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Abstract
This paper focuses on methods that improve the performance of solution approaches for
multiple-ratio fractional 0–1 programs (FPs) in their general structure. In particular, we
explore the links between equivalent mixed-integer linear programming and conic quadratic
programming reformulations of FPs. Thereby, we show that integrating the ideas behind
these two types of reformulations of FPs allows us to push further the limits of the current
state-of-the-art results and tackle larger-size problems. We perform extensive computational
experiments to compare the proposed approaches against the current reformulations from the
literature.

Keywords Fractional 0–1 programming · Conic quadratic programming · Mixed-integer
linear programming · Polymatroid cuts · Binary-expansion · Assortment optimization

1 Introduction

We consider the general structure of fractional (hyperbolic) 0–1 programs

(FP) min
x∈X

∑

i∈I

ai0 + ∑
j∈J ai j x j

bi0 + ∑
j∈J bi j x j

,

where I = {1, . . . ,m}, J = {1, . . . , n} and X ⊆ B
n for B = {0, 1}. In addition to the

assumption that FP is in minimization form, we also assume that all data are non-negative
integers, i.e., ai0, ai j , bi0, bi j ∈ Z+ for all i ∈ I , j ∈ J . Both assumptions are without loss of
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generality provided that the weaker (and commonly used) assumption bi0+∑
j∈J bi j x j > 0

for all i ∈ I and x ∈ B
n holds, see “Appendix A” for a discussion.

Fractional binary optimizations arise naturally in many contexts that involve optimization
of efficiency measures (e.g., maximizing the ratio of return/investment or profit/time and
minimizing the ratio of cost/time, see [10,27,32,34]), averages, probabilities and percentages,
among others. Fractional optimization models can be found in diverse application areas
including problems in data mining (such as feature selection [17,26] and biclustering [12,
37]), scheduling [31], retail assortment [13,25,35], set covering [2,3], facility location [36],
stochastic service systems [15], finding alternative solutions to binary linear programs [38],
clinical trials [7], and so on. For an overview of applications and solution methods for FPs
we refer to a recent survey in [10].

Problem FP is well-known to be N P-hard wheneverm � 2, see [20,28,29]. To solve frac-
tional binary programs, severalmixed-integer linear programming (MILP) reformulations of
FPs have been proposed (see, e.g., [22,36,41,42]) consisting of linearizing bilinear terms by
introducing additional O(nm) continuous variables and big-M constraints. The MILP for-
mulations are commonly used, but they do not handle well large-scale multiple-ratio (m � 2)
FPs, see, e.g., [11,16,25], due in part to the weak relaxations caused by the big-M constraints,
and also due to the large number of newly added variables and constraints.

Borrero et al. [9] recently proposed an alternativeMILP reformulationbasedonperforming
binary expansions of certain integer-valued expressions. The formulation can substantially
reduce the number of bilinear terms that require linearization, thus requiringmuch fewer vari-
ables and constraints than the original MILP formulations. As a consequence, the binarized
formulation scales better to large instances; however, binary expansion also leads to weaker
continuous (convex) relaxations, which in turn can hurt performance in branch-and-bound.

Noting that x j = x2j for x j ∈ B, recently Şen et al. [33] proposed a mixed-integer conic
quadratic programming (MICQP) reformulation for assortment optimization. Additionally,
Atamtürk and Gómez [4] proposed another MICQP reformulation for FPs by explicitly
involving submodular functions, and used extended polymatroid cuts [5,23] to exploit the sub-
modular structure and strengthen the formulations. Both the aforementioned conic quadratic
reformulations result in stronger convex relaxations than the standard MILP counterparts, as
the latter requires linearization of bilinear terms with big-M constraints. Furthermore, thanks
to recent advances in commercial MICQP optimization softwares such as CPLEX [21] and
Gurobi [18], small- and medium-sized FPs can be solved efficiently. However, the solvers
still struggle with large-scale mixed-integer nonlinear optimization problems, and hence the
performance of the conic quadratic reformulations degrades considerably in larger instances.

Our contributions and the structure of the paper Themain goal in this paper is to develop for-
mulations for generally structured fractional 0–1 programs that perform well for all instance
sizes, with special focus on large instances where current methods fail. Specifically, our
contribution is threefold:

(i) We perform a comprehensive review of MILP and MICQP formulations of FPs given
in the literature and explore the relationships between them.
(ii) We demonstrate how to integrate MICQP and MILP formulations to obtain novel
formulations that simultaneously have strong convex relaxations, and a limited number
of variables and constraints.
(iii) By means of computational experiments, we show that the proposed formulations
outperform existing alternative formulations.

In order to achieve (i), in Sect. 2 we study the links between the classical MILP formula-
tionsLF and LEF, originally proposed in [41] and [22,42], respectively; the binary-expansion
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Fig. 1 Schematic representation of the ideas in this study.We exploit binary-expansion technique (fromMILP)
and conic and polymatroid strengthening (from MICQP) to develop enhanced formulations for FPs

Table 1 Formulations studied in this paper

Formulation Version Linear-based Conic

Without cuts With cuts Without cuts With cuts

Compact Basic LF [41] LFP CF [4] CFP (+) [4]

Binary expansion LFlog [9] LFPlog (�) – –

Extended Basic LEF [22] LEFP (+) CEF (+) [33] CEFP

Binary expansion LEFlog [9] LEFPlog CEFlog CEFPlog (�)

No citation is given for new formulations represented in bold. The symbols “+” and “�” denote that the cor-
responding formulation has a superior performance in medium- and large-size instances of our computations,
respectively

MILP formulationLFlog developed in [9]; theMICQP formulationsCF and CEF given in [4]
and [33], respectively, as well as the MICQP formulation strengthened using polymatroids
CFP, also given in [4].

In order to attain (ii), in Sect. 3 we show how to use binary expansions (emanated from
MILPs) in MICQP formulations; and how to use conic strengthening (originally proposed
in the context of CEF) and polymatroid cuts (originated from CFP) to strengthen the formu-
lations. More importantly, we show how to incorporate binary expansions and polymatroid
strengthening in a single (eitherMILP orMICQP) formulation. Figure 1 shows the schematic
representation of these ideas.

To achieve (iii), in Sect. 4, we conduct extensive computational results by using benchmark
test instances and observe that the incorporation of improvements leads to formulations that
perform better than the existing formulations in the literature.

In addition to the aforementioned formulations for FPs, several new formulations are
developed in this paper. We use the following naming conventions: names starting with
“L” correspond to linear formulations, while names starting with “C” correspond to conic
quadratic formulations; the letter “F” following the first letter indicates a compact formu-
lation while the letters “EF” following the first letter indicate an extended formulation, i.e.,
a (usually stronger) formulation with additional variables and/or constraints; the subscript
“log” indicates a formulation using binary expansions; finally, the superscript “P” indicates
a strengthened formulation using polymatroid cuts. Table 1 provides a short summary of all
formulations discussed in the paper, and Fig. 2 depicts the relationships between the convex
relaxations of the formulations. In order to better distinguish the formulations developed in
this paper from the existing ones in the literature we represent new formulations in bold
throughout the paper.
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Fig. 2 Relationships between the strengths of the convex relaxations of the formulations studied in this paper.
Single rectangular frames and single lines indicate existing formulations and shown relations in the literature,
respectively. Double circle frames indicate new formulations, and double lines indicate relations shown in this
paper. The symbol S1 ⇒ S2 (or S1 → S2) indicates that formulation S2 has a stronger convex relaxation
than formulation S1; this type of relations are demonstrated analytically in Sects. 2 and 3. Additionally, the
symbol S1 � ⇒ S2 (or S1 ⇢ S2) indicates that S2 resulted in smaller root gaps than S1 in most of our
computations; this type of relations are shown experimentally by performing computational results in Sect. 4

2 Formulations

Herein, we review the MICQP and the (best-known) MILP reformulations of FPs existing
in the literature, and describe their interrelatedness. Toward this goal, following our naming
convention, in Sect. 2.1 we consider the compact formulations LF, CF and the strengthened
version of CF with polymatroid cuts, i.e., CFP. Then in Sect. 2.2 we discuss the extended
formulations LEF and CEF involving more variables and/or constraints than LF and CF,
respectively. Finally, in Sect. 2.3 we study the binary-expansion reformulations of MILPs.

2.1 Compact formulations

For each i ∈ I let

ti := ai0 + ∑
j∈J ai j x j

bi0 + ∑
j∈J bi j x j

. (1)

Then the substitution of variable ti for all i ∈ I in FP yields

min
x∈X ,t�0

∑

i∈I
ti (2a)

s.t. bi0ti +
∑

j∈J

bi j x j ti � ai0 +
∑

j∈J

ai j x j ∀i ∈ I (2b)
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in which (2b) holds at equality at any optimal solution. Observe that constraint (2b) is
nonlinear and non-convex (for x ∈ [0, 1]n) due to the presence of bilinear terms x j ti . In the
following, we take two convexification procedures. The first uses a concave over-estimator
of the left-hand side of inequality (2b), resulting in a MILP; see Sect. 2.1.1. The second uses
a convex underestimator of the right-hand side of inequality (2b) chosen to ensure convexity
of the ensuing constraint, resulting in a MICQP; see Sect. 2.1.2.

