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Abstract— Unmanned aircraft systems (UAS) are being used
more and more every day in almost any area to solve challeng-
ing real-life problems. Increased autonomy and advancements
in low-cost high-computing technologies made these compact
autonomous solutions accessible to any party with ease. How-
ever, this ease of use brings its own challenges that need
to be addressed. In an autonomous flight scenario over a
public space, an autonomous operation plan has to consider
the public safety and regulations as well as the task specific
objectives. In this work, we propose a generic utility function
for the path planning of UAS operations that includes the
benefits of accomplishing the goals as well as the safety risks
incurred along the flight trajectories, with the purpose of
making task-level decisions through the optimization of the
carefully constructed utility function for a given scenario. As
an optimizer, we benefited from a multi-tree variant of the
optimal T-RRT∗ (Multi-T-RRT∗) path planning algorithm. To
illustrate its operation, results of simulation of a UAS scenario
are presented.

I. INTRODUCTION

Recent advancements on the unmanned systems manifest

the potential of these technologies to impact our daily life.

In particular, the unmanned aircraft systems (UAS) become

ordinary for people in almost any area from aerial photogra-

phy to emergency responses, from agricultural services to

even autonomous deliveries. Easiness and affordability to

access these systems accelerated the innovations and the

novel ideas for the solution of diverse real-life problems.

Despite its benefits, however, this widespread availability

also resulted in the safety and regulatory concerns. In an

autonomous flight task over a public space, besides the

mission objectives, concerns regarding the public safety,

privacy, and the regulations have to be addressed during

the planning and considered in the decision-making process.

Therefore, there is a need for the multi-objective decision-

making capability in a path planning process that can also

quantify and compare the mission objectives and the risks

incurred by the mission.

Although plenty of studies have tackled the path planning

of the autonomous aircraft, just a few approaches to ad-

dress the concerns mentioned above. Various risk assessment
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frameworks have been introduced to quantify the risk of

UAS operations over the national airspace. Ancel et al. use

the probabilistic real-time component failure analysis in their

framework to assess the risk to the people on the ground in

[1]. Also, the operational risk of multiple UAVs in a partially

unknown environment is minimized by the multi-criteria path

optimization as the trade-off between the path-integral risk

measure and the distance in [2] using Gaussian process-

based stochastic environmental factors. On the other hand,

the majority of the studies attempts to solve the path planning

of UAS considering simple cost considerations such as total

distance or mechanical work but using computationally more

efficient algorithms. Despite its simplicity, one of the most

practiced and powerful algorithms among these is rapidly-

exploring random trees (RRT). RRTs are used in various

challenging planning tasks and achieved significant progress.

[3] utilizes the multi-tree variant of an optimal T-RRT∗ algo-

rithm for the task ordering and the pathfinding in continuous

cost space. Also, a minimum risk-based variant of an optimal

RRT∗ with a multi-criteria objective function is introduced in

[4] using user-defined primary and the secondary objective

functions.

In this study, we aimed to benefit from the concept of

utility to construct a generic function for the path planning

purpose such that the safety related concerns and the mission

objectives of the UAS operations can be expressed within the

same function and also, the optimization of such a function

can be used to make task-level decisions. Proposed utility

function quantifies the profits of the mission objectives and

the risks incurred along the mission as a path integral which

can be efficiently optimized by current RRT algorithms. For

the optimization of the utility along the trajectories, a slightly

modified multi-T-RRT∗ algorithm will be used.

This paper is organized as follows. In Section II, the

formulation of the path utility function and the node util-

ities is explained. Section III describes the multi-T-RRT∗

algorithm over the pseudo code. Simulation results and the

implementation details of the scenarios are given in IV, and

finally, the conclusions are drawn.

II. CONSTRUCTION OF THE UTILITY FUNCTION

A. Path Utility Function

Path utility is defined as the cumulative utility obtained

along the trajectory of a UAS mission and is formulated

with a path integral in (1).

