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The theoretically-derived Makishima-Mackenzie (MM) model expresses the Young’s modulus of glass in
terms of two determining factors, namely, the inter-atomic bonding strength (dissociation energy) and the
ways in which atoms are packed (atomic packing fraction). This simple model offers a clear physical picture
to understand the compositional dependence of the stiffness of glasses, but it generally underestimates the
actual Young’s modulus for many glasses, especially in the high value range. In this study, we argue that the
inadequacy of the MM model mainly arises from its definition of the atomic packing fraction—which is
defined as the ratio between the volumes of the atoms and the actual macroscopic volume of the glass. Such
a definition results in a considerable amount of spacing within the basic building units being counted as free
volume, which eventually leads to low packing fractions and, consequently, to low Young’s modulus values.
Here, we propose a more suitable packing metric, the Rigid Unit Packing Fraction (RUPF), which defines the
basic building units as fully-filled, whole polyhedra made of “touching” oxygen atoms with no interstitial
free volume. Young’s moduli of 155 oxide glasses predicted from our revised MM model show a significantly
improved level of agreement with respect to experimental data as compared to the original MM model. This
study not only improves the ability of the physics-based MM model to yield accurate predictions of the
Young’s modulus, but also supports the relevance of rigid-unit theory, which could be applied as a basis to
decipher other property-structure correlations.

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The Young's modulus (e.g. of a silicate glass) defines its ability to
withstand changes in length under length-wise tension or compres-
sion in the linear elasticity regime. As such, it is a critical engineering
property for a large range of applications [1]. Understanding and pre-
dicting the compositional dependence of Young’s modulus is there-
fore key to accelerating the discovery of novel glasses with tailored
strength. Up to now, it has been studied extensively by physics-based
models [2�5] and empirical data-based machine-learning (ML) mod-
els [6,7]. In particular, the Makishima-Mackenzie (MM) model [2],
derived theoretically from the electrostatic attraction energy of ionic
crystals, is described by a simple yet elegant equation shown as Eq.
(1) in the original paper:

E ¼ 2Vt

X
i

GiXi ð1Þ

where E is the Young’s modulus (with a unit of GPa, which is also
equivalent to kJ/cm3, that is, a unit of energy per unit volume), Vt is
the atomic packing fraction (APF, defined in the conventional way as
the ratio between the total volumes summed over all atoms and the
actual volume calculated from measured mass density and composi-
tion), Gi is the dissociation energy per unit volume of the oxide com-
ponent i, and Xi are the oxide mole fractions. However, it has been
found that the MM model often under-estimates the actual Young’s
modulus for many glasses. The failure of the MM model has been
attributed to the fact that it uses a macro-scale atomic packing den-
sity without incorporating any information regarding the network
connectivity [8]. Therefore, topological constraint theory (TCT) has
been adopted to account for the structural effect [4,5]. However, the
network topology is not always accurately known, which makes it
challenging to systematically apply TCT.

Molecular-dynamics (MD) simulation is also a commonly used
physics-based method to compute the Young’s modulus by applying
a stress and calculating the resulting strain in a previously well-equil-
ibrated simulation cell [3], or by applying a displacement-controlled
load, and then measuring the derived stress as a result of the strain
[9], or from the curvature of the potential-energy well [4]. The accu-
racy of MD simulations largely depends on the accuracy of the simu-
lated glass structure that relies heavily on the accuracy of the
underlying interatomic potentials, which is not always fulfilled. An
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alternative approach is the data-driven, empirical machine-learning
(ML) modeling technique [6,7]. ML is not only a data-driven solution
but also a data-driven discovery tool that enables scientific predic-
tions from incomplete models and incomplete data [10�12]. ML
models rely on assessing a large number of data points to try to cap-
ture the hidden correlation between the input features and the out-
put targets. However, if such hidden “physics laws” can be revealed
and used as input constraints for an ML model, the accuracy and effi-
ciency of model prediction can be dramatically improved.

In this study, we revisit the MM model by analyzing the two
determining factors for calculating the Young’s modulus: 1) APF; and
2) dissociation energy (DE) per unit volume. We find inadequacies in
the definitions of both parameters. Firstly, we argue that, in contrast
to the original MM model, the glass’ total DE per unit volume should
not be expressed as a simple summation of its individual oxide com-
ponents’ mole-fraction weighted DEs per unit volume. Volume-based
energies are usually not additive parameters; rather, the additive
rule may apply to mole-based energies, as demonstrated in Ref.
[13,14]. Secondly, the conventional way to calculate the APF leads to
low packing-fraction values. For example, the volume of a basic struc-
tural building unit, such as an SiO4 tetrahedron, is defined by sum-
ming the volumes of one silicon and four oxygen individual atoms.
Such a calculation leads to a considerable amount of free space within
the tetrahedron being counted as free volume. This contravenes the
“Rigid-Unit” theory, which suggests that the basic building units of a
network glass should be treated as whole entities, and that their
internal space should not affect the macroscopic response of a glass
under loading. Instead, we herein propose a new packing-fraction
metric, namely, the Rigid-Unit Packing Fraction (RUPF), which defines
network-former building units as rigid and fully-filled polytopes
made of “touching” oxygen atoms—a concept adopted from the oxy-
gen-atom packing fraction [15,16]. In particular, this metric considers
the interstitial space within the “touching” oxygen atoms as being
fully filled (i.e., not as a free space). The Young’s modulus values of
155 oxide glasses covering a wide variety of compositional ranges
and Young’s modulus values (from 15 to 140 GPa) have been calcu-
lated by the revised MM-model using the RUPF and subsequently cal-
culated DE-values as the input. We demonstrate that our model
offers significantly improved predictions of the Young’s modulus as
compared to other existing models. Furthermore, this study not only
improves the ability of the physics-based MMmodel to yield accurate
predictions of Young’s modulus, but also supports rigid-unit theory—
which could be applied as a basis to decipher other property-struc-
ture correlations.
2. Studied glass groups

In this study, we focus on oxide glasses comprised of three com-
mon network-forming species, boron, silicon and aluminum. Unlike
silicon with only one SiO4 tetrahedral coordination, boron exists in
BO3 triangular and BO4 tetrahedral coordination configurations,
Table 1
Composition information of eight glass groups with their network-former a
oxide components.

