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In this study we use latent class and distractor analysis, and qualitative analysis of cognitive
interviews, to investigate how student responses to conceptual items may reflect different patterns
of algebraic conceptual understanding and procedural fluency. Our analysis reveals three groups
of students, which we label “mostly random guessing”, “some procedural fluency with key
misconceptions”, and “procedural fluency with emergent conceptual understanding”. Student
responses revealed high rates of misconceptions that stem from misuse or misunderstanding of
procedures, whose prevalence correlates with higher levels of procedural fluency.
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Elementary algebra and other developmental courses have consistently been identified as
barriers to college persistence and degree progress (see e.g., Bailey, Jeong, & Cho, 2010). There is
evidence that students struggle in these courses because they do not understand fundamental
algebraic concepts (see e.g., Givvin, Stigler, & Thompson, 2011; Stigler, Givvin, & Thompson,
2010), and many research studies have documented the negative consequences of learning
algebraic procedures without any connection to the underlying concepts (see e.g., Hiebert &
Grouws, 2007). However, developmental mathematics classes currently focus heavily on recall
and procedural skills without integrating reasoning and sense-making (Goldrick-Rab, 2007;
Hammerman & Goldberg, 2003). This focus on procedural skills in isolation may increase the
probability that students use procedures inappropriately because they lack understanding of when
and why the procedures work (e.g., Givvin et al., 2011; Stigler et al., 2010). In this paper we
explore student responses to conceptual questions at the end of an elementary algebra course in
college. We combine quantitative analysis of responses (using latent class analysis and distractor
analysis) with qualitative analysis of cognitive interviews to better understand different typologies
of student reasoning around some basic concepts in algebra, and to better understand how
conceptual understanding and procedural fluency may relate to one another in this context.

Theoretical Framework
In this paper we use Fishbein’s (1994) typology of mathematics as a human activity as a
framework for analyzing student responses. Fishbein outlines three basic components of
mathematics as a human activity: 1) the formal component (which we call conceptual
understanding), which consists of axioms, definitions, theorems and proofs, which need to be



“invented or learned, organized, checked and used actively” by students; 2) the algorithmic
component (Which we call procedural fluency), which consists of skills used to solve mathematical
problems in specific contexts and stems from algorithmic practice; and 3) the intuition component,
which is an “apparently” self-evident mathematical statement that is accepted directly with the
feeling that no justification is necessary.

In this study we use the term conceptual understanding to denote both a formal understanding
of abstract concepts (e.g. axioms), but also of how, when, and why procedures can be used. This is
in contrast to procedural fluency in standard problem contexts, in which a student may be able to
quickly solve particular types of standard problems correctly but may not understand of how, why,
or when these methods work. Using these definitions, no question is wholly conceptual or
procedural, but falls on a spectrum. In this paper we explore how procedural skills and conceptual
understanding may relate to one another and how student justifications of answer choices may
exhibit intuition components (either correct or incorrect), as well as how these intuitions may relate
to both the processes of developing procedural fluency as well as conceptual understanding.

Methods

This study focuses on student responses to the multiple choice questions on the Elementary
Algebra Concept Inventory (EACI). For details on the development and validation of the EACI,
see (Wladis, Offenholley, Licwinko, Dawes, & Lee, 2018). Here we focus on 698 students who
took the inventory at the end of their elementary algebra class in 2016-2017 as well as 10 cognitive
interviews that were conducted towards the end of the semester with these students; these were
analyzed using grounded theory (Glaser & Strauss, 1967), although a full qualitative analysis is not
presented here due to space constraints. The distribution of interviewees among the three classes
was not significantly different from the whole quantitative sample. In this paper we used latent
class analysis (LCA) of the nine binary scored (right/wrong) multiple-choice items on the
inventory (e.g., Collins & Lanza, 2010).

Description of the classes
LCA revealed three distinct classes of students. Item response patterns, distractor analysis, and
qualitative coding of cognitive interviews were then used to interpret the classes, and evidence was
found among these different complementary approaches for these characterizations:

e C1(27%): Answers to most items are indistinguishable from random guessing, likely due
to low procedural/conceptual knowledge, low self-efficacy, and/or low motivation.

o (2 (28%): Some well-developed procedural skills but limited conceptual understanding.

e (3 (45%): Some well-developed procedural skills and emergent conceptual understanding.

Firstly, we consider the response patterns of students from each of the three classes. Student
responses in C1 do not vary much from what would be expected for random guessing on four-
option multiple choice items. C2 answers significantly worse than chance on questions 2 and 6
because of the presence of attractive distractors that likely tap into misconceptions related to the
misuse of procedures. C2 and C3 are distinguished by improved performance on the items overall
but different proportions of key misconceptions. Students who passed the class were most likely
to be in class 3, then class 2, and least likely to be in class 1. An end-of-course standardized
procedural test showed a similar outcome. To illustrate how different response patterns distinguish
these three classes, we performed a distractor analysis and analyzed cognitive interviews for two
exemplars: items 2 and 6, using the Bayes modal assignment to determine class membership.



