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Abstract—We investigate scheduling algorithms for distributed
transactional memory systems where transactions residing at
nodes of a communication graph operate on shared, mobile
objects. A transaction requests the objects it needs, executes once
those objects have been assembled, and then sends the objects to
other waiting transactions. We study scheduling algorithms with
provable performance guarantees. Previously, only the offline
batch scheduling setting was considered in the literature where
transactions and the objects they access are known a priori.
Minimizing execution time, even for the offline batch scheduling,
is known to be NP-hard for arbitrary communication graphs.
In this paper, we analyze for the very first time scheduling
algorithms in the online dynamic scheduling setting where trans-
actions and the objects they access are not known a priori
and the transactions may arrive online over time. We provide
efficient and near-optimal execution time schedules for dynamic
scheduling in many specialized network architectures. The core
of our technique is a method to convert offline schedules to online.
We first describe a centralized scheduler which we then adapt
it to a purely distributed scheduler. To our knowledge, these are
the first attempts to obtain provably efficient online execution
schedules for distributed transactional memory.

Index Terms—Transactional memory, distributed systems, ex-
ecution time, data-flow model, dynamic scheduling

I. INTRODUCTION

Concurrent processes (threads) need to synchronize to avoid
introducing inconsistencies in shared data objects. Traditional
synchronization mechanisms such as locks and barriers have
well-known downsides, including deadlock, priority inversion,
reliance on programmer conventions, and vulnerability to
failure or delay. Transactional memory [16, 29] (TM) has
emerged as an alternative. Using TM, concurrent code is split
into transactions, blocks of code that appear to execute atom-
ically with respect to one another. Transactions are executed
speculatively: synchronization conflicts or failures may cause
an executing transaction to abort with its effects rolled back
and then the transaction is restarted. In the absence of conflicts
or failures, a transaction typically commits, causing its effects
to become visible to all threads.

TM has fundamentally changed the way programming is
done in multi-core computers both from theoretical and prac-
tical aspect and it is an active area of research in both academia
and industry [1]. Several commercial processors provide direct
hardware support for TM such as (Intel) Haswell [18], IBM)
Blue Gene/Q [15], (IBM) zEnterprise EC12 [25], and (IBM)
Power8 [6]. There are proposals for adapting TM to clusters
of GPUs [3, 12, 19]. TM is predicated to be widely used in
distributed systems, going beyond GPUs and clusters.

Here, we consider TM in distributed networked systems
which are widely available now-a-days and there is a growing
interest in implementing TM in them [3, 17, 23, 28, 30]. In
a distributed TM, there is an underlying network modeled as
a weighted graph G. Each transaction resides at a node of GG
and requires one or more shared objects for read or write.
Particularly, we consider a data-flow model of transaction
execution [17, 28], in which each transaction executes at a
node, but data objects are mobile and move to the nodes
(transactions) that need them. A transaction initially requests
the objects it needs, and executes only after it has assembled
them. When the transaction commits, it releases its objects,
possibly forwarding them to other waiting transactions.

Execution time is a fundamental metric for any computing
system. In a multi-core TM, execute time is primarily domi-
nated by the costs of handling data conflicts. In contrast, in a
distributed TM, execution time is dominated by the costs of
moving objects from one transaction to another. The goal of a
transaction scheduling algorithm (sometimes called contention
management) is to minimize delays caused by data conflicts
and data movement.

We consider a synchronous model where time is divided
into discrete steps [5]. At any time step, a node may perform
three actions: (1) it may receive objects from adjacent nodes,
(2) it executes any transaction that has assembled its required
objects, and (3) it may forward objects to adjacent nodes.
A transaction’s execution step models when it commits, i.e.,
that transaction may have started earlier, but may have been
blocked while assembling the objects it needed.

In this paper, we consider for the very first time to analyze
the online dynamic scheduling setting where transactions and
the objects accessed by them are not known a priori. In
addition, transactions may arrive online and continuously over
time. This departs significantly from the literature which stud-
ied and analyzed only the offline batch scheduling setting [4]
where all transactions were known at beginning of time.