2.1.1 Compact MILP formulation (LF)

The first approach is based on the linearization of x j ti , which can be accomplished by includ-
ing additional variables and linear constraints [1,36,42]. Specifically, the concave envelope
of x j ti , where x j ∈ B and ti is bounded, can be described with the bound constraints and the
linear constraints zi j � tUi x j and zi j � ti + t Li (x j − 1), where zi j is a variable representing
the hypograph of the bilinear term, and tUi and t Li are an upper bound and a lower bound on
ti , respectively. Note that under the data non-negativity assumption (see “Appendix A”) the
presence of the concave envelope of x j ti is sufficient for this linearization. Thus, problem
FP can be formulated as the MILP [36,41]:

(LF) min
∑

i∈I
ti (3a)

s.t. bi0ti +
∑

j∈J

bi j zi j = ai0 +
∑

j∈J

ai j x j ∀i ∈ I (3b)

zi j � tUi x j , zi j � ti + t Li (x j − 1) ∀i ∈ I , j ∈ J (3c)

x ∈ X , t, z � 0. (3d)

Formulation LF exploits the integrality restriction on x (x ∈ B
n) to construct the

concave overestimator of the left-hand side of (2b), but may be weak due to the used
big-M constraints (3c). Classical big-M values used are tUi = (ai0 + ∑

j∈J ai j )/bi0 and

t Li = ai0/
(
bi0 + ∑

j∈J bi j
)
. Thus, LF is especially weak if either the entries ai j and bi j or

the number of variables (n) are large.

2.1.2 Compact MICQP formulations (CF and CFP)

An alternative approach to resolve the non-convexity of (2b) is using conic quadratic pro-
gramming. For each i ∈ I , we define

ri = bi0 +
∑

j∈J

bi j x j , (4)

and

Ri =
{
x ∈ B

n, (ri , ti ) ∈ R
2+ | ti ri � ai0 +

∑

j∈J

ai j x j
}
.

Thus, problem (2) is equivalent to minx∈X ,t,r�0

{∑
i∈I ti | (4) and (x, ri , ti ) ∈ Ri , ∀i ∈ I

}
,

that is still non-convex due to Ri .
A simple convex relaxation of Ri can be obtained by squaring the binary variables (and

relaxing the integrality constraints), i.e., constraint (2b) can be written as ti ri � ai0 +
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∑
j∈J ai j x j = ai0 + ∑

j∈J ai j x
2
j , where the equality holds for x j ∈ B. Thus, problem (2)

can be posed as the MICQP [4]:

(CF) min
x∈X ,
t,r�0

∑

i∈I
ti (5a)

s.t. ti ri � ai0 +
∑

j∈J

ai j x
2
j ∀i ∈ I (5b)

ri = bi0 +
∑

j∈J

bi j x j ∀i ∈ I . (5c)

The nonlinear constraint (5b) is a rotated cone constraint, which can be directly used with
off-the-shelf solvers for MICQP. Observe that, unlike LF, formulation CF does not involve
big-M constraints. On the other hand, since x2j � x j for x j ∈ [0, 1], we see that squaring
the variables may also lead to a weak relaxation. In fact, formulation CF only uses the upper
bounds on x to construct the relaxation, but does not exploit the integrality constraints to
derive stronger formulations.

A better convex relaxation of Ri can be obtained by using the strongest convex relaxation
of Ri , i.e., the convex hull of Ri , denoted by conv(Ri ), see [4]:

(CFP) min
x∈X ,
t,r�0

∑

i∈I
ti

s.t. (x, ri , ti ) ∈ conv(Ri ) ∀i ∈ I

ri = bi0 +
∑

j∈J

bi j x j ∀i ∈ I .

Obviously, CFP has a tighter convex relaxation than CF. However, formulation CFP is
much larger than CF, as it requires a factorial number of constraints to construct conv(Ri ).
Specifically, let� denote the set of all permutations for set {1, . . . , n}. For a given permutation
σ := (σ (1), . . . , σ (n)) ∈ �, i ∈ I and j ∈ J , define

πi,σ ( j) =
√√√√

j∑

k=0

ai,σ (k) −
√√√√

j−1∑

k=0

ai,σ (k),

where ai,σ (0) = ai0, and consider the nonlinear extended polymatroid inequalities

ti ri �
(√

ai0 +
n∑

j=1

πi,σ ( j)xσ( j)

)2 ∀σ ∈ �, i ∈ I . (6)

Proposition 1 ([4]) The extended polymatroid inequalities and bound constraints describe

conv(Ri ), i.e., conv(Ri ) =
{
x ∈ [0, 1]n, (ri , ti ) ∈ R

2+ | (6)
}
.

Remark 1 In order to avoid adding all m · (n!) constraints of the form (6), Atamtürk and
Gómez [4] add constraint (5b)—which is redundant for CFP—to the formulation, and
add a small number of constraints (6) in a cutting surface fashion. The separation of such
constraints can be done in O(n log n) using the greedy algorithm for optimization
over polymatroids [14]. �

Remark 2 For each i ∈ I , inequalities (6) can be implemented in a lifted formulation using
a single three-dimensional rotated cone inequality and n! linear inequalities—which can be
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added as cutting planes. Specifically, (x, ri , ti ) ∈ conv(Ri ) if and only if there exists si ∈ R+
such that

ti ri � s2i , and
√
ai0 +

n∑

j=1

πi,σ ( j)xσ( j) � si , ∀σ ∈ �.

Such a representation is preferable when using current off-the-shelf MICQP solvers, see [4]
for further discussions. �

2.2 Extended formulations

Unlike compact formulations, which are based on convexifications of either the right-hand
side or the left-hand side of (2b), extended formulations simultaneously consider both sides
of (2b). Let

yi := 1

bi0 + ∑
j∈J bi j x j

= 1

ri
∀i ∈ I ,

where ri is given by (4). Then the substitution of variable yi for all i ∈ I in FP yields

min
x∈X ,t,y�0

∑

i∈I
ti (7a)

s.t. ti � ai0yi +
∑

j∈J

ai j x j yi ∀i ∈ I (7b)

bi0yi +
∑

j∈J

bi j x j yi � 1 ∀i ∈ I , (7c)

where ti is given by (1). Both constraints (7b) and (7c) hold at equality at any optimal solution.
Observe that (7b) and (7c) use non-convex bilinear terms x j yi . In order to resolve the non-

convexity, we first review LEF, a classical MILP formulation based on formulation (7), see
Sect. 2.2.1. Then we review the conic quadratic formulation CEF, which is a strengthening of
the LEF. Moreover, we demonstrate that CEF is also a strengthening of CF, see Sect. 2.2.2—
in contrast, although LEF has been observed to be stronger than LF in practice, it does not
theoretically dominate LF.

2.2.1 Extended MILP formulation (LEF)

The first approach is based on the linearization of x j yi . Unlike the approach discussed
in Sect. 2.1.1, both the concave and convex envelopes of the bilinear terms need to be
constructed, requiring four linear inequalities per term. Letting yUi and yLi be upper and
lower bounds on variable yi , and letting z̄i j := x j yi , we find the MILP formulation [22]:

(LEF) min
∑

i∈I
ti (8a)

s.t. ti = ai0yi +
∑

j∈J

ai j z̄i j ∀i ∈ I (8b)

bi0yi +
∑

j∈J

bi j z̄i j = 1 ∀i ∈ I (8c)
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z̄i j � yUi x j , z̄i j � yLi x j , z̄i j � yi + yLi (x j − 1),

z̄i j � yi + yUi (x j − 1) ∀i ∈ I , j ∈ J (8d)

x ∈ X , t, y, z̄ � 0. (8e)

Classical big-M values used are yUi = 1/bi0 and yLi = 1/(bi0 + ∑
j∈J bi j ). Thus, LEF

is especially weak if either the entries bi j or the number of variables (n) are large (but is not
sensitive to the values ai j ).

2.2.2 Extended conic formulation (CEF)

Şen et al. [33] propose a conic strengthening of LEF in the context of the assortment problem
under mixed multinomial logit choice model, but we show that the strengthening can be used
for generally structured fractional binary programs. In particular, since z̄i j = x j yi for x j ∈ B

and ri = 1/yi , it follows that the constraint z̄i j ri � x j is valid for LEF; squaring the binary
variables, one obtains a convex (rotated cone) constraint that can be used to strengthen the
formulations. Moreover, constraint (7c) is in fact conic quadratic representable (yiri � 1).
Thus, we obtain the formulation:

(CEF) min
∑

i∈I
ti (9a)

s.t. ti = ai0yi +
∑

j∈J

ai j z̄i j ∀i ∈ I (9b)

bi0yi +
∑

j∈J

bi j z̄i j = 1 ∀i ∈ I (9c)

z̄i j � yUi x j , z̄i j � yLi x j , z̄i j � yi + yLi (x j − 1),

z̄i j � yi + yUi (x j − 1) ∀i ∈ I , j ∈ J (9d)

ri = bi0 +
∑

j∈J

bi j x j ∀i ∈ I (9e)

z̄i j ri � x2j ∀i ∈ I , j ∈ J (9f)

yiri � 1 ∀i ∈ I (9g)

x ∈ X , t, y, r , z̄ � 0. (9h)

Formulation CEF generalizes the conic quadratic formulation of [33] - developed for
the assortment problem under mixed multinomial logit choice model - for the general frac-
tional binary program FP. Formulation CEF is stronger than LEF as it includes additional
constraints. As we now show, formulation CEF is also stronger than CF.

