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Abstract18

We study the problem of maximizing a non-monotone submodular function subject to a cardinality19

constraint in the streaming model. Our main contributions are two single-pass (semi-)streaming20

algorithms that use Õ(k) · poly(1/ε) memory, where k is the size constraint. At the end of the21

stream, both our algorithms post-process their data structures using any offline algorithm for22

submodular maximization, and obtain a solution whose approximation guarantee is α
1+α

− ε, where23

α is the approximation of the offline algorithm. If we use an exact (exponential time) post-processing24

algorithm, this leads to 1
2 − ε approximation (which is nearly optimal). If we post-process with the25

algorithm of [5], that achieves the state-of-the-art offline approximation guarantee of α = 0.385, we26

obtain 0.2779-approximation in polynomial time, improving over the previously best polynomial-time27

approximation of 0.1715 due to [17]. One of our algorithms is combinatorial and enjoys fast update28

and overall running times. Our other algorithm is based on the multilinear extension, enjoys an29

improved space complexity, and can be made deterministic in some settings of interest.30
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6:2 Optimal Streaming Algorithms for Submodular Maximization

1 Introduction42

In this paper, we study the problem of maximizing a non-monotone submodular function43

subject to a cardinality (size) constraint in the streaming model. This problem captures44

problems of interest in a wide-range of domains, such as machine learning, data mining,45

combinatorial optimization, algorithmic game theory, social networks, and many others. A46

representative application is data summarization, where the goal is to select a small subset47

of the data that captures the salient features of the overall dataset [2]. One can model48

these problems as submodular maximization with a cardinality constraint: the submodular49

objective captures how informative the summary is, as well as other considerations such as50

how diverse the summary is, and the cardinality constraint ensures that the summary is51

small. Obtaining such a summary is very beneficial when working with massive data sets,52

that may not even fit into memory, since it makes it possible to analyze the data using53

algorithms that would be prohibitive to run on the entire dataset.54

There have been two main approaches to deal with the large size of modern data sets: the55

distributed computation approach partitions the data across many machines and uses local56

computation on the machines and communication across the machines in order to perform57

the analysis, and the streaming computation approach processes the data in a stream using58

only a small amount of memory and (ideally) only a single pass over the data. Classical59

algorithms for submodular maximization, such as the Greedy algorithm, are not suitable in60

these settings since they are centralized and require many passes over the data. Motivated61

by the applications as well as theoretical considerations, there has been a significant interest62

in studying submodular maximization problems both in the distributed and the streaming63

setting, leading to many new results and insights [22, 29, 2, 9, 11, 26, 4, 28, 3, 14, 27, 17, 31, 1].64

Despite this significant progress, several fundamental questions remain open both in the65

streaming and distributed setting. In the streaming setting, which is the main focus of this66

paper, submodular maximization is fairly well understood when the objective function is67

additionally monotone—i.e., we have f(A) ≤ f(B) whenever A ⊆ B. For example, the Greedy68

approach, which obtains an optimal (1− 1/e)-approximation in the centralized setting when69

the function is monotone [30], can be adapted to the streaming model [22, 2]. This yields the70

single-threshold Greedy algorithm: make a single pass over the data and select an item if its71

marginal gain exceeds a suitably chosen threshold. If the threshold is chosen to be 1
2

f(OPT)
k ,72

where f(OPT) is the value of the optimal solution and k is the cardinality constraint, then the73

single-threshold Greedy algorithm is guaranteed to achieve 1
2 -approximation. Although the74

value of the optimal solution is unknown, it can be estimated based on the largest singleton75

value even in the streaming setting [2]. Remarkably, this approximation guarantee is optimal76

in the streaming model even if we allow unbounded computational power: Feldman et al.77

[19] showed that any algorithm for monotone submodular maximization that achieves an78

approximation better than 1
2 requires Ω

(︁
n
k3

)︁
memory, where n is the length of the stream.79

Additionally, the single-threshold Greedy algorithm enjoys a fast update time of O(ε−1 log k)80

marginal value computations per item, and it uses O(ε−1k log k) space.81

In contrast, the general problem with a non-monotone objective has proved to be82

considerably more challenging. Even in the centralized setting, the Greedy algorithm83

fails to achieve any approximation guarantee when the objective is non-monotone. Thus,84

several approaches have been developed for handling non-monotone objectives in this setting,85

including local search [15, 24, 23], continuous optimization [18, 13, 5] and sampling [6, 16].86

The currently best approximation guarantee is 0.385 [5], and the strongest inapproximability87

is 0.491 [20], and it remains a long-standing open problem to settle the approximability of88
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submodular maximization subject to a cardinality constraint.89

Adapting the above techniques to the streaming setting is challenging, and the approx-90

imation guarantees are weaker. The main approach for non-monotone maximization in the91

streaming setting has been to extend the local search algorithm of Chakrabarti and Kale92

[9] from monotone to non-monotone objectives. This approach was employed in a sequence93

of works [11, 17, 27], leading to the currently best approximation of 1
3+2

√
2 ≈ 0.1715.1 This94

naturally leads to the following questions.95

What is the optimal approximation ratio achievable for submodular maximization in the96

streaming model? Is it possible to achieve 1
2 − ε approximation using an algorithm that97

uses only poly(k, 1/ε) space?98

Is there a good streaming algorithm for non-monotone functions based on the single-99

threshold Greedy algorithm that works so well for monotone functions?100

Can we exploit existing heuristics for the offline problem in the streaming setting?101

Our contributions. In this work, we give an affirmative answer to all of the above102

questions. Specifically, we give streaming algorithms2 that perform a single pass over the103

stream and output a set of size k · poly(1/ε) that can be post-processed using any offline104

algorithm for submodular maximization. The post-processing is itself quite straightforward:105

we simply run the offline algorithm on the output set to obtain a solution of size at most k.106

We show that, if the offline algorithm achieves α-approximation, then we obtain
(︂

α
1+α − ε

)︂
-107

approximation.108

Our main result implies that if we post-process using an exact (exponential time) algorithm,109

we obtain ( 1
2 − ε)-approximation. This matches the inapproximability result proven by [19]110

for the special case of a monotone function. Furthermore, we show that in the non-monotone111

case any streaming algorithm guaranteeing ( 1
2 + ε)-approximation for some positive constant112

ε must use in fact Ω(n) space.3 Thus, we essentially settle the approximability of the problem113

if exponential-time computation is allowed.114

The best (polynomial-time) approximation guarantee that is currently known in the115

offline setting is α = 0.385 [5]. If we post-process using this algorithm, we obtain 0.2779-116

approximation in polynomial time, improving over the previously best polynomial-time117

approximation of 0.1715 due to [17]. The offline algorithm of [5] is based on the multilinear118

extension, and thus is quite slow. One can obtain a more efficient overall algorithm by119

using the combinatorial random Greedy algorithm of [6] that achieves 1
e -approximation.120

Furthermore, any existing heuristic for the offline problem can be used for post-processing,121

exploiting their effectiveness beyond the worst case.122

Our techniques. The two streaming algorithms that we present enjoy the same approx-123

imation guarantee, but differ in other properties. Our first algorithm (StreamProcess)124

is a combinatorial algorithm that achieves very fast update time and overall running time.125

StreamProcess takes inspiration both from the single-threshold Greedy algorithm for126

monotone maximization and distributed algorithms that randomly partition the data [26, 4, 3]:127

it randomly partitions the elements into 1/ε parts as they arrive in the stream and runs128

1 Chekuri et al. [11] claimed an improved approximation ratio of 1
2+e − ε for a cardinality constraint, but

an error was later found in the proof of this improved ratio [10]. We defer the details to the full version.
2 Formally, our algorithms are semi-streaming algorithms, i.e., their space complexity is nearly linear in

k. Since this is unavoidable for algorithms designed to output an approximate solution (as opposed
to just estimating the value of the optimal solution), we ignore the difference between streaming and
semi-streaming algorithms in this paper and use the two terms interchangably.

