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Conformational heterogeneity in human interphase
chromosome organization reconciles the FISH and
Hi-C paradox

Guang Shi® ' & D. Thirumalai?

Hi-C experiments are used to infer the contact probabilities between loci separated by
varying genome lengths. Contact probability should decrease as the spatial distance between
two loci increases. However, studies comparing Hi-C and FISH data show that in some cases
the distance between one pair of loci, with larger Hi-C readout, is paradoxically larger
compared to another pair with a smaller value of the contact probability. Here, we show that
the FISH-Hi-C paradox can be resolved using a theory based on a Generalized Rouse Model
for Chromosomes (GRMC). The FISH-Hi-C paradox arises because the cell population is
highly heterogeneous, which means that a given contact is present in only a fraction of cells.
Insights from the GRMC is used to construct a theory, without any adjustable parameters, to
extract the distribution of subpopulations from the FISH data, which quantitatively repro-
duces the Hi-C data. Our results show that heterogeneity is pervasive in genome organization
at all length scales, reflecting large cell-to-cell variations.
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hrough remarkable Hi-C experiments!=®, based on the

Chromosome Conformation Capture (3C) technique’,

indirect glimpses of how the genome in a number of
species is organized is starting to emerge. Because chromosome
lengths are extremely large, ranging from tens of million base
pairs in yeast to billion base pairs in human cells, they have to
fold into highly compact structures in order to be accommodated
in the cell nucleus. This requires that loci that are well separated
along the one-dimensional genome sequence be close in three-
dimensional (3D) space, which is made possible by forming a
large number of loops. The high-throughput Hi-C technique and
its variants are used to infer the probability of genome-wide
contact formation between loci. In order to determine the contact
probabilities between various loci in a genome, Hi-C experiments
are performed in an ensemble of millions of cells. The readouts of
the Hi-C experiment are contact frequencies between a large
number of loci from instantaneous snapshots of each cell, which
are then used to construct the contact maps (Hi-C maps). The
contact map is a matrix (2D representation) in which the ele-
ments represent the probability of contact between two loci that
are separated by a specified genomic distance. A high contact
count between two loci means that they interact with each other
more frequently compared with ones with low contact count.

A complementary and potentially a more direct way to
determine genome organization is to measure spatial distances
between loci using a low-throughput fluorescence in situ hybri-
dization (FISH) technique®®. In addition to providing 3D dis-
tances in fixed cells, recently developed CRISPR-dCas9 FISH can
be used to assay the dynamic behavior of loci in real time!0-12,
However, due to the current limitation of the number of distinct
color probes, this method provides distance distribution infor-
mation for only a small number of loci.

FISH and Hi-C, which are entirely different experimental
techniques, provide data on different aspects of genome organi-
zation. As noted in recent reviews!314, there are problems asso-
ciated with each method. It is difficult to reconcile Hi-C and FISH
data for the following reasons. In interpreting the Hi-C contact
map, one makes the intuitive assumption that loci with high
probability contact must also be spatially close. However, it has
been demonstrated using Hi-C and FISH data on the same
chromosome that high contact frequency does not always imply
proximity in space!®15-17 Tt should be noted that in most cases,
the Hi-C and FISH measurements agree very well®%18:19, How-
ever, from a purely theoretical perspective, even a single contra-
diction is intriguing if the experimental errors can be ruled out.
An outcome of our theory is that the discordance between FISH
and Hi-C data arises because of extensive heterogeneity, which is
embodied by the presence of a variety of conformations adopted
by chromosomes in each cell. There are a variety of reasons,
including differing fixation conditions and presence of two or
more subpopulation of cells in which the chromosomes are
present in distinct conformations, which could give rise to the
discordance between FISH and Hi-C data, as lucidly described
recently!314. Contact between two loci could be a rare event, not
present in all cells, which is captured in a Hi-C experiment by
performing an ensemble average. We show using a precisely
solvable model that due to the absence of a contact between two
specific loci in a number of cells, those with higher contact fre-
quency could be spatially farther on an average than two others
with lower contact frequency. In contrast, the probability of
contact formation using the FISH method can only be obtained if
the tail (small distance) of the distance distribution between locus
i and j can be accurately measured. For a variety of reasons,
including the size of the probe and the signal strength, this not
altogether straightforward using the FISH technique. Thus, in
order to combine the data from the two powerful techniques, it is

crucial to establish a theoretical basis with potential a practical
link, between the contact probability and average spatial distance.

Setting aside the conditions under which FISH and Hi-C are
performed (see recommendations for comparing the results from
the two techniques with minimum bias which are described
elsewhere!3) insights into the discordance between the two
methods, when they occur, can be obtained using polymer phy-
sics concepts. Recently, Fudenberg and Imakaev!® performed
polymer simulations using a strong attractive energy between two
labeled loci and a tenfold weaker interaction between two other
loci that are separated by a similar genomic distance. In addition,
they also reported simulations based on the loop extrusion model.
Both these types of simulations showed there could be dis-
cordance between FISH and Hi-C, which we refer to as the
FISH-Hi-C paradox. However, they did not provide any solution
to the paradox, which is the principal goal of this work.