Groups Former Modifier Data size

M-S [21] [23] [23] Si Li, Na, K, Ca, Sr, Ba 12
AS [24] Si, Al None 7
Na-B [19] B Na 10
Ca-AS [25] Si, Al Ca 26
M-AS [22] [23] [26] [27] Si, Al Li, Na, K, Mg, Ca, Sr, Ba, Zn 31
NaM-AS [28] Si, Al Na:M = 3.9:1 (M=Mg, Ca) 20
Na-BS [19] Si, B Na 34
Ca-ABS [17] Si, Al, B Ca 15
aluminum has higher coordinated AlO5 and AlO6 configurations
besides normal AlO4 coordination. Boron and aluminum coordination
numbers can be quantified by nuclear magnetic resonance (NMR), as
shown for the calcium aluminoborosilicate (Ca-ABS) glasses [17]. The
boron coordination number can also be directly calculated from the
glass composition using the classic Yun and Bray model [18], as
applied to sodium borate (Na-B) and sodium borosilicate (Na-BS)
glasses [19] in this study. For the rest of the aluminosilicate glasses,
we also assume that all the aluminum atoms possess a four-coordi-
nated AlO4 tetrahedral structure. This is an approximation because
NMR measurements of calcium aluminosilicate glasses showed that
the VAl content per total Al is less than 5% for the percalcic region
(where R < 0.5, and R ¼ CAl=ð2CCa þ CAlÞ, with CAl and Cca being the
elemental mol%), but it is up to 12% for the peraluminous region
(where R>0.5) [20].

The validity of the MM model relies on the accuracy of three
pieces of experimental information: composition, density and
Young’s modulus. Data for a total of 155 oxide glasses were collected
from the literature and 80 of those have experimentally measured
composition data. The rest of the 75 glasses (which only present
batch compositions) are still used because they cover different com-
position groups and significantly expand the range of Young’s modu-
lus values, namely, from 15 to 140 GPa—such as binary silicate
glasses [21�23], binary borate glasses [19], ternary borosilicate
glasses [19] and binary modifier-free aluminosilicate glasses [24].
The 155 glasses are categorized into eight groups in terms of compo-
sitions, with detailed information shown in Table 1.

3. Results

3.1. Young’s modulus calculated by the original MM-definition (APF
with volume summation DE)

First, the E values of 155 glasses were calculated using the MM
model (Eq. (1)) with its original definition [2]. The atomic packing
fraction (APF) is defined in the conventional way as being the ratio
between the total volume summed over all atoms and the actual vol-
ume calculated from measured mass density and composition. The
APF can be calculated by summing the volumes of all elements using
Eq. (2):

hAPF ¼ r�
X

ViCi ð2Þ

where Vi is the volume of element i, which is calculated by Vi ¼ 4
3 � p

�ri3 with ri being the Pauling effective ionic radii as listed in Table 2,
the same values as used in the original MM model [2]. Ci is the ele-
mental mole fraction. r is the total atomic number density, which is
calculated by r ¼ 0:6022 � rmass=

P
MiCi, with rmass being the mea-

sured mass density (g/cm3), and
P

MiCi being the molecular weight
of the glass, with Mi and Ci being the molar mass. The unit of E corre-
sponds to energy per unit volume (kJ/cm3); therefore, the dissocia-
tion energy (DE) needs to have the same unit. The MM model
nd modifier species, data size, compositional range of each individual

Formula Composition range (mol%)

x y 100-x-y

(R2O/RO)x(SiO2)100-x 10�40 60�90
(Al2O3)x(SiO2)100-x 0�60 40�100
(Na2O)x(B2O3)100-x 0�50 50�100
(CaO)x(Al2O3)y(SiO2)100-x-y 12�34 10�34 33�77
(R2O/RO)x(Al2O3)y(SiO2)100-x-y 20�42 5�25 40�76
(Na2O)16(MO)8(Al2O3)x(SiO2)76-x 0�24
(Na2O)x(B2O3)y(SiO2)100-x-y 3�40 13�50 30�80
(CaO)15(Al2O3)15(B2O3)x(SiO2)70-x 5�25



Table 2
Parameters used for APF and RUPF calculations. I) APF: Pauling’s effective ionic radii for O, network formers and modifiers corresponding to
their specified coordination numbers; Whittaker-Muntus’ ionic radii for O and network formers; individual polyhedral volume of formers
defined by APF; II). RUPF: touching oxygen radius for network formers, modifier-oxygen bond length, modifier effective ionic-radius calcula-
tion corresponding to touching oxygen atoms; interstitial space packing fraction of polyhedra, individual polyhedral volume of formers
defined by RUPF.

Network formers B Si Al O

Coordination number 3 4 4 4 5 6

APF Pauling's effective ionic radius (A
�
)1 [29] 0.01 0.11 0.26 0.39 0.48 0.535 1.35

Whittaker-Muntus' ionic radius (A
�
)1 [30] 0.1 0.2 0.34 0.47 0.56 0.61 1.27

Individual polyhedron volume (A
�
) 30.92 41.23 41.3 41.47 51.99 62.48

RUPF Touching oxygen radius (A
�
) [15,16] 1.178 1.207 1.306 1.437 1.334 1.328

Interstitial space packing fraction [31] 0.3952 0.26 0.26 0.26 0.3682 0.4762

Individual polyhedron volume (A
�
) 25 32.03 40.6 54.09 55.51 67.79

Network modifier Li Na K Mg Ca Sr Ba Zn
Coordination number 4 6 9 5 6 7 8 5

APF
RUPF

Pauling's effective ionic radius (A
�
) [29] 0.59 1.02 1.55 0.66 1.00 1.21 1.42 0.68

M-O bond length (A
�
) (rM-O=rM+rO) 1.94 2.37 2.9 2.01 2.35 2.56 2.77 2.03

Modifier ionic radius corresponding to
touching oxygen(A

�
)

rM-O-r~o (r~o-mean touching oxygen radius)

1 The Pauling’s effective radii [29] are used for APF calculation as they were used in the Makishima-Mackenzie (MM) model [2]; the Whit-
taker-Muntus values [30] were specially derived for silicate minerals; therefore, they are used for the 2D-schematic illustration of APF poly-
hedra of Fig. 4.