3 This result is a simple adaptation of a result due to Buchbinder et al. [7]. For completeness, we include
the proof in the full version of the paper.
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6:4 Optimal Streaming Algorithms for Submodular Maximization

the single-threshold Greedy algorithm on each part; this process is repeated independently129

and in parallel O(ln(1/ε)/ε) times. Since the main engine behind our algorithm is the very130

efficient and practical single-threshold Greedy algorithm, our StreamProcess algorithm131

inherits its very efficient update time and practical potential. Compared to the optimal132

streaming algorithm for monotone maximization discussed above, our algorithm is quite133

similar: the monotone algorithm runs O(log k/ε) instances of single-threshold Greedy, each134

of which processes all n items; StreamProcess runs O(ln(1/ε)/ε2) ·O(log k/ε) instances135

of single-threshold Greedy, each of which processes O(ε · n) items with high probability.136

Our second algorithm (StreamProcessExtension) is based on the multilinear extension137

of the submodular function. This algorithm is similar to the single-threshold Greedy algorithm,138

but adds fractions of elements rather than whole elements to the solution it maintains. The139

extension based approach of this algorithm allows us to save on the space usage. Furthermore,140

when the multilinear extension can be evaluated deterministically, this approach leads to141

a deterministic algorithm. However, the time complexity of this approach depends on the142

complexity of evaluating the multilinear extension, which is quite high if we are only given143

value oracle access to f . Thus, given such restricted access, this approach leads to higher144

update and overall running time.145

We note that combining the single-threshold Greedy with randomization is difficult146

because it requires delicate care of the event that the single-threshold Greedy algorithm fills147

up the budget. In particular, this was the source of the subtle error mentioned above in one148

of the results of [11]. Our approach here for handling this issue is simple in retrospect. In149

our combinatorial algorithm, we consider two cases depending on the probability that the150

budget is filled up in a run (this is a good event since the resulting solution has good value).151

If this probability is sufficiently large (at least ε), we repeat the basic algorithm O(ln(1/ε)/ε)152

times to boost the probability of this good event to 1− ε. Otherwise, the probability that153

the budget is not filled up in a run is at least 1− ε, and conditioning on this event changes154

the probabilities by only a 1− ε factor.155

In our extension based algorithm, the decisions of the algorithm are based on the values156

taken by derivatives of the extension, which are values of expectations over appropriately157

chosen distributions. On the one hand, this allows our algorithm to include a random com-158

ponent, which is a component that appears (at least implicitly) in all of the known algorithms159

for non-monotone submodular maximization. On the other hand, since expectations have160

deterministic values, the algorithm we get is deterministic enough that it suffices for us to161

consider at each time only one of two possible cases: the case in which the budget fills up,162

and the case in which it does not.163

Paper structure. In Section 2, defines the notation that we use and presents some known164

lemmata. Section 3 presents and analyzes our combinatorial algorithm (StreamProcess).165

Finally, in Section 4, we present and analyze our extension based algorithm.166

2 Preliminaries167

Basic notation. Let V denote a finite ground set of size n := |V |. We occasionally assume168

without loss of generality that V = {1, 2, . . . , n}, and use, e.g., x = (x1, x2, . . . , xn) to denote169

a vector in RV . For two vectors x, y ∈ RV , we let x ∨ y and x ∧ y be the vectors such that170

(x ∨ y)e = max{xe, ye} and (x ∧ y)e = min{xe, ye} for all e ∈ V . For a set S ⊆ V , we let 1S171

denote the indicator vector of S, i.e., the vector that has 1 in every coordinate e ∈ S and 0172

in every coordinate e ∈ V \ S. Given an element e ∈ V , we use 1e as a shorthand for 1{e}.173

Furthermore, if S is a random subset of V , we use E[1S ] to denote the vector p such that174
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pe = Pr[e ∈ S] for all e ∈ V (i.e., the expectation is applied coordinate-wise).175

Submodular functions. In this paper, we consider the problem of maximizing a non-176

negative submodular function subject to a cardinality constraint. A set function f : 2V → R177

is submodular if f(A) + f(B) ≥ f(A ∩B) + f(A ∪B) for all subsets A, B ⊆ V .178

Continuous extensions. We make use of two standard continuous extensions of179

submodular functions. The first of these extensions is known as the multilinear extension. To180

define this extension, we first need to define the random set R(x). For every vector x ∈ [0, 1]V ,181

R(x) is defined as a random subset of V that includes every element e ∈ V with probability182

xe, independently. The multilinear extension F of f is now defined for every x ∈ [0, 1]V by183

F (x) = E
[︁
f
(︁
R(x)

)︁]︁
=
∑︂

A⊆V

f(A) · Pr[R(x) = A] =
∑︂

A⊆V

(︄
f(A) ·

∏︂
e∈A

xe ·
∏︂
e/∈A

(1− xe)
)︄

.184

185

One can observe from the definition that F is indeed a multilinear function of the coordinates186

of x, as suggested by its name. Thus, if we use the shorthand ∂eF (x) for the first partial187

derivative ∂F (x)
∂xe

of the multilinear extension F , then ∂eF (x) = F (x ∨ 1e)− F
(︁
x ∧ 1V \{e}

)︁
.188

In the analysis of our extension based algorithm, we need an upper bound on the possible189

increase in the value of F (x) when some of the indices of x are zeroed. Corollary 2 provides190

such an upper bound. It readily follows from the following known lemma by Buchbinder et191

al. [6].192

▶ Lemma 1 (Lemma 2.2 from [6]). Let f : 2V → R≥0 be a non-negative submodular function.193

Denote by A(p) a random subset of A ⊆ V where each element appears with probability at194

most p (not necessarily independently). Then, E[f(A(p))] ≥ (1− p) · f(∅).195

In the statement of Corollary 2, and in the rest of the paper, we denote by supp(x) the196

support of vector x, i.e., the set {e ∈ V | xe > 0}.197

▶ Corollary 2. Let f : 2V → R≥0 be a non-negative submodular function, let p be a number198

in the range [0, 1] and let x, y ∈ [0, 1]V be two vectors such that supp(x) ∩ supp(y) = ∅ and199

ye ≤ p for every e ∈ V . Then, the multilinear extension F of f obeys F (x+y) ≥ (1−p) ·F (x).200