In addition, recent single-cell Hi-C?%-22 and FISH
experiments$%18:19 have revealed that there are substantial cell-
to-cell variations on genome organization. However, how to
utilize the data reported in these experiments to enhance our
understanding of 3D genome structural heterogeneity has not
been unexplored. One approach is to create an appropriate
polymer model based on Hi-C and imaging data, which would
readily allow us to probe the structural variability using simula-
tions?3-2%, Indeed, it has been shown, using Hi-C and FISH data
as well as simulations?9, that if the conformation of the chromatin
fiber is taken to be homogeneous then trends observed in the
FISH data could not be predicted. However, using simulations
and including two levels of chromatin organization (open and
compact) qualitative trends observed in the FISH data could be
recovered?®.

Here, we first establish a relationship between the contact
probability and the mean spatial distance using an analytically
solvable Generalized Rouse Chromosome Model (GRMC), which
incorporates the presence of CTCF/cohein-mediated loops. The
GRMC may be thought of as an ideal chromosome model, very
much in the spirit of the Rouse model for polymers, in which
conceptual issues such as the origin of the FISH-Hi-C paradox
can be rigorously established. We first consider the solvable
homogeneous limit, in which contacts are present in all the cells.
In this case, precise numerical and analytical results show that
there is a simple relation between the contact probability, P, and
the ensemble mean 3D distance (R). However, the unavoidable
heterogeneity in the cell populations in Hi-C experiments results
in contacts between loci only in a fraction of cells. We first show
that a direct consequence of the heterogeneity in both GRMC
and chromosomes is that two loci (m and n) that have higher
probability (P,,,) of being in contact relative to another two loci
(k and ) does not imply a direct spatial correlation, a finding that
has already been qualitatively established in previous studies!'3!°.
In other words, the average spatial distance between m and n
((Ryuny) could be larger than (Ry;), the distance between loci k and
I, even if P,,,>Py. These results provide a basis for under-
standing the origin of the FISH-Hi-C paradox.

We develop a fully theoretical approach, which allows us to
provide quantitative insights into the extent of heterogeneity in
chromosome organization. From our theory, it follows that the
resolution of the FISH-Hi-C paradox requires invoking the
notion of heterogeneity, which implies multiple populations of
chromosomes coexist. By using the concepts that emerge from
the study of the GRMC, we demonstrate that the information of
cell subpopulations can be extracted by fitting the experimental
FISH data using our theory, thus allowing us to calculate the Hi-C
contact probabilities from the theoretically calculated cumulative
distribution function of spatial distance (CDF)—a quantity that
can be measured using FISH and super-resolution imaging
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methods. Our approach provides a theoretically based method to
combine the available FISH and Hi-C data to produce a more
refined characterization of the heterogeneous chromosome
organization than is possible by using data from just one of the
techniques. In other words, sparse data from both the experi-
mental methods can be simultaneously harnessed to predict the
3D organization of chromosomes.

Results

Relating contact probability to mean spatial distance. The exact
relationship between P,,,, (contact probability between mth and
nth locus) and the corresponding mean spatial distance, (R,,,,) for
GRMC (see the Methods section for details of the derivation) is,

21, 4 r,
p,,=erf < ————e "’ = Ry,((R,,,)). (1
=t i) o)1)
The inverse of Ry((R,.)), the solution to Eq. (1), gives the mean
spatial distance (R,,,,,) as a function of the contact probability P,,,,.
Note that m and » are arbitrary locations of any two loci, and
thus Eq. (1) is general for any pair of loci.

A couple of conclusions, relevant to the application to the
chromosomes, follow from Eq. (1). (i) Note that Eq. (1) is an
exact one-to-one relation between the mean distance (R,,,) and
the contact probability P,,, provided r. is known, and if the
contacts are present in all the cells, which is not the case in
experiments. For small P,,,, it is easy to show from Eq. (1) that
(R} ~ 1.P1/3 For the ideal GRMC, this implies that for any m,
n, k, I, if P,,,, < Py; then (R,,,,) > (Ry), a consequence anticipated
on intuitive grounds. (ii) If the value of the contact probability
P and the threshold distance r. are known precisely, then the
distribution of the spatial distance can be readily computed by
solving Eq. (1) numerically. In Fig. 1b, we show the comparison
between theory (Eq. (1)) and simulations (see the Methods
section for details). The simulated curves are computed as
follows: first collect (P, (R,un)) for every pair labeled (m, n),
where P,,, and (R,,,) are computed using Eqs. (17) and (18) in
the Methods section. The total number of pairs is N(N—1)/2. We
then bin the points over the values of P,,,. Finally, the mean value
of (R,,,,,) for each bin, (R) = E[(R,,,,)], is computed where E[--] is

N.

the binned average, which is computed using (1/N;) 2 (R,.V,
=1
where N; is the number of points in the ith bin. The bin size, A, is

centered at P,,, spanning P,,,—A/2<P,,, <P, + A/2. Using

this procedure, we find (Fig. 1) that the theory and simulations
are in perfect agreement, which validates the theoretical result.