2 The interstitial packing fraction of BO3, AlO5 and AlO6 polyhedra is defined in the Supporting Information section.
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expresses the DE per unit volume (GV
glass) via a summation of mole

fraction weighted GV
i over all the oxide components. In the original

MM paper [2], two DE values (Gmole
i and GV

i ) are listed for a series of
oxides. The Gmole

i value is the same as that originally determined by
Sun and Huggins [13,14]. The GV

i value is claimed to be back-calcu-
lated from the pure oxide E value using Eq. (1). However, the calcula-
tion method of these values is not fully detailed. Later, the GV

i values
have been mathematically amended by other MM model users in
order to improve the accuracy of the E prediction [22,23]; unfortu-
nately, no justifications were provided in terms of how the new GV

i
values were derived. Here, the original GV

i values from the MM paper
are listed in Table 3 as the reference.

As defined in Eq. (1), the glass total DE per unit volume is calcu-
lated by

P
GV
i Xi, where GV

i is each oxide DE per unit volume (kJ/cm3),
as listed in Table 3, and Xi is the oxide mole fraction.
Table 3
Dissociation energy derived from different sources as well as the modifier cation fi

Network former SiO2
1

SiO4 AlO

GV
i (kJ/cm3) MM [2] 64.4 133

Gmole
i (kJ/mol) Original Sun-Huggins [13] 1774�1950 265

RUPF-derived 1744(21) 3247
APF-derived 1879(23) 4730

Network modifier Li2O Na2O K2O
GV
i (kJ/cm3) MM [2] 80.3 37.2 23.4

Gmole
i (kJ/mol) Original Sun-Huggins [13] 1205 1004 962

RUPF-derived 1372(129) 962(60) 493(1
APF-derived 1335(140) 836(65) 227(2

Modifier's cation field strength (A
� �2) 2.87 0.96 0.42

1. Low Gmole
i value (1774 kJ/mol) corresponds to fully polymerized SiO2, where a

total depolymerized Ca2SiO4, where all the oxygen atoms are non-bridging. Th
[2].

2. Low Gmole
i value (2653 kJ/mol) corresponds to aluminosilicate material with AlO

material with AlO6 coordination. The high Gmole
i value (3364 kJ/mol) shown as

Al-O coordination numbers.
3. The Sun-Huggins paper [13] only listed one Gmole

i value (2979 kJ/mol) for borate, co
(16.3 kJ/cm3) of BO3 coordination from the E value of pure B2O3 glass which conta
for BO3 coordination is calculated from the GV

i value andmole volume of B2O3 glass
The calculated E values, derived using the original MM definition,
are plotted against the measured E values for all 155 glasses in Fig. 1.
Detailed information is provided in the Supplementary Data Tables
S1 &2. With the intercept being fixed at zero, a linear fitting of calcu-
lated vs. measured values in Fig. 1 yields a slope of 0.866 with a root
mean-squared error (RMSE) of 11.505 GPa. We observe that the MM
model systematically under-estimates E, especially in the high-E
region (E>80 GPa) for glasses containing Al2O3. Such an under-esti-
mation is also shown in the original MM-paper [2] and has often
been reported by others [4,22,23]. The correlation between calculated
and measured values is fair for the binary sodium borate glasses in
the low-E region (E< 60 GPa). It is especially good for the pure B2O3

glass, with a calculated value of 16.13 GPa in comparison to the mea-
sured value of 17 GPa [2]. Our result contrasts with the calculated
value of 62 GPa obtained by Zwanziger et al. in Ref. [8], wherein the
eld strength.

Al2O3
2 B2O3

3

4 AlO6 BO3 BO4

.9 NA 16.3 77.8
3 3364 682 2979
(55) 7592(989) 655(50) 3382(121)
(60) 7520(1077) 575(54) 3280(131)

MgO CaO SrO BaO ZnO
83.7 64.9 48.5 40.6 41.4
929 1075 1071 1088 602

90) 1402(178) 1389(72) 1263(142) 980(96) 1471(313)
07) 1399(194) 1364(78) 1172(155) 843(105) 1575(341)

4.59 2.00 1.37 0.99 4.33

ll oxygen atoms are bridging; high Gmole
i value (1950 kJ/mol) corresponds to

e low Gmole
i value (1774 kJ/mol) shown as bold was listed in the MM paper

4 coordination; the high Gmole
i value (3364 kJ/mol) corresponds to aluminate

bold was listed in the MM paper [2] although the MM paper did not specify

rresponding to BO4 coordination, while the MM paper [2] calculated the GV
i value

ins entirely BO3 triangular configurations. Therefore the Gmole
i value (682 kJ/mol)

and used for the molar summation of DE calculation.