We provide online algorithms to compute conflict-free ex-
ecution time schedules. Each node issues one transaction at
a time requesting to access one or more shared objects. Each
object is generated at some node and moves to the transactions
that request it. The objective is to minimize the total execution
time (makespan) until all transactions complete. The execution
schedule determines the time steps when each transaction
executes and commits. After a transaction commits, it forwards
its objects to the respective next requesting transactions in the
execution order that depend on these objects. Typically, an



object is sent along a shortest path, implying that the transfer
time depends on the distance in G between the sender and
receiver nodes. Hence, the execution time depends on both the
objects’ traversal times and inter-transaction dependencies.

It is known [5], through a reduction from vertex coloring,
that for batch problems determining the shortest execution time
in arbitrary communication graphs is NP-hard, and even hard
to approximate within a sub-linear factor of n, the number of
nodes in G. This hardness result also applies to online prob-
lems which are more general than batch problems. Therefore,
we study online scheduling algorithms from a widely-studied
notion of competitiveness — the ratio of total execution time
produced by a designed algorithm to the shortest execution
time achievable by any optimal offline algorithm. The goal is
to make the competitive ratio as small as possible (the best
possible is 1 which is hard to achieve).

Contributions. Since the online competitive ratio is hard to
approximate in arbitrary networks, we focus on various spe-
cific distributed computing architectures: Clique, Hypercube,
Butterfly, Grid, Line, Cluster, and Star. All these are popular
topologies for a variety of applications in multiprocessors,
networks-on-chip, rack-scale or cluster-scale distributed sys-
tems [11, 24, 26].

We consider scheduling problems where each node holds a
single transaction, and each transaction requests up to k arbi-
trary objects. The following upper bounds on the competitive
ratios assume that there is a centralized scheduler that decides
the execution schedule. These schedules can also be computed
by a decentralized scheduler which affects by a poly-log factor
overhead the competitive ratios.

o Cligue: in a clique (complete graph) of n nodes we give
an online schedule which is O(k) competitive.

o Hypercube, Butterly, Grids: in a hypercube with n nodes
we give an online schedule which is O(klogn) compet-
itive. Same bound holds also for the butterly and log n-
dimensional grids.

e Line: in a line graph of n nodes we give an online
schedule which is O(log®n) competitive. Note that for
the line graph the competitiveness does not depend on k.

e Cluster: we consider a cluster graph which consists
of cliques with 8 nodes each connected to each other
through bridge edges of weight v > (. We show
that there is a schedule which is O(min(kS, log" m) -
log® (ny))-competitive for some constant c.

« Star: in the star graph topology there is a central node that
connects to rays each consisting of 5 nodes. We obtain
a schedule which is O(log 8 - min(k 3, log” m) - log® n)
competitive, for some constant c.

Challenges and Techniques. We use two main techniques
to produce the dynamic schedules which are suitable for
different network topologies. The first is a direct approach
that is suitable to small diameter graphs, while the second is
an indirect approach that converts offline batch schedules to
online dynamic schedules.

The first technique is constructing online greedy schedules

which is based on continuously calculating a valid vertex
coloring on the (dynamic) dependency graph of the trans-
actions. Since the optimal chromatic number is hard to ap-
proximate in arbitrary graphs, this technique can be effective
in specialized network graphs which have low diameter. Our
competitive bounds on the clique, hypercube, butterfly, and
log n-dimensional grid are obtained from this technique.

The second technique is more general and it converts
arbitrary offline batch schedules to online dynamic schedules.
Thus, known batch scheduling results can be adapted to the
online setting. The impact to the approximation of the offline
schedule is a O(log®(n.D)) factor delay, where D is the graph
diameter. This is higher overhead than the direct method above
but the technique can be used to graphs with larger diameter.
With this approach the offline schedules by Busch e al. [4]
are converted to online schedules for the line, cluster, and star
topologies, which can be graphs with large diameter.

