5 Conclusions

Fractional 0—1 programming problems have traditionally been tackled by reformulating the
problems as MILPs a large number of variables and constraints. However, new techniques
have recently been proposed to improve upon the classical MILP formulations. This paper
focuses on two such recent enhancements: a binary-expansion technique that decreases the
number of variables and constraints at the expense of weak convex relaxations; and conic
and submodular strengthenings, which improve the convex relaxations at the expense of even
larger and harder to solve convex relaxations. Naturally, these two ideas are at odds with each
other, and which enhancement is preferable largely depends on each particular instance.

In this paper, we develop formulations that combine both enhancement ideas. The new
formulations are compact and require a modest number of variables and constraints, yet
retain the relaxation strength of formulations of much larger sizes. As a consequence, the
new formulations are able to perform well across all instance classes. Specifically, in our
computations using benchmark instances, we observe that the new formulations perform as
well as the best existing methods in small and easy problems, and vastly outperform existing
methods in larger and harder instances.
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Fig.3 The average sizes (numbers of continuous and binary variables as well as numbers of linear and rotated
cone constraints) of formulations as a function of dimension (n). The averages are over five test instances of
both the assortment [33] and the uniformly generated [9] data sets and capacity sizes k € {10% - n, 20% - n}

as well as the unconstrained case

Fig.4 Performance profile for
easy instances, that are the
instances solved to optimality by
at least one formulation. They
include 80 instances of the
assortment data (all instances
with n < 500 and five instances
with n = 1000), and 30 instances
of the uniformly generated data
(all instances with n < 50). We
depict the percentage of such
instances that could be solved as
a function of the time (in logari-
thmic scale) for each formulation
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Fig.5 Average end gap
(End-gap) for all instances as a
function of dimension. No gap is
reported when a given
formulation is unable to solve the
root node within the time limit

Fig.6 Average relaxation gap
(R1x-gap) for all instances as a
function of dimension. Observe
that R1x-gap does not account
for the effect of polymatroid cuts;
thus, we consider formulations
without the impact of the
polymatroid strengthening. No
gap is reported when a given
formulation is unable to solve the
root node within the time limit

Fig.7 Average root node gap
(Ron-gap) for all instances as a
function of dimension. Observe
that Ron-gap accounts for the
strengthening from polymatroid
cuts, but it is also impacted
unfavorably by the use of
(possibly weak) linear outer
approximations. No gap is
reported when a given
formulation is unable to solve the
root node within the time limit
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A Assumption justifications

We make the following assumptions in the paper.
Assumption 1 All data are integers, i.e., a;j, bjj € Z foralli € I, j € J U{0}.
Assumption 2 All data are non-negative, i.e., a;j, b;; > Oforalli € I and j € J U {0}.

The first assumption is without loss of generality, as otherwise rational coefficients can be
scaled. Assumption 2 is naturally satisfied in most application settings, as the data typically
represents probabilities, prices, weights, utilities etc.—see, e.g., [10] and the applications
described therein.

Nonetheless, Assumption 2 is without loss of generality provided that (the weaker and
commonly made assumption in the FP literature, see, e.g., [8,9,19]) b;o + Zjej bijxj >0
for all x € B" holds. In eachratio i € I, for every j € J such that b;; < 0 and every j such
that b;; = 0 and a;; < 0, replace x; with X; = 1 — x;, resulting in a problem satisfying
bij = 0 (possibly with at most n additional variables and constraints). Then observe that for
any k; € R

aio + X jey aijxj  (aio +kibio) + 3 ;e (aij + kibij)x; . 26)
bio + 2 jey bij¥; bio + 2 jey bij, :
Thus, by letting k; sufficiently large for each i € I, we find a problem where all coefficients
are non-negative.

Finally, note that if a fractional program is in maximization form and satisfies b;o +
Z‘ jes bijxj > 0forall x € B", then it can be transformed into an equivalent problem in
minimization form (by negating all coefficients a;o and a;;), and then applying the process
above to obtain a problem satisfying Assumption 2.

B Additional computational results

In this appendix, we compare the performance of the formulations presented in the paper (not
restricted to those discussed in Sect. 4.2 and Sect. 4.3 and presented in Tables 3 and 4 as
well as their extended versions, i.e., Tables 5 and 6) to evaluate the individual and combined
effects of the enhancements. In order to have a better comparison of the results, we repeat
the results for some of the formulations in different subsections.

