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This paper introduces a probabilistic risk assessment (PRA) framework for the path
planning to quantify the risk of unmanned aircraft systems’ (UAS) operations to the ground
over populated areas. The proposed framework is designed to be flexible enough to address
multiple concerns and objectives by utilizing the probabilistic risk exposure map (PREM) of
the area of operation and UAS failure mode analysis with corresponding impact probability
distributions on the ground. PREM is defined to be the risk of exposure of people or
property on the ground to the presence of UAS in the air as a function of position, and it
is used to model the distribution of risk exposure over the map. In this study, PREM is
constructed for the impact related risk conditions where their distributions are modeled as
a mixture of bivariate normal distributions over the discretized map of the area. Along with
PREM, UAS failure modes with ground impact distributions are used in the derivation
of the risk function to quantify the risk of being hit by the failing UAS platform for
bystanders, properties and the traffic on the ground. Then, utilizing the derived risk
function as a planning cost function, the path planner algorithm is used to plan a path
that minimizes the risk according to the proposed risk assessment framework. As a path
planner, optimal bidirectional rapidly-exploring random trees (RRT) is selected due to its
fast convergence and optimality guarantee. Finally, the results of simulations for different
scenarios are compared and discussed in detail.

I. Introduction

IN the past decades, unmanned aerial systems (UAS) have proved their usefulness in numerous civilian,
commercial and military applications. Infrastructure inspections, environmental monitoring, delivery of
goods, search and rescue missions, agriculture support and almost all military fields are just a few areas
of these systems used among many other potential applications. Although there is a significantly increased
demand for these systems, integration of UAS into the National Airspace System (NAS) has been relatively
slow. For operating within NAS, an aircraft system must have comprehensive certification that satisfies rules
and regulations set by the aviation authorities. Comparing the conventional manned aircraft systems current
unmanned systems are lack of such documentation, and so, the reliability of these systems has not been fully
assessed yet. Therefore, UAS operations in national airspace, especially over populated areas, presents a
risk to people and property on the ground or other airspace users. Certainly, this situation raises safety,
privacy and regulatory concerns. To benefit from the full potential of UAS, these concerns must be addressed
systematically by defining and quantifying the risk conditions to these concerns so that acceptance of such
technology by the society can be ensured. There is a great deal of work done on risk management strategies
in the literature. These strategies mainly focus on modeling the risk itself as a product of hazardous event
likelihood and the consequences of this hazardous event. Similarly, for the risk concept of UAS operations,
several studies utilized the same strategy by developing a probabilistic model of the risk condition resulted
from the operation of an unmanned vehicle over an area and analyzing the potential impacts of this risk
condition, which is mostly done by casualty expectation due to vehicle impact to the ground. In Ref.[1],
expected number of casualties is calculated for assessing the ground risk of railway inspection mission by
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UAS by utilizing fault tree analysis of UAS and assuming ground impact points are distributed as a bivariate
normal distribution over the maximum gliding range area. McGeer et al. presented gliding range model
and impact location distribution as a probability density function to incorporate with probabilistic risk
assessment (PRA) framework for finding potential harm to bystanders on the ground over populated areas
in [2]. Similarly, various casualty expectations models due to mid-air collision and ground impact of UAS
platform are developed in [3], [4], [5], and [6]. Also, Dalamagkidis et al. used the kinetic energy of the
vehicle and shelter factor of the buildings in their expectation of casualties in [(]. The literature search
showed that studies on the risk assessment of UAS operations made an approach to deal with only one of
the concerns where the safety of bystanders is measured by the casualty expectation of UAS ground impact
scenarios. However, although risk modeling of direct impact to bystanders on the ground plays a key role
on public acceptance of UAS technology, a reliable and realistic risk assessment framework should consider
all the potential risk conditions to address any concerns mentioned above. Thus, there is a need for more
systematic risk assessment framework that can also incorporate the other risk conditions such as property
damage, privacy violations, flying over restricted airspace or No Drone Flyover zones, in addition to the
safety of bystanders.

In this research, a probabilistic risk assessment framework, which can be used to address aforementioned
concerns, is presented for the quantification of risk exposure of UAS operations to the ground by introducing
probabilistic risk exposure map (PREM) of the area of operation and using failure modes of UAS and their
probability distributions of ground impact positions. PREM is defined to be the risk of exposure of people
or property on the ground to the presence of UAS in the air, and it models the spatial distribution of the
risk of exposure on the map. This concept is developed to integrate multiple objectives according to task
characteristics, and by so, the task-awareness of the system is aimed. A similar concept is used in [7,3]
for modeling threat exposure to UAS, which is opposite to how it is intended to be used here. Along with
PREM, failure modes and their probability distributions of impact position on the ground are used in the
derivation of the risk function for the risk quantification. After derivation of such function, path planners
can utilize it to assess the risk of a mission (or task), and minimize the risk during the planning stage. In
this study, due to its fast convergence rate and optimality guarantee, optimal bidirectional rapidly-exploring
random trees (bi-RRT™*) is selected to be used as the path planner with developed PRA framework. This
approach is intended to be useful for decision making on UAS missions by assessing and comparing planned
mission paths regarding their risk levels.

This paper is organized as follows. Section II describes the formulation of PREM and sample construction
of PREM from building footprints. In Section III, UAS failure modes and derivation of ground impact
distribution are explained and illustrated on the map. Proposed RRT algorithm and its pseudo code are
introduced, and the integration of PREM with the failure modes and their ground impact distributions are
formulated according to PRA framework in Section IV. In Section V, simulation results for different scenarios
are displayed and discussed, and finally, the paper is concluded with a summary and the future works.