Contact distance r. affects the inferred value of the spatial
distance. However, in practice, the elements P, are measured
with (unknown) statistical errors, and the value of the contact
threshold r. is only estimated. In the Hi-C experiments, contact
probabilities and r. by implication, are determined by a series of
steps that start with cross-linking spatially adjacent loci using
formaldehyde, chopping the chromatin into fragments using
restriction enzymes, ligating the fragments with biotin, followed
by sequence matching using deep-sequencing methods®. Because
of the inherent stochasticity associated with the overall Hi-C
scheme, as well as the unavoidable heterogeneity (only a fraction
of cells has a specific contact and the contact could be dynamic)
in the cell population, the relationship P,,, and (R,,,) is not
straightforward.

To illustrate how the uncertainty in r. affects the determination
of the spatial distance in GRMC even when the population is
homogeneous (all cells have a specific contact), we plot the
distributions of distance for r. =0.02, 0.03 um in Fig. 1c. A small
change in r, (from 0.02 to 0.03 um) completely alters the distance
distribution P(R), and hence the mean spatial distance (from =0.2
to =03 um). For the exactly solvable GRMC, this can be
explained by noting that (R,,,) = r.P;;}/3 for small P,,,,. Because
P, appears in the denominator, any uncertainty in r. is
amplified by P,,,, especially when P,,,, is small.

Heterogeneity causes paradox between FISH and Hi-C. The
expectation that the contact probability should decrease as the
mean distance between the loci increases, which is the case in
the exactly solvable ideal GRMC (P,,,,, 7Ry} ~3), is sometimes
violated when the experimental data® is analyzed!3!°. The
paradox is a consequence of heterogeneity due to the existence of
more than one population of cells, which implies that in some
fraction of cells, contact between two loci exists while in others it
is absent. Each distinct population has its own statistics. For
instance, the probability distribution of the spatial distance
between the mth and the nth loci, p;,,,(r), for one population of
cells could be different from another population of cells P;,,(r),
where i and j are the indices for the two different populations
(Fig. 2a). The Hi-C experiments yield only an average value of the
contact probability. Let us illustrate the consequence of the
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Fig. 1 Simulations demonstrate the power-law relation between contact probability and mean spatial distance and the effect of r. on the inferred spatial
distances. a A sketch of the Generalized Rouse Model for Chromosome (GRMC). Each bead represents a locus with a given resolution. Dashed lines
represent harmonic bonds between loop anchors. b Mean spatial distance (R) as a function of the contact probability P. The solid lines are obtained using
Eq. (1) for different values of r. (shown in the figure), the threshold distance for contact formation. The dots are simulation results. The agreement between
simulations and theory is excellent. Asymptotically (R) approaches r.P~"3 (dashed lines). The threshold for contact is expressed in terms of a, which is the
equilibrium bond length in Eq. (15). ¢ Illustration of the sensitivity of r. in determining the mean spatial distance (R). Blue and yellow curves are computed
by solving (R) (Eq. (1)) for a given contact probability P,,, =1073, and r.. The calculated (Rn,) is used in Eq. (10) to obtain the distribution of the spatial
distance P(R,.,). Blue and yellow curves are for the same value of P, but different r. values
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Fig. 2 lllustrating the FISH-Hi-C ([P, (Rmn)]) paradox. a Schematic
illustration of the populations of two cells. There are two pairs of loci, pair 1
and pair 2. Cells 1 and 2 belong to two distinct populations such that pair 1
and pair 2 have different distributions of distances in the two cells. Pair 1is
always in proximity (contact is formed) in cell 1, whereas it is spatially
separated (mean distance >r.) in cell 2. Pair 2, on the other hand, has
similar distributions of spatial distance in cells 1 and 2. Cell with two
different populations gives rise to paradoxical behavior, which is illustrated
by choosing ;= 0.4 and n, =1— ;= 0.6. These are the probabilities for a
cell belonging to population 1and 2, respectively. The pair 1 has parameters
01=0.3pm and o, = 0.8 pm. The pair 2 has parameters 6;= 0.4 pm and
0, = 0.5 um. See Eq. (2) for the definition of o7 and o,. b The distribution of
distance for pair 1 (thick blue) and pair 2 (thick orange), respectively. The
distributions for the two different populations are shown separately for
pair 1 (dashed lines) and pair 2 (dotted lines). ¢ Cumulative distribution of
the spatial distance. The horizontal dashed line indicates the median
distance. d Mean distances for pair 1is larger than for pair 2. e Pair 1 has
larger contact probability than 2, which is paradoxical since the distance
between the loci in pair 1is larger than in 2. The threshold for determining
contact is r. =20 nm

inevitable heterogeneous mixture of cell populations by con-
sidering the simplest case in which only two distinct populations,
one with probability # and the other 1 —#, are present (a gen-
eralization is presented below). For instance, in one population of
cells, there is a CTCF loop between m and n, and it is absent in

the other population. The probability distribution of spatial dis-
tance between the mth and the nth loci is a superposition of
distributions for each population. Using Eq. (10), the mixed
distribution can be written as,

3
T 01 ,mn 2,mn

2 r? *2,,52 r? *2052
P(R,, =1)= _(’7 e i+ (1—1) ¢ M,

(2)

where 0y ,,, and 0,,,, are the parameters with different values
characterizing the two populations. In the GRMC, 07 ., and 02
are related to the mean spatial distances in the two populations by
(Ry yun) = 2+/2/m0, , and (R, ) = 2+/2/70, ,,. The mean
spatial distance is, (Ry,) = #{R1mn) + (1 — 71){Rpmn)> and the
contact probability is P, = 7Py mn + (1 — 7)Psmn, Where Py .,
and P, ,,,, are the contact probabilities for each population, given
by Eq. (1), which depends on the values of (R ,,,,) and (R ) as
well as r..