Proposition 2 The natural convex relaxation of CEF is stronger than the relaxation of CF.

Proof We start from formulation CF. For each i ∈ I divide both sides of (5b) by ri > 0,
leading to the equivalent representation

ti � ai0
ri

+
∑

j∈J

ai j
x2j
ri

.
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Using the substitutions yi � 1
ri
and z̄i j � x2j

ri
for all i ∈ I , j ∈ J we can write CF as

min
x j∈X ,

ti ,ri ,yi ,z̄i j�0

∑

i∈I
ti (10a)

s.t. ti � ai0yi +
∑

j∈J

ai j z̄i j ∀i ∈ I (10b)

yiri � 1 ∀i ∈ I (10c)

z̄i j ri � x2j ∀i ∈ I , j ∈ J (10d)

ri = b0 + bi j x j ∀i ∈ I . (10e)

Observe that none of the transformations discussed exploit the integrality constraints, thus
formulation (10) above has the same continuous relaxation as CF. If formulation (10) is
strengthened using constraints (9c) and (9d), then one obtains precisely CEF, thus proving
the proposition. 	


Remark 3 (Extended formulation of CF) Formulations CF and (10) are equivalent, in the
sense that their natural convex relaxations (by relaxing integrality constraints in x) coincide.
However, formulation (10) requiresm+nm additional variables. Moreover, (10) hasm+nm
three-dimensional rotated cone constraints, while formulation CF hasm (n+2)-dimensional
rotated cone constraints. The extended formulation (10) is preferable in the context of branch-
and-bound, as the corresponding linear outer approximations are stronger, see [40]. In fact,
modern conic quadratic branch-and-bound solvers will automatically reformulate CF into a
form similar to (10) in the presolve process. �

2.3 MILP binary-expansion formulation (LFlog)

Under the data integrality assumption, the binary-expansion technique attempts to reduce the
number of bilinear terms (x j ti or x j yi ) that need to be linearized in LF or LEF. Specifically,
for the binary-expansion reformulation of LF, let θbi := �log2 (

∑
j∈J bi j )� + 1, then by

using the substitution
∑

j∈J bi j x j = ∑θbi
k=1 2

k−1wb
ik in problem (2) we get

min
∑

i∈I
ti (11a)

s.t. bi0ti +
θbi∑

k=1

2k−1wb
ik ti = ai0 +

∑

j∈J

ai j x j ∀i ∈ I (11b)

∑

j∈J

bi j x j =
θbi∑

k=1

2k−1wb
ik ∀i ∈ I (11c)

x ∈ X , wb
ik ∈ B, ti � 0 ∀i ∈ I , k ∈ {1, . . . , θbi }. (11d)

Observe that, since x j ∈ B, the left-hand side of constraint (11c) is integer for any feasible
solution of (11), and thus constraint (11c) can always be satisfied at equality. Using a similar
linearization as the one described in Sect. 2.1.1 to linearize the product termswb

ik ti , we obtain
the MILP formulation [9]:
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(LFlog) min
∑

i∈I
ti (12a)

s.t. bi0ti +
θbi∑

k=1

2k−1zbik = ai0 +
∑

j∈J

ai j x j , ∀i ∈ I (12b)

∑

j∈J

bi j x j =
θbi∑

k=1

2k−1wb
ik, ∀i ∈ I (12c)

zbik � tUi wb
ik, zbik � ti + t Li (wb

ik − 1) ∀i ∈ I , k ∈ {1, . . . , θbi } (12d)

x ∈ X , wb
ik ∈ B, zbik � 0, ti � 0 ∀i ∈ I , k ∈ {1, . . . , θbi }. (12e)

When θbi << n, which is the case when n is large and the coefficients bi j are small,
formulation LFlog requires substantially less (continuous) variables and big-M constraints
than LF, but the strength of the continuous relaxation of LFlog is weaker. Nonetheless, by
performing computational experiments, see Sect. 4,we observe that for large instances formu-
lation LFlog results in muchmore branch-and-bound nodes explored and better performance
overall.

Remark 4 It is also possible to develop a binary-expansion reformulation for LEF. However,
based on the results in [9,24] such a formulation performs poorly. Thus, we omit LEFlog

from Fig. 2 and the discussion in this paper for the sake of brevity. �
In Example 1 below, we evaluate the formulations discussed in Sect. 2 for a specific

instance.

Example 1 Consider unconstrained (X = B
n) two-ratio (m = 2) five-variate (n = 5) frac-

tional 0–1 program

min
x∈B5

{1 + x1 + x2 + 2x3 + 2x4 + x5
2 + x1 + x2 + x3 + x4 + x5

+ 2 + 2x1 + 3x2 + x3 + x4
1 + 2x1 + 2x2 + 3x3

}
, (13)

which has the optimal objective function value 1.75.
(i) The objective function values of convex relaxations, computed by CPLEX solver

12.7.1 [21], for the basic reformulations of (13), i.e., LF, CF, LEF, and CEF are: 0.482,
1.236, 1.484, and 1.639, respectively.

(ii) For permutation σ = (1, 2, 3, 4, 5), polymatroid inequalities (6) for the first and
second ratios are, respectively,

t1r1 �
(
1 + (

√
2−1)x1 + (

√
3−√

2)x2 + (
√
5−√

3)x3 + (
√
7−√

5)x4 + (
√
8−√

7)x5
)2

, (14a)

t2r2 �
(
2 + (

√
4 − √

2)x1 + (
√
7 − √

4)x2 + (
√
8 − √

7)x3 + (
√
9 − √

8)x4 + 0x5
)2

. (14b)

If we add (14a) and (14b) toCF (without (5b)), then the objective function value of the convex
relaxation of the resulting formulation is improved to 1.349. Additionally, if inequalities (6)
for all 5! and 4! permutations of the first and second ratios’ numerators indices (in total 144
rotated cone constraints) are added to CF (without (5b)), then the resulting formulation is
CFP with an improved relaxation objective function value equal to 1.697. Thus, CFP results
in the best convex relaxation among the formulations of Sect. 2 in this particular instance.

(iii) By using the binary-expansion technique, constraint (2b) in model (2) for the first
and second ratios, i.e.,

2t1 + (x1 + x2 + x3 + x4 + x5)t1 � 1 + x1 + x2 + 2x3 + 2x4 + x5, and (15a)
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t2 + (2x1 + 2x2 + 3x3)t2 � 2 + 2x1 + 3x2 + x3 + x4, (15b)

can be replaced, respectively, by

2t1 + (20wb
11 + 21wb

12 + 22wb
13)t1 � 1 + x1 + x2 + 2x3 + 2x4 + x5, and (16a)

t2 + (20wb
21 + 21wb

22 + 22wb
23)t2 � 2 + 2x1 + 3x2 + x3 + x4. (16b)

Note that instead of linearizing 8 bilinear terms (x j ti ) in the left-hand sides of (15a) and (15b),
which results in LF, only 6 bilinear terms (wb

ik ti ) are required to be linearized in the left-hand
sides of (16a) and (16b), which lead to formulation LFlog. Recall that fewer linearizations
implies fewer number of additional continuous variables and big-M constraints. However,
LFlog has aweaker convex relaxation objective value than LF (0.405 vs. 0.482). Thus,LFlog
results in the worst convex relaxation in this particular instance, but also in the smallest and
easiest to solve convex relaxation. �

3 Enhancements

None of the formulations presented in Sect. 2 consistently outperforms the others. MICQP
formulations are in general stronger and perform best in small- and medium-size problems;
however, due to the difficulties of optimization solvers to handle the nonlinear convex relax-
ations, they may fail to adequately process the root node in larger instances. In contrast,
the binarized MILPs tend to perform better than MICQPs in larger instances thanks to the
reduced formulation size and linear convex relaxations; however, they do not perform as well
in small instances. Finally, MILP formulations perform somewhat in between the MICQPs
and binarized MILPs.

In this section, we aim to further improve the performance of the existing formulations
for FPs. First, from the analysis in Sect. 2, it becomes apparent how to “mix” the ideas
behind these formulations to improve their performance, see Sect. 3.1. Then, in Sect. 3.2, we
develop binary-expansion techniques for conic quadratic formulations. By using the proposed
improvements, we obtain strong formulations of moderate sizes, which perform well across
all problem sizes and are particularly effective in larger instances.

3.1 “Mixing” formulations (CEFP,LFP,LEFP, and LFPlog)

Herein, we employ polymatroid cuts in CEF. Then, more interestingly, we make MILP
formulations LF, LEF, and LFlog able to benefit from polymatroid strengthening, as well.

First, note that neither CEF nor CFP theoretically dominates the other in terms of strength
of the continuous relaxations. Moreover, in our computations (see Appendix 4), neither
consistently dominates the other. Nonetheless, we can obtain a stronger new formulation
simply by adding the nonlinear extended polymatroid inequalities to CEF, i.e.,

(CEFP) : min
x,y,z̄,t,r

{∑

i∈I
ti | (9b) − (9h), (x, ri , ti ) ∈ conv(Ri ) ∀i ∈ I

}
.