II. Construction of Probabilistic Risk Exposure Map

In literature, there are many studies on the risk analysis of UAS operations, especially over populated
areas, using the expected number of casualties, injuries or people exposed to danger as a reasonable quan-
tification unit of the risk assessment [1-6]. Therefore, population distribution (or the risk distribution) over
the area of interest is required to be known in advance or modeled to assess the risk associated with the UAS
operation. In this paper, distribution of the risk exposure is modeled using the PREM concept. PREM is
defined to be the risk of exposure to the presence of UAS in the air, and it represents the distribution of
risks as a function of position on the ground. To illustrate, considering human population on the ground, the
higher population in a specific area that is subjected to UAS operation, the higher the risk of exposure (such
as being hit by UAS or privacy violation) will be observed over that region. In this concept, the operation
of UAS in urban areas is treated as a risk to the safety of bystanders, properties, and the other ground
objects. Moreover, privacy and regulatory concerns regarding these operations can be addressed within the
same concept. Thus, multiple objectives can be achieved by the PREM which consists of multiple layers
corresponding to different types of risk classifications such as the risk of flying over people (or traffic), of
flying closely over residential units, or of violating restricted airspace. The flexibility of the concept also
allows fusing various risk layers into the same risk map. The advantage of having only one map is that once
all the risk types are fused and included in the PREM, decision-making strategies do not need to distinguish
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between different types of risks since the map already contains the required information.

Assume that a risk type is formed by the contribution of the individual risk sources of the same risk
type, {S1, 52, ..., Sn}, where they are independently modeled and discretely placed across the map. Also,
assume that evidences for this discrete risk mapping approach to represent the actual risk map is given
with a binary random variable M (e), where e = {ey, ea, ..., €, } are evidences. Under those assumptions, risk
condition for this risk type in a particular location and time can be characterized by these two factors, namely
i) the probability density of the risk condition R at location z and time t given the evidences of correct
mapping M (e), and an individual risk source S;, p(R(z,t)|M(e(t)), S(t) = S;), and ii) the probability of
given individual risk sources to capture total underlying risk condition given the M (e), P(S(t) = S;|M(e(t)).
Basically, the first term represents the spatial and temporal distribution of the risk condition caused by the
given risk source as a probability density function, while the second term models fraction of underlying risk
condition captured by the individual risk source S;. By the product of these two factors, the probability
distribution of the i type risk condition for a given set of evidences can be constructed as

(R O el0) = [p(R! (2 DM (e(1)), 5() = S| [P(57() = i (e()] (1)
j=1
where N is the total number of discrete risk sources.

In addition, conditioning on M (e(t)) in Eq.(1) can be eliminated by utilizing the probability of risk
mapping for the given set of evidences to represent actual risk mapping. This term introduces the uncertainty
into the PREM concept, and it can referred as a situational-awareness of the system. By this approach,
a priori knowledge about the environment and the risk conditions can be updated as the new information
gained, or the evidences collected, by any means.

PREM': p(Ri(w,t) = > [p(R (e, )M ()] [POM(e(t)))] e

Me{T,F}

where T' and F are the true/false. Note that Egs.(1-2) are generic equations to model PREM. However, time
dependency of the underlying process and the uncertainty on the correct identification of the risk mapping
are out of scope for this study. Therefore, the underlying risk condition is assumed to be stationary, and
uncertainty on the modeling is neglected (P(M(e) = True) = 1).

N
PREM': p(R'(z)) =Y _ p(R'(z)|S" = Si(l;,m;))P(S" = Si(l;,m;)) (3)
j=1

where [; is the location of the center of the individual risk source, and m; is the modeling parameter of the
risk distribution for this risk source. Each risk sources is identified by these two parameters. This approach
gives us the flexibility to model the total risk distribution as a mixture of distributions over the discrete set
of locations.

Furthermore, multiple risk types can be integrated into the same risk map with this approach by assigning
weight factors for each risk types according to their importance. Note that, accumulation of the different
risk types over a trajectory might differ from each other. One clear example is that while the privacy risks
might be purely depending on the current location of the UAS and accumulated over time, UAS platform
impact related risks would require where the platform failed and what the state of the vehicle was at the
failure as well. Therefore, one should differentiate the dissimilar risk types during fusing. Nevertheless, one
risk map fusing all the similar risk types(layers) can be formulated as below

p(R(x)) = Z w'p(R(x)) or PREM = Z w'PREM" (4)
i€{a,b,...} i€{a,b,...}

where w? is the weighting of the risk type i and with the condition of Vi : w® > 0, > w® = 1.

Another advantage of fusing multiple risk types in this approach is that every UZAS mission may impose
a different set of weights on various risk conditions. For instance, weight on the privacy risk of residences
would differ widely from a UAS executing the task of pizza delivery to transferring a live organ transplant
task. By this approach, only changing weights w® in Eq.(4), task-awareness of the system can be achieved,
even during task execution.
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Lastly, benefits or opportunities present in the environment, which are separate from task objectives, can
be captured as well in this context by seeing them as negative risks. This approach can be useful in a variety
of task and help decision-making strategies.

In this paper, derivation of Eq.(3) is explained as an example for only one risk type, which is a impact
related risk condition. Exposure of buildings to a UAS over an area is selected as a risk condition. PREM is
modeled using the building footprints in a specific area, taken from geographical information system (GIS)
database. Also, the distribution of the risk condition is characterized by the mixture of Gaussian probability
density functions (PDFs) such that the mean of each PDF represents the concentration point (location) of
the risk condition and the standard deviation of the PDF represents how far the risk condition spreads out
(modeling parameter). For a two-dimensional map, bivariate Gaussian PDF is used as follows

7(x) expl—5(r — p) K — o) (5)

1
B 2m+/det(K)

2

where p = [1; py]T and K = diag{c?2,
r = [z y]T is the position vector.