The conversion of offline to online is achieved by repeatedly
dividing the transactions into buckets, where each bucket can
be processed using a batch scheduler. When a transaction is
generated it is assigned to one of the buckets according to its
current dependencies and remains there until scheduled. The
buckets have different levels according to the scheduling time
for the batch problem of the transactions within. The bucket
B;, at level 4, corresponds to a batch problem that takes up
to 2¢ time steps to execute its transactions. The bucket B; is
processed periodically every 2°¢ time steps. In this way, the
periodically accumulated batch problems in the buckets are
scheduled sequentially producing an online schedule.

The main benefit of the buckets is that transactions with
small number of dependencies are able to make progress faster.
Namely, a transaction with small number of dependencies
with other transactions will be inserted in a lower level
bucket which is processed more frequently than higher level
buckets. In the analysis we show that if a batch scheduling
algorithm has approximation ratio b4 then the competitive
ratio of the online schedule is O(b4log®(nD)) competitive.
The O(log®(nD)) factor is a penalty for the bucket separation
that guarantees there is no interference between bucket levels.

When we present the basic bucket scheduling algorithm in
Section IV we assume for simplicity of presentation that it is
implemented by a central authority that has instant knowledge
about all the current transactions and objects. In Section V we
present a decentralized version of the bucket algorithm which
is based on a sparse cover decomposition of the graph that
gives a O(b 4 log”(n.D)) competitive schedule.

Related Work. The most closely related work to ours is due to
Busch er al. [4], where they provided efficient execution time
schedules for offline batch scheduling on the data-flow model
in specialized graphs likely to arise in practice: Clique, Line,
Grid, Cluster, Hypercube, Butterfly, and Star. The algorithms
presented were (near-)optimal. They also provided a non-
trivial lower bound on execution time, improving significantly
on the trivial TSP lower bound. However, the upper bound
techniques of Busch et al. [4] do not apply to dynamic schedul-



ing. In the lower bound, there is a scheduling problem on
the grid, with 2 objects per transaction, where every schedule
must have execution time Q(n'/%°/logn) factor away from
the optimal TSP tour length of any object. The same lower
bound holds also for trees. These lower bounds also hold for
the dynamic setting, since the batch problems are a special
execution scenario case.

In another work, Busch et al. [5] considered the problem
of minimizing both the execution time and communication
cost (the total distance travelled by all the objects in G)
simultaneously for transaction scheduling for distributed TMs
under the data-flow model. They showed that it is impos-
sible to simultaneously minimize execution time and com-
munication cost, that is, minimizing execution time implies
high communication cost (and vice-versa). They then pro-
vided efficient algorithms minimizing either execution time or
communication cost individually in arbitrary communication
graphs, where the result for execution time is sub-optimal
due to the known inapproximability of the problem. All these
results were established in the offline batch scheduling setting.
They also sketch an approach for dynamic scheduling based
on graph coloring, but that approach does not provide any
competitive ratio bounds for the execution time as we do here.

There have also been previous works [17, 28, 30] on the
data-flow model of distributed TMs which focused on mini-
mizing only the communication cost for scheduling problem
instances with only a single shared object. Kim and Ravin-
dran [20] provided communication cost bounds for special
workloads and problem instances with multiple shared objects.
The execution time minimization is considered by Zhang et
al. [30]. where they use TSP tours for object paths, which for
arbitrary graphs can lead to significantly sub-optimal results
according to the non-trivial lower bound in [4].

Several papers [3, 8, 23] presented techniques to implement
distributed TMs. However, they either use global lock, serial-
ization lease, or commit-time broadcasting technique which
may not scale well with the size of the network. Moreover,
several other papers studied distributed TMs employing repli-
cation and multi-versioning [21, 23].

Both offline batch and dynamic transaction scheduling
problems were widely studied in multi-core systems without
involving a communication network. Several scheduling algo-
rithms with provable upper and lower bounds, and impossibil-
ity results were given [2, 10, 13, 27].