Clearly, CEFP is stronger than CEF and based on Proposition 2, it is also stronger than
CFP. Indeed, formulationCEFP results in the best convex relaxations among the formulations
presented in this paper.However, due to its size, it is impractical in larger instances.Weaddress
this issue by using the binary-expansion idea in Sect. 3.2 to moderate its size. We also point
out that several approaches to strengthen the MILP formulations have been proposed in the
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literature, see, e.g., [25,36]. Clearly, such approaches can naturally be used with any of the
formulations presented in Sect. 2, or the new formulations introduced in this section.

Second, as pointed out in Remark 1, previous implementations of CFP also added large-
dimensional conic quadratic constraints (5b),which substantially increases the computational
burden of solving the convex relaxations despite the recent advances in off-the-shelf opti-
mization solvers. An alternative is to use the nonlinear extended polymatroid constraints with
formulation LF, i.e.,

(LFP) : min
x,y,z,t,r

{∑

i∈I
ti | (3b)− (3d), ri = bi0 +

∑

j∈J

bi j x j , (x, ri , ti ) ∈ conv(Ri ) ∀i ∈ I
}
.

Clearly,LFP dominates bothLF andCFP in terms of the strength of the convex relaxation1.
More importantly, using the extended formulation described in Remark 2, LFP requires
only m three-dimensional rotated cone constraints, which are much easier to handle than
m (n + 2)-dimensional conic constraints of CFP. Alternatively, efficient polyhedral outer-
approximations of the rotated cone constraint can be easily constructed [6,39], and LFP can
be implemented in a pure MILP framework.

Similarly, one can use the nonlinear extended polymatroid constraints with formulations
LEF and LFlog, yielding

(LEFP) : min
x,z̄,t,y,r

{∑

i∈I
ti | (8b) − (8e), ri = bi0 +

∑

j∈J

bi j x j , (x, ri , ti ) ∈ conv(Ri ) ∀i ∈ I
}
, and

(LFP
log) : min

x,wb,zb,t,r

{∑

i∈I
ti | (12b) − (12e), ri = bi0 +

∑

j∈J

bi j x j , (x, ri , ti ) ∈ conv(Ri ) ∀i ∈ I
}
.

Formulation LEFP has (in our computations) a stronger convex relaxation than LFP while
maintaining easy-to-solve convex relaxations in small and medium instances. Formulation
LFP

log has a small size, but has weaker convex relaxations than LFP and LEFP.
By comparing LFP and LEFP with CFP we can conclude that the former both are stronger

than CFP as depicted in Fig. 2. Based on the discussion given in Sect. 2.2.2, we also conclude
that CEFP is stronger than LEFP.

Standout formulation FormulationLFP
log is one of the best formulations in our computations.

It was observed in [9] (and corroborated in our experiments) that while the continuous
relaxation of LFlog is weaker than LF, which in turn is much weaker than LEF, it may
result in better performance due to the faster exploration of the branch-and-bound tree. With
the inclusion of the nonlinear polymatroid inequalities, formulation LFPlog has a convex
relaxation strength similar to CFP, which is substantially stronger than LF and was also
observed to be stronger than LEF [4]. Moreover, using LFP

log results in small formulations
with a few nonlinearities, thus allowing for a much faster exploration of the branch-and-
bound tree than CFP, and performing well across all instance sizes. Intuitively, formulation
LFP

log benefits both from the advantages of the conic formulations (strength) and binarization
ideas (speed).

Remark 5 We need to point out that conv(Ri ) is implemented in this paper using rotated
cone constraints instead of explicit polyhedral outer approximations. Hence, LFP, LEFP

and LFP
log are in fact MICQPs, see also Remarks 1 and 2; however, in contrast to other

MICQPs in the paper, they involve only a small number of “easy” 3-dimensional rotated
cone constraints. �
1 The second domination statement holds only if all inequalities (6) are added. Nonetheless, LFP is able to
achieve excellent convex relaxations with a modest number of cuts.
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3.2 Enhancements on CEF

Next, we develop a binary-expansion reformulation for the conic quadratic program CEF,
which we call CEFlog, see Sect. 3.2.1. Then we extend the notion of polymatroid cuts to the
binary-expansion space in order to further strengthen CEFlog, see Sect. 3.2.2.

3.2.1 MICQP binary-expansion formulation (CEFlog)

As pointed out earlier, the MICQP reformulations of FPs do not require the linearization
of bilinear terms. Nevertheless, we demonstrate that binarization technique—developed in
Sect. 2.3 for MILPs—still can be employed to reduce the number of variables and rotated
quadratic cone constraints in CEF as shown below.

Let θai := �log2(
∑

j∈J ai j )� + 1 and, by using the substitution
∑

j∈J ai j x j =
∑θai

k=1 2
k−1wa

ik , we can rewrite (7) as

min
∑

i∈I
ti (17a)

s.t. ti � ai0yi +
θai∑

k=1

2k−1wa
ik yi ∀i ∈ I (17b)

∑

j∈J

ai j x j =
θai∑

k=1

2k−1wa
ik ∀i ∈ I (17c)

ri yi � 1 ∀i ∈ I (17d)

ri = bi0 +
∑

j∈J

bi j x j ∀i ∈ I (17e)

x ∈ X , yi � 0, wa
ik ∈ B ∀i ∈ I , k ∈ {1, . . . , θai }. (17f)

Then by introducing variables zaik := wa
ik yi = wa

ik/ri and exploiting the fact that
(
wa
ik

)2 =
wa
ik for wa

ik ∈ B, problem (17) can be convexified as

min
∑

i∈I
ti (18a)

s.t. ti � ai0yi +
θai∑

k=1

2k−1zaik ∀i ∈ I (18b)

zaikri �
(
wa
ik

)2 ∀i ∈ I , k ∈ {1, . . . , θai } (18c)

∑

j∈J

ai j x j =
θai∑

k=1

2k−1wa
ik ∀i ∈ I (18d)

ri yi � 1 ∀i ∈ I (18e)

ri = bi0 +
∑

j∈J

bi j x j ∀i ∈ I (18f)

x ∈ X , yi � 0, wa
ik ∈ B, zaik � 0 ∀i ∈ I , k ∈ {1, . . . , θai }. (18g)
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Formulation (18) can be further strengthened by adding the linearization constraints
zai j � yLi wa

ik , and zai j � yi + yUi (wa
ik − 1). The resulting conic quadratic binary-expansion

reformulation is

(CEFlog) min
∑

i∈I
ti (19a)

s.t. ti � ai0yi +
θai∑

k=1

2k−1zaik ∀i ∈ I (19b)

ri = bi0 +
∑

j∈J

bi j x j ∀i ∈ I (19c)

zaikri � (wa
ik)

2 ∀i ∈ I , k ∈ {1, . . . , θai } (19d)

yiri � 1 ∀i ∈ I (19e)

∑

j∈J

ai j x j =
θai∑

k=1

2k−1wa
ik ∀i ∈ I (19f)

zaik � yLi wa
ik, z

a
ik � yi + yUi (wa

ik − 1) ∀i ∈ I , k ∈ {1, . . . , θai } (19g)

wa
ik ∈ B, zaik � 0 ∀i ∈ I , k ∈ {1, . . . , θai } (19h)

x ∈ X , t, y, r � 0. (19i)

Formulation CEFlog requires m + ∑
i∈I θai rotated cone constraints, which can be signifi-

cantly less than the m + mn rotated cone constraints required by CEF.

Remark 6 It is also possible to develop binary-expansion reformulations for CF and CFP.
However, since these formulations do not include any product term of a binary and a con-
tinuous variables, the binary expansion does not allow us to reduce neither the number of
their variables nor constraints. Therefore, we have excluded CFlog and CFP

log from Table 1,
Fig. 2 and the discussion in this paper. �

3.2.2 Polymatroid cuts in the binary-expansion space (CEFPlog)

Formulation CEFlog can be further strengthened by exploiting submodularity. Specifically,
observe that by multiplying constraint (17b) by ri and exploiting that yiri = 1 in optimal
solutions of (17), we find that the constraints (wa

i , ri , ti ) ∈ Rlog
i can be added, where

Rlog
i =

{
wa
i ∈ B

θai , (ri , ti ) ∈ R
2+ | ti ri � ai0 +

θai∑

k=1

2k−1(wa
ik)

2
}
.

An ideal formulation of Rlog
i can be found using polymatroid cuts, similarly to the approach

in Sect. 2.1.2, i.e.,

conv(Rlog
i ) =

{
(wa

i , ri , ti ) ∈ [0, 1]θai × R
2+ | ti ri � (

√
ai0 + λ′

iw
a
i )

2, ∀λi ∈ �i

}
, (20)
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where

�i =
{
λi ∈ R

θai+ | λi,σ (k) = √
γi,σ (k) − √

γi,σ (k−1),

where γi,σ (k) = 2σ(k)−1 + γi,σ (k−1) and γi,σ (0) = ai0,

for all permutations σ ∈ [θai ], k ∈ {1, . . . , θai }
}
.

Observe that θai � n (for all i ∈ I ) for large size problems with sufficiently small values

for ai j . Consequently, we have (θai )! � n!, for each i ∈ I , and thus, conv(Rlog
i ) can be

constructed using significantly fewer polymatroid cuts than conv(Ri ). Adding (wa
i , ri , ti ) ∈

conv(Rlog
i ) to CEFlog allows this binarized formulation to benefit from polymatroid cuts,

that is given by

(CEFP
log) : min

x,y,z,t,r ,wa

{∑

i∈I
ti | (19b) − (19i), (wa

i , ri , ti ) ∈ conv(Rlog
i ), ∀i ∈ I

}
.