Fig. 1. Relationship between calculated and measured values of the Young’s modulus
of 155 glasses, where the calculated value is derived using the original MM definition,
with APF and DE values calculated by unit volume summation. The dotted line y = x
represents the ideal correlation. The slope derived by linear fitting with the intercept
fixed as zero, is 0.866, indicating under-estimation by the MM-model, with an RMSE of
11.505 GPa. The error bars of measured E values were reported for 87 glasses; only
seven AS glasses have error bars (§1 GPa) larger than the symbol size.
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discrepancy between calculated (62 GPa) and measured (17 GPa)
Young’s modulus values was attributed to the fact that the Young’s
modulus should vanish to zero in isostatic or under constrained
glasses. However, we argue that their high calculated value of 62 GPa
is mainly caused by using the wrong dissociation energy (namely,
77.8 kJ/cm3 for BO4 units). Rather, we propose that the DE value of
16.3 kJ/cm3 (Table 3) should be used for BO3 triangular units—since
pure B2O3 glass solely contains BO3 triangular units.
Fig. 2. Dissociation energy of 15 Ca-ABS glasses calculated by volumetric and molar-
summation methods.
3.2. Young’s modulus calculated by APF with molar summation DE

We argue that the glass’ total volumetric DE should not be
expressed as a simple weighted summation of the oxide components’
volumetric DEs. Volume itself, and all volume-based properties, are
not always additive parameters; the additive rule might apply to
mass or mole-based properties, as stated clearly in the very first two
papers introducing the concept of glass dissociation energy [13,14].
The volume-summation DE calculation method used in the MM paper
[2] was also adopted by others [22,23]. A more accurate way to calcu-
late the DE per unit volume of a glass is shown in Eq. (3), which takes
the form of a weighted sum of the total molar DE values of all the
oxide components (Gmole

i Xi) divided by the glass’ molar volume Vm,
which is calculated from the glass’ composition and density:

DEper unit volume ¼
P

Gmole
i Xi

Vm
ð3Þ

where Gmole
i is the DE per mole for oxide component i, which was cal-

culated by Sun and Huggins [13,14] and listed in Table 3, Xi is the
oxide mole fraction. Vm is the glass’ molar volume and calculated by
Vm ¼

P
MiXi

rmass
, withMi and Xi being the molar mass and mole fraction of

oxide i, and rmass is the measured mass density (g/cm3). The same
way of expressing the glass DE per unit volume as our definition is
also reported in Ref. [32].

The correctness of molar summation can be further confirmed by
a pressurization study of 15 calcium aluminoborosilicate (Ca-ABS)
glasses, which are from five compositions (CaO)15(Al2O3)15(B2O3)x(-
SiO2)70-x (x = 5, 10, 15, 20, 25), with each composition containing
three glasses, as-made, 1 and 2 GPa hot-compressed [17]. After pres-
surization, both density and E increase; the coordination numbers of
B and Al also increase, as shown by NMRmeasurements. As expected,
pressurization increases the packing fraction; it should also increase
DE because the bond strength increases as the bond length decreases.
However, the volumetric summation method (

P
GV
i Xi) only uses

composition for the DE calculation; in contrast, the molar summation
method takes account of the density change, which is represented by
the molar volume Vm as shown in Eq. (3). The DE values calculated by
both methods for 15 Ca-ABS glasses are plotted in Fig. 2. For each
composition, the molar summation - derived DE increases signifi-
cantly with pressure mainly due to the density increase. In contrast,
the volumetric summation - derived DE increases slightly with pres-
sure, due to the BO4 fraction increase which has a much higher GV

BO4

value (77.8 kJ/cm3) compared to GV
BO3

(16.3 kJ/cm3), as listed in
Table 3. Apparently, the molar- summation method produces DE val-
ues which better align with physics expectation � i.e. pressurization
increases DE.

Fig. 3 shows the calculated E values derived by APF and molar-
summation DE values plotted against the measured E values. We find
that the correlation between calculated and experimental data does
not improve for the DE calculated by the correct method, with an
RMSE as high as 11.921 GPa. Compared to Fig. 1 with the calculated E
values derived from the volumetric summation-DE, the data points are
less scattered in Fig. 3, particularly by the lining up of 15 Ca-ABS glasses.
But the deviation between calculated and measured E values systemati-
cally increases as the E-value increases, which is in turn correlated to an
increase in the Al2O3 content. This leads us to investigate the role of the
other determining factor, i.e., the packing fraction.

3.3. Young’s modulus calculated by RUPF with correct DE

3.3.1. A suitable way to define packing fraction - RUPF
The whole volume of a network-glass structure is essentially com-

posed of three packing elements: (i) network-forming building units;
(ii) network-modifying ions (when present); and (iii) free volume. As
stated above, the conventional APF definition under-estimates the
packing fraction by generating considerable amounts of free space
within the basic building units. Here, we propose a new packing-frac-
tion metric, namely, the Rigid-Unit Packing Fraction (RUPF). This met-
ric considers the basic network-forming building units to be “rigid”
and fully filled (i.e., with no internal free space) [33]. To this end, we
adopt the concept of “touching” oxygen spheres, which was first
introduced by Wang et al. [15], and then applied to the oxygen-pack-
ing fraction (OPF) by Zeidler et al. [16]. An AO4 (A = B, Si or Al) tetrahe-
dron is used to demonstrate the difference between APF and RUPF. As



Fig. 3. Relationship between calculated and measured values of Young’s modulus of
155 glasses, where the calculated value is derived using the original MM definition
with APF, but with DE calculated by the correct molar summation. The dotted line y = x
represents the ideal correlation. The slope derived by linear fitting, with the intercept
fixed as zero, is 0.871, indicating under-estimation with an RMSE value of 11.921 GPa.
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illustrated in Fig. 4(a), (b) & (c), in contrast to the conventional APF
that defines a tetrahedron by four individual oxygen spheres sur-
rounding a central network former as shown in Fig. 4(d), (e) & (f), the
OPF defines an AO4 tetrahedron as a polytope made of four touching
oxygen spheres, with the radius rO,A (A = B, Si or Al) being scaled to
the A-O bond length (rA-O) by rO;A ¼ ffiffiffiffiffiffiffiffi