Finally, Deng et al. [9] study the problem of parallel execu-
tion of dynamically generated data-dependent graphs modeled
as directed acyclic graphs (DAGs) with the same analytical
method of competitive ratio used in this paper. However, our
work is not directly comparable with [9] because of the funda-
mental differences in the respective system models considered.
Our paper considers concurrent transactions (atomic blocks)
based on a data-flow model where mobile copies of variables
are distributed to nodes in the network and transactions are
fixed to nodes, whereas [9] assumes a distributed memory
model and execution of DAGs on parallel computers with
no atomic blocks of operations on shared variables within

the DAGs. Other several differences are as follows: (i) the
dependency graphs in our paper are not restricted to DAGs,
i.e., the dependency graphs may be arbitrary; (ii) the depen-
dency graphs are not completely unknown in [9], whereas our
paper makes no such assumption on the dependency graphs,
i.e., they may be completely unknown and be of any kind
(tree or graph); (iii) [9] makes assumptions on whether the
number of processors are fixed or depend on the size of the
input DAG, and the algorithms they present depend on these
assumptions, whereas our paper makes no such assumption on
the number of processors and our results apply to any system
with any number of processors; (iv) [9] models communication
latency through a fixed parameter 7 representing average
communication latency between any two processors, whereas
our paper models communication latency through the shortest
path distances between processors, exhibiting different system
characteristics.

Roadmap. In Section II we give the model and preliminaries.
We give an online greedy algorithm in Section III. We present
the bucket algorithm in Section IV, and discuss its decentral-
ized version in Section V. We conclude in Section VI. Due to
space limitations some of the proofs have been omitted.

II. MODEL AND PRELIMINARIES

Consider a weighted graph G = (V, E, w), with nodes V,
edges E and an edge weight function w : E — Z*. Let D
be the diameter of the graph, which is the maximum length
of any shortest path between any pair of nodes. We consider
a synchronous communication model where all actions occur
at discrete time steps. For an edge e € F it takes w(e) time
steps to send a message between its nodes.

Transactions are generated continuously over time. We
assume that a transaction 7" is generated and resides in some
node of G and requests a set of objects O(T) for read or
write. Transaction 7" executes once it acquires all the objects in
O(T). For simplicity, we assume that the transaction executes
instantly at the time step that it gathered all the objects.
Thus, all delays in out model are due to communication. A
transaction is considered live until the time step it executes.

We assume that an object is created at some time step at
some node of G by a transaction. At any time ¢, an object
o; either has been acquired by some transaction (the object
resides at the node of the transaction), or the object o; is
in transit in the graph from one transaction to another. If a
transaction 7" acquired an object and then 7" finished execution,
then the object will remain at the node of 7" until some other
transaction requests it and the scheduler moves the object to
that transaction.

At any time ¢ the latest transaction of an object o;, denoted
L¢(0;), is the transaction T that holds the object o; at time
t, or if there is no such T (i.e. the object is in transit), it
is the last transaction that acquired (or generated) o; before
t. Let Ly(T) = U,,co(r) Lt(0i) denote the set of all last
transactions of the objects of transaction 7' at time t.



Let 7; denote the set of live transactions at time ¢. Let
L(T:) = Urer, Li(T) be the set of latest transactions for the
objects to be used by the transactions in 7.

In an online execution schedule S each transaction is
executed at some designated time step. Consider a transaction
T generated at time . Suppose that the transaction executes
at time ¢t > t in schedule S. The execution duration of T
in schedule S is the time difference t — t. Let t* denote the
optimal time duration it takes to execute all the transactions in
T:, given the execution times of the transactions in L(7z). The
competitive ratio for S at time ¢ is rg(t) = maxre7, ((t7 —
t)/t*). The competitive ratio for S is g = sup, rs(¢).

Definition 1 (Algorithm competitive ratio): For online
scheduling algorithm A, the competitive ratio r 4 is the max-
imum competitive ratio over all possible execution schedules
S that it produces, 74 = supgrg. (We also say that A is
r 4-competitive.)

In all of our scheduling algorithms the execution times
for the new transactions are not affecting the previously
scheduled transactions. With this feature we can still manage
to obtain good competitive competitive ratios. Such scheduling
algorithms can be appealing in practice because future events
are not affecting the currently scheduled transactions.