The mixture can be thought as the sum of 'bumps’ located across the area representing the spatial and
quantitative distribution of the risk condition. The higher the risk density is, the higher the bump will be
observed. In this stage, one can assign a Gaussian PDF for each building (or people) to model the risk
distribution. However, to obtain a tractable system and to reduce the computational complexity on larger
scale applications, the whole map is discretized into smaller grids so that multiple buildings falling into
the same grid can be represented by one PDF, that might be seen as the trade-off between precision and
tractability. In this approach, each grid can have only one Gaussian PDF located at the center of the grid,
which is defined by /; in Eq.(3). The dimension of the grid defines how far the the risk condition spreads out,
which is in terms of the standard deviation of Gaussian PDF and represented by the modeling parameter
m;. After selecting a grid size, the standard deviation of the PDF's is parameterized in terms of the selected
grid size to fit the effective area of PDF, which is determined to be 1.1-¢ deviation from the mean, inside
the grid boundaries, and used as a constant for all the PDFs. Yet, by this approach, all of the grids have the
same PDF although they may have a different number of buildings or even do not have any. What’s more,
during the construction of PREM, grids having the denser population should have a higher risk of exposure
than the grids with lower population densities. To address these points, a weighted sum of Gaussian PDF's
is introduced with the second term in Eq.(3) by using fraction of total risk condition in each grid as the
weights. Building densities in each grid are used as fractions, and they are computed by assigning center of
each building to corresponding grids and dividing the number of buildings in the current grid by the total
number of buildings in the map. It means a building can be accounted for only one grid even though it
might fall into multiple grids. This approach can be easily improved using additional methods, but it is
not intended in this study since it is not the primary goal. Fractions are denoted as 7(S;(l;,m;)) in Eq.(6)
instead of P(S* = S}(I;,m;)). Construction of PREM with weighted sum of Gaussian PDFs is below.

o2} are the mean vector and the covariance matrix of the PDF and

Npar
PREM(r) = Z W(Sj(lj’mj))%\/dlet(—K-) eXP[—%(r — ) KT (= )] (6)

where p; =1 = [l 1,,]" and Kj = diag{o§j7 051_}. Npgr is the total number of PDFs in the map.

Also note that, selection of grid size during the discretization of the map plays an important role in the
estimation of actual risk distribution. If the selected grid size is too small, the estimation will be a sum of
isolated bumps of PDF's which means risk conditions are restricted to stay in small isolated areas. Conversely,
if a large grid size is selected, densities (bumps) will cover vast areas individually, and this might result in
spending too much effort on the areas where no risk has been observed. In addition to the true representation
of risk distribution, a minimum resolution that path planning is required needs to be considered for selection
of an appropriate size of the grid.

An example of PREM is shown in Fig.(1). Figure on the left is two-dimensional contour plot of PREM
constructed from building footprints on an area where the small red blocks represent the buildings, and the
isolines show decreasing PREM values from inside to outside. Figure on the right is the three-dimensional
surface plot of the same PREM.
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Probabilistic Risk Exposure Map 3-D

PREM Value
o o

Y. km 2135 704 X, km

(a) PREM in 2D Contour Plot (b) PREM in 3D Surface Plot

Figure 1. Illustration of a sample PREM

III. UAS Failure Modes and Ground Impact Distribution

In this section, failure modes of UAS and their ground impact probability distributions over the map
are investigated briefly, and a simple example is illustrated. Modeling the actual behavior of an unmanned
aircraft system under critical failure conditions is not trivial due to the inherent nature of the operating
environment and non-linearity of vehicle dynamics. There is a considerable amount of work done on this
topic to identify the possible behaviors and to assess the reliability of these systems. As with the fault
tree analysis,” failure mode analysis is one of the common methods to model the resulting behavior of the
system under certain failure conditions, which are called failure modes. Failure occurring on an aircraft
system can result in two operational conditions, namely controllable flight and uncontrollable flight. While
the normal mission can still be maintained or mitigation strategies can be performed in a controllable flight,
in an uncontrollable flight, the mission is terminated by the loss of control on the system with a potential
crash scenario. In this work, all the failure modes are presumed to result in an uncontrollable flight, and
no mitigation strategies are performed. Resulting behavior of the UAS after a failure is analyzed regarding
the impact location distribution over an area on the ground. Impact location is defined to be that in an
uncontrollable flight condition, a position on the ground that UAS can reach from its current state where
the failure occurs. Impact domain of UAS is represented by a probability distribution over the map for
a given uncontrollable flight condition UF' occurred at current state of the vehicle X(t), and at current
environmental conditions e(t), f(ImpPos|[UF(X(t),e(t)). Domain depends on the capabilities of the vehicle
such as operating speed and available power on-board, and environmental conditions like wind direction and
magnitude. The range and endurance of the UAS can be significantly altered by the presence of strong
weather conditions. Therefore, environmental conditions should be considered to determine the size and
shape of the impact domain. Also, in case of diminished capability modes such as a sensor, actuator or
system unit failures, the range or endurance will be adversely affected. This approach can be used to
determine probability density of impact locations over the map under each possible failure case according to
their occurrence probabilities, and the mixture of these distributions will provide the probability distribution
of impact locations for all failure modes over the map. As it is explained in Section II, impact probability
distribution of all failure modes is formulated as a mixture distribution. Eq.(7) shows the formulation of
mixture distribution.