2=3
p

rA�O.
The definition of touching oxygen spheres still leaves some empty

interstitial space within the tetrahedron, shown as the pink shaded
area in Fig. 4(a), (b) & (c). Its volume can be calculated using a knowl-
edge of the packing density of close-packed monodisperse spheres, i.
e., 0.74 [31] — since a tetrahedron formed by four touching atoms
represents one basic building unit of close-packed spheres of equal
radii. For close-packed spheres, each interstitial space is formed by
four touching spheres, and each sphere is also surrounded by four
Fig. 4. 2D-schematic illustration of RUPF (a, b & c) and APF (d, e & f) for BO4, SiO4 and AlO4 te
ing oxygen spheres, whose radius rO,A (A = B, Si or Al) is scaled to the A-O bond length (rA-O)
atomic packing fraction (APF) used in the MM-model [2] defines a tetrahedron as four individ
matic is drawn using the Whittaker-Muntus’ radii [30], as listed in Table 2.
interstitial spaces. Therefore there are equal numbers of spheres and
interstitial spaces. Since the volume fraction of the spheres is 0.74
and that of interstitial space is therefore 0.26, the interstitial volume
can be calculated from the sphere volume with Eq. (4)

Vinterstitial ¼
0:26
0:74

Vsphere ¼ 0:351Vsphere ð4Þ

where Vsphere is the touching-oxygen volume, which is calculated as
Vsphere ¼ 4=3pr3O;A with rO,A as the touching-oxygen radius (A = B, Si or
Al).

Therefore, the total volume of an AO4 tetrahedron defined by RUPF
is 4.351 times the one touching oxygen volume, that is, the sum of
the volumes of four touching oxygen atoms and that of the interstitial
space. The individual AO4 tetrahedral volumes of B, Si and Al are cal-
culated using both APF and RUPF methods and listed in Table 2. The
three APF volumes calculated from Pauling’s effective ionic radii are
41.23, 41.3 & 41.47 A

� 3 for B, Si and Al-tetrahedra, respectively. Using
B and BO4 as reference, the ionic radii of Si and Al increase by 1.36
and 2.55 times, but their corresponding tetrahedral volumes only
increase by 0.16 and 0.59% relatively. This is because, by the APF defi-
nition using Pauling’s atomic radii, more than 99% of the AO4 volume
is from four oxygen atoms, with less than 1% volume contributed by
the network-former atom. Such a network-former insensitivity
reflects that the APF definition does not capture the true glass-pack-
ing physics. On the contrary, the three RUPF volumes calculated from
touching oxygen radii are 32.03, 40.6 & 54.09 A

� 3 for B, Si and Al-tetra-
hedra, respectively. The two methods produce quite similar values
for an SiO4 tetrahedron, with the RUPF volume of 40.60 A

� 3 and the
APF volume of 41.30 A

� 3. The difference is more noticeable for the
smaller BO4 tetrahedron, where the RUPF method gives a volume of
32.03 A

� 3, in comparison to the value of 41.23 A
� 3 obtained by the APF

method. In contrast, the difference between RUPF and APF values for
the larger AlO4 tetrahedron is opposite, where the RUPFmethod gives
a larger volume of 54.08 A

� 3, in comparison to the APF value of 41.47
A
� 3. In other words, the RUPF method is essentially equivalent to con-
sidering network-forming polytopes as being fully filled, and adjust-
ing the effective radius of oxygen atoms until they eventually touch
each other. This correction becomes even more pronounced when
the central cation is small enough to “pull” the oxygen neighbors
trahedra. The Rigid-Unit packing fraction (RUPF) defines the tetrahedron by four touch-
by rO;A ¼ ffiffiffiffiffiffiffiffi

2=3
p

rA�O and the pink shaded area is the interstitial space. The conventional
ual oxygen spheres surrounding the central network former (B, Si or Al). The APF sche-
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close to each other (e.g., as in the case of B atoms), or large enough to
“push” the oxygen neighbors far away from each other (e.g., as in the
case of Al atoms). The difference between the two methods can be
clearly demonstrated in the 2D schematic illustration in Fig. 4, where
no clear difference can be seen for the APF plots (d-f) of three tetrahe-
dra, while the RUPF plots (a-c) show a visible volume increase in the
order of BO4, SiO4 and AlO4.

3.3.2. Rigid-Unit packing fraction (RUPF) calculation
As illustrated above, the total RUPF packing fraction is calculated

by adding the three components using Eq. (5):

hRUPF ¼ hO þ hinterstitial þ hM ð5Þ
where hO is the total touching oxygen packing fraction, hinterstitial is
the total interstitial empty space within tetrahedra, and hM is the
total modifier packing fraction.

First, the calculation procedure for hO reported in Ref. [16] is sum-
marized below. hO is defined in Eq. (6):

hO ¼ VOrO ð6Þ
where rO is the oxygen number density, which is further defined as
rO ¼ r� CO; with r being the measured total atomic number density
and CO the atomic fraction of oxygen atoms. For an oxide glass with
n-fold coordinated network formers B (n = 3 and 4), Si (n = 4) and Al
(n = 4, 5 and 6), VO is the mean oxide-ion volume of mixed AO4 poly-
hedra, and is defined by Eq. (7):

VO ¼ 4
3
p

P4
n¼3 n� CB n½ � r3O;B n½ � þ 4 � CSi 4½ � r3O;Si 4½ � þ

P6
n¼4 n� CAl n½ � r3O;Al n½ �P4

n¼3 n� CB n½ � þ 4 � CSi 4½ � þP6
n¼4 n� CAl n½ �

ð7Þ
where CA½n� is the atomic fraction of network former A with n-coordi-
nation, which can either be measured by NMR (for B and Al) or calcu-
lated from composition (for B only). The radius of touching oxygen
atoms (rO;A½n� ) is the effective oxide-ion sizes scaled by the corre-
sponding AOn polyhedron size.