The analyses of both our algorithms make use of the Lovász extension f̂ of f . The Lovász201

extension f̂ : [0, 1]V → R is defined as follows. For every x ∈ [0, 1]V , f̂(x) = Eθ∼[0,1][f({e ∈202

V : xe ≥ θ})], where we use the notation θ ∼ [0, 1] to denote a value chosen uniformly203

at random from the interval [0, 1]. The Lovász extension f̂ of a non-negative submodular204

function has the following properties: (1) convexity: cf̂(x) + (1− c)f̂(y) ≥ f̂(cx + (1− c)y)205

for all x, y ∈ [0, 1]V and all c ∈ [0, 1] [25]; (2) restricted scale invariance: f̂(cx) ≥ cf̂(x) for all206

x ∈ [0, 1]V and all c ∈ [0, 1]; (3) it lower bounds the multilinear extension, i.e., F (x) ≥ f̂(x)207

for every x ∈ [0, 1]V [32, Lemma A.4].208

3 Combinatorial Algorithm209

Our combinatorial streaming algorithm is shown in Algorithm 1. For simplicity, we describe210

the algorithm assuming the knowledge of an estimate of the value of the optimal solution,211

f(OPT). To remove this assumption, we use the standard technique introduced by [2]. The212

basic idea is to use the maximum singleton value v = maxe f({e}) as a k-approximation of213

f(OPT). Given this approximation, one can guess a 1 + ε approximation of f(OPT) from a214

set of O(log(k/α)/ε) values ranging from v to kv/α (α is the approximation guarantee of the215

offline algorithm OfflineAlg that we use in the post-processing step). The final streaming216

algorithm is simply O(log(k/α)/ε) copies of the basic algorithm running in parallel with217

ICALP 2020



6:6 Optimal Streaming Algorithms for Submodular Maximization

different guesses. As new elements appear in the stream, the value v = maxe f({e}) also218

increases over time and thus, existing copies of the basic algorithm with small guesses are219

dropped and new copies with higher guesses are added. An important observation is that220

when we introduce a new copy with a large guess, starting it from mid-stream has exactly221

the same outcome as if we started it from the beginning of the stream: all previous elements222

have marginal gain much smaller than the guess and smaller than the threshold so they223

would have been rejected anyway. We refer to [2] for the full details.224

▶ Theorem 3. There is a streaming algorithm StreamProcess for non-negative, non-225

monotone submodular maximization with the following properties (ε > 0 is any desired226

accuracy and it is given as input to the algorithm):227

The algorithm makes a single pass over the stream.228

The algorithm uses O
(︂

k log(k/α) log(1/ε)
ε3

)︂
space.229

The update time per item is O
(︂

log(k/α) log(1/ε)
ε2

)︂
marginal gain computations.230

At the end of the stream, we post-process the output of StreamProcess using any offline231

algorithm OfflineAlg for submodular maximization. The resulting solution is a α
1+α − ε232

approximation, where α is the approximation of OfflineAlg.233

Algorithm 1 Streaming algorithm for max|S|≤k f(S). PostProcess uses any offline
algorithm OfflineAlg with approximation α. Lines shown in blue are comments. The
algorithm does not store the sets Vi,j , they are defined for analysis purposes only.

1 StreamProcess(f, k, ε, κ)
2 r ← Θ(ln(1/ε)/ε)
3 m← 1/ε

4 Si,j ← ∅ for all i ∈ [r], j ∈ [m]
5 Vi,j ← ∅ for all i ∈ [r], j ∈ [m] // not stored, defined for analysis purposes only
6 for each arriving element e do
7 for i = 1 to r do
8 choose an index j ∈ [m] uniformly and independently at random
9 Vi,j ← Vi,j ∪ {e} // not stored, defined for analysis purposes only

10 if f(Si,j ∪ {e})− f(Si,j) ≥ κ and |Si,j | < k then
11 Si,j ← Si,j ∪ {e}

12 return {Si,j : i ∈ [r], j ∈ [m]}

13 PostProcess(f, k, ε)
14 κ← α

1+α ·
1
k · f(OPT) // threshold

15 {Si,j} ← StreamProcess(f, k, ε, κ)
16 if |Si,j | = k for some i and j then
17 return Si,j

18 else
19 U ←

⋃︁
i,j Si,j

20 T ← OfflineAlg(f, k, U)
21 return arg max {f(S1,1), f(T )}

In the remainder of this section, we analyze Algorithm 1 and show that it achieves a234

α
1+α − ε approximation, where α is the approximation guarantee of the offline algorithm235
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Algorithm 2 Single threshold Greedy algorithm. The algorithm processes the elements
in the order in which they arrive in the stream, and it uses the same threshold κ as
StreamProcess.

1 STGreedy(f, N, k, κ):
2 S ← ∅
3 for each e ∈ N in the stream order do
4 if f(S ∪ {e})− f(S) ≥ κ and |S| < k then
5 S ← S ∪ {e}

6 return S

OfflineAlg.236

We divide the analysis into two cases, depending on the probability of the event that a237

set Si,1 (for some i ∈ [r]) constructed by StreamProcess has size k. For every i ∈ [r], let238

Fi be the event that |Si,1| = k. Since each of the r repetitions (iterations of the for loop of239

StreamProcess) use independent randomness to partition V , the events F1, . . . ,Fr are240

independent. Additionally, the events F1, . . . ,Fr have the same probability. We divide the241

analysis into two cases, depending on whether Pr[F1] ≥ ε or Pr[F1] < ε. In the first case,242

since we are repeating r = Θ(ln(1/ε)/ε) times, the probability that there is a set Si,j of243

size k is at least 1− ε, and we obtain the desired approximation since f(Si,j) ≥ κ |Si,j | =244

κk = α
1+α f(OPT). In the second case, we have Pr

[︁
F1
]︁
≥ 1− ε and we argue that

⋃︁
i,j Si,j245

contains a good solution. We now give the formal argument for each of the cases.246

The case Pr[F1] ≥ ε247

As noted earlier, the events F1, . . . ,Fr are independent and have the same probability. Thus,248