FUmpPos|UF (X (1), e(t)) = Y, | f(ImpPos| F;, UF(X (1), ()| [P UF(X(0), )] (7)

j=1

where f(ImpPos|F;,UF(X(t),e(t))) is the probability density function that represents UAS ground impact
probability distribution over the map given that uncontrollable flight UF is caused by the j** failure mode
F;, at the current state of UAS, X (t), and environmental conditions e(t). P(F;|UF(X(t),e(t))) is the
conditional probability of the j** failure mode to cause uncontrollable flight at given conditions among all
failure modes. Also, k is the total number of UAS failure modes.
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Note that, the occurrence of failure modes can depend on many factors. Hence, current vehicle states,
environmental conditions and time are included in conditional probabilities to address some of those factors.
Using mixture distribution, the probability of UAS impact to a particular area A given a failure happened
at a specific state and condition can be obtained by below integral.

P(ImpArea(A)|UF(X (t), e(t))) = / /A F(ImpPos(z, 1) [UF(X (1), e(t))) dz dy (8)

In addition, considering the density of uncontrollable flight condition to occur at a given specific ve-
hicle state and environmental conditions Ay (X (t),e(t)), UF(X(t),e(t)) term can be eliminated from the
condition in Eq.(8).Then, UAS impact density to an area A can be obtained given the current time as

)\ImpArea(A’ t) = )‘UF (X(t)7 e(t))P(ImpArea(A)|UF(X(t)7 e(t))) (9)

Note that, the reason why density of uncontrollable flight condition is used instead of probability is be-
cause for any exact X (¢) and e(t), the probability of observing UF is zero since it is a continuous random
process. A\yr(X(t),e(t)) models the effect of time varying vehicle states and environmental conditions on
uncontrollable flight condition occurrences.

In this paper, to convey the proposed idea clearly, failure modes and their impact probability distributions
are overly simplified with specified constant failure rates and uniformly distributed ground impact position
probabilities over constant elliptical regions on the map. Also, environmental conditions are not taken into
account. An example is illustrated in Fig.(2). In this example, three different failure modes, depicted by
different colors for a UAS located at (1,1), are defined with constant elliptical impact regions. For each failure
modes, the probability density of impact locations is chosen to be a uniform distribution. It means that given
the failure mode, every position on its defined domain has the same impact density, which is of course not the
real case for any flying vehicle. In Fig.(2(a)), green region, denoted by F1, is the first failure mode defined by
larger impact domain with 0.5 occurrence probability given a failure occurred, P(F}|[UF (X (t),e(t))). Since
it has the largest area compared to the others, probability density function, f(ImpPos|Fi,UF(X(t),e(t))),
has the lowest height. For the second failure mode, denoted by Fs and yellow color, shape and size of the
distribution is altered and relative occurrence probability is chosen to be 0.3. The red region, denoted by
F3, is the last failure mode with the smallest impact area with relative occurrence probability of 0.2. In
Fig.(2(b)), result of Eq.(7) is plotted. Plot represents the combined ground impact probability distribution of
all failure modes. As it is expected, the intersection of all failure mode regions has the highest density. In this
example, failure occurrence probabilities, impact domains and their distributions are intentionally selected
to be simple. However, the effect of weather conditions, diminished capabilities and the other parameters
can be modeled as probability density functions over the map. Thus, Eq.(7) can easily be constructed for
more complex scenarios.

UAS Impact PDFs for each Failure Mode Separately Combined Impact PDF of all Failure Modes

PDF Value

(a) Isometric View of Ground Impact PDFs (b) Isometric View of Combined Impact PDF

Figure 2. Illustration of a sample UAS ground impact probability distribution for three failure modes

6 of 17

American Institute of Aeronautics and Astronautics



IV. RRT Path Planner with Probabilistic Risk Assessment

During the path planning stage, probabilistic risk assessment is introduced to find the total risk (or cost)
of following a path by integrating previously defined PREM and UAS impact probability distribution in a
systematic framework for efficient use of path planner. Therefore, as in the case of real world UAS operations,
exposure of the risk, dynamically changing environment and the vehicles capabilities and characteristics
can be taken into account for a safe and successful mission planning. After deriving the cost function,
expected cost of a path can be optimized by the path planners. In this study, it is proposed to use modified
optimal bidirectional rapidly-exploring random trees (RRT) that utilizes PREM and failure mode analysis
to efficiently expand trees to find potential paths while estimating their expected costs with the goal of
incrementally optimizing the cost of trajectory. In addition, RRTs can be used to explore the whole map
continuously while maintaining tree structure so that given the destination point, it is guaranteed to find
the path with optimum utility measure as the number of samples approaches infinity. Although convergence
is guaranteed at the infinity, given the appropriate heuristics for searching optimum trajectory cost, RRTs
can generate the path in acceptable optimality range and time limits.

A. RRT Path Planner

Sampling-based planners such as RRT and PRM (Probabilistic Road Map) have been used for many motion
planning problems and shown to be probabilistically complete and computationally efficient. Many variants
of the RRT algorithm have been derived and successfully applied to complex motion planning problems. One
of them is the bidirectional RRTs which are often applied to planning problems with challenging regions or
high-dimensional configuration spaces with numerous obstacles, and it is observed to show fast convergence
on these problems. Another variant of the RRT algorithm - RRT* that provides asymptotically optimal
solutions, has been presented and investigated by Karaman in Ref. [10]. In Ref. [11], examining previous
variants of RRT algorithm, simple bidirectional RRT* has been introduced.