Standout formulation Formulation CEFP
log is another of the best formulations in our com-

putations. Similarly to LFP
log, formulation CEFP

log is able to strike a good balance between
the size and the strength of the convex relaxation by incorporating binary-expansion and
polymatroid cuts, resulting in a similar performance as CEF in small instances, but scales
much better to larger problems.

Example 1 (continued). Next, we evaluate the reformulations of (13) for themodels proposed
in Sect. 3.

(iv) In order to take the advantage of polymatroid strengthening,we add toLF,LFlog,LEF
constraints of the form (4), i.e., r1 = 2+x1+x2+x3+x4+x5 and r2 = 1+2x1+2x2+3x3.
Additionally, we add 144 rotated cone constraints of the form (6) to the aforementioned
formulations and CEF. Then we obtain LFP, LFP

log, LEF
P, and CEFP, that have improved

relaxation objective function values of 1.697 (vs. 0.482 of LF), 1.697 (vs. 0.405 of LFlog),
1.702 (vs. 1.484 of LEF), and 1.702 (vs. 1.639 of CEF), respectively, and close most of the
gap to the optimal objective function value 1.75.

(v) By using the binary-expansion technique, constraint (7b) in model (7) for the first and
second ratios, i.e.,

t1 � y1 + (x1 + x2 + 2x3 + 2x4 + x5)y1, and (21a)

t2 � 2y2 + (2x1 + 3x2 + x3 + x4)y2, (21b)

can be replaced, respectively, by

t1 � y1 + (20wa
11 + 21wa

12 + 22wa
13)y1, and (22a)

t2 � 2y2 + (20wa
21 + 21wa

22 + 22wa
23)y2. (22b)

In order to obtain CEF we need to convexify 9 bilinear terms x j yi in the right-hand sides
of (21a) and (21b) as rotated cone constraints z̄i j ri � x2j . In comparison, in order to achieve
CEFlog only 6 bilinear terms wa

ik yi in the right-hand sides of (22a) and (22b) are required to
be convexified as zaikri � (wa

ik)
2. Although CEFlog has 3 fewer rotated cone constraints than

CEF, it has a worse relaxation objective function value (1.244 vs. 1.639). Next, we improve
its relaxation by using polymatroid cuts in the binary-expansion space.

(vi) For permutation σ = (1, 2, 3) inequalities ti ri � (
√
ai0 + λ′

iw
a
i )

2 in (20) for the first
and second ratios are, respectively,
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Table 2 The reformulation sizes (number of variables and constraints), where n and m are defined as in FP,
q is the number of constraints defining X , θai = �log2(

∑
j∈J ai j )� + 1 and θbi = �log2(

∑
j∈J bi j )� + 1

Formulation Variables Constraints

Continuous Binary Linear Rotated cone

MILP-based reformulations

LF m(n + 1) n m(2n + 1) + q –

LFP m(n + 2) n m(2n + 2) + q + cuts∗ m

LFlog m + ∑
i∈I θbi n + ∑

i∈I θbi 2m + 2
∑

i∈I θbi + q –

LFPlog 2m + ∑
i∈I θbi n + ∑

i∈I θbi 3m + 2
∑

i∈I θbi + q + cuts m

LEF m(n + 2) n m(4n + 2) + q –

LEFP m(n + 3) n m(4n + 3) + q + cuts m

MICQP reformulations

CF m(n + 3) n 2m + q m(n + 1)∗∗
CFP m(n + 3) n 2m + q + cuts m(n + 2)

CEF m(n + 3) n m(4n + 3) + q m(n + 1)

CEFP m(n + 3) n m(4n + 3) + q + cuts m(n + 2)

CEFlog 3m + ∑
i∈I θai n + ∑

i∈I θai 3m + 2
∑

i∈I θai + q m + ∑
i∈I θai

CEFPlog 3m + ∑
i∈I θai n + ∑

i∈I θai 3m + 2
∑

i∈I θai + q + cuts 2m + ∑
i∈I θai

Subscript “log” and superscript “P” are reserved for binary-expansion and polymatroid cuts, respectively
*Polymatroid cuts are added on the fly, implemented as discussed in Remark 2
**Formulations CF and CFP are based on extended formulation (10)

t1r1 �
(
1 + (

√
2 − 1)wa

11 + (
√
4 − √

2)wa
12 + (

√
8 − √

4)wa
13

)2
, and (23a)

t2r2 �
(
2 + (

√
3 − √

2)wa
12 + (

√
5 − √

3)wa
22 + (

√
9 − √

5)wa
32

)2
. (23b)

If we add (23a) and (23b) to CEFlog, then its relaxation objective function value from 1.244
is improved to 1.311. If we add all 2 · 3! = 12 polymatroid inequalities to CEFlog, then the
resulting formulation is CEFP

log with a better relaxation objective function value of 1.446.
Note that the number of cuts added to obtain CEFP

log is significantly fewer than the number
of cuts added in order to obtain any of the other formulations strengthened with polymatroid
cuts (12 vs. 144 cuts).

Therefore, from this example, we observe that there is a trade-off between using polyma-
troid cuts and binarization. The former improves the relaxation objective function value at
the expense of a larger problem, and the latter reduces the number of (continuous) variables
and (either linear or rotated cone) constraints at the cost of a weaker relaxation. However, the
incorporation of these ideas leads to moderate size formulations, i.e., CEFP

log and LFPlog,
that benefit from strong convex relaxations. �

3.3 Problems sizes

Table 2 shows the number of continuous and binary variables as well as the number of linear
and rotated cone constraints for MILP and MICQP formulations discussed in Sects. 2 and
3. By comparing each binarized formulation with the corresponding basic formulation, it is
seen that the binary-expansion technique can potentially decrease the number of continuous
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variables and also the number of linear/rotated cone constraints—especially for large values
of n—with a moderate increase in the number of binary variables. We also observe that
adjusting the formulations to enable them to use polymatroid cuts only slightly increases the
number of variables or constraints.

4 Computational Experiments

We perform extensive computational experiments to evaluate the performances of the cur-
rently existing formulations in the literature presented in Sect. 2 and to compare them versus
the enhancements developed in Sect. 3. We outline the structure and parameters of the
computational experiments in Sect. 4.1. We discuss the obtained results in Sect. 4.3 and
“Appendix B”.

4.1 Computational environment and test instances

All of the computational instances are solved using CPLEX 12.7.1 [21] on a 32-core
CPU (2.90 GHz) with 160 GB of RAM; we allocate a single thread and 8 GB of RAM
for each individual experiment, and use a time limit of 1 h (3600 s). To avoid running-out-of-
memory difficulties we use the “node-file storage-feature” of CPLEX to store some parts of
the branch-and-cut tree on disk when the size of the tree exceeds the allocated memory. The
polymatroid inequalities are added at the root node by using callback functions of CPLEX
as described in Remarks 1 and 2.

Test instances We consider three classes of instances: “small” (n ∈ {25, 50, 100}) and
“medium” (n ∈ {200, 500, 1000}) size instances with m = �10% · n�, and “large” size
instances (n ∈ {2000, 5000, 10000}) with m = 100. For each choice of n and each of the
following data generation settings five instances are sampled and the results are averaged.

• Assortment data set. For the first setting, we consider the assortment optimization prob-
lems that naturally arise inmany applications such as online advertising, retailing, and revenue
management [30]. Under the mixed multinomial logit model (see, e.g., [25,33,35]) we are
given I = {1, 2, . . . ,m} classes of customers and J = {1, 2, . . . , n} available products. Then
the assortment optimization problem is defined as the problem of deciding which assortment
of products S ⊆ J must be offered to customers in order tomaximize the expected revenue. In
particular, let ri j and μi j denote the revenue and customer preference weight associated with
selling product j to customer class i , respectively, and μi0 is the no-purchase preference in
class i . Then, for a given assortment S, the probability that customer class i chooses product
j ∈ S is μi j/(μi0 + ∑

j∈S μi j ). Thus, the problem of maximizing the expected revenue for
all classes of customers under the mixed multinomial logit model can be formulated as the
multiple-ratio fractional binary program of the form

max
x∈X

∑

i∈I

∑
j∈J ri jμi j x j

μi0 + ∑
j∈J μi j x j

. (24)

In (24) variable x j is 1 if and only if the decision maker offers product j . Note that (24)
is a special case of the generally structured FPs, since in each ratio i ∈ I the coefficient of
x j , for all j ∈ J in the numerator, i.e., ai j = ri jμi j , is proportional to its coefficient in the
denominator, bi j = μi j ; moreover, ai0 = 0 and bi0 = μi0.
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Problem (24) can be transformed into an equivalent minimization problem. Specifically,
based on equation (26) and the related discussion in “Appendix A”, for each customer class
i ∈ I we have

∑
j∈J ri jμi j x j

μi0 + ∑
j∈J μi j x j

= kiμi0 + ∑
j∈J (ri jμi j + kiμi j )x j

μi0 + ∑
j∈J μi j x j

− ki ,

for any ki ∈ R. Let ki = −r i = −max j∈J ri j , then

max
x∈X

∑

i∈I

−r iμi0 + ∑
j∈J (ri jμi j − r iμi j )x j

μi0 + ∑
j∈J μi j x j

+ r i

= −min
x∈X

∑

i∈I

r iμi0 + ∑
j∈J μi j (r i − ri j )x j

μi0 + ∑
j∈J μi j x j

+ r i . (25)

Transformation (25) is precisely the transformation used in [33] and satisfies the data non-
negativity assumption. To satisfy the data integrality assumption, we multiply by 10 each of
the terms μi0r i , μi j (r i − ri j ), μi0, and μi j , for all i ∈ I and j ∈ J , and round them down
to the nearest integer values.