Pr
[︁
F1 ∪ · · · ∪ Fr

]︁
≤ (1− ε)r ≤ exp(−εr) ≤ ε249

since r = Θ(ln(1/ε)/ε). Thus Pr[F1 ∪ · · · ∪ Fr] ≥ 1− ε.250

Conditioned on the event F1 ∪ · · · ∪ Fr, we obtain the desired approximation due to the251

following lemma. The lemma follows from the fact that the marginal gain of each selected252

element is at least κ.253

▶ Lemma 4. We have f (Si,j) ≥ κ |Si,j | for all i ∈ [r], j ∈ [m].254

We can combine the two facts and obtain the desired approximation as follows. Let S be the255

random variable equal to the solution returned by PostProcess. We have256

E[f(S)] ≥ E[f(S)|F1 ∪ · · · ∪ Fr] Pr[F1 ∪ · · · ∪ Fr] ≥ (1− ε)κk = (1− ε) α

1 + α
f(OPT)257

258

The case Pr[F1] < ε259

In this case, we show that the solution arg max {f(T ), f(S1,1)} returned on the last line of260

PostProcess has good value in expectation. Our analysis borrows ideas and techniques261

from the work of Barbosa et al. [3]: the probabilities pe defined below are analogous262

to the probabilities used in that work; the division of OPT into two sets based on these263

probabilities is analogous to the division employed in Section 7.3 in that work; Lemma 6264

shows a consistency property for the single threshold greedy algorithm that is analogous to265

the consistency property shown for the standard greedy algorithm and other algorithms by266

ICALP 2020



6:8 Optimal Streaming Algorithms for Submodular Maximization

Barbosa et al. Barbosa et al. use these concepts in a different context (specifically, monotone267

maximization in the distributed setting). When applied to our context—non-monotone268

maximization in the streaming setting—the framework of Barbosa et al. requires Ω(
√

nk)269

memory if used with a single pass (alternatively, they use Ω(min{k, 1/ε}) passes) and achieves270

worse approximation guarantees.271

Notation and definitions. For analysis purposes only, we make use of the Lovasz272

extension f̂ . We fix an optimal solution OPT ∈ arg max{f(A) : A ⊆ V, |A| ≤ k}. Let V(1/m)273

be the distribution of 1/m-samples of V , where a 1/m-sample of V includes each element of274

V independently at random with probability 1/m. Note that Vi,j ∼ V(1/m) for every i ∈ [r],275

j ∈ [m] (see StreamProcess). Additionally, for each i ∈ [r], Vi,1, . . . , Vi,m is a partition of276

V into 1/m-samples.277

For a subset N ⊆ V , we let STGreedy(N) be the output of the single threshold greedy278

algorithm when run as follows (see also Algorithm 2 for a formal description of the algorithm):279

the algorithm processes the elements of N in the order in which they arrive in the stream280

and it uses the same threshold κ as StreamProcess; starting with the empty solution and281

continuing until the size constraint of k is reached, the algorithm adds an element to the282

current solution if its marginal gain is above the threshold. Note that Si,j = STGreedy(Vi,j)283

for all i ∈ [r], j ∈ [m]. For analysis purposes only, we also consider STGreedy(N) for sets284

N that do not correspond to any set Vi,j .285

For each e ∈ V , we define286

pe =
{︄

PrX∼V(1/m) [e ∈ STGreedy(X ∪ {e})] if e ∈ OPT
0 otherwise

287

We partition OPT into two sets:288

O1 = {e ∈ OPT: pe ≥ ε} O2 = OPT \O1289

We also define the following subset of O2:290

O′
2 = {e ∈ O2 : e /∈ STGreedy (V1,1 ∪ {e})} .291

Note that (O1, O2) is a deterministic partition of OPT, whereas O′
2 is a random subset of292

O2. The role of the sets O1, O2, O′
2 will become clearer in the analysis. The intuition is that,293

using the repetition, we can ensure that each element of O1 ends up in the collected set294

U =
⋃︁

i,j Si,j with good probability: each iteration i ∈ [r] ensures that an element e ∈ O1 is295

in Si,1 ∪ · · · ∪ Si,m with probability pe ≥ ε and, since we repeat r = Θ(ln(1/ε)/ε) times, we296

will ensure that E[1O1∩U ] ≥ (1− ε)1O1 . We also have that E
[︁
1O′

2

]︁
≥ (1− ε)1O2 : an element297

e ∈ O2 \O′
2 ends up being picked by STGreedy when run on input V1,1∪{e}, which is a low298

probability event for the elements in O2; more precisely, the probability of this event is equal299

to pe (since V1,1 ∼ V(1/m)) and pe ≤ ε (since e ∈ O2). Thus E
[︁
1(O1∩U)∪O′

2

]︁
≥ (1− ε)1OPT ,300

which implies that the expected value of (O1 ∩ U) ∪O′
2 is at least (1− ε)f(OPT). However,301

whereas O1∩U is available in the post-processing phase, elements of O′
2 may not be available302

and they may account for most of the value of O2. The key insight is to show that S1,1303

makes up for the lost value from these elements.304

We start the analysis with two helper lemmas, which follow from standard arguments305

that have been used in previous works. The first of these lemmas follows from an argument306

based on the Lovasz extension and its properties.307

▶ Lemma 5. Let 0 ≤ u ≤ v ≤ 1. Let S ⊆ V \OPT and O ⊆ OPT be random sets such that308

E[1S ] ≤ u1V \OPT and E[1O] ≥ v1OPT. Then E[f(S ∪O)] ≥ (v − u)f(OPT).309
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The following lemma establishes a consistency property for the STGreedy algorithm,310

analogous to the consistency property shown and used by Barbosa et al. for algorithms such311

as the standard Greedy algorithm. The proof is also very similar to the proof shown by312

Barbosa et al.313

▶ Lemma 6. Conditioned on the event |S1,1| < k, we have STGreedy (V1,1 ∪O′
2) =314

STGreedy (V1,1) = S1,1.315

We now proceed with the main analysis. Recall that PostProcess runs the algorithm316

OfflineAlg on U to obtain a solution T , and returns the better of the two solutions S1,1317

and T . In the following lemma, we show that the value of this solution is proportional to318

f(S1,1 ∪ (O1 ∩ U)). Note that S1,1 ∪ (O1 ∩ U) may not be feasible, since we could have319

|S1,1| > |O2|, and hence the scaling based on |O2|
k .320

▶ Lemma 7. We have max {f(S1,1), f(T )} ≥ α

1+α
(︁

1− |O2|
k

)︁f(S1,1 ∪ (O1 ∩ U)).321

Proof. To simplify notation, we let S1 = S1,1. Let b = |O2|. First, we analyze f(T ). Let322

X ⊆ S1 be a random subset of S1 such that |X| ≤ b and E[1X ] = b
k 1S1 . We can select such323

a subset as follows: we first choose a permutation of S1 uniformly at random, and let X̃ be324

the first s := min {b, |S1|} elements in the permutation. For each element of X̃, we add it to325

X with probability p := |S1|b/(sk). For each e ∈ S1, we have326

Pr[e ∈ X] = Pr
[︁
e ∈ X|e ∈ X̃

]︁
Pr
[︁
e ∈ X̃

]︁
= p

s

|S1|
= b

k
327

For each e /∈ S1, we have Pr[e ∈ X] = 0. Thus E[1X ] = b
k 1S1 .328

Since X ∪ ((O1 ∩U) \S1) is a feasible solution contained in U and OfflineAlg achieves329

an α-approximation, we have330

f(T ) ≥ αf(X ∪ ((O1 ∩ U) \ S1))331

By taking expectation over X only (more precisely, the random sampling that we used to332

select X) and using that f̂ is a convex extension, we obtain:333

f(T ) ≥ αEX [f(X ∪ ((O1 ∩ U) \ S1))] = αEX

[︂
f̂
(︁
1X∪((O1∩U)\S1))]