If the values of (R ,,,) and (R, ,,,,,) are unknown (as is the case
in Hi-C experiments), and only the value of the contact
probability between the two loci is provided, one can not
uniquely determine the values of the mean spatial distances. This
is the origin of the Hi-C and FISH data paradox. In Fig. 2b-e, we
show an example of the paradox for a particular set of parameters
(1, O1mn> O2,mn)- Pair #1 has a larger contact probability than pair
#2, while also exhibiting a larger mean spatial distance. The
GRMC explains in simple terms the origin of the paradox.

To systematically explore the parameter space, we display (R,,,,)
and P,,, as heatmaps showing (R), ,,, versus (R),,, for different
values of # (Fig. 3). When there is a single homogenous population
(7 =0.0), the mean spatial distance (R,,,) and contact probability
P, depend only on the value of (R, ,,,) (upper panel in Fig. 3). In
this case, there is a precise one-to-one mapping between (R,,,,) and
P,... However, if %0 (1=0.3, lower panel in Fig. 3) then the
relation between P,,,, and (R,,,) is complicated. The contour lines
for P,,, cross the contour lines of (R,,,), which implies that for a
given value of P,,,, one cannot infer the value of (R,,,) without
knowing the value of #, (R; ), and (Ry,,). For instance, the
triangle and circle shown for #=0.3 in Fig. 3 demonstrate an
example of the paradox, in which (R(¥))(= 57a)>(R(e))(= 40a)
whereas P(¥)(=~ 7.7x 107*)>P(e)(= 3.9x 107%).

Extracting cell subpopulation information from FISH data.
Can we extract the information about subpopulations from
experimental data so that the result from two vastly different
techniques can be reconciled? To answer this question, we first
generalize our theory for the GRMC to real chromatins. The
generalization of Eq. (2) is,

P(Rmn = 7") = ﬂP(T’|<len>) + (1 - W)P(r|<R2$mn>)? (3)

where P(r|{R} ;) and P(r|[{R; ,.,)) are the Redner-des Cloizeaux
distribution of distances for polymers2”-28 (Supplementary Note 1
and Supplementary Fig. 1). The distribution P(r|(R,,,)) is rigor-
ously known for self-avoiding homopolymer in a good solvent,
generalized Rouse model (Eq. (10) in the Methods section), and a
semi-flexible polymer?%-30. However, a simple analytic expression
for chromosomes is not known. By assuming that the Redner-des
Cloizeaux form for P(r|(R,,,)) also holds for chromosomes (see
Supplementary Eq. (1) for details), we find that g=1 and § =5/4
in Supplementary Eq. (1). These parameters were previously
extracted using the experimental data®, and the Chromosome
Copolymer Model (CCM) for chromosomes?#. The value of g is
inferred from the scaling relationship between mean spatial dis-
tance (R) and contact probability P, P ~(R)3*+8. The value of ¢ is

4 NATURE COMMUNICATIONS | (2019)10:3894 | https://doi.org/10.1038/s41467-019-11897-0 | www.nature.com/naturecommunications



NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11897-0

ARTICLE

(R,a

(Romnl@

n=0.0

100
96
80 80
60 64
48

40
32
20 16

0 0
0 50 100

<H1, mn>/ a
n=0.3
100
96
80 80
IS
u:‘% 40 8 o
e 32
20 16
0 0
0 50 100
(Ry m/a

100 0.0
80 08
. -1.6
>\: 60 -24 n?:
E =
o
T 40 30 =
20 -4.0
-4.8
0
100 0.0
80 -0.8
o -1.6
= 607 24 %
£ =3
o
T 40+ 32 =2
20 4 -4.0
-4.8
0 T 1
0 50 100
(Ry, mpla

Fig. 3 Plots of mean distance (R,,,) and the contact probability P, as heatmaps computed using r. = 2a. The colorbars on the right show the values of
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panel. These loci pairs illustrate the [P, (Rmn)] paradox

computed as § =1/(1 — v). v is inferred from scaling (R(s)) ~s",
where s is the genomic distance.