In this paper, a slightly modified version of bidirectional RRT* with a goal biased heuristic will be used
for path planning. The Pseudo code of the algorithm is outlined in Algorithm (1) Appendix A. There are
two tree structures maintained, one of them originating from the initial position and the other one from the
goal position. These are denoted as T} and T3 respectively. The algorithm requires initial configuration,
Tinit, and goal configuration, % goq;, maximum sampling iteration number, IterMax, probability of goal bias,
Pjoal, probability of second tree to attempt for a connection, Peonnect, and distance threshold for connecting
two trees’ nodes, Threshold, as inputs of algorithm, and it generates the path segments, Fpqp, risk of the
path, rpqen, nodes of the path, opeen and two trees as outputs. In line 1 and 2, nodes, path segments and
trees are initialized. Algorithm starts with selecting a new configuration z,.,q, finding the nearest node of
T t0 Trana and extending a branch from z,cqrest t0 Trand (Lines 4-10). Extended new node, X, is checked
by the collision check algorithm, CollCheck. If no collision is present, the risk of extending a new branch,
Tnew, 1s calculated, and path segments and nodes are updated (Lines 11-14). In Line 15, the set X,cq, of
all nodes that are close to Zpe, on the first tree is found, and Rewire function in Algorithm (2) Appendix
A checks the possible improvements of using the other pathways along near nodes according to defined risk
metric in Line 17. If there is any, path segments and the parents of tree branches are updated. Rewiring
details can be found in Algorithm (2) Appendix A. For the second tree, above process is slightly altered so
that instead of goal probability bias, Py.qi, probability bias of connecting 75 to a newly extended branch
of Ty, P.onnection, 1S used. After extending branches of both trees, whether the path segments of two trees
are connected or not is checked (Line 33), and if there is any connection, using path segments of both trees
and connection nodes, Backtrack function generates the output of the algorithm (Line 34). This process is
repeated until the maximum iteration number is reached, and then, the path with minimum risk is chosen
as the final path.

In the above algorithm, risk function to calculate the risk of nodes and path segments is derived in the
following section.

B. Probabilistic Risk Assessment

In this section, probabilistic risk assessment is defined to quantify the risk exposure of UAS operations to the
ground. There are a few scenarios that a risk condition can arise due to these operations. The obvious one is
the crash scenarios of the platform or uncontrolled deviation of its planned trajectory such that it can pose
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a threat. These scenarios are categorized as event-based risk conditions in this paper. However, there are
other scenarios causing risk conditions that are not event-based such as privacy intrusions. This category has
not been fully defined yet, and it is still an open debate. Therefore, the proposed risk assessment framework
is modeled for only the event-based risk conditions, more specifically for the events causing platform impacts
to the ground. Nonetheless, the flexibility of the previously introduced concepts and extensibility of below
framework can easily allow us to cover the other abovementioned scenarios as well. This study utilizes the risk
exposure map of the area considering UAS failure modes and their ground impact probability distributions
to quantify the risk of UAS platform impact risk to the ground, where buildings and stationary traffic are
subjected to this risk condition. First, time parameterized density of the risk condition is derived in Eq.(12)
along the UAS trajectory. Then, the total risk of UAS impact along the path is formulated as the integration
of risk densities and event probabilities with respect to time in Eq.(14). Finally, derived equation in Eq.(14)
is used as the risk function (or cost) of the path planner in Algorithm (1).

Eq.(10) describes the calculation of uncontrollable UAS flight condition risk to an area A given that this
flight condition is occurred at current state of the vehicle, X and environmental conditions, e at time ¢.
Basically, given the information where and when the UAS failed, impact risk on the ground is estimated by
using the spatial distribution of impact probabilities and the expected value of the total risk condition on
the impact area as

Risk(area A given UF(X(t),e(t))) = Pr(Impact to area A given UF at X(t) and e(t)) x [Risk on A] (10)

Using the above relation, risk values of the elementary (or grid) areas can be calculated for a given UF
condition. Assuming that UAS failure modes and their impact distributions over the map are constructed
with uniform impact distributions on constant circular impact domains, shown as colored nested circular
regions around yellow triangle mark in the center of Fig.(3(a)) where yellow triangle depicts the position
of the platform when failure occurred, Fig.(3) illustrates the integration of a sample PREM and failure
modes’ ground impact distributions. Fig.(3(b)) show the result of Eq.(10) for each one of the individual grid
areas. As it can be seen, risk on the grids where impact domains intersect with high-risk regions have higher
expected impact risk. Also, note that, outside of the impact domains, there is no risk expected since those
regions are not reachable by the failing vehicle. Furthermore, total corresponding risk for this condition can
be obtained by the summation of all individual risk elements as - , ., Risk(A;|[UF(X(t),e(t))), where A;
and Ap are the grid area and total area enclosing all the failure mode domains.

Integration of PREM over impact area dist - Isometric View Risk due to UAS presence at the Center - Iso View

b
13

0.03

PREM Value
e o o
N w -~

Risk, [Number of People]
e

N
=3

(a) Integration of PREM and Failure Modes (b) Risk on Grid Areas due to UAS at the Center
Figure 3. Illustration of PREM and failure mode ground impact distribution integration

Eq.(10) requires the uncontrollable flight condition to be known in advance to compute the risk for an
area. On the other hand, employing UAS impact density, introduced in Eq.(9), the occurrence rate of the
UF condition can be included in the risk calculation. By so, impact risk density to ground caused by the
presence of a UAS at a specific state and environmental condition can be expressed as follows

RiskDensity(t) = Z Almparea(Ai, ) X [Risk on A;] (11)
A,€AFr
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Impact density and expected total risk on the elementary area A; are shown in the formulation of risk
density in Eq.(12). Impact density to area A; is found by multiplying density of having uncontrollable flight
occurring at X (¢) and e(¢) by the integral of the conditional impact probability distribution of UAS given
UF occurred at given conditions. Similarly expected total risk over the area A; is found by integrating
PREM over the elementary area. Then, this calculation is repeated for each elementary areas inside the
union of all impact domains, denoted by Ap, on the map. The calculation in Eq.(12) is unit-less in this
form. However, if PREM has a quantitative measure for corresponding risk condition, such as the number
of people, then it can be used as a unit with impact density unit, which is usually defined with flight hours.