)︁]︂
334

≥ αf̂
(︁
EX

[︁
1X∪((O1∩U)\S1)

]︁)︁
= αf̂

(︃
b

k
1S1 + 1(O1∩U)\S1

)︃
335

336

Next, we lower bound max {f(S1), f(T )} using a convex combination (1− θ)f(S1) + θf(T )337

with coefficient θ = 1/(1 + α
(︁
1− b

k

)︁
). Note that 1− θ = θα

(︁
1− b

k

)︁
. By taking this convex338

combination, using the previous inequality lower bounding f(T ), and the convexity and339

restricted scale invariance of f̂ , we obtain:340

max {f(S1), f(T )} ≥ (1− θ)f(S1) + θf(T ) = θα

(︃
1− b

k

)︃
f(S1) + θf(T )341

≥ θα

(︃
1− b

k

)︃
f̂ (1S1) + θαf̂

(︃
b

k
1S1 + 1(O1∩U)\S1

)︃
342

= θα

(︃
2− b

k

)︃(︄1− b
k

2− b
k

f̂ (1S1) + 1
2− b

k

f̂

(︃
b

k
1S1 + 1(O1∩U)\S1

)︃)︄
343

≥ θα

(︃
2− b

k

)︃
f̂

(︄
1− b

k

2− b
k

1S1 + 1
2− b

k

(︃
b

k
1S1 + 1(O1∩U)\S1

)︃)︄
344

= θα

(︃
2− b

k

)︃
f̂

(︄
1

2− b
k

1S1∪(O1∩U)

)︄
≥ α

1 + α
(︁
1− b

k

)︁f(S1 ∪ (O1 ∩ U)) ◀345

346
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(We note that we chose θ to make the coefficients of 1S1 and 1(O1∩U)\S1 equal, and this347

allowed us to relate the value of the final solution to f(S1 ∪ (O1 ∩ U)).)348

Next, we analyze the expected value of f(S1,1 ∪ (O1 ∩ U)). We do so in two steps: first349

we analyze the marginal gain of O′
2 on top of S1,1 and show that it is suitably small, and350

then we analyze f(S1,1 ∪ (O1 ∩ U) ∪O′
2) and show that its expected value is proportional to351

f(OPT). We use the notation f(A|B) to denote the marginal gain of A on top of B, i.e.,352

f(A|B) = f(A ∪B)− f(B).353

▶ Lemma 8. We have E[f (O′
2|S1,1)] ≤ κb + εf(OPT).354

Proof. As before, to simplify notation, we let S1 = S1,1 and V1 = V1,1. We break down the355

expectation using the law of total expectation as follows:356

E[f (O′
2|S1)] = E[f (O′

2|S1) | |S1| < k] · Pr[|S1| < k]⏞ ⏟⏟ ⏞
≤1

+E[f (O′
2|S1) | |S1| = k]⏞ ⏟⏟ ⏞
≤f(OPT)

·Pr[|S1| = k]⏞ ⏟⏟ ⏞
≤ε

357

≤ E[f (O′
2|S1) | |S1| < k] + εf(OPT)358

359

Above, we have used that f(O′
2|S1) ≤ f(O′

2) ≤ f(OPT), where the first inequality follows by360

submodularity. We have also used that Pr[|S1| = k] = Pr[F1] ≤ ε. Thus it only remains to361

show that E[f (O′
2|S1) | |S1| < k] ≤ κb.362

We condition on the event |S1| < k for the remainder of the proof. By Lemma 6, we have363

STGreedy(V1 ∪O′
2) = S1. Since |S1| < k, each element of O′

2 \ S1 was rejected because its364

marginal gain was below the threshold when it arrived in the stream. This, together with365

submodularity, implies that f (O′
2|S1) ≤ κ |O′

2| ≤ κb. ◀366

▶ Lemma 9. We have E[f(S1,1 ∪ (O1 ∩ U) ∪O′
2)] ≥ (1− 2ε)f(OPT).367

Proof. We apply Lemma 5 to the following sets:368

S = S1,1 \OPT369

O = (S1,1 ∩OPT) ∪ (O1 ∩ U) ∪O′
2370

371

We show below that E[1O] ≤ ε1V \OPT and E[1O] ≥ (1− ε)1OPT. Assuming these bounds,372

we can take u = ε and v = 1− ε in Lemma 5, which gives the desired result.373

Since S ⊆ S1,1 ⊆ V1,1 and V1,1 is a (1/m)-sample of V , we have E[1S ] ≤ 1
m 1V \OPT =374

ε1V \OPT. Thus it only remains to show that, for each e ∈ OPT, we have Pr[e ∈ O] ≥ 1− ε.375

Since (O1∩U)∪O′
2 ⊆ O, it suffices to show that Pr[e ∈ (O1 ∩ U) ∪O′

2] ≥ 1−ε, or equivalently376

that Pr[e ∈ (O1 \ U) ∪ (O2 \O′
2)] ≤ ε.377

Recall that (O1, O2) is a deterministic partition of OPT. Thus e belongs to exactly one378

of O1 and O2 and we consider each of these cases in turn.379

Suppose that e ∈ O1. A single iteration of the for loop of StreamProcess ensures380

that e is in Si,1 ∪ · · · ∪ Si,m with probability pe ≥ ε. Since we perform r = Θ(ln(1/ε)/ε)381

independent iterations, we have Pr[e /∈ U ] ≤ (1− ε)r ≤ exp(−εr) ≤ ε.382

Suppose that e ∈ O2. We have383

Pr[e ∈ O2 \O′
2] = Pr[e ∈ STGreedy (V1,1 ∪ {e})] = pe ≤ ε384

385

where the first equality follows from the definition of O′
2, the second equality follows from386

the definition of pe and the fact that V1,1 ∼ V(1/m), and the inequality follows from the387

definition of O2. ◀388
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Lemmas 8 and 9 immediately imply the following:389

▶ Lemma 10. We have E[f (S1,1 ∪ (O1 ∩ U))] ≥ (1− 3ε)f(OPT)− κb.390

Finally, Lemmas 7 and 10 give the approximation guarantee:391

▶ Lemma 11. We have E[max {f(S1,1), f(T )}] ≥
(︂

α
1+α − 3ε

)︂
f(OPT).392

4 Extension based algorithm393

Using our extension based algorithm, we prove the following theorem.394

▶ Theorem 12. Assume there exists an α-approximation offline algorithm OfflineAlg395

for maximizing a non-negative submodular function subject to cardinality constraint whose396

space complexity is nearly linear in the size of the ground set. Then, for every constant397