U(τ0..T ) =

∫ T

0

P (Success|τ0..t)λU (τt|τ0..t) dt (1)



The path integral is composed of two key factors. The first

one is the success probability of the platform to reach the

current point τt along its planned trajectory τ0..t and the

other factor is the expected rate of reward/payoff, λU , at

the point given the current trajectory. In this integration, the

first term plays the role of a weighting factor for the utility

contributions of the point to the cumulative path utility based

on the likelihood that this point will actually be reached along

the trajectory. This weighting also implicitly states that if

the vehicle does not succeed to reach a point, either due to

a catastrophic failure or the termination of the mission, the

utilities of the rest of the trajectory should not be considered

in the path utility.

The success probability of the platform depends on numer-

ous factors in a real UAS scenario which can be analyzed

using many different approaches. In this work, we use a gen-

eral terminology of events that can happen on or around the

platform, and once happened, can impact the success of the

platform. We categorized these events as catastrophic events

and non-catastrophic events. In the case of a catastrophic

event, the platform undergoes an uncontrollable regime,

resulting in the termination of the mission with a potential

impact to the ground. In a non-catastrophic event, on the

other hand, the platform is assumed to be controllable and

can still continue its mission. While other events, such as

partially controllable failures can occur in the real world, and

can be integrated into the framework, we will here concen-

trate on only these two event types, resulting in the situation

where only the catastrophic events can impact the success

of the platform by causing its complete failure. Under this

assumption, the success probability of the platform to reach

the current trajectory point is equal to the probability of not

having encountered any catastrophic failures, Fc, until this

point. Using this fact, (1) becomes (2)

U(τ0..T ) =

∫ T

0

P (¬Fc|τ0..t)λU (τt|τ0..t) dt (2)

The reward rate λU represents the expected incremental

utility contribution of the events happening at trajectory

location τt, and can be defined for the two categories of

events considered here, which are events that can only

happen once or that can happen multiple times over the

trajectory. For the former category, the underlying reward

from an event can be obtained only at a given point and

on following occurrences to the same point, the same event

does no longer contribute to the path utility. This type of

events may model the utility of reaching an intermediate

goal location, or having a permanent component failure. The

reward rate, λU , for these one-time events can be expressed

as follows:

λU (τt|τ0..t) =
∑

i∈Events

P (¬ei|τ0..t)λei(τt|τ0..t)Ui(τt|τ0..t)wi

(3)

where τtei is the trajectory node at which the event ei
happens, and wi is the relative weighting factor of the

utility contribution of the ith event at the same node. It is

important to note here that for catastrophic events, the term

P (¬ei|τ0..t) moves out of the sum and becomes part of the

probability that the trajectory is still active, P (¬Fc|τ0..t), in

(2) since occurrence of a catastrophic event terminates any

future utility of any other event.

The reward rate for events that may happen multiple times

at a trajectory location are modeled with a rate parameter

of the event, defined in unit time, as below. Non-critical,

temporary platform or component failure events, as well as

general costs incurred along the trajectory can be modeled

by this approach.

λU (τt|τ0..t) =
∑

i∈Events

λei(τt|τ0..t)Ui(τt|τ0..t)wi (4)

where λei(τt|τ0..t) is the expected number of times per time

unit that event ei is happening at point τt given the trajectory.

In the case of events that are guaranteed to occur at a

particular point along the trajectory such as, for example, the

reaching of a delivery location or events caused directly by

control actions, the event rate, λei(τt|τ0..t), can be expressed

(with a slight abuse of notation) by a Dirac delta function

as λei(τt|τ0..t) = δ(τt − τtei |τ0..t). This allows the incor-

poration of mission goals associated with specific actions or

locations.

For a mission having a mixture of these events, the

expected reward rate term in (2) becomes the sum of (3)

and (4) with corresponding events.