The integral of Eq. (3) up to R, which is the cumulative
distribution function CDF(R), can be used to fit the FISH data.
Thus, the probability of contact formation can be computed as,
JocP(r|(R))dr, where r. is the contact threshold. Using the data in
ref. 6, the CDF(R) for two pairs of loci are shown in Fig. 4a. By
fitting the two experimentally measured curves to the theoretical
prediction (see Supplementary Note 2), we obtain #=0.42 for
peak4-loop and #=0.97 for peak3-control. The parameters
obtained can then be used to compute the contact probability.
Since the Hi-C experiments measure the number of contact
events instead of contact probability and the value of r. is
unknown, we compare the relative contact frequency, which is
computed as p;/(P), where p; is the contact probability computed
using the model or the contact number measured in Hi-C for the
ith pair and (P) is the mean value for all the pairs considered.
First, we fit all the eight CDF(R) curves in ref. ©. the excellent
agreement between theory and experiments is vividly illustrated
in Supplementary Fig. 2 and also manifested by the
Kolmogorov-Smirnov statistics (Supplementary Note 5 and
Supplementary Table 1). Second, we calculate their corresponding
relative contact frequency (Fig. 4b). Comparison of the theoretical
calculations with Hi-C measurements shows excellent agreement
(Fig. 4b) with the Pearson correlation coefficient being 0.87. The
contact probability is computed using r. = 10 nm. Note that any
value of 7. <10 nm gives similar results (Supplementary Fig. 3).
The goodness of fits using different sets of g and ¢ is summarized
in Supplementary Table 2. The set of g=0 and §=2 gives
equivalent good fits as the set of g=1 and §=5/4. It is also
important to note that fitting the FISH data with the assumption
that cell population is homogeneous leads to unphysical values of
g and 6 and the Kolmogorov-Smirnov statistics are inferior (see
Supplementary Note 4, Supplementary Fig. 5 and Supplementary
Table 3).

Interestingly, the values of (R;) obtained from fitting the
four CTCF/cohesin-mediated loops (peak(1, 2, 3, 4)-loop) are all

about 0.25—0.35 um (R peakiloop <0-24 UM, Ry peakc2-100p =0.33
UM, Ry peaks-loop =0.35 UM, R peaia-loop =0.30 um) regardless of
their genomic separation (see Supplementary Table 1), suggesting
that the mechanism of looping between CTCF motifs are similar
with a mean spatial distance =0.3 um. The physically reasonable
value of (R,,,) =0.3 vin for all peak-loop pairs shows that these
CTCF-mediated contacts describe molecular interactions between
loci that are separated by a few hundred kilo base pairs. It has
been shown that these contacts, referred to as peaks® are
significantly closer in space than others that are separated by
similar genomic distance. The peak-loop contacts correspond to
chromatin loops with the loci in the peaks being the anchor
points between a specific loop. In sharp contrast, the distances
between peaki and control (i goes from 1 to 4), which are greater
than the distances between peak loci, vary ranging from =0.47 to
~0.67 um (see Supplementary Table 1). It is likely that these
contacts are more dynamic because they are not be anchored by
CTCEF-binding proteins.

Massive heterogeneity in chromosome organization. In a recent
study!'®, which combined Hi-C and high-throughput optical
imaging to map contacts within single chromosomes in human
fibroblasts, revealed massive heterogeneity. Such extensive exis-
tence of a large number of conformations, leading to multiple or
nearly continuous distribution of subpopulations, was much
greater than previously anticipated. Although, the results in Fig. 4
quantitatively reveal heterogeneity associated with CTCF loops by
considering only two dominant subpopulations, the most recent
experiment requires a generalization of the theory. In principle,
our theory also applies to interactions of any nature, not only the
CTCF loops. In doing so, it may be more reasonable to assume a
continuous distribution of subpopulations, P((R)), (see Supple-
mentary Notes 6 and 7, and Supplementary Fig. 6 for general-
ization) instead of two discrete subpopulations, (R;) and (R,),
which of course is much simpler and may suffice in many cases as
the results in Fig. 4 illustrate. As a proof of concept of our theory,
we solve P((R)) for the eight pairs of contacts analyzed in the
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Fig. 4 Extracting statistics of subpopulations from FISH data. a Cumulative
distribution function of the spatial distance, CDF(R) for two pairs of loci,
labeled peak3-control and peak4-loop in ref. ©. The excellent agreement
between theory and experiments shows the usefulness of the relationship
between P,,, and R,,, obtained using GRMC. The solid curves are the
experiment data®. The dashed lines are the fits to ng(r)dr (the

needed expressions are in Eq. (3) and Supplementary Eq. (1)). The best
fit parameters are "peak3—control & 0.97, <R1,peak3—control> ~0.67 pm,
<R2,peak37control> ~4.08 KM, Mpeaka—loop = 0.42, <R‘\,peak4—loop> ~0.30 pm and
(R peaka—loop) = 1.21 um. b Relative contact frequency computed from the fits
of CDF(R) for eight pairs of loci investigate experimentally® (orange bars).
For each pair of loci, the contact probability is calculated as P,,, = [5P(r)dr
(Eg. (3)) using the parameters obtained by fitting CDF(R) with r. =20 nm.
Comparison of the CDF(R)s between theory and experiments for the eight
pairs of loci are displayed in Supplementary Fig. 2. Blue bars are computed
using the contact number from Hi-C measurements in ref. 6. The relative
contact frequency is calculated as p/(P), where p; is the contact probability
computed using the model or the contact number measured in Hi-C for ith
pair, and (P) is the mean value for all the pairs considered. p1-loop/p1-
control/... are the ones referred to peakl-loop/peaki-control/... in ref. ©