ε ∈ (0, 1], there exists an ( α
1+α − ε)-approximation semi-streaming algorithm for maximizing398

a non-negative submodular function subject to a cardinality constraint. The algorithm stores399

at most O(kε−2) elements.4400

In this section, we introduce a simplified version of the algorithm used to prove Theorem 12.401

This simplified version (given as Algorithm 3) captures our main new ideas, but makes two402

simplifying assumptions that can be avoided using standard techniques.403

The first assumption is that Algorithm 3 has access to an estimate τ of f(OPT) obeying404

(1− ε/8) · f(OPT) ≤ τ ≤ f(OPT). Such an estimate can be produced using well-known405

techniques, at the cost of a slight increase in the space complexity of the algorithm. In406

the full version of this paper we formally show that one such technique due to [21] can be407

used for that purpose, and that it increases the space complexity of the algorithm only408

by a factor of O(ε−1 log α−1).409

The second assumption is that Algorithm 3 has value oracle access to the multilinear410

extension F . If the time complexity of Algorithm 3 is not important, then this assumption411

is of no consequence since a value oracle query to F can be emulated using an exponential412

number of value oracle queries to f . However, the assumption becomes problematic when413

we would like to keep the time complexity of the algorithm polynomial and we only have414

value oracle access to f . Thus, we explain in the full version of this paper how to drop this415

assumption via sampling. Interestingly, the rounding step and this sampling technique416

are the only parts of the extension based algorithm that employ randomness. Since the417

rounding can be made deterministic given either exponential time or value oracle access418

to F , we get the following observation.419

▶ Observation 13. If OfflineAlg is deterministic, then the algorithm whose existence420

is guaranteed by Theorem 12 is also deterministic when it is allowed either exponential421

computation time or value oracle access to F .422

Algorithm 3 has two constant parameters p ∈ (0, 1) and c > 0 and maintains a fractional423

solution x ∈ [0, 1]V . This fractional solution starts empty, and the algorithm adds to it424

fractions of elements as they arrive. Specifically, when an element e arrives, the algorithm425

considers its marginal contribution with respect to the current fractional solution x. If this426

4 Formally, the number of elements stored by the algorithm also depends on log α−1. Since α is typically
a positive constant, or at least lower bounded by a positive constant, we omit this dependence from the
statement of the theorem.
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marginal contribution exceeds the threshold of cτ/k, then the algorithm tries to add to x a427

p-fraction of e, but might end up adding a smaller fraction of e if adding a full p-fraction of428

e to x will make x an infeasible solution, i.e., make ∥x∥1 > k (note that ∥x∥1 is the sum of429

the coordinates of x).430

After viewing all of the elements, Algorithm 3 uses the fractional solution x to generate431

two sets S1 and S2 that are feasible (integral) solutions. The set S1 is generated by rounding432

the fractional solution x. Two rounding procedures, named Pipage Rounding and Swap433

Rounding, were suggested for this task in the literature [8, 12]. Both procedures run in434

polynomial time and guarantee that the output set S1 of the rounding is always feasible,435

and that its expected value with respect to f is at least the value F (x) of the fractional436

solution x. The set S2 is generated by applying OfflineAlg to the support of the vector x,437

which produces a feasible solution that (approximately) maximizes f among all subsets of438

the support whose size is at most k. After computing the two feasible solutions S1 and S2,439

Algorithm 3 simply returns the better one of them.440

Algorithm 3 StreamProcessExtension (simplified) (p, c)

1 Let x← 1∅.
2 for each arriving element e do
3 if ∂eF (x) ≥ cτ

k then x← x + min{p, k − ∥x∥1} · 1e.
4 Round the vector x to yield a feasible solution S1 such that E[f(S1)] ≥ F (x).
5 Find another feasible solution S2 ⊆ supp(x) by running OfflineAlg with supp(x)

as the ground set.
6 return the better solution among S1 and S2.

Let us denote by x̂ the final value of the fractional solution x (i.e., its value when the441

stream ends). We begin the analysis of Algorithm 3 with the following useful observation.442

▶ Observation 14. If ∥x̂∥1 < k, then x̂e = p for every e ∈ supp(x̂). Otherwise (when443

∥x̂∥1 = k), this is still true for every element e ∈ supp(x̂) except for maybe a single element.444

Proof. For every element e added to the support of x by Algorithm 3, the algorithm sets xe445

to p unless this will make ∥x∥1 exceed k, in which case the algorithm set xe to be the value446

that will make ∥x∥1 equal to k. Thus, after a single coordinate of x is set to a value other447

than p (or the initial 0), ∥x∥1 becomes k and Algorithm 3 stops changing x. ◀448

Using the last observation we can now bound the space complexity of Algorithm 3, and449

show (in particular) that it is a semi-streaming algorithm for a constant p when the space450

complexity of OfflineAlg is nearly linear.451

▶ Observation 15. Algorithm 3 can be implemented so that it stores at most O(k/p) elements.452

Proof. To calculate the sets S1 and S2, Algorithm 3 needs access only to the elements453

of V that appear in the support of x. Thus, the number of elements it needs to store is454

O(| supp(x̂)|) = O(k/p), where the equality follows from Observation 14. ◀455

We now divert our attention to analyzing the approximation ratio of Algorithm 3. The456

first step in this analysis is lower bounding the value of F (x̂), which we do by considering457

two cases, one when ∥x̂∥1 = k, and the other when ∥x̂∥1 < k. The following lemma bounds458

the value of F (x̂) in the first of these cases. Intuitively, this lemma holds since supp(x̂)459

contains many elements, and each one of these elements must have increased the value of460
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F (x) significantly when added (otherwise, Algorithm 3 would not have added this element461

to the support of x).462

▶ Lemma 16. If ∥x̂∥1 = k, then F (x̂) ≥ cτ .463

Proof. Denote by e1, e2, . . . , eℓ the elements in the support of x̂, in the order of their arrival.464

Using this notation, the value of F (x̂) can be written as follows.465

F (x̂) = F (1∅) +
ℓ∑︂

i=1

(︂
F
(︁
x̂ ∧ 1{e1,e2,...,ei}

)︁
− F

(︁
x̂ ∧ 1{e1,e2,...,ei−1}

)︁)︂
466

= F (1∅) +
ℓ∑︂

i=1

(︂
x̂ei
· ∂ei

F
(︁
x̂ ∧ 1{e1,e2,...,ei−1}

)︁)︂
467

≥ F (1∅) + cτ

k
·

ℓ∑︂
i=1

x̂ei
= F (1∅) + cτ

k
· ∥x̂∥1 ≥ cτ ,468

469

where the second equality follows from the multilinearity of F , and the first inequality holds470

since Algorithm 3 selects an element ei only when ∂ei
F
(︁
x̂ ∧ 1{e1,e2,...,ei−1}