The touching oxygen radius rO;A½4� of an AO4 tetrahedron can be
calculated by Eq. (8):

rO;A 4½ � ¼
ffiffiffiffiffiffiffi
2=3

p
rA 4½ ��O ð8Þ

where rA½4��O is the experimental measured A-O bond length for AO4

coordination; rO;B½4� is 1.207 A
�
for rB½4��O � 1.478 A

�
, rO;Si½4� is 1.306 A

�
for

rSi½4��O � 1.60 A
�
and rO;Al½4� is 1.437 A

�
for rAl½4��O � 1.76 A

�
, as listed in

Table 2.
The concept of using “touching” oxygen atoms was further

extended to other network-forming building-unit motifs by Zeidler
et al. [16], such as planar BO3 triangles and AlO5 and AlO6 polyhedra;
their corresponding “touching” oxygen radii are also listed in Table 2.

Next, the interstitial space within tetrahedra, hinterstitial, is calcu-
lated by Eq. (9):

hinterstitial ¼
X6
n¼3

hAOn
interstitial

1�hAOn
interstitial

� r� 3
4
p� CA n½ � r3O;A n½ � ð9Þ

with hAOn
interstitial being the interstitial-space packing fraction of AOn

polyhedra and all the parameters are defined as above. As described
in the previous section, the value of hAO4

interstitial is 0.26. The other
hAOn
interstitial values for AO3, AO5 and AO6 polyhedra are defined in Sup-

porting Information and listed in Table 2.
Similarly, the modifier ion-packing fraction,hM, is calculated by

Eq. (10):

hM ¼ VMrM ð10Þ
where rM is the modifier number density defined in the same way as
rO, and VM is the modifier-ion volume defined as VM ¼ 4

3

� �
pr3M . rM is

the atomic radius of M, which varies with the modifier coordination
number. The coordination number [16] and its corresponding Pauling
effective ionic radii [29] used in the MM-model are listed in Table 2.
The Pauling effective ionic radii [29] or other forms of radii, such as
Whittaker-Muntus radii [30] (also called crystal radii), are compiled
from experimentally measured bond-length values by assuming a
reference value for oxygen anions (1.35 A

�
for Pauling effective oxy-

gen radii and 1.27 A
�
for Whittaker-Muntus radii). Therefore, the M-O

bond lengths are calculated by summing the oxygen and modifier
radii, and are listed in Table 2. In the RUPF calculation, the oxygen
radii are adjusted until touching to form AOn polyhedra; conse-
quently, the modifier radius should be adjusted accordingly to keep
the M-O bond length constant and to avoid over or under-counting
the packing fraction. The value of rM is calculated by Eq. (11):

rM ¼ rM�O�rO ð11Þ
where rM�O are the M-O bond lengths calculated from the sum of oxy-
gen and modifier radii and listed in Table 2, and rO is the mean oxide-
ion radius of mixed AOn polyhedra, and is calculated by Eq. (12):

rO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VO � 3

4p
3

r
ð12Þ

where Vo is the mean oxide-ion volume of mixed AO4 polyhedra, and
is defined by Eq. (7).
3.3.3. RUPF of 26 CAS glasses
A set of 26 calcium aluminosilicate (CAS) glasses [25] were used to

compare the difference of new-RUPF and conventional APF values;
the data are given in Supplementary Data Table S1. As shown in the
compositional phase diagram of Fig. 5(a), there are three series for
the 26 glasses: series I are charge-balanced glasses; series II and III
are glasses with constant SiO2 contents. In Fig. 5(b), the RUPF (solid
balls) and APF (crossed balls) of series I glasses are shown with red
color as a function of mol% of SiO2, while series II and III’ glasses are
plotted with black and blue colors in Fig. 5(c) as a function of R-val-
ues, where R ¼ CAl=ð2CCa þ CAlÞ. As expected, the RUPF values for all
the glasses are higher than their corresponding APF-values, the differ-
ence becoming more pronounced as the Al2O3 content increases
because the rigid-unit volume of AlO4 defined by RUPF is significantly
larger than that by APF. For the constant SiO2-containing glasses in
series II and III, as the R-value increases by more Al2O3 substituting
for CaO, the glasses become more polymerized, which should lead to
an increase in packing fraction. As shown in Fig. 5(c), both series
show an increase in RUPF with R-value; in contrast, slight decreases
are observed in the APF series,which does not reflect the true packing
fraction.

To further illustrate the difference between RUPF and APF, the tet-
rahedral building unit (hA), modifier (hM) and total packing fraction
as a function of R-value for series II and III glasses are plotted in Fig. 6.
As the R-ratio increases, hRUPF

A (solid symbols) increases significantly
due to the significantly large AlO4 volume by the RUPF definition,
while hAPF

A (crossed symbols) only increases slightly with increasing
Al content. Both hRUPF

M and hAPF
M decrease as R increases because the

number of modifier atoms decreases. For series III glasses, hRUPF
M is sig-

nificantly smaller than hAPF
M due to its smaller effective rM deduced

from the larger rO by the high Al2O3 content in series III glasses. The
total RUPF increases with R, but APF slightly decreases because of its
under-estimation of the tetrahedral packing fraction.
3.3.4. Young’s modulus calculated by RUPF with original correct DE
Fig. 7 shows the calculated E values obtained from the RUPF and

molar summation DE using the original dissociation energy data from
Sun [13,14], plotted against measured E values. The RMSE of the
degree of correlation drops to 4.003 GPa, which is only about one
third of the original MM model’s RMSE value (11.505 GPa). Signifi-
cant improvement occurs in the high E-region (E >60 GPa) with
Al2O3-containing glasses. Their calculated E-values increase by the



Fig. 5. Three series of CAS glasses with compositions shown in the phase diagram (a), the RUPF and APF comparison for series I charge-balanced glasses as a function of mol% of SiO2

(red) (b), and series II (black) and III (blue) constant-SiO2 glasses as a function of the R-value (c). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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increased RUPF values which mainly originated from a high and more
realistic AlO4 tetrahedral volume compared to its APF value, as illus-
trated in Fig. 4.