In particular, first, in Appendix B.1, we compare the basic MILP and the basic MICQP
formulations without using additional enhancements. Then in Appendix B.2, we focus on
the effect of the binary-expansion technique on the basic formulations. Next, in Appendix
B.3, we focus on the impact of polymatroid cuts. In Appendix B.4, we test the formulations
that benefit from the integration of the binary-expansion technique with the polymatroid cuts.
Recall that, in the following tables, the “§”” symbol is used if CPLEX is unable to fully process
the root node of the branch-and-bound tree within the time limit for a given formulation.
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B.1 Linear versus conic formulations

Here, we evaluate the basic MILP (LF, LEF) and the basic MICQP (CF, CEF) reformulations,
see Tables 7 and 8. Observe that, in most cases, LEF, CF, and CEF are stronger than LF,
i.e., they have better R1x-gap. Additionally, as expected, the extended formulations LEF
and CEF are stronger than compact formulations, i.e., LF and CF, respectively. The extended
formulations also shows better running time and end gap than the corresponding compact
formulations. In general, CEF performs better than LEF for low values of the parameter «,
while LEF is comparatively better for high values of k. Moreover, none of the formulations
except CF (with a very poor performance) are able to scale to n = 1000 for all instances.
These results justify the development of enhanced formulations for the medium and large
size instances.

B.2 Binary-expansion

Here, we explore the individual impact of binary-expansion technique on the performance and
size of the basic formulations. Specifically, we compare LF and CEF versus their binarized
versions, i.e., LF 104 and CEF1 04, respectively. We do not consider the binarized formulations
of LEF and CF as discussed in Remarks 4 and 6, respectively.

In Tables 9 and 10, we observe that LF has a poor performance even for n = 100. In
contrast, its binarization leads to noteworthy improvements in the results due to the reduction
in its size. These results are consistent with the previous results in the literature that LF1 g
outperforms LF and LEF1,g—see [9,24].

On the other hand, for n < 500 formulation CEF has a superior performance over CEF10g
with respect to either time or the considered gaps; e.g., for n = 500 and k = 10% - n in
Table 9, CEF reports the 0.2% average End-gap, compared to 5.1% for CEF;.4. Nonethe-
less, CEF10g4 is able to scale to problems with n > 1000 while formulation CEF is not.
Additionally, for the instances with n > 2000 we observe that in most cases CEF1 g Outper-
forms (the superior MILP formulation) LF1g, as well.

Tables 11 and 12 show the impact of binarization in the reduction of the number of contin-
uous variables and the numbers of linear as well as rotated cone constraints for the assortment
and the uniformly generated data sets, respectively. It can be seen that the binary-expansion
technique substantially reduces the number of (continuous) variables and constraints with a
slight increase in the number of binary variables; the percent of these reductions gets larger
as n grows. For example, in Table 11 for n = 1000, LF; o4 and CEF14 have at least 97,900
and 391,500 fewer continuous variables and linear constraints, respectively, than LF and CEF
with the cost of at most 2100 more binary variables. The binary-expansion technique also
leads to a reduction of 97,900 rotated cone constraints for CEF.
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B.3 Polymatroid cuts

Next, we explore the individual impact of polymatroid cuts on the basic formulations, namely,
LF,LEF,CF, and CEF. Notably, forn < 500in Tables 13 and 14, we observe that polymatroid
cuts have a significant improvement effect on the performance (time and End-gap) of
compact formulations LF and CF. However, the cuts are not that effective for LEF and
CEF, as these extended formulations are much stronger and the cuts provide only a marginal
improvement in the relaxation quality while increasing the sizes of the formulations.

Additionally, for n > 1000 polymatroid cuts are not beneficial and employing them makes
the results worse, see, e.g., in Table 13 and n = 1000 that End-gap of LEF from 13.9%
increases to 81% after employing the cuts. The reason is that CPLEX consumes the allocated
time only to manage the cuts and process the root node.

B.4 Integration of binary-expansion and polymatroid cuts

Here, we explore the effect of simultaneous usage of both techniques, i.e., the impact of
the incorporation of polymatroid cuts with binary expansion on LF and CEF. Tables 15
and 16 present the results and we make the following observations. Formulation LF‘l’Og
either outperforms LF, LFF, and LF14 or (in a few cases) has a competitive performance
with LF?. On the other hand, for the small- and medium-size instances CEF and CEF?
are competitive and they have better performances than CEF; 4 and CEFL{OQ. However, for
large instances CEF11°og outperforms CEF, CEF104 and CEFF. These observations imply
that—specially in large instances—the integration of binarization and polymatroid cuts in
both MILPs and MICQPs leads to superior formulations. Specifically, Ll-"ll’og and CEFll’c,g
perform better than the corresponding basic formulations and the enhanced ones that only
use one of the improving techniques.

Additionally, it appears that for instances up to 500 variables, in general, CEF and CEFF are
the most efficient formulations. For instances with n > 1000, CEFi’og and LFll’c,g outperform
the others. Finally, we observe that, in general, CEFi’og has a better performance in the
constrained instances, while LF‘{OQ, is superior in the unconstrained instances.
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