)︁
≥ cτ

k . The last471

inequality holds since f (and thus, also F ) is non-negative and ∥x̂∥1 = k by the assumption472

of the lemma. ◀473

Consider now the case in which ∥x̂∥1 < k. Recall that our objective is to lower bound474

F (x̂) in this case as well. Towards this goal, we bound the expression F (x̂ + 1OPT\supp(x̂))475

from below and above in the following two lemmata.476

▶ Lemma 17. If ∥x̂∥1 < k, then F
(︁
x̂ + 1OPT\supp(x̂)

)︁
≥ (1 − p) ·

[︁
p · f(OPT) + (1 − p) ·477

f
(︁
OPT \ supp(x̂)

)︁]︁
.478

Proof. Since ∥x̂∥1 < k, Observation 14 guarantees that x̂e = p for every e ∈ supp(x̂). Thus479

x̂ = p · 1OPT∩supp(x̂) + p · 1supp(x̂)\OPT, and therefore,480

F
(︁
x̂ + 1OPT\supp(x̂)

)︁
= F

(︁
p · 1OPT∩supp(x̂) + p · 1supp(x̂)\OPT + 1OPT\supp(x̂)

)︁
481

≥ (1− p) · F
(︁
p · 1OPT∩supp(x̂) + 1OPT\supp(x̂)

)︁
482

≥ (1− p) · f̂
(︁
p · 1OPT∩supp(x̂) + 1OPT\supp(x̂)

)︁
483

= (1− p) ·
[︂
p · f(OPT) + (1− p) · f

(︁
OPT \ supp(x̂)

)︁]︂
,484

485

where the first inequality follows from Corollary 2, the second inequality holds since the486

Lovász extension lower bounds the multilinear extension, and the last equality follows from487

the definition of the Lovász extension. ◀488

In the following lemma, and the rest of the section, we use the notation b = k−1 · |OPT \489

supp(x̂)|. Intuitively, the lemma holds since the fact that the elements of OPT \ supp(x̂)490

where not added to the support of x implies that their marginal contribution is small.491

▶ Lemma 18. If ∥x̂∥1 < k, then F
(︁
x̂ + 1OPT\supp(x̂)

)︁
≤ F (x̂) + bcτ .492

Proof. The elements in OPT\ supp(x̂) were rejected by Algorithm 3, which means that their493

marginal contribution with respect to the fractional solution x at the time of their arrival494

was smaller than cτ/k. Since the fractional solution x only increases during the execution of495

the algorithm, the submodularity of f guarantees that this is true also with respect to x̂.496

More formally, we get497

∂eF (x̂) <
cτ

k
∀ e ∈ OPT \ supp(x̂) .498
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Using the submodularity of f again, this implies499

F
(︁
x̂ + 1OPT\supp(x̂)

)︁
≤ F (x̂) +

∑︂
e∈OPT\supp(x̂)

∂eF (x̂) ≤ F (x̂) + |OPT \ supp(x̂)| · cτ

k
= F (x̂) + bcτ .◀500

Combining the last two lemmata immediately yields the promised lower bound on F (x̂).501

To understand the second inequality in the following corollary, recall that τ ≤ f(OPT).502

▶ Corollary 19. If ∥x̂∥1 < k, then F (x̂) ≥ (1−p) ·
[︂
p ·f(OPT)+(1−p) ·f

(︁
OPT\supp(x̂)

)︁]︂
−503

bcτ ≥ [p(1− p)− bc]τ + (1− p)2 · f
(︁
OPT \ supp(x̂)

)︁
.504

Our next step is to get a lower bound on the expected value of f(S2). One easy way505

to get such a lower bound is to observe that OPT ∩ supp(x̂) is a subset of the support506

of x̂ of size at most k, and thus, is a candidate to be OPT; which implies E[f(S2)] ≥507

α ·f(OPT∩supp(x̂)) since the algorithm OfflineAlg used to find S2 is an α-approximation508

algorithm. The following lemma proves a more involved lower bound by considering the509

vector (bx̂)∨ 1OPT∩supp(x̂) as a fractional candidate to be OPT (using the rounding methods510

discussed above it, it can be converted into an integral candidate of at least the same value).511

The proof of the lemma lower bounds the value of the vector (bx̂) ∨ 1OPT∩supp(x̂) using the512

concavity of the function F ((t · x̂) ∨ 1OPT∩supp(x̂)) as well as ideas used in the proofs of the513

previous claims.514

▶ Lemma 20. If ∥x̂∥1 < k, then E[f(S2)] ≥ αb(1− p− cb)τ + α(1− b) · f(OPT ∩ supp(x̂)).515

Proof. Consider the vector (bx̂) ∨ 1OPT∩supp(x̂). Clearly,516 ⃦⃦
(bx̂) ∨ 1OPT∩supp(x̂)

⃦⃦
1 ≤ b · ∥x̂∥1 +

⃦⃦
1OPT∩supp(x̂)

⃦⃦
1517

≤ |OPT \ supp(x̂)|+ |OPT ∩ supp(x̂)| = |OPT| ≤ k ,518
519

where the second inequality holds by the definition of b since ∥x̂∥1 < k. Thus, due to the520

existence of the rounding methods discussed in Section 4, there must exist a set S of size521

at most k obeying f(S) ≥ F ((bx̂) ∨ 1OPT∩supp(x̂)). Since S2 is produced by OfflineAlg,522

whose approximation ratio is α, this implies E[f(S2)] ≥ α · F ((bx̂) ∨ 1OPT∩supp(x̂)). Thus, to523

prove the lemma it suffices to show that F ((bx̂) ∨ 1OPT∩supp(x̂)) is always at least b(1− p−524

cb)τ + (1− b) · f(OPT ∩ supp(x̂)).525

The first step towards proving the last inequality is getting a lower bound on F (x̂ ∨526

1OPT∩supp(x̂)). Recall that we already showed in the proof of Lemma 18 that527

∂eF (x̂) <
cτ

k
∀ e ∈ OPT \ supp(x̂) .528

Thus, the submodularity of f implies529

F (x̂ ∨ 1OPT) ≤ F (x̂ ∨ 1OPT∩supp(x̂)) +
∑︂

e∈OPT\supp(x̂)

∂eF (x̂)530

≤ F (x̂ ∨ 1OPT∩supp(x̂)) + cτ · |OPT \ supp(x̂)|
k

= F (x̂ ∨ 1OPT∩supp(x̂)) + cbτ .531
532

Rearranging this inequality yields533

F (x̂ ∨ 1OPT∩supp(x̂)) ≥ F (x̂ ∨ 1OPT)− cbτ ≥ (1− p) · f(OPT)− cbτ ≥ (1− p− cb)τ ,534

where the second inequality holds by Corollary 2 since Observation 14 guarantees that every535

coordinate of x̂ is either 0 or p. This gives us the promised lower bound on F (x̂∨1OPT∩supp(x̂)).536
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We now note that the submodularity of f implies that F ((t · x̂) ∨ 1OPT∩supp(x̂)) is a537

concave function of t within the range [0, 1]. Since b is inside this range,538

F ((bx̂) ∨ 1OPT∩supp(x̂)) ≥ b · F (x̂ ∨ 1OPT∩supp(x̂)) + (1− b) · f(OPT ∩ supp(x̂))539