RiskDensity(t) =

3 {)\UF(X(t),e(t))//Avf(ImpPos(amy)\UF(X(t),e(t)))dwdy} [//APREM(x,y) d:vdy} (12)

A;€AFr

Using the formula derived in Eq.(12), risk level of the path can be computed by integrating the impact
risk densities along the path. However, this integration implies that failure is assumed to be occurring in
every time step. This assumption is not correct. Because after the first failure case, vehicle cannot proceed
the normal operation, and so, the risk that corresponds to the remaining part of the path, after the failure
occurred, cannot be included in total risk. For correct integration of total risk, the probability of not having
any failure in a given time period should be known until reaching the goal. Also, this probability term can
be seen as a discounting factor in Eq.(13). It means that the risk in the near future has a higher weight (or
importance) than the risk in distant future during the risk calculation.

Risk = / T U F(X (). o(t))) Risk Density(t) di (13)
0

where Tpasp is the total elapsed time until UAS to reach its destination. P(—~UF (X (t), e(t))) is the probability
that no failure occurred until time ¢.

If failure modes are assumed to be following a Poisson distribution with constant failure rates, Eq.(13)
can be reconstructed as

Tpath
Risk = / e M RiskDensity(t) dt (14)
0

where A = 3 ;Aj is the summation of individual failure mode rates following Poisson distribution. Note

that, Poisson distribution with zero event has exponential decay (P (X (t) = 0) = e~ ((\t)?)/0!).
Eq.(13) is basically in the form of performance index as below.

7= dalt)tn) + [ Lt

where ¢; is the final time of the solution, and the first term represents the cost of the final state of the
solution. L(t,z,u) function is used to account for the cost of following a specific trajectory such as total
distance traveled or the duration. It is selected to be the total risk of following a path with the term inside
the integral in Eq.(13) for this study. Final state constraint is not considered.

In this study, risk levels of the planned paths will be used to compare different paths. Therefore, the
main purpose of the path planner is to minimize the risk along the path in Eq.(14). Fig.(4) illustrates the
calculation of the risk for a sample RRT generated path in 20 km by 20 km map. Three failure modes
are specified with constant failure rates of 10™%, 1072 and 10~! per hour respectively, and circular impact
domains with radius of 1 km, 0.8 km and 0.6 km. In Fig.(4(a)), red line describes the actual path of UAS
planned by RRT planner from initial position marked with a red square on the bottom left to goal position
marked with a green triangle on the upper right corner. The other black lines are the branches of the tree
created by RRT. To find the total impact risk along the path, Eq.(14) is used, and the result is shown in

Fig.(4(b)).
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Risk Calculation of RRT Path - Isometric View
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Figure 4. Illustration of a sample risk calculation on the RRT Path

V. Results of Simulations

In this section, the proposed probabilistic risk assessment framework is implemented in two different
scenarios, and the obtained results are discussed. Implementation consists of 4 steps; construction of PREM
layers from the data such as building footprints and road layout of the selected area, defining failure modes
with corresponding failure rates and their ground impact probability distributions, selection of required
parameters for the RRT path planner such as step size and goal bias, and finally, generation of the path
between selected positions by utilizing the risk assessment. In the last step, the path planner algorithm runs
until the maximum number of iterations is reached. Assuming that algorithm finds a path before reaching
the maximum iterations, for the remaining iterations, alternative paths with the lower risk levels are searched
since asymptotically optimal paths are guaranteed iteratively by bidirectional RRT* algorithm. In the end,
risk levels of all the paths found incrementally are saved, and the path with the lowest risk level is chosen
to be the final path of UAS. The final path and previously found paths are shown in the same graph for
comparison with respect to their total path lengths and total risk levels.

In this study, failure modes and their ground impact probability distributions are defined for both scenar-
ios and used as the same. Four failure modes with constant failure rates, which follow the Poisson process,
and with constant elliptical impact domains, as shown in Fig.(5(a)), are determined for the UAS. Table 1
lists the failure mode parameters. Impact distributions are modeled with truncated Gaussian PDFs such
that 30 deviation of the Gaussian falls within the corresponding impact domain. Combined ground impact
probability distribution is shown in Fig.(5(b)). Note that, the orientation of the impact domain is with

respect to the body frame of the platform, and it rotates with that.

Table 1. Failure Mode Parameters

Failure Modes | Failure Rates | Impact Domain Shape | Orientation
Iy 1075 per hour Ellipse (50 m x 33 m) /0°
Fy 10~% per hour Ellipse (37 m x 21 m) /-30°
Fs 1073 per hour Ellipse (33 m x 16 m) £0°
Fy 10~* per hour Ellipse (37 m x 21 m) £30°

Parameters that the RRT algorithm requires are listed in Table 2 for both scenarios. Maximum iteration
number for the run is determined to be 10000. However, the longer it runs, the more optimized solution can
be obtained. The speed of the vehicle is chosen to be 20 km/h with a step size of 5.5 meters, which is the
distance vehicle travels in 1 second. Goal bias of 0.01 for exploring the regions near the goal position and
the connection bias of 0.02 for connecting two trees each other are used.
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UAS Impact Domains for Different Failure Modes
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Figure 5. Failure mode impact domains and combined ground impact probability distribution