With this approach we propose to facilitate a task-level

decision-making capability through the maximization of a

carefully constructed path utility function that includes pos-

sible task centric events and utility components such as

reaching a destination, accomplishing a task component,

violating safety or regulatory considerations, or failure of

the platform. According to the objectives of an assigned task

and the other considerations like ground safety, the proposed

utility approach allows to consider and generate solutions

other than purely completing the mission. An example for

this could be a ”stay on the ground” decision of a UAS,

which might yield the highest utility, for a package delivery

mission in adversarial weather conditions. With its bare

interpretation, in the proposed framework, the final decision

is to choose the highest utility path which can be extended

to highly complex scenarios with a detailed analysis of the

events that can happen during a UAS mission.

B. Calculation of Point Utilities

Rewards/Utility changes obtained at a specific point are

calculated according to the events happening on the platform

that affect the ground or the mission parameters. These

events are defined to capture the mission objectives and the

safety concerns. For an illustration, the event of taking aerial

pictures of an area at a trajectory point has an effect on

the mission and on the ground, which yields the utility of

that point. In this case, for example, taking pictures yields

a benefit in terms of obtaining the pictures but also incurs a

cost in terms of the potential invasion of privacy of persons

on the ground. Another example is that the event of a



catastrophic failure on the platform at a trajectory point has

also an impact on the ground in terms of potential injury and

property damage caused by the impact on the ground with

an associated utility.

Calculation of the node utility can be divided in two stages.

The first stage is to find the spatial distribution of the attain-

able utility at a location on the ground given the previous

trajectory and the point at which the event happened. In the

second stage, the utilities for ground locations are integrated

over the attainable area impacted by the event.

The first stage of the calculation is shown in (5). This term

is the spatial map of the utility for the given event.

Ui,τ,t(X ) = p(X|τ0..t, τtei )M(X|τ0..t, τtei ) (5)

Here X is the location on the ground, and Ui,τ,t(X ) =
Ui(X|τ0..t, τt = τtei ).

In the second stage of the point utility calculation, the

expected utility increment is computed by integration of the

location-dependent utilities on the ground weighed by the

probability distribution of the attainability of those locations

for an event, ei, happening at the current trajectory point, is

carried out over the attainable area Aei :

Ui(τt|τ0..t) =

∫
Aei

p(X|τ0..t, τtei )Ui,τ,t(X ) dX (6)

p(X|τ0..t, τtei ) here is the probability distribution of attain-

ability of the locations, X , on the ground for an event

happening at the current trajectory point, and it represents

the likelihood of obtaining the underlying utility at each

location. It is important to note here that the attainability of

a ground location concept is used in a wide sense here. For

some events such as catastrophic failures, it can be defined

as the impact probability at a location, or for the event of

taking aerial pictures of an area, it could be represented as

the success probability of covering a location on the ground

in the picture.

The steps for the construction of (5) and the integration of

(6) is described in more detail in [5] for the risk of exposure

of the ground to the failing UAS platform. In this previous

work it was assumed that the previous trajectory does not

affect the risk of the current point and the underlying risk

exposure distribution is static. Under this assumption, the

risk associated with the trajectory point where the failure

happened is given in the equation below:

RF (τt) =

∫
AF

p(Ximp|τt = τtF )PREM(Ximp) dXimp

(7)

where the first term in the integral is the UAS impact

location distribution on the ground given the trajectory node

of failure and PREM (Probabilistic Risk Exposure Map) is

the distribution of the risk of exposure on the ground.

The plot on the left in Fig 1 illustrates the PREM and

the UAS impact location on the ground. In the right plot, the

spatial distribution of the impact utility (risk) is sketched.

Note that the formulation of proposed utility function is

flexible enough to accommodate most commonly used cost

Fig. 1. Illustration of a failure event with PREM and impact distribution
(left) and the calculation of the risk of a point on the discritized failure area
(right)

functions in path planning such as distance traveled or total

time by treating them as an event happening every instance

of time and assigning an appropriate utility. To illustrate this,

time can be included using (4) by setting the first term (the

event rate) to 1 and the utility term to −1, which integrates

to the elapsed time along the trajectory as a negative utility

component. Similarly, for the distance traveled case, one can

assign the negative speed of the vehicle as the reward rate

at a point to account for total distance traveled in the utility

optimization of the path.