III. ONLINE GREEDY SCHEDULE

We describe a generic scheduling algorithm which can be
applied for arbitrary graphs. The algorithm is near optimal
for special but interesting cases of small diameter graphs.
The basic idea is to give a greedy coloring for the conflict
dependency graph H for the transactions, where colors will
be translated to execution times. The challenge is that the
dependency graph changes over time and the greedy schedule
is constrained by the transactions that have already been
scheduled. We start with some basic results on graph coloring.

A. Weighted Graph Coloring

Consider a weighted graph H = (V, Ey) with a weight
function w : Eg — Z7T on its edges. For each v € Vg
let N(v) denote the neighborhood of v which is the set of
adjacent nodes of v in H. The degree of v is A(v) = |N(v)].
The weighted degree of v denoted I'(v) = 3~ c n(,) w((u,v)),
is the sum of the weights of the edges adjacent to v in H.

A valid coloring of H is an assignment of integer values
(colors) to the nodes of H, ¢ : Vg — Z*, such that for any
two adjacent nodes their respective colors differ by at least the
weights of their edges. Namely, for any (u,v) € Epy,

le(u) — e(v)] = w((u,v)). (1)

A partial coloring of H is an assignment of colors to a
subset of its vertices. A partial coloring is valid, as long as
Equation 1 is satisfied for each pair of nodes that have received
a color. We continue with a result that assigns a valid color
to a node assuming that some other nodes may have already
received a color.

Lemma 1: Given an arbitrary valid coloring of a set V' C

Vi, any node v € Vi \ V/ can be assigned a valid color
c(v) < 2 (v) — A(v).

We can obtain an improved version of Lemma 1 for the
case were all edge weights are equal.

Lemma 2: If all edges have the same weight 3, and given an
arbitrary valid coloring of a set V/ C Vj, such that for each
u € V', ¢(u) = k,0, for some constant k, > 0, then each
node v € Vi \ V’, can be assigned a valid color ¢(v) such
that ¢(v) = k,, 3, for some constant k, > 1, and c¢(v) < I'(v).

B. Coloring-based Schedule

Let 7,7 C T; denote the newly generated transactions at time
t. In the greedy schedule, all the newly generated transactions
T get immediately assigned (at time ¢) a designated execution
time which remains unchanged thereafter. The challenge is to
schedule the newly generated transactions 7,7 based on the
existing schedules of the previously generated transactions.
Moreover, some objects might be in transit at time ¢ compli-
cating the scheduling. Below we describe how to resolve these
scheduling challenges by creating an appropriate dependency
graph for the transactions at time ¢. The dependency graph
will be then colored to provide the resulting schedules for the
transactions in 7;7.

a) Dependency Graphs: Attime t an object o; is either in
transit or it resides at the node of the latest transaction Ly (0;).
If the object o; is in transit then assume that at time ¢ it resides
at some node v;(0;) along a shortest path connecting L;(0;)
to the next node that requested o;. In case at time ¢ the object
0; is in transit along an edge (u, v) (already left u going to v),
then we will assume in the analysis that v;(0;) is an artificial
node with an edge connecting it to v with weight equal to
the time remaining to reach v. Assume also for the sake of
analysis that v;(0;) has a temporary transaction 7" that uses o;
and executes at time ¢.

Let Z:(o;) denote the current transaction that holds the
object at time ¢, which is either L;(0;) or the transaction
in v¢(0;). Denote by Zi(T) = U, co(r) Zt(0i) the set of
current transactions that hold the objects of T at time ¢. Let
2(T)) = Urer, Z(T).

Consider the live transactions 7; at time ¢. Two transactions
Ty, Ty € T; conflict it O(Ty) NO(T3) # 0. The conflict set of
a transaction T' € T at time ¢, denoted C(T), is the set of live
transactions in 7Ty that it conflicts with. The extended conflict
set of a transaction T at time ¢, denoted C[(T"), includes C;(T)
and all the current transactions of the objects in O(T"), namely,
Ci(T) = C(T) U Zu(T).

The dependency graph H; of transactions at time ¢, repre-
sents the conflicts of the transactions at time ¢. Each node in
H, corresponds to a live transaction, that is V(H;) = T;.
Each edge in H; corresponds