≥ b(1− p− cb)τ + (1− b) · f(OPT ∩ supp(x̂)) ,540
541

which completes the proof of the lemma. ◀542

Using the last two claims we can now obtain a lower bound on the value of the solution543

of Algorithm 3 in the case of ∥x̂∥1 < k which is a function of α, τ and p alone. We note544

that both the guarantees of Corollary 19 and Lemma 20 are lower bounds on the expected545

value of the output of the algorithm in this case since E[f(S1)] ≥ F (x̂). Thus, any convex546

combination of these guarantees is also such a lower bound, and the proof of the following547

corollary basically proves a lower bound for one such convex combination—for the specific548

value of c stated in the corollary.549

▶ Corollary 21. If ∥x̂∥1 < k and c is set to α(1−p)
α+1 , then E[max{f(S1), f(S2)}] ≥ (1−p)ατ

α+1 .550

Proof. The corollary follows immediately from the non-negativity of f when p = 1. Thus,551

we may assume p < 1 in the rest of the proof.552

By the definition of S1, E[f(S1)] ≥ F (x̂). Thus, by Corollary 19 and Lemma 20,553

E[max{f(S1), f(S2)}] ≥ max{E[f(S1)],E[f(S2)]}554

≥ max{[p(1− p)− bc]τ + (1− p)2 · f
(︁
OPT \ supp(x̂)

)︁
,555

αb(1− p− cb)τ + α(1− b) · f(OPT ∩ supp(x̂))}556

≥ α(1− b)
α(1− b) + (1− p)2 ·

[︁
[p(1− p)− bc]τ + (1− p)2 · f

(︁
OPT \ supp(x̂)

)︁]︁
557

+ (1− p)2

α(1− b) + (1− p)2 · [αb(1− p− cb)τ + α(1− b) · f(OPT ∩ supp(x̂))] .558

559

To keep the following calculations short, it will be useful to define q = 1− p and d = 1− b.560

Using this notation and the fact that the submodularity and non-negativity of f guarantee561

together f
(︁
OPT \ supp(x̂)

)︁
+ f

(︁
OPT ∩ supp(x̂)

)︁
≥ f(OPT) ≥ τ , the previous inequality562

implies563

E[max{f(S1), f(S2)}]
ατ

≥ (1− b)[p(1− p)− bc] + b(1− p)2(1− p− bc) + (1− b)(1− p)2

α(1− b) + (1− p)2564

= d[q(1− q)− (1− d)c] + q2(1− d)[q − (1− d)c] + dq2

αd + q2565

= d[q − (1− d)c] + q2(1− d)[q − (1− d)c]
αd + q2 = [d + q2(1− d)][q − (1− d)c]

αd + q2566

= q[d + q2(1− d)](dα + 1)
(α + 1)(dα + q2) = d2α + dαq2 − d2αq2 + d + q2 − dq2

dα + q2 · q

α + 1 , (1)567

568

where the fourth equality holds by plugging in the value we assume for c.569

The second fraction in the last expression is independent of the value of d, and the570

derivative of the first fraction in this expression as a function of d is571

(2dα + αq2 − 2dαq2 + 1− q2)[dα + q2]− α(d2α + dαq2 − d2αq2 + d + q2 − dq2)
[dα + q2]2572

= 1− q2

[dα + q2]2 · [q
2(1− α) + dα(dα + 2q2)] ,573

574
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which is always non-negative since both q and α are numbers between 0 and 1. Thus, we get575

that the minimal value of the expression (1) is obtained for d = 0 for any choice of q and α.576

Plugging this value into d yields577

E[max{f(S1), f(S2)}] ≥ qατ

α + 1 = (1− p)ατ

α + 1 . ◀578

Note that Lemma 16 and Corollary 21 prove the same lower bound on the expecta-579

tion E[max{f(S1), f(S2)}] when c is set to the value it is set to in Corollary 21 (because580

E[max{f(S1), f(S2)}] ≥ E[f(S1)] ≥ F (x̂)). Thus, we can summarize the results we have581

proved so far using the following proposition.582

▶ Proposition 22. Algorithm 3 is a semi-streaming algorithm storing O (k/p) elements.583

Moreover, for the value of the parameter c given in Corollary 21, the output set produced by584

this algorithm has an expected value of at least ατ(1−p)
α+1 .585

Using the last proposition, we can now prove the following theorem. As discussed at the586

beginning of the section, in the full version of this paper we explain how the assumption that587

τ is known can be dropped at the cost of increasing of a slight increase in the number of of588

elements stored by the algorithm, which yields Theorem 12.589

▶ Theorem 23. For every constant ε ∈ (0, 1], there exists a semi-streaming algorithm that590

assumes access to an estimate τ of f(OPT) obeying (1− ε/8) · f(OPT) ≤ τ ≤ f(OPT) and591

provides ( α
1+α − ε)-approximation for the problem of maximizing a non-negative submodular592

function subject to cardinality constraint. This algorithm stores at most O(kε−1) elements.593

Proof. Consider the algorithm obtained from Algorithm 3 by setting p = ε/2 and c as is set594

in Corollary 21. By Proposition 22, this algorithm stores only O(k/p) = O(kε−1) elements,595

and the expected value of its output set is at least596

ατ(1− p)
α + 1 ≥ α(1− ε/8)(1− ε/2)

α + 1 ·f(OPT) ≥ α(1− ε)
α + 1 ·f(OPT) ≥

(︃
α

α + 1 − ε

)︃
·f(OPT) ,597

where the first inequality holds since τ obeys, by assumption, τ ≥ (1− ε/8) · f(OPT). ◀598

Further discussion. Before concluding, let us discuss in more detail the value that599

should be assigned to the parameter p of Algorithm 3. In the proof of Theorem 23, we chose600

p to be very small. This makes sense whenever α is independent of p since the formula given601

by Proposition 22 for the guaranteed value of the output is non-increasing in p. However,602

for some choices of OfflineAlg the value of α might depend on p, and thus, it might be603

beneficial to choose a value for p which is not very small. To see why α might depend on604

p, note that the input passed to OfflineAlg by Algorithm 3 is of size at most ⌈k/p⌉ due605

to Observation 14; and therefore, the ratio between the size of the ground set and k in this606

input is roughly 1/p. Hence, α depends on p if the approximation ratio of OfflineAlg607

depends on the above ratio; which is the case, e.g., for one of the algorithms described in [6].608

As a corollary of the above discussion, we get that for some offline algorithms a smart choice609

of p can yield a better approximation guarantee than the one stated in Theorem 23. At the610

current point this corollary is not very useful since the state-of-the-art offline approximation611

algorithm has an approximation ratio which is independent of p; however, this might change612

in the future.613
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