For our test instances, we generate the data as in the assortment optimization problem
considered in [33]. Specifically, the product prices are the same across the customer classes,
i.e., ri j = r j for all i ∈ I and drawn from a U [1, 3] distribution. Moreover, the preferences
μi j are drawn from a U [0, 1] distribution, and μi0 = 5 for all i ∈ I .

Moreover, Şen et al. [33] consider X = {
x ∈ B

n | ∑n
j=1 x j � κ

}
. We let κ ∈ {10% ·

n, 20% · n, n}. The cardinality constraints: κ = 10% · n and κ = 20% · n correspond to a
“small” and “large” retailer, respectively, where there is a physical limitation on the number
of products that can be offered to customers. Additionally, κ = n indicates the unconstrained
case, i.e., X = B

n , and it corresponds to an online retailer with the ability to sell many
products [24].

Şen et al. [33] consider only the combinations n = 200, m = 20 and n = 500, m = 50.
For these combinations we use the the same data (now part of the conic benchmark library,
CBLIB) available at http://cblib.zib.de. For the other combinations of n and m
tested in the paper we generate the data randomly in the aforementioned fashion.

• Uniformly generated data set. For the second setting, we use data generated similarly
to [9,24]. Specifically, the coefficients ai j and bi j are each sampled from a (discrete)U [0, 20]
distribution, except for bi0 which is sampled from a U [1, 20]. The feasible region is given
by X = {

x ∈ B
n | ∑n

j=1 x j = κ
}
with κ ∈ {10% · n, 20% · n}; we also consider the

unconstrained case (X = B
n).

For constrained instances, since in both settings X contains a single cardinality constraint,
the number of variables added in the binary-expansion formulations can be reduced by setting
θai := �log2 (

∑κ
j=1 ai[ j])�+ 1 and θbi := �log2 (

∑κ
j=1 bi[ j])�+ 1, for all i ∈ I , where ai[ j]

and bi[ j] denote the j-th largest element of ai and bi , respectively. For all the formulations—
except LF, LFlog, and LFP

log—we use yLi = 1/(bi0 +∑κ
j=1 bi[ j]) and yUi = 1/bi0 as valid

lower and upper bounds for linearization, respectively. For LF, LFlog, and LFP
log we use

t Li = 0 and tUi = (ai0 + ∑κ
j=1 ai[ j])/bi0 as valid bounds.
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Metrics For each of the formulations we define, z�: the objective function value of an optimal
integer solution (or the best-found integer solution if an optimal solution could not be found
by the formulation within the time limit), zRlx: the optimal objective function value of the
continuous relaxation, zRon: the objective function value obtained after processing the root
node (i.e., after adding polymatroid cuts and considering other strengthening techniques used
by CPLEX)2, and zBbn: the best lower-bound at the termination of the solver. Moreover, we
define Z� as the objective function value of the best-known integer solution over all solution
methods.

Then, in our experiments, we report the following metrics of interest: the continu-

ous relaxation gap, Rlx-gap = |Z�−zRlx|
Z� × 100%; the root node gap, Ron-gap =

|Z�−zRon|
Z� × 100%; the end gap, End-gap = |z�−zBbn|

z� × 100%; the best bound gap,

Bbn-gap= |Z�−zBbn|
Z� × 100%; and the optimality gap, Opt-gap= |Z�−z�|

Z� × 100%. In
addition, we report the Time in seconds required to solve the problems, and the number of
branch-and-bound Nodes explored. In all cases we report the averages over five instances
generated with the same parameters (n,m, κ).

4.2 Preliminary analysis

Here,we briefly analyze the results for theMILP andMICQP formulations outlined in Sect. 2.
More detailed results are omitted from the current discussion for the sake of brevity and are
reported in “Appendix B”.

In particular, the extended formulations LEF and CEF are stronger (they have better
Rlx-gap) than the corresponding compact formulations LF and CF, respectively. The
extended formulations also have better time and End-gap than the corresponding com-
pact formulations; see Tables 7 and 8 for the results and “Appendix B.1” for an additional
discussion.

Although LF has a poor performance even for small instances, its “binarization”, i.e.,
LFlog, leads to significant improvements in the running time due to the reduction in the size
of the formulation, see Tables 9 and 10 and the discussion in “Appendix B.2”. These results
are consistent with the previous results in the literature (see, e.g., [9,24]) that LFlog has a
superior performance over LF and LEFlog.

Additionally, recall that among the existing formulations in the literature the polymatroid
cuts have been employed only for the strengthening of CF and the resulting formula-
tion, i.e., CFP significantly outperforms CF with respect to the metrics time, End-gap,
and Ron-gap. See [4] and our results presented in Tables 13 and 14; we also refer to
“Appendix B.3” for an additional discussion.

4.3 Standout versus the state-of-the-art formulations

In this section, we further compare the performance of the state-of-the-art formulations avail-
able in the literature identified in Sect. 4.2, i.e., the extended MILP formulation LEF and the
compact binary-expansion formulation LFlog as well as the extended MICQP formulation
CEF and the compact MICQP formulation with polymatroid cuts CFP. In addition, we report
the results of the two standout formulations derived in Sect. 3: the binary-expansionMILP and

2 For MILP formulations, zRlx � zRon as additional constraints are added at the root node. For MICQP
formulations, this is not necessarily the case: zRlx is found via interior point methods, while zRon is obtained
after solving a linear outer approximation—which may have a weaker continuous relaxation.
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MICQP formulations strengthened with polymatroid cuts, i.e., LFP
log and CEFPlog, respec-

tively. In “Appendix B”, we present additional computational results and discuss in detail our
extensive experiments to evaluate the individual and combined effects of the enhancements
developed in the paper.

Tables 3 and 4 show the results for the assortment and the uniformly generated instances,
respectively, and for different values of n, m and κ with respect to the running time and the
end gap. A detailed comparison of the standout and the state-of-the-art formulations with
respect to all the metrics defined in Sect. 4.1 is provided in Tables 5 and 6 of “Appendix B”.
In the tables, we use the “†” symbol to denote that CPLEX was unable to fully process the
root node of the branch-and-bound tree within the time limit of 1 h for a given formula-
tion.

Observe that, overall, the uniformly generated instances used in [9], see Table 4, are
much more difficult to solve than the assortment instances used in [33], see Table 3. In
particular, only uniformly generated instances with n � 50 can be solved to optimality (by
any formulation), while assortment instances with n � 500 can in general be handled well
by MICQP formulations.

Figure 3 shows the number of continuous and binary variables as well as the number
of linear and rotated cone constraints of the formulations as a function of dimension (n).
Figure 4 depicts the performance profile of solution methods and can be used to evaluate the
effectiveness of each formulation in easy instances (the instances that are solved to optimality
by at least one solution method). Figure 5 portrays the end gaps across all instances as a
function of the dimension and can be utilized to explore the effectiveness of each formulation
in hard, larger, instances (the instances that are not solved to optimality by any solution
method in the time limit). Figures 6 and 7 show the relaxation gaps and the root node gaps,
respectively, across all instances as a function of the dimension and can be used to evaluate
the strengths of the convex relaxations.

In the easy instances, we see from Fig. 4 that CEF performs best. Formulation CEF also
has the best relaxation strength among the formulations presented (Figs. 6 and 7). In fact, in
most of the instances that CEF solves to optimality, Ron-gap is nearly 0 and optimality is
proven with a few branch-and-bound nodes (see Table 5 with n � 500).

However, when hard instances are also taken into account CEF is not necessarily the best
formulation, mainly due to the fact that its large size (Fig. 3) hampers its performance, and
other formulations match or improve upon the end gaps of CEF even for 100 � n � 500; see
Fig. 5. Indeed, in the uniformly generated instances (Table 6), CEF is not able to fully close
the root node gap, and the performance in branch-and-bound is substantially impaired due
to the difficulty of solving the large, nonlinear convex subproblems. Additionally, existing
conic formulations CFP and CEF scale the worst among the formulations presented, and
CPLEX is unable to process the root node for those formulations in large settings with
n � 1000.

On the other hand, LFlog has the best scaling properties among the previously proposed
formulations in the literature. Notably, unlike LEF, CEF and CFP, it is able to fully process
the root node in all instances with n � 1000 and explore thousands of branch-and-bound
nodes or more. Moreover, it is competitive with the other formulations in terms of end gaps
for n � 100 and outperforms other existing formulations at n = 100; see Fig. 5. However,
it has substantially weaker convex relaxations than all the other formulations (see Figs. 6
and 7), and as a consequence it struggles on the easy instances (Fig. 4) and has worse end
gaps for 200 � n � 500 than the other previously proposed formulations.