previous section. The results are shown in Supplementary Fig. 7.
In all cases, P((R))s are found to be multimodal. For peak1/2/3/4-
control and peak3-loop, P((R)) yield peaks located at positions
very close to (R;) and (R,) shown in Supplementary Table I,
justifying the effectiveness of the theory. To show that our theory
has a broader range of applicability, we use the FISH data from
the recent study!®, which reports spatial distance measurements
for 212 pairs of loci. P({R)) is solved for each of a total of 212
pairs of loci. To illustrate our results, we compare in Fig. 5 the
predicted CDF(r) and the experimentally measured CDF(r), as
well as the P((R)) obtained by fitting for six pairs of loci as
examples in Fig. 5. The results show substantial variations in (R),
manifested by the multiple peaks and wide spread variations in

P({R)). Remarkably, the calculated CDF(r) (without any adjus-
table parameters) and the measured CDF(r) are in excellent
agreement for the six loci pairs, which were arbitrarily chosen for
illustration purposes. The residual errors between the two, shown
as insets in Fig. 5, are extremely small.

In Fig. 6a, we show the normalized distributions P((R)/u((R)))
for each of the 212 pairs of loci (see Supplementary Fig. 8 for each
pair as a separate figure). We expect that P((R)/u({(R))) should be
narrowly distributed around value 1 if there is only one
population. However, many P((R)/u({R))) show multiple peaks
with large variations. To further quantify the extent of
heterogeneity, we calculate the coefficient of variation, CV=o¢
((R))/u((R)), where o((R)) and u((R)) are the standard deviation
and the mean of (R), respectively. If there is only one population
associated with (R), CV should have a value of around zero.
Figure 6b shows the histogram of CV for all 212 pairs of loci. The
CV values are widely distributed, suggesting that 3D structural
heterogeneity is common and is associated with many pairs of
loci rather than a few. Thus, the analyses of experimental data are
not possible without taking heterogeneity into account. The
theory presented here is sufficiently general and simple that it can
be used to calculate the measurable quantities readily.

The role of loop extrusion in chromosome heterogeneity. What
is the origin of heterogeneity in the individual cell populations?
There are two possibilities. The first one is static heterogeneity:
each subpopulation explores a distinct region of the genomic
folding landscape (GFL) (Fig. 7a). The second is the dynamic
heterogeneity. Each cell explores a local minimum of the GFL
before transiting to another local minimum (Fig. 7b). The only
assumption in the application of our theory to genome organi-
zation is that there must be more than one population of cells,
which does not violate the observation that the Hi-C experiment
report only the average contact probability over millions of cells.
Dynamic looping would be an example of the dynamic hetero-
geneity where the CTCF/cohein-mediated loops are formed and
broken dynamically on a fast time scale compared with the life-
time of a cell. Such a picture is supported by recent single-cell
molecule experiments31:32. The average residence time of CTCF/
cohesin complex is shown to be in the range of a few to tens of
minutes, which is much smaller compared with the time scale of
the cell cycle (15-30h). Loop extrusion model33-35 is another
possible origin of dynamic heterogeneity. In the loop extrusion
model, it is thought that cohesins extrude loops along the chro-
mosome fiber, which could detach stochastically. At any given
time, there would be many subpopulations, each characterized by
a distinct set of loops in the chromosome. Indeed, our analyses of
the most recent high-throughput optical imaging data lend cre-
dence to the notion that multiple subpopulations in chromo-
somes arise because of massive dynamic heterogeneity. Our
theory also gives an indirect theoretical justification for the work
in ref. 15, in which the authors found the loop extrusion model
could lead to the [P,,,, (R;,)] paradox.

Single-cell temporal information is necessary to determine
whether the loops are static or dynamic or a combination of the
two (Fig. 7c). Hence, the combination of the dynamic FISH
technique such as CRISPR-dCas9 FISH and single-cell Hi-C
would be crucial for us to fully understand the organization of
genomes. Our theory provides a theoretically rigorous method
based on polymer physics to connect the results from measure-
ments using the two vastly different techniques.

Discussion
From polymer physics for single chains it follows that in a
homogeneous system, the contact probability and mean 3D
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Fig. 5 Exampled fits of CDF(r) using Supplementary Eq. (9) to the experimental data'®. The six exampled pairs of loci are indicated above each subfigure.
Orange lines, showing the fits using our theory, are indistinguishable from the experiment (the differences between fitted and experimental curve are

shown in the insets). The distribution P((R)) given in the integral equation (Supplementary Eq. (9)) is solved using nonnegative Tikhonov Regularization
(Supplementary Note 7). As shown here, P((R)) have multi-peaks and are widespread, which is a manifestation of heterogeneity. We setg=1and 6 =5/4

distances are linked, resulting in a power-law relation connecting
the two quantities that can be measured using Hi-C and FISH
techniques. However, the one-to-one mapping does not hold in
Hi-C experiments because of the presence of a mixture of distinct
cell subpopulations each characterized by its own statistics leads
to heterogeneity, which in turn gives rise to the [P, (Ryn)]
paradox. We show that the theory based on precisely solvable
GRMC could be used to solve the paradox in practice. The theory
can be readily used to analyze data from experiments, provided
the FISH and Hi-C experiments are done under similar condi-
tions®. The central result of the theory in Eq. (3) can be used to
analyze the available sparse FISH data. We show that the fraction
of cell subpopulations (r in Eq. (3)) and the generalization
derived in Supplementary Note 6 can be extracted by fitting the

FISH data using our theory. From Eq. (3), we calculate the Hi-C
contact probabilities, thus establishing that the theory resolves the
[Pynn> (Rinn)] paradox.