Two example questions: illustrating different class response patterns
First we consider item 6, which shows an interesting pattern of responses:
6. A student is trying to simplify two different expressions:
i (xz y3)2
i, (x% +y3)2
Which one of the following steps could the student perform to correctly simplify each expression?
a. For both expressions, the student can distribute the exponent.
b. The student can distribute the exponent in the first expression, but not in the second.
c. The student can distribute the exponent in the second expression, but not in the first.
d. The student cannot distribute the exponent in either expression.
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Figure 1. Item 6 distractor analysis

The correct answer is b. C2 and C3 were strongly attracted to option a (see Figure 1), likely
because they have intuitions stemming from their experiences with procedures that use distributive
properties, but they do not recognize the critical differences between distributing multiplication
versus exponents—Ilikely because they have no deeper conceptual understanding of how the
distributive properties work. Selecting the correct answer is negatively correlated with scores on
the procedural exam—students who selected the incorrect option a scored on average 7.1
percentage points higher on the procedural exam (p < 0.000) than others. Looking at student
interview responses reinforces our interpretation of the three classes, and sheds light on how
intuitions developed from procedural practice may impede conceptual understanding.
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C1 (chose B): [The difference between the first and second equation] is that there's a plus right
there [pointing to the second equation]. I think for this one [pointing to the second equation],
you have to add and for this one [pointing to the first equation] you don't....

C3 (chose A): That’s how you kind of get rid of the parenthesis and get rid of the outer
exponents by distributing it in the inside. Whether it’s with another exponent or with a
number... You want to add or multiply that exponent [outside the parentheses] to the ones
inside the parentheses but I can’t remember whether you add or multiply...

Here the C1 student notices that there is a difference between the two equations and has an
intuition that it is important, but doesn’t actually know how to perform the distribution correctly.
In contrast, none of the C2 or C3 students interviewed was able to describe when or why it is
possible to distribute—they all cited different incorrect intuitions related to procedural methods.

Next we consider item 2, which reveals another interesting pattern of responses:

2. Consider the equation x + y = 10. Which of the following statements must be true?
a. There is only one possible solution to this equation, a single point on the line x + y = 10.
b. There are an infinite number of possible solutions, all points on the line x + y =10
c. This equation has no solution.
d. There are exactly two possible solutions to this equation: one for x and one for y.



For this question, the correct answer is b, (the most popular choice for students in classes 1 and
3) but no examinee in class 2 chose it (see Figure 2). They were strongly attracted to option d,
which was also the second most popular choice for students in other classes, although at a much
lower rate. Option d is a common response from students asked to solve a system of linear
equations for x and y, which may explain its popularity. Looking at student interview responses
reinforces our interpretation of the three classes, and sheds light on students’ reasoning.
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Figure 2. Item 2 distractor analysis

C1 (originally chose C, but drifted towards B in the interview): x + y equals nothing so it
can't be 10. Right?... It could be possible like it equals 10. [Option D isn’t correct] maybe
because x and y could be equal to anything?

C2 (chose D): I know there are certain numbers that will add up to ten, so there could be two
solutions, since there's only a x term and a y term...

C3 (chose B): Ten could equal to many things. Like five plus five could equal ten. Nine plus
one could equal ten. Seven plus three...it could be any number that will equal to ten.

The C1 student initially chose “no solution” because they didn’t know what x and y could be,
but then they started to relate this to the idea that x and y could be “anything”. While their
reasoning is not strictly correct, they are beginning to explore the idea that x and y may have many
possible values, and they show no evidence of faulty intuitions stemming from procedural practice.
The C2 student exhibits an intuition about what the equation means to find a single solution, but
they do not explore whether there might be others, and they confuse the number of solutions with
the number of variables in the solution set, suggesting that their intuitions about the definition of a
solution set are incorrect. The student from C3 describes how this equation could have multiple
solutions, demonstrating some conceptual understanding of solution sets, including the fact that
they describe the relationship between the two variables.

Discussion and Limitations

This study revealed that roughly one quarter of students at the end of the course appeared to
guess somewhat randomly on conceptual questions; however, cognitive interviews suggest that
these students are able to make some progress towards conceptual understanding by relying
initially on more naive reasoning and that they are not typically hindered by incorrect intuitions
stemming from misuse of procedures. About one quarter of students demonstrated some mastery
of procedures in standard problem contexts, but demonstrated many misconceptions related to
misuse of procedures on conceptual questions. In contrast, roughly half the class showed evidence
of emergent conceptual understanding, with lower frequency of misconceptions related to misuse
of procedures. For a number conceptual questions, particularly those that were more abstract or
non-standard, conceptual understanding and procedural fluency were significantly strongly
inversely related. Cognitive interviews revealed that this may happen when students develop
incorrect intuitions stemming from the use of procedures.
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