Table 2. RRT Parameters

A% 20 km/h | Step Size 55 m Pyoal 0.01
IterMax 10000 Threshold | 0.4x StepSize | P.onneet | 0.02

A. First Scenario

In this scenario, a small residential area with a rectangular dimension of 400 by 400 meters is selected as
the UAS operation area in Fort Worth, TX. For this region, PREM is constructed for the risk of flying over
properties and traffic, which is assumed to be stationary. Therefore, the risk of being hit by the UAS for the
properties and the vehicles will be considered by the risk assessment framework. Two cases are investigated
in this scenario to compare the results. In the first case, shown in Fig.(6(a), only the property risk exposure
are present in the environment (late night UAS operation). In Fig.(6(b)), the second case includes both
property and traffic risk exposures for the risk assessment (daytime UAS operation). The weights that are
used to construct PREM from the combination of both layers are 0.4 and 0.6 respectively. Note that, the
selection of weights on different layers plays an important role in path characteristics and task-awareness,
and therefore, they should be extensively investigated, which is outside the scope of this paper. A higher
weight on the risk of flying over traffic might be more realistic in real-life due to the potential cause of
catastrophic secondary incidents. Nevertheless, different cases will be demonstrated for the diversity and
comparison.

For the selection of start and goal positions, although they can be any two random positions, they are
selected to show the effect of various PREMs on the generated paths. Finally, the path planner algorithm is
run to find a near-optimal path while continuously exploring the whole map and optimizing the previously
found paths at the same time.

Results of the RRT run with above parameters are shown in Fig.(7). The solid red lines in Figs.(7(a)-
7(b)) are the final paths for the first and second cases after 10000 iterations, whereas, the blue dashed lines
are the paths found during the previous iterations. In the first case, since there is no traffic present in
the map, reaching the goal position by traveling over the streets gives the lowest risk path as expected.
However, in the second scenario, having a traffic activity on the streets changes the underlying risk map,
and it drives planner algorithm to look for the alternative paths to minimize the total risk until reaching the
goal. Comparing the first case, the gaps between buildings, without street intersections, and the property
backyards give the lowest risk path in Fig.(7(b)). This means that flying over traffic accumulates a higher
risk in total than flying near the buildings, as it is decoded in PREM construction. Also note that, for
selected ground impact shapes and distributions, the regions that potentially accumulate low risks can easily
differ from those selections. For instance, a constant wind flow from one direction over the region would shift
the impact domain in the same direction, and it might result in having the lowest risk path that goes above
buildings. Therefore, path characteristics for the missions depend on both the underlying risk conditions
(PREM) and the vehicle’s failure mode representation with environmental effects.
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Figure 7. Comparing two cases for a UAS mission path under different risk conditions - Scenario 1

As it can be seen from the figures, many alternative paths are found and optimized during the iterations
as well, which are plotted in Figs.(7(c)-7(d)). Looking at the risk versus total distance charts, one can
decide whether the mission is in acceptable risk limits or within the vehicle’s range. Also, information about
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the environment, underlying risk regions, and potential paths can be inferred from these charts during the
planning process. For example, the convergence rate of the planning can be learned and used to make the
decisions for concluding the search, or even, for ruling out some of the map regions.

Moreover, as it can be noticed that some of the very first paths found have long straight edges, which
indicates that the RRT has not explored those regions fully yet. As the process advances, those straight
lines are optimized on the tree by rewiring to minimize the total risk along the path, and they usually turn
into the curly path segments which yield the low-risk levels due to the selection of the risk representations.

Changing the weights on the risk layers, adding/removing layers or modifying ground impact distributions
would have altered the search areas for potentially less risky pathways. In the next scenario, the effect of
adding a new risk layer on the path planning in a larger map will be analyzed.

B. Second Scenario

In this scenario, comparing the previous one, a larger and more crowded area, where the dimensions are 900
by 900 meters again in Fort Worth, TX, is chosen for the UAS operation. As in the previous scenario, two
cases will be investigated in the same map, depicted in Figs.(8(a)-8(b)). However, in addition to property
and traffic risk exposure in the first scenario, the third risk layer corresponding to the bystander risk exposure
is added in the second case of this scenario. The weights to construct PREM from these three layers are 0.4,
0.4 and 0.2 for the risk of flying over bystanders, traffic and property on the ground respectively. Thus, it is
expected to be observed that the UAS path will try to stay as far as possible from the bystanders and the
traffic comparing the buildings given the selected impact domains for these scenarios.

After constructing the PREM, bi-directional RRT* algorithm with defined parameters in Table 2 is run
to find the path between selected start and goal positions by minimizing the accumulated risk over the path
during 10000 iterations. One should notice that using the same step size and the maximum iteration number
for a larger map might result in less optimized paths with potential straight lines and zigzags. In order for
RRT algorithm to find more optimized solutions, it needs to densely cover the configuration space. Despite
that, after finding regions that are potentially leading to an optimal solution, local optimization algorithms
can be used to increase the efficiency of the optimization, which is not covered in this paper.