III. MULTI-T-RRT∗ PATH PLANNER

In our proposed utility based approach to the path and

task planning problem of UAS operations, we are using a

modified multi-tree variant of T-RRT∗ algorithms [3], [6], [7]

as an optimization technique to maximize the proposed path

utility function over the planned trajectories. The proposed

algorithm grows a forward tree and multiple backward trees

(one from each potential goal - i.e. allowed path end loca-

tion) by iteratively sampling from the configuration space.

The sampling uses the goal bias and transition test based

heuristics to drive the extension of trees faster to the goal

configurations and also to efficiently explore the high utility

regions first. The pseudo-code of the algorithm is given in

Algorithm 1. Provided with initial and goal configurations,

goal connection biases of the forward and backward trees,

and the connection threshold, the algorithm starts with initial-

izing the forward tree Tfw from the initial configuration xinit

and the backward trees Tbw from the goal configurations

Xgoal, setting the path parameters to the empty set. In an

iterative loop, first, the forward tree extends a branch towards

a random configuration chosen from the C space, with the

goal bias heuristic that samples also among Xgoal, if the

extension passes the transition test shown in Algorithm 2.

The transition test is a sample rejection heuristic which uses

an adaptive probabilistic measure to eliminate the samples

that require the extension of branches from low cost to high

cost (or low utility) regions. Details of the implementation

can be found in [3], [7]. If the test is passed, the extended

node and the edge are added to the tree with its accumulate

link utility. After that the near neighbor search function finds

the neighbor nodes around qnew within a distance as in the

RRT∗ algorithm [6]. The rewiring operation is performed

between the near neighbors, Qnear, and the extended node

qnew, and the tree is maintained.



Algorithm 1 Multi-T-RRT∗

Input: xinit,Xgoal, Pgoal, Pconnect, C, thrs
Output: Epath,Upath, σpath, Tfwd, Tbwd

Initialize(xinit,Xgoal, Tfw, Tbw, Epath,Upath, σpath)

1: for i = 1 to iterMax do

2: qrand ← ChooseTarget(Xgoal, Pgoal, C)
3: Tfw ← Extend&Rewire Fwd(qrand, Tfw)
4: [S,NIDs, TIDs]← ConnectTrees(Tfw, Tbw, thrs)
5: if S = True then

6: [E,U , σ]← CreatePath(NIDs, TIDs, Tfw, Tbw)
7: if U > Upath then

8: [Epath,Upath, σpath]← [E,U , σ]
9: end if

10: end if

11: Qrand ← ChooseTarget([xinit, qrand], Pconnect, C)
12: Tbw ← Extend&Rewire Bwd(Qrand, Tbw)
13: [S,NIDs, TIDs]← ConnectTrees(Tfw, Tbw, thrs)
14: if S = True then

15: [E,U , σ]← CreatePath(NIDs, TIDs, Tfw, Tbw)
16: if U > Upath then

17: [Epath,Upath, σpath]← [E,U , σ]
18: end if

19: end if

20: end for

21: return Epath,Upath, σpath, Tfw, Tbw

Algorithm 2 Extend&Rewire Fwd

Input: qrand, Tfw

Output: Tfwd

1: qnearest ← NearestNode(qrand, Tfw)
2: qnew ← steer(qrand, qnearest)
3: U(qnew)← NodeUtility(qnew)
4: if TransitionTest(Tfw,U(qnew),U(qnearest)) then

5: U(σnew)← PathUtility Fwd(qnew, σnearest)
6: addNode(Tfw, [qnew, qnearest],U(qnew),U(σnew))
7: Qnear ← NearNeighbors(Tfw, qnew)
8: Tfw ← Rewire Fwd(qnew, Qnear, Tfw)
9: end if

10: return Tfw

Algorithm 3 CreatePath

Input: NIDs, TIDs, Tfw, Tbw

Output: Epath,Upath, σpath

1: Tback ← IdentifyBackwardTree(TIDs, Tbw)
2: [E,U , σ]path ← biBackTrack(Tfw, Tback, NIDs)
3: return Epath,Upath, σpath

It should be noted here that some of the functions denoted

with Fwd or Bwd are designated specifically for the

forward or backward trees. The reason is that since the path

utility function developed in (2) depends on the trajectory

from root node τ0 to current node and the backward trees

have no information about the forward trajectory until they

are connected, the calculation and the accumulation of path

utilities are different for the forward and backward trees.