The new formulations LFP
log and CEFP

log, which combine the binary-expansion tech-
nique, conic strengthening and polymatroid strengthening, perform well across all dimen-
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Table 3 Computational results to evaluate the best existing methods in the literature against the standout
formulations for the assortment data set [33]

n,m κ 10% · n 20% · n Unconstrained

Ref. Time End-gap Time End-gap Time End-gap

25,2∗ LFlog 0 0.0% 0 0.0% 1 0.0%

LEF 0 0.0% 0 0.0% 0 0.0%

CFP 0 0.0% 0 0.0% 1 0.0%

CEF 0 0.0% 0 0.0% 0 0.0%

LFPlog 0 0.0% 0 0.0% 0 0.0%

CEFPlog 1 0.0% 0 0.0% 2 0.0%

50,5∗ LFlog 1 0.0% 2 0.0% 18 0.0%

LEF 0 0.0% 1 0.0% 0 0.0%

CFP 1 0.0% 2 0.0% 4 0.0%

CEF 1 0.0% 1 0.0% 1 0.0%

LFPlog 0 0.0% 1 0.0% 6 0.0%

CEFPlog 0 0.0% 2 0.0% 21 0.0%

100,10∗ LFlog 979 0.0% 3155 0.4% 3600 1.6%

LEF 3357 1.6% 2190 0.2% 1 0.0%

CFP 10 0.0% 20 0.0% 25 0.0%

CEF 6 0.0% 4 0.0% 6 0.0%

LFPlog 1 0.0% 6 0.0% 3600 0.8%

CEFPlog 2 0.0% 22 0.0% 3600 0.3%

200,20∗ LFlog 3600 6.7% 3600 8.7% 3600 24.1%

LEF 3600 8.6% 3600 1.1% 29 0.0%

CFP 27 0.0% 64 0.0% 1562 0.2%

CEF 73 0.0% 40 0.0% 59 0.0%

LFPlog 710 0.0% 3400 0.3% 3600 6.3%

CEFPlog 2353 0.5% 3600 2.2% 3600 6.4%

500,50∗ LFlog 3600 39.8% 3600 54.0% 3600 55.7%

LEF 3600 8.3% 2520 0.2% 3501 0.4%

CFP 1194 0.0% 3452 0.3% 3600 7.7%

CEF 3611 0.2% 2620 0.0% 3604 0.5%

LFPlog 3600 0.8% 3600 3.3% 3600 15.2%

CEFPlog 3600 4.7% 3600 12.2% 3601 26.1%

1000,100∗∗ LFlog 3600 55.9% 3600 62.7% 3600 76.5%

LEF 3600 13.9% 3722 0.9% 3600 1.7%

CFP 3600 † 3600 † 3600 †

CEF 3605 † 3600 † 3600 †

LFPlog 3601 † 3601 20.9% 3601 26.1%

CEFPlog 3601 10.0% 3600 22.6% 3600 33.8%
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Table 3 continued

n,m κ 10% · n 20% · n Unconstrained

Ref. Time End-gap Time End-gap Time End-gap

2000,100∗∗ LFlog 3600 57.8% 3600 70.5% 3600 78.3%

LEF 3601 † 3600 † 3601 †

CFP 3600 † 3600 † 3600 †

CEF 3600 † 3600 † 3600 †

LFPlog 3601 † 3600 41.4% 3601 33.1%

CEFPlog 3600 16.1% 3600 30.7% 3600 53.4%

5000,100∗∗ LFlog 3600 78.1% 3600 80.6% 3601 83.5%

LEF 7807 † 8155 † 7241 †

CFP 3600 † 3600 † 3600 †

CEF 3600 † 3600 † 3600 †

LFPlog 3601 29.2% 3601 49.0% 3601 50.7%

CEFPlog 3600 39.3% 3600 40.6% 3600 58.4%

10000,100∗∗ LFlog 3600 88.4% 3600 83.1% 3602 93.0%

LEF 4225 † 4026 † 3603 †

CFP 3600 † 3600 † 3600 †

CEF 3600 † 3600 † 3600 †

LFPlog 3601 55.4% 3601 53.2% 3601 54.7%

CEFPlog 3600 33.4% 3601 45.4% 3601 †

For each combination of n,m, κ and each formulation, we present averages over five instances for time (Time)
in seconds and end gap (End-gap). For each choice of n, m, and κ , among the solution methods, the best
average time and the best average End-gap (if Time� 3600 s) are in bold
∗easy instances
∗∗hard instances

sions. Binarization leads to a significant size reduction especially in larger instances, e.g.,
for n = 10, 000 the number of rotated cone constraints of 1,000,100 (corresponding to CEF)
reduces to 1750 (corresponding to CEFP

log); see Fig. 3d. On the other hand, polymatroid
cuts improve the convex relaxation quality of the formulations. In particular, from Fig. 7 we
observe that LFP

log and CEFP
log are able to achieve a substantial root node strengthening

over the simple binary-expansion formulation LFlog, and approximately match the strength
of LEF. As a consequence, in the easy instances (Fig. 4), they also match the performance of
LEF and consistently outperform LFlog, but still lag behind the stronger conic formulations
CEF and CFP.

However, once hard instances are also taken into account, we see from Fig. 5 that they
achieve the best performance overall. Notably, they match the performance of the best for-
mulations for n � 500, but they scale to instances with n in the thousands and consistently
outclass LFlog (the only other formulation that scales to those instances).
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Table 4 Computational results to evaluate the best existing methods in the literature against the standout
formulations for the uniformly generated data set [9]

n,m κ 10% · n 20% · n Unconstrained

Ref. Time End-gap Time End-gap Time End-gap

25,2∗ LFlog 0 0.0% 1 0.0% 1 0.0%

LEF 0 0.0% 0 0.0% 0 0.0%

CFP 3 0.0% 4 0.0% 4 0.0%

CEF 0 0.0% 0 0.0% 1 0.0%

LFPlog 0 0.0% 1 0.0% 1 0.0%

CEFPlog 1 0.0% 1 0.0% 6 0.0%

50,5∗ LFlog 3 0.0% 20 0.0% 52 0.0%

LEF 2 0.0% 13 0.0% 43 0.0%

CFP 78 0.0% 3601 6.5% 2903 3.0%

CEF 3 0.0% 18 0.0% 100 0.0%

LFPlog 9 0.0% 27 0.0% 85 0.0%

CEFPlog 6 0.0% 26 0.0% 86 0.0%

100,10∗∗ LFlog 3600 5.0% 3600 5.0% 3600 11.2%

LEF 3600 12.3% 3600 17.1% 3600 38.5%

CFP 3600 43.5% 3600 44.3% 3600 42.0%

CEF 3600 10.7% 3600 15.5% 3600 40.1%

LFPlog 3600 7.5% 3600 6.1% 3600 17.2%

CEFPlog 3600 7.2% 3603 5.2% 3600 10.9%

200,20∗∗ LFlog 3600 41.7% 3600 37.7% 3600 58.2%

LEF 3600 30.0% 3600 31.1% 3600 70.6%

CFP 3600 65.8% 3600 61.6% 3600 70.9%

CEF 3600 30.9% 3600 30.0% 3600 76.4%

LFPlog 3600 41.6% 3600 35.6% 3600 58.0%

CEFPlog 3600 35.5% 3600 34.3% 3600 54.4%

500,50∗∗ LFlog 3600 48.7% 3600 48.7% 3600 87.0%

LEF 3600 42.8% 3600 41.1% 3600 90.3%

CFP 3600 † 3600 † 3600 84.9%

CEF 3603 42.8% 3604 41.8% 3603 93.4%

LFPlog 3600 48.4% 3600 48.1% 3600 82.9%

CEFPlog 3600 46.3% 3600 43.1% 3600 86.7%

1000,100∗∗ LFlog 3600 50.3% 3600 50.1% 3600 96.6%

LEF 3601 † 3601 † 3601 †

CFP 3600 † 3600 † 3600 95.6%

CEF 3600 † 3600 † 3600 †

LFPlog 3600 50.2% 3600 50.2% 3600 91.9%

CEFPlog 3600 48.0% 3600 44.5% 3600 92.2%
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Table 4 continued

n,m κ 10% · n 20% · n Unconstrained

Ref. Time End-gap Time End-gap Time End-gap

2000,100∗∗ LFlog 3600 50.7% 3600 50.6% 3600 97.8%

LEF 3601 † 3602 † 3601 †

CFP 3600 † 3600 † 3600 †

CEF 3600 † 3600 † 3600 †

LFPlog 3600 50.8% 3600 50.7% 3600 94.8%

CEFPlog 3600 47.8% 3600 44.6% 3600 96.6%

5000,100∗∗ LFlog 3600 67.9% 3600 65.0% 3601 98.8%

LEF 4755 † 3938 † 3603 †

CFP 3600 † 3600 † 3600 †

CEF 3600 † 3600 † 3600 †

LFPlog 3600 68.8% 3600 67.9% 3601 96.9%

CEFPlog 3600 46.7% 3601 45.2% 3601 98.3%

10000,100∗∗ LFlog 3600 68.6% 3600 68.2% 3601 99.4%

LEF 9500 † 6022 † 5619 †

CFP 3600 † 3600 † 3600 †

CEF 3600 † 3600 † 3600 †

LFPlog 3601 68.5% 3601 68.4% 3601 97.8%

CEFPlog 3601 47.5% 3600 44.8% 3600 †

For each combination of n,m, κ and each formulation, we present averages over five instances for time (Time)
in seconds and end gap (End-gap). For each choice of n, m, and κ , among the solution methods, the best
average time and the best average End-gap (if Time� 3600 s) are in bold
∗easy instances
∗∗hard instances

5 Conclusions

Fractional 0–1 programming problems have traditionally been tackled by reformulating the
problems as MILPs a large number of variables and constraints. However, new techniques
have recently been proposed to improve upon the classical MILP formulations. This paper
focuses on two such recent enhancements: a binary-expansion technique that decreases the
number of variables and constraints at the expense of weak convex relaxations; and conic
and submodular strengthenings, which improve the convex relaxations at the expense of even
larger and harder to solve convex relaxations. Naturally, these two ideas are at odds with each
other, and which enhancement is preferable largely depends on each particular instance.