3.4. Young’s modulus calculated by RUPF with RUPF-derived DE

To further improve the MM-model, we now check the accuracy of
the molar dissociation- energy values used for each oxide. The origi-
nal Gmole

i values for different oxide components were computed by
Sun and Huggins in 1946�47 [13,14], in which they used the molar
formation energy for each oxide and the associated elemental disso-
ciation energy from solid into uncharged gaseous atoms collected by
Bichowsky and Rossini in 1936 [34]. As listed in Table 3, there are
two sets of Sun-Huggins Gmole

i values listed for SiO2 and Al2O3, but
only one value for the BO4 tetrahedral configuration, with BO3 trian-
gular values missing. The low Gmole

i value (1774 kJ/mol) for SiO2 cor-
responds to fully polymerized SiO2 where all the oxygen atoms are
bridging by connecting to two Si atoms; while a high Gmole

i value
(1950 kJ/mol) corresponds to totally depolymerized Ca2SiO4, where
all the oxygen atoms are non-bridging oxygens which are only con-
nected to one Si atom. The low Gmole

i value (2653 kJ/mol) for Al2O3

corresponds to aluminosilicate material; while a high Gmole
i value

(3364 kJ/mol) corresponds to aluminate material without silicon. In
the MM original paper [2], only the low Gmole

i value was listed for
SiO2, while a high Gmole

i value was chosen for Al2O3 although no clear
explanation and justification were provided. Interestingly, since then
the MM-model users have also adjusted the Gmole

i values [22,23]
without any physical justification.
There are no apparent reasons for us to stick to the 19400s Gmole
i

data, as also suggested by Sun and Huggins [13] in which they stated
that “the DE values computed in this paper are only approximate aver-
age values and that theoretically they should not and experimentally
they do not give accurate energies of formation by simple additivity”.
Therefore, we decided to recalculate the Gmole

i values using the proce-
dure described below.

With the new packing-fraction metric and an appropriate way to
calculate DE, the revised MM-model is now expressed by Eq. (13)

E ¼ 2hRUPF

P
Gmole
i Xi

Vm
ð13Þ

where hRUPF is the new packing fraction, Gmole
i is the DE per mole for

oxide component i, Xi is the oxide i mole fraction, and Vm is the glass’
molar volume.

Eq. (13) can be rewritten as Eq. (14)

E
2hRUPF

� Vm ¼
X

Gmole
i Xi ð14Þ

For 155 glasses, we would have 155 equations with 13 variables,
which are the Gmole

i values for 11 oxides, B2O3, SiO2, Al2O3, Li2O,. . .
and two for Al (AlO4 and AlO6 with AlO5 taking the same value as
AlO6) and two for B (BO3 and BO4), as listed in Table 3. A multiple lin-
ear regression with the intercept fixed at zero yields the ten refined
Gmole
i values, which are listed in Table 3 as RUPF-derived DE values.

The regression has an adjusted-R2 value of 0.998 with an RMSE value
of 1.55 kJ/mol. The errors of the calculated Gmole

i -values are deter-
mined by two factors: (i) the accuracy of the experimental data



Fig. 6. Tetrahedral (hA), modifier (hM) and total packing fractions as a function of R-value for series II (a, b & c) and III (d, e & f) CAS glasses by RUPF (solid) and APF (crossed) defini-
tions. As the R-ratio increases, hRUPF

A increases significantly due to the appreciably large AlO4 vol by the RUPF definition, but hAPF
A only increases slightly with increasing Al content;

both hRUPF
M and hAPF

M decrease as the number of modifiers decreases, and for series III glasses, hRUPF
M is lower than hAPF

M because of its smaller effective rM deduced from the larger rO
by the high Al2O3 content in series III glasses; the total RUPF increases but APF slightly decreases due to its under-estimation of the tetrahedral packing fraction.

Fig. 7. Relationship between calculated and measured values of Young’s modulus of
155 glasses, where the calculated value is derived by the new RUPF and DE calculated
by the molar summation using original Sun values. The dotted line y = x represents the
ideal correlation. The slope derived by linear fitting with the intercept fixed as zero is
1.010, and the E-estimation has an RMSE value of 4.003 GPa.
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including glass composition, density and E value; and (ii) the number
of glasses containing that specific oxide component. The Gmole

SiO2
value

has the lowest error because there are 145 glasses containing SiO2,
while the Gmole

K2O
value shows the largest error because only two K2O-

containing glasses were used to derive its value.
As shown in Fig. 8, the calculated E values, derived from RUPF and

RUPF-derived DE values, plotted against measured values line up
very well around the ideal y = x line, with an RMSE value as low as
2.962 GPa. With such a universal set of Gmole

i values, the E value of
glasses can be simply predicted from the sole knowledge of composi-
tion and density (or molar volume). For most glasses, the difference
between calculated and measured E values is within the experimen-
tal error range of composition, density, and the E measurements.
However, the deviations for non-modifier-containing aluminosilicate
glasses, shown as green stars in Fig. 8, are beyond the experimental
error; this might be due to the fact that the Gmole

i values of SiO2 and
Al2O3 derived from modifier-containing glasses are not applicable for
glasses without modifiers, or that Al largely departs from the
assumption of being in a 4-fold coordinated state. Three binary
Na2O-B2O3 glasses (shown as blue stars) with higher Na2O contents
(Na2O mol% �40) also exhibit a higher deviation, which can either be
due to the inaccuracy of the B coordination calculation or phase sepa-
ration. In addition, we realize that the Gmole

i value of each oxide is



Fig. 8. Relationship between calculated and measured values of the Young’s modulus
of 155 glasses, where the calculated value is derived by the new RUPF and RUPF-
derived Gmole

i -values. The dotted line y = x represents the ideal correlation. The slope
derived by linear fitting with the intercept fixed as zero is 0.998, with a good E-estima-
tion with an RMSE of 2.962 GPa.