In this work, we confine ourselves to two-point interactions,
which allows us to consider one pair of loci at a time. However,
recent experiments probing multipoint interactions have sug-
gested that formations of loops are likely to be cooperative®3°,
such that the formation of one loop could facilitate the formation
of a nearby loop. Such cooperative loop formation was previously
shown in an entirely different context involving the folding of
proteins directed by disulfide bond formation”. It can be shown
within our framework that the formation of one loop can certainly
increase the probability of formation of another loop. The theo-
retical basis for this finding is given in the Supplementary Note 8.
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Fig. 6 Chromosome conformations are extensively heterogeneous. a Normalized distribution P((R)/u({R))) (u((R)) is the mean of (R)) for all the 212 pairs
of loci reported in ref. 1. For almost every pair of loci, the associated P({R)/u((R))) has multiple peaks, and is widespread. b Histogram of the coefficient of
variations CV for all 212 pairs of loci probed in ref. 1. The CV values are calculated for each pair of loci, using CV = 6((R))/u((R)), where o((R)) is the
standard deviation of (R). For a large number of loci pairs, CV exceeds 0.5, which is a quantitative measure of the extensive heterogeneity noted in the

experiment!®

@A@/}Q SN

Fig. 7 Schematic of the Genomic Folding Landscape (GFL). a Static
heterogeneity: cell subpopulation occupies distinct local minima in the GFL,
with each minimum representing a stable organization. The energy barrier
is too large for transitions between different local minima on a biological
time scale (one cell cycle). b Dynamical heterogeneity: the energy barrier
between local minima on the landscape is small enough which allows the
dynamic transition between different subpopulations. ¢ Combination of two
different types of heterogeneity. In all three scenarios, the [P, (Rmn)]
paradox arises. The loci contacts are in orange. The polymer conformation
sketches are not shown in this scenario due to insufficient space

The reconciliation of the FISH and Hi-C data using polymer
physics concepts is the first key step in integrating the data from
these experimental techniques to construct the 3D structures of
chromosomes. The work described here provides a theoretical
basis for accomplishing this important task. Finally, our results
suggest that heterogeneity in contact formation is an intrinsic

property of genome organization, and hence the acquisition of
single-cell experimental data is crucial to further our under-
standing of both the dynamics and the heterogeneous structural
organization of chromosomes.

Methods
Generalized rouse model for chromosome. In order to derive an approximate
relationship connecting contact probabilities between loci and the three-
dimensional distances, we use a variant of the random loop model®%3, We first
consider a minimal cross-linked phantom chain model, which incorporates the
presence of CTCF/cohein-mediated loops®. The model, originally introduced for
describing physical gels3, and more recently used for chromosome dynamics in a
number of insightful studies?33%, could be viewed as a Generalized Rouse Chro-
mosome Model (GRMC)*041, The cross-links modeling the CTCF/cohein-medi-
ated loops here are not random. Their locations are predetermined by the Hi-C
data®.

The equation of motion for the GRMC is*?

drR
{ = AR+F, (4)

where £ is the friction coefficient, R = [ry, I3, ..., ry]T with r; being the position of
the ith locus. The vector F= [f}, £, ..., fy]T (T is the transpose), where f; is the
Gaussian random force acting on the ith locus, characterized by (f,(f)) =0 and
(Fua)fimp(t)) = 28kpT0,,,04p0(t — t'); A is the N x N connectivity matrix,
embedding the information of chain connectivity and the location of the loops
connecting two loci (Fig. 1a)

-2k — |2, |lw, ifm=nzlorN
—k— 2,0, ifm=n=1lorN
A =1 K, ifm—n|=1 (5)
w, if |m — n|>1, and connected in £
0, if otherwise

where X is the set of indices representing the loci pairs specifying the CTCF
facilitated loop anchors, and |Z,,| is the number of loops connected to the mth
locus. The spring constant x enforces chain connectivity, and w is the associated
spring constant for a CTCF pair. Note that the GRMC model does not account for
excluded volume interactions, which in the modeling of chromatin is often justified
by noting that topoisomerases enable chain crossing. Our purpose is to use GRMC
to first illustrate concretely the challenges in going from the measured average
contact map to spatial organization, precisely. More importantly, using the insights
from the study of the GRMC, we provide a solution to the FISH-Hi-C paradox.