The ConnectTrees function checks the possible connec-

tions between the forward tree and the backward trees, and

if there are any, it returns with the IDs of the connected

nodes and their corresponding tree identifiers, and with a

boolean indicating the connection success. If the connection

is successful, a path is created by backtracking from the

connection nodes on the forward tree through the connected

backward tree. According to the calculated utility of the path

created, if it surpasses the best path found so far, the best

path and its utility are updated to the new one.

The extension, rewiring, and the connection check pro-

cesses are repeated for the backward trees individually in

the same iteration, except with a slightly changed path utility

calculation as mentioned above. If any higher utility path is

found during the extension of the backward trees, the best

path is again updated, and the whole iteration is repeated

until the termination condition (in this case a maximum

iteration count) is reached.

IV. SIMULATION RESULTS

For the demonstration of the proposed approach, we

construct the path utility function for a simple UAS package

delivery scenario where the events that can happen during

the mission are catastrophic failure events, delivering the

package to the designated location, landing on another ware-

house/station to leave the package there or to land/stay at the

take-off location. In this scenario, we model the catastrophic

events on the vehicle as Poisson processes having constant

failure rates using (4) and the other events as the single node

events using (3). Node utilities for the corresponding events

are presumed to depend only on the location of the current

node and the underlying utility rate is independent of time

or the previous trajectory. With these assumptions, the path

utility function becomes as follows:

U(τ0..T ) =

∫ T

0

e−λtλU (τt) dt (8)

One advantage of using Poisson process failure models

is their independent and stationary memoryless properties.

Although time is known for each node on the forward tree

during extension, time of the nodes on the backward trees

is relative to the unknown end time and it runs backward in

time. Using the independent and stationary increments of the

Poisson process, we can compute the relative increments of

the path utilities over the backward trajectories and compute

the complete path utility when connecting the forward to the

backward branch using a simple operation. This also allows

us to use rewiring operations efficiently on the backward

trees.



Path utility propagation for the backward tree is formu-

lated in (9). Trajectory nodes on a backward tree are given

as (τT , ..., τtk+1
, τtk , ...) starting from a goal node τT in

backward order.

U(τT..tk) =

∫ tk+1

tk

e−λ(t−tk)λU (τt)dt+ e−λ∆tkU(τT..tk+1
)

(9)

where ∆tk = tk+1 − tk is the time increment while

extending a backward branch. In this function, the integral

term assumes that time starts from node τtk and it computes

the incremental utility of the path segment (τtk , τtk+1
). The

second term in the function adds the cumulative incremental

utilities until the previous node τtk+1
by multiplying them

with the incremental success probability during this exten-

sion.

Using the above functions, total path utility calculation

when both trees are connected is given below.

U(τ0..T ) = U(τ0..t) + e−λtU(τT..t) (10)

Assuming both trees are connected at node τt, the first

term computes the path utility accumulated by the forward

tree extension until the connection, and the second term

propagates the time on the backward tree nodes by adding

the connection time t and the resulting utility accumulation

over the backward tree, discounted by the likelihood that the

connection point is reached.

A. Implementation Details

In this scenario, we selected a small region to demonstrate

the proposed concept. The region, shown in Fig 2, consists

of buildings around the roads. The mission is to deliver a

Fig. 2. UAS package delivery scenario map

package from a start location to a goal location with a highest

possible path utility. The mission objectives are to deliver the

package to the original destination with a minimum intrusion

(risk) to the properties, and if the utility of delivering to

this location is lower than the expected utility of the other

delivery locations, then, consider delivering to the other

locations, or do not take-off at all. These decisions are being

made according to the comparison between the utility values

of the mission objectives. The utilities are composed of the

benefits obtained by completing the mission objectives as

positive utility and the risk accumulated during the mission

as negative utility.