Results for both cases are shown in Fig.(9). In the first case, corresponding to the only property risk
exposure case, low risk generating valleys on the map concentrate on open grounds, unoccupied lands, and
freeways, resulting in finding more paths around these regions. Especially the final path that first goes
through the open park and continues on the highway to reach the destination is the expected behavior of
the optimal path on this case. Considering the only risk condition of flying over residential units drives the
path search toward those regions to stay away from buildings. On the other hand, in the second case with
updated PREM by the integration of bystanders and traffic risk layers, path search focuses more on the
areas where no bystanders and traffic activity present due to the higher weighting on these layers. Thus,
gaps between buildings and unoccupied areas are mainly used to reach the goal.
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Figure 8. Case maps for the second scenario
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Figure 9. Comparing two cases for a UAS mission path under different risk conditions - Scenario 2

By this approach, the land use of an area can be used to naturally construct the PREM as one of the
most straightforward applications, although the PREM concept has an immensely wider range of integration
capabilities. Also, by carefully selecting the relative weights of the risk layers during the construction of the
PREM, the task-awareness concept can be implemented into this framework.

VI. Conclusion and Future Works

In this study, a probabilistic risk assessment (PRA) framework is developed to quantify the risk posed by
the UAS operations to the ground with the purpose of safe task-aware path planning. First, the probabilistic
risk exposure map (PREM) concept is explained and formulated to model the spatial and quantitative
distribution of the risk exposures over the map as a mixture of distributions. Then, using the UAS failure
mode analysis, ground impact distribution of the platform is represented with a single density function.
Finally, the PRA framework is introduced by utilizing the PREM and failure modes to quantify the risk
associated with UAS operation to the ground along the planned paths. Introduced PRA framework is
implemented into the bi-directional RRT* path planning algorithm to assess the risk of following a path (a
cost function), and it is used to compare the paths for different UAS operational scenarios. Results show
that various risk conditions can be systematically incorporated into the developed framework to assess and
minimize the related risk. Also, the integration of vehicle capabilities and environmental conditions within
this framework is a crucial step toward realistic applications. Although only one risk type, which is the
risk of being directly hit by a UAS platform, is considered in the scenarios of this study, the flexibility
of proposed framework allows various risk types to be addressed as well. In future works, multiple risk
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layers corresponding to different risk types, uncertainty on the modeling of PREM, and the effects of vehicle
states and environmental conditions on the ground impact distribution will be investigated. Furthermore, in
addition to just minimizing the risk along the path, gains for achieving specified goal/subgoals or potentially
useful plans such as refueling schedules will be integrated into this framework. Therefore, the planning
algorithm will have additional decision criteria to choose among the paths according to their risk and gain
comparison. Lastly, another potential improvement can be attained by incorporating Kinodynamic RRT
algorithms so that actual vehicle’s kinematic and dynamic constraints can be considered during planning.
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Appendices

A. Bi-directional RRT* Algorithm Appendix

Algorithm 1: Bidirectional RRT*

Input: (Tinit, Tgoar, IterMax, Pyoar, Peonnect, Threshold)
Output: Epatlu Tpaths Opath T, 15

1 V — {xinitaxgoal} ;E17E2 — Q]

2 T < (Tinit, B1) ;T2 <+ (Tgoat, E2)

3 for i =1 to IterMazx do

4 | p<+rand([0,1])

5 if p < Pyoq then
6 Trand < Zgoal
7 else
8 L Trand < Sample
9 ZTnearest < Nearest(T1, Trand)
10 Tnew EXtend(xnem‘esta xrand)
11 if CollCheck(xpew,T1) == False then
12 Tnew < Risk(Znew) + Risk(0rnearest)
13 V VU (Znew)
14 El — El U ((-Tnearest; Inew))
15 Xnear < Near(T1, Tpew)
16 Lycar <0
17 El — ReWire(xnearesta Tnew; Xnearv Tnew, Lneara Ela Tl)
18 T1 < MaintainTree(E1, Thew, Tnearests Tnews 11)
19 Zeonnect — Nearest(Ta, Tnew)

20 | p <« rand([0,1])
21 if p < Peonnect then

22 L Trands — Tpew

23 else

24 L Trand, < Sample

25 Tnews — EXtend('xconnectv xrandg)

26 if CollCheck(xnew,, To) == False then

27 Trew,  RiSK(Znew,) + Risk(0connect)

28 E2 — E2 U ((xconnecta xnewg))

29 Xneary < Near(Ty, Tnew, )

30 Lear, < 0

31 Ey < ReWire(zconnecta Tnews s Xnearz s Tnews s Lnearg , o, TQ)
32 | T « MaintainTree(E2, new, s Teonnects Tnew,, 12)

33 if Dist(znew, Nearest(Ta, Tpew)) < Threshold

V Dist(Zpew,, Nearest(T1, Tnew,)) < Threshold

V Dist(Znew Tnew,) < Threshold then

34 L (Epath; T'path, Upath) < Backtrack(El, Tnew, B2, m?z,ewz)

35 return (Epaih, Tpaths Opath, 11,12)
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Algorithm 2: Rewire(Znearests Tnews Xnears Tnews Lnear, By T)

N VN

© o N & o«

10
11
12

13
14
15
16
17

Input: (-rneaTesh xne’wa Xnear7 Tnewa Lnea’r; E7 T)
Output: F
for xnear E Xnear do

Tnear < Risk(Zpew) + Risk(opear)

Onear — AddNode(Zpear, Tnew)

Lnear — Lnear U ((Tnearz Tnear; Unear))
Lnear-sort()
for ((TTLE(ZT’ xneara O—near)) E L'I’LGG/I" do

i

i

f CollisionFree(oycqr) then

if Thear < Tnew then
Tmin < Tnear
E «+ E\ ((-rnearestv xnew))
E<+ EU ((Imvna xnew))
break

for ((rnear; mneam Unear)) e LTLCQT do

f Risk(Tnear) + Risk(0new) < Risk(0neqr) then
ToldParent < Parent(E7 Tnears T)

B+ E\ ((xoldParenh znear))
B E+ FEU ((xnew, xnear))

18 return F
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