Since A in Eq. (5) is a real symmetric matrix, it can be diagonalized using the
orthonormal matrix V

VAV = A = diag(Ag; Ar5 -, Ay_1), (6)

where Ay, ;, ..., Ay are the eigenvalues of A. By defining X = VR and using R=
VTX and VVT =1, we obtain the equations of motion of the normal coordinates X

E%Xt:AX+f. (7)

Because A is a diagonal matrix, the normal coordinates of the GRMC X, are
decoupled. Using the normal modes, X, the physical quantities associated with the
polymer can be readily calculated. Therefore, for GRMC with a predetermined set
of CTCF/cohein-mediated loops, we can solve for the eigenvalues of the
connectivity matrix A, and the orthonormal matrix V numerically, and thus
calculate the contact probability and spatial distance precisely.
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Relation between contact probability and mean spatial distance. The vector
between the positions of the mth and the nth loci may be written as

N-1

Rm - Rn = Z (me - Vpn)xpv (8)
p=0
where V,,,,, and V), are the elements of orthonormal matrix V. The equilibrium
solution of Eq. (7) yields, lim, ., X, ,(t) ~ N'(0, - 5T \where a=x, y, z, N is
P

Gaussian distribution. Therefore

P 2k T
[linolc Rmn.a(t) ~ N(O - Z (me - Vpn) ; ) = N(&"‘fnn.a)' (9)
p=0 14

N-1
where 0,0 = — 3 (Vp — Vpn)z(kBT/)tp). Since the model is isotropic, it fol-
p=0

lows that 02, , = of,m'y = 0},,, = 0%y, The mean distance (R,,) is related to 6,5,

through (R,,,) = 21/2/m0,,,. The distribution of the distance between the mth and

the nth loci, lim,_ . [R,,, ()| =lim,__ /> R2, () is a non-central chi dis-
a

tribution (we will neglect the notation lim,_, . from now on)

21 r
P(R,,=71) = \/;re /@) - (10)
mn

mn

The contact probability P,,,, for a given threshold r. (contact exists if r<r),
computed using Eq. (10) yields

[T 2.1 ,—1/(20%,) 1%
P, = ﬁ)(drﬁfe /G a?

mn mn

2

_t
= Erf(—=—) — \/ze 2y Lo
V20, " O

The mean spatial distance (R,,,) is given by

o 21 2 2 Tz 2
R ) — drry /2 o/ (207,) — 2\/:0 . 12
= [Cam ot 2, VT "

Using Egs. (11) and (12), the desired relation between P,,, and (R,,,) becomes

2r, O
P o—erf|l——Cc ) ——__¢ o &’ =R ((R . 13
i = €I <ﬁ<Rmn>> 7 (R e o((Ry)) (13)

Eq. (13) is identical with Eq. (1) in the main text.

mn>

Simulations. The energy function for the GRMC is

N-1
Uty ty) =3 U+ > Ufy o (14)
i=1

{p.a}
For the bonded stretch potential, U, we use

K 2
Uiszi(‘riﬂ_ri‘_“) ) (15)
where a is the equilibrium bond length. The interaction between the loop anchors
is also modeled using a harmonic potential

Ut w(|r —r

oy =5 (11 =1, =), (16)

where the spring constant is associated with the CTCF facilitated loops, and {p, g}
represents the indices of the loop anchors, which are taken from the Hi-C data®
(Supplementary Note 3). We simulate the chromosome segment from 146 to 158
Mbps of Chromosome 5. Each monomer represents 1200 bps, resulting the total
number of coarse-grained loci N = 10,000.

In order to accelerate conformational sampling, we perform Langevin
Dynamics simulations at low friction*>. We simulate each trajectory for 108 time
steps, and save the snapshots every 10,000 time steps. We generate ten independent
trajectories, which are sufficient to obtain reliable statistics (Supplementary Fig. 4).

Data analyses. The contact probability between the mth and nth loci in the
simulation is calculated using

1 MT

Pon = 7.2, 2 O = I () =5 (0, (17)
where ©(:) is the Heaviside step function, r, is the threshold distance for deter-
mining the contacts, the summation is over the snapshots along the trajectory, and
the total M number of independent trajectories, and T is the number of snapshots
for a single trajectory. The mean spatial distance between the ith and the jth loci in
the simulation is calculated using

1 M T

(R} = e D DI (1) = (1) (18)

a=1 t=1

The objective is to go from P,,, to (R,,), and to determine, if in doing so, we get
reasonable results. Because these quantities can be computed precisely in the
GRMC, the [P, (Run)] relationship can be tested, which allows us to obtain the
needed cues to solve the FISH-Hi-C paradox.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

All relevant data supporting the findings of this study are available within the article and
its Supplementary Information files or upon requests from the corresponding author.
The Hi-C and FISH experimental data used in this study are publicly available from GEO
database under accession number GSE63525 and from 4DN portal at https://
data.4dnucleome.org/publications/80007b23-7748-4492-9e49-c38400acbe60/. The
processed data are available upon request from the authors.

Code availability

The polymer simulations are performed using LAMMPS Molecular Dynamics Simulation
software*4, which is an open-source code available at http://lammps.sandia.gov. The codes
used to analyze data in the present study are deposited to Github repository https://github.
com/anyuzx/chromosome-heterogeneity-analysis.
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