In this scenario, the other package drop locations are

shown on the map, and the utility of package delivery to

these locations are determined according to their distance to

the original drop location, where the numbers on the scenario

map indicate the closeness of these locations to the goal.

Point utility values of the mission objectives for all possible

drop locations are selected as 10 ·10−9, 4 ·10−9, 3 ·10−9 and

1 · 10−9, respectively. In addition, 0 utility value is assigned

to ”Do-Not-Fly” action which means no benefits obtained.

Note that in a real scenario, this might be a loss with a

negative utility.

The same scenario is simulated under two different cases.

First case represents the normal operating conditions with

average failure rates, whereas, the second case stands for the

condition with increased failure occurrences with the same

impact regions. The occurrence rates of the selected failure

events are given in Table I for both cases.

TABLE I

CATASTROPHIC FAILURE EVENT RATES

1/hr F1 F2 F3 F4

Case 1 0.001 0.05 0.01 0.05

Case 2 0.01 0.5 0.1 0.5

Impact locations of the selected failure events are modeled

using truncated Gaussian distributions such that 3σ standard

deviation of the normal distribution fit into the elliptical re-

gions, that define the impact domain of the event. Illustration

of the regions are depicted in Fig 3.

Fig. 3. Illustration of impact distributions of failure events on the ground

The aim is to show the effect of operating conditions on

the task-level decision and the path characteristics.

B. Scenario Results

Paths that are found during the optimization of the pro-

posed utility function are plotted over the risk exposure map

of the area in Fig 4 for the selected cases. In these plots, the



(a) Case I - Paths found are shown over PREM (b) Case II - Paths found are shown over PREM
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Fig. 4. Simulation results for 2 cases

solid red line is the final path maximizing the utility, while

the dashed blue lines are the other possible paths found with

lower utilities. Also, the utilities of all the paths connecting

to the possible goal locations are shown with respect to the

total length of the paths found.

From these figures, it is seen that the optimization of

the proposed utility function leads path searching to the

less risky areas successfully before the mission completion.

Intuitively, avoiding the narrow passages between buildings

and flying over wider roads, where we omitted the traffic

activity, would yield higher utilities when we consider the

impact damage to the properties. However, behavior of the

search can be affected by the conditions that UAS operates in

such as adverse weather conditions, varying vehicle mishap

characteristics and so on.

Simulation of normal operating conditions in the first

case shows that the expected utility of package delivery to

the original goal location is higher. By looking at the path

characteristics, it can be inferred that although the shorter

alternatives are present, the longer path avoiding the narrow

valleys until the final approach is found to be better in this

case. It is also important to note that constructed utility

function implicitly states that the longer the path is, the

higher chance to have a failure which decreases the final

utility of the objective. Therefore, the decision here takes

into account the duration of the path as well.

For the second case, increased failure rates pushes the

planner to look for alternatives, which yielded the third

location having the higher utility for package delivery among

other locations. However, the utility found is still less than

utility of ”Do-Not-Fly” action, shown in Fig 4(d). This means

that flying to deliver a package in a given operating condition

is actually less beneficial than staying on the ground. Hence,

the decision for the mission should be do-not-attempt for

delivery in this case.

It is noticed that the selection of utilities for the mission

objectives to construct a desired scenario is not a trivial

task and it also plays a crucial role on the path search and



the task-level decisions. For the construction of complex

and extensive mission scenarios, more detailed studies are

required to establish the relations between utility values and

the real-world mission objectives.

V. CONCLUSIONS

In this paper, we have proposed a generic multi-objective

utility function for the path planning of UAS operations that

can address the diverse mission objectives such as safety

risks, property damage and the benefits of the mission so that

the task-level decision can be made during an autonomous

mission by the optimization of the utility function. Proposed

concept is applied in a simple UAS package delivery scenario

using multi-T-RRT∗ algorithm, and the results are discussed.
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