In this paper, we develop formulations that combine both enhancement ideas. The new
formulations are compact and require a modest number of variables and constraints, yet
retain the relaxation strength of formulations of much larger sizes. As a consequence, the
new formulations are able to perform well across all instance classes. Specifically, in our
computations using benchmark instances, we observe that the new formulations perform as
well as the best existing methods in small and easy problems, and vastly outperform existing
methods in larger and harder instances.
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Fig. 3 The average sizes (numbers of continuous and binary variables as well as numbers of linear and rotated
cone constraints) of formulations as a function of dimension (n). The averages are over five test instances of
both the assortment [33] and the uniformly generated [9] data sets and capacity sizes κ ∈ {10% · n, 20% · n}
as well as the unconstrained case

Fig. 4 Performance profile for
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Fig. 5 Average end gap
(End-gap) for all instances as a
function of dimension. No gap is
reported when a given
formulation is unable to solve the
root node within the time limit
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Fig. 6 Average relaxation gap
(Rlx-gap) for all instances as a
function of dimension. Observe
that Rlx-gap does not account
for the effect of polymatroid cuts;
thus, we consider formulations
without the impact of the
polymatroid strengthening. No
gap is reported when a given
formulation is unable to solve the
root node within the time limit
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Fig. 7 Average root node gap
(Ron-gap) for all instances as a
function of dimension. Observe
that Ron-gap accounts for the
strengthening from polymatroid
cuts, but it is also impacted
unfavorably by the use of
(possibly weak) linear outer
approximations. No gap is
reported when a given
formulation is unable to solve the
root node within the time limit
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A Assumption justifications

We make the following assumptions in the paper.

Assumption 1 All data are integers, i.e., ai j , bi j ∈ Z for all i ∈ I , j ∈ J ∪ {0}.
Assumption 2 All data are non-negative, i.e., ai j , bi j � 0 for all i ∈ I and j ∈ J ∪ {0}.

The first assumption is without loss of generality, as otherwise rational coefficients can be
scaled. Assumption 2 is naturally satisfied in most application settings, as the data typically
represents probabilities, prices, weights, utilities etc.—see, e.g., [10] and the applications
described therein.

Nonetheless, Assumption 2 is without loss of generality provided that (the weaker and
commonly made assumption in the FP literature, see, e.g., [8,9,19]) bi0 + ∑

j∈J bi j x j > 0
for all x ∈ B

n holds. In each ratio i ∈ I , for every j ∈ J such that bi j < 0 and every j such
that bi j = 0 and ai j < 0, replace x j with x̄ j = 1 − x j , resulting in a problem satisfying
bi j � 0 (possibly with at most n additional variables and constraints). Then observe that for
any ki ∈ R

ai0 + ∑
j∈J ai j x j

bi0 + ∑
j∈J bi j x j

= (ai0 + ki bi0) + ∑
j∈J (ai j + ki bi j )x j

bi0 + ∑
j∈J bi j x j

− ki . (26)

Thus, by letting ki sufficiently large for each i ∈ I , we find a problem where all coefficients
are non-negative.

Finally, note that if a fractional program is in maximization form and satisfies bi0 +∑
j∈J bi j x j > 0 for all x ∈ B

n , then it can be transformed into an equivalent problem in
minimization form (by negating all coefficients ai0 and ai j ), and then applying the process
above to obtain a problem satisfying Assumption 2.

B Additional computational results

In this appendix, we compare the performance of the formulations presented in the paper (not
restricted to those discussed in Sect. 4.2 and Sect. 4.3 and presented in Tables 3 and 4 as
well as their extended versions, i.e., Tables 5 and 6) to evaluate the individual and combined
effects of the enhancements. In order to have a better comparison of the results, we repeat
the results for some of the formulations in different subsections.

In particular, first, in Appendix B.1, we compare the basic MILP and the basic MICQP
formulations without using additional enhancements. Then in Appendix B.2, we focus on
the effect of the binary-expansion technique on the basic formulations. Next, in Appendix
B.3, we focus on the impact of polymatroid cuts. In Appendix B.4, we test the formulations
that benefit from the integration of the binary-expansion technique with the polymatroid cuts.
Recall that, in the following tables, the “†” symbol is used if CPLEX is unable to fully process
the root node of the branch-and-bound tree within the time limit for a given formulation.
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B.1 Linear versus conic formulations

Here, we evaluate the basicMILP (LF,LEF) and the basicMICQP (CF,CEF) reformulations,
see Tables 7 and 8. Observe that, in most cases, LEF, CF, and CEF are stronger than LF,
i.e., they have better Rlx-gap. Additionally, as expected, the extended formulations LEF
and CEF are stronger than compact formulations, i.e., LF and CF, respectively. The extended
formulations also shows better running time and end gap than the corresponding compact
formulations. In general, CEF performs better than LEF for low values of the parameter κ ,
while LEF is comparatively better for high values of κ . Moreover, none of the formulations
except CF (with a very poor performance) are able to scale to n = 1000 for all instances.
These results justify the development of enhanced formulations for the medium and large
size instances.

B.2 Binary-expansion

Here,we explore the individual impact of binary-expansion technique on the performance and
size of the basic formulations. Specifically, we compare LF and CEF versus their binarized
versions, i.e.,LFlog andCEFlog, respectively.We do not consider the binarized formulations
of LEF and CF as discussed in Remarks 4 and 6, respectively.

In Tables 9 and 10, we observe that LF has a poor performance even for n = 100. In
contrast, its binarization leads to noteworthy improvements in the results due to the reduction
in its size. These results are consistent with the previous results in the literature that LFlog

outperforms LF and LEFlog—see [9,24].
On the other hand, for n � 500 formulation CEF has a superior performance over CEFlog

with respect to either time or the considered gaps; e.g., for n = 500 and κ = 10% · n in
Table 9, CEF reports the 0.2% average End-gap, compared to 5.1% for CEFlog. Nonethe-
less, CEFlog is able to scale to problems with n � 1000 while formulation CEF is not.
Additionally, for the instances with n � 2000 we observe that in most cases CEFlog outper-
forms (the superior MILP formulation) LFlog, as well.

Tables 11 and 12 show the impact of binarization in the reduction of the number of contin-
uous variables and the numbers of linear as well as rotated cone constraints for the assortment
and the uniformly generated data sets, respectively. It can be seen that the binary-expansion
technique substantially reduces the number of (continuous) variables and constraints with a
slight increase in the number of binary variables; the percent of these reductions gets larger
as n grows. For example, in Table 11 for n = 1000, LFlog and CEFlog have at least 97,900
and 391,500 fewer continuous variables and linear constraints, respectively, than LF and CEF
with the cost of at most 2100 more binary variables. The binary-expansion technique also
leads to a reduction of 97,900 rotated cone constraints for CEF.
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B.3 Polymatroid cuts

Next, we explore the individual impact of polymatroid cuts on the basic formulations, namely,
LF,LEF,CF, andCEF. Notably, forn � 500 inTables 13 and 14,we observe that polymatroid
cuts have a significant improvement effect on the performance (time and End-gap) of
compact formulations LF and CF. However, the cuts are not that effective for LEF and
CEF, as these extended formulations are much stronger and the cuts provide only a marginal
improvement in the relaxation quality while increasing the sizes of the formulations.

Additionally, for n � 1000 polymatroid cuts are not beneficial and employing themmakes
the results worse, see, e.g., in Table 13 and n = 1000 that End-gap of LEF from 13.9%
increases to 81% after employing the cuts. The reason is that CPLEX consumes the allocated
time only to manage the cuts and process the root node.

B.4 Integration of binary-expansion and polymatroid cuts

Here, we explore the effect of simultaneous usage of both techniques, i.e., the impact of
the incorporation of polymatroid cuts with binary expansion on LF and CEF. Tables 15
and 16 present the results and we make the following observations. Formulation LFP

log
either outperforms LF, LFP, and LFlog or (in a few cases) has a competitive performance
with LFP. On the other hand, for the small- and medium-size instances CEF and CEFP

are competitive and they have better performances than CEFlog and CEFP
log. However, for

large instances CEFP
log outperforms CEF, CEFlog and CEFP. These observations imply

that—specially in large instances—the integration of binarization and polymatroid cuts in
both MILPs and MICQPs leads to superior formulations. Specifically, LFP

log and CEFP
log

perform better than the corresponding basic formulations and the enhanced ones that only
use one of the improving techniques.

Additionally, it appears that for instances up to 500 variables, in general,CEF andCEFP are
the most efficient formulations. For instances with n � 1000, CEFP

log and LF
P
log outperform

the others. Finally, we observe that, in general, CEFP
log has a better performance in the

constrained instances, while LFPlog is superior in the unconstrained instances.
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