Fig. 9. Relationship between calculated and measured values of the Young’s modulus
of 155 glasses, where the calculated value is derived by the conventional APF and APF-
derived Gmole

i -values. The dotted line y = x represents the ideal correlation. The slope
derived by linear fitting with the intercept fixed as zero is 0.998, and a good E-estima-
tion with an RMSE of 2.954 GPa.
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family-dependent, that is, the Si-O bond strength in fused silica is dif-
ferent from that in soda-lime silicate glasses, like the two Gmole

SiO2
values

listed in Table 3. As such, despite some limitations, our revised MM
model offers an unprecedented prediction of the relationship
between glass composition and Young’s modulus over a large range
of composition and Young’s modulus values (from 15 to 140 GPa).
Fig. 10. Four sets of dissociation energies calculated for CAS series I charge-balanced
glasses as a function of mol% of SiO2. 1) The DE values calculated by the volume-sum-
mation method used in the MM-paper [2] (red crossed stars); 2) the DE values calcu-
lated by the correct molar-summation method using the original Sun-Huggins
Gmole

i -values [14] (blue crossed circles); 3) the DE values calculated by the RUPF-derived
Gmole

i -values (blue solid balls); 4) the DE values calculated by the APF-derived Gmole
i -val-

ues (red solid stars). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
3.5. Young’s modulus calculated by APF with APF-derived DE

To further validate our RUPF-derived Gmole
i values, we performed

the same multiple linear regression using the APF values, as shown in
Eq. (15)

E
2hAPF

� Vm ¼
X

Gmole
i Xi ð15Þ

Another set of 13 APF-derived Gmole
i values for 11 oxides are listed

in Table 3. The regression has an adjusted-R2 value of 0.998 with an
RMSE value of 1.68 kJ/mol. The calculated E values calculated by APF
and APF-derived DE are plotted against measured E values, as shown
in Fig. 9. A similarly good E-prediction is observed, with an RMSE
value of 2.954 GPa.

The four sets of DE-values derived in this study are plotted as a
function of mol% of SiO2 for CAS series I glasses in Fig. 10:1) The DE
calculated by the volume summation method used in the MM paper
[2] (red crossed stars); 2) the DE calculated by the correct molar sum-
mation method using the original Sun-Huggins Gmole

i -values [14]
(blue crossed balls); 3) the DE calculated by the RUPF-derived
Gmole
i -values (blue solid balls); 4) the DE calculated by the APF-derived

Gmole
i -values (red solid stars). The volume summation MM-values are

systematically higher than the correct molar summation values cal-
culated from the original Sun-Huggins’ data. For CAS series I glasses,
our RUPF-derived data are slightly larger than the original Sun values.
However, the APF-derived data are significantly larger in order to
compensate the significantly lower APF values, as shown in Fig. 5(b).

Although the APF and APF-derived DE values yield E predictions
with an accuracy that is similar to that achieved with RUPF and RUPF-
derived DE values, it should be noted that a large number of fitting
parameters can often yield an apparent good agreement between
model and experimental data. Here, we argue that the dissociation
energies obtained from the RUPF-based model are more realistic
because they are much closer to the original values provided by Sun
[13]—as listed in Table 3, both Gmole
SiO2

and Gmole
Al2O3

values for AO4 configu-
rations derived by RUPF are within the ranges computed by Sun-Hug-
gins for different materials. In turn, the two values obtained by the
APF-based model are significantly higher than the upper limits of the
range, especially Gmole

Al2O3
obtained by APF is 4730 kJ/cm3, i.e., about 50%

higher than the upper limit of the Sun-Huggins’ value of 3364 kJ/cm3.
We attribute this large discrepancy to the low APF value, which once
again suggests that RUPF is a more physically-meaningful packing
metric.

The RUPF-derived DE values also yield more meaningful Gmole
i -val-

ues for modifier oxides. As shown in Fig. 11, three types of dissocia-
tion energy (Gmole

i ) of modifier oxides are plotted as a function of
cation field strength (A

� �2) as listed in Table 3. The cation field
strength is defined as Z/r2 with Z being the charge valence and r the
Pauling effective ionic radius (also listed in Table 3). The original Sun-



Fig. 11. Three types of dissociation energy (Gmole
i ) of modifier oxides as a function of

cation field strength (A
� �2). The original Sun-Huggins Gmole

i -values [13] show no correla-
tion with cation field strength (black crossed hexagons). Most APF-derived Gmole

i values
(red stars) overlay with the RUPF-derived Gmole

i values (blue balls), but one unphysical
Gmole

K2O
value is derived for APFwith very low value. The blue line is a guide for the eye to

show the correlation between RUPF-derived Gmole
i and the cation field strength. (For

interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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Huggins Gmole
i -values [14] show no correlation with cation field

strength (black crossed hexagons). Most APF-derived Gmole
i values

(red stars) overlay with RUPF-derived Gmole
i values (blue balls), but an

unphysical, extremely low Gmole
K2O

is derived from APF—a side effect of
the unphysical-high APF-based GAl2O3

mole value. The blue line plotted
as a guide for the eye demonstrates a correlation between the RUPF-
derived Gmole

i values and cation field strengths.

4. Conclusions

The theoretically-derived Makishima�Mackenzie (MM) model
offers an intuitive physical picture to understand the relationship
between glass composition and Young’s modulus in terms of the
inter-atomic bonding strength and the ways in which atoms are
packed. We argue that the reason why it often under-estimates
Young’s modulus values arises from the fact that the atomic packing
fraction (APF) defined by the MM-model notably under-estimates the
packing density. Inspired by “Rigid Unit” theory, which suggests that
the basic building units of a network glass should be treated as whole
entities, we show that our new packing metric—the Rigid Unit pack-
ing fraction (RUPF)—offers a more meaningful description of the
degree of packing of a glassy network. Based on this, we have shown
that our revised MM model (E ¼ 2hRUPF

P
Gmole
i Xi

Vm
) can predict the

Young’s modulus of a wide variety of oxide glasses with an unprece-
dented level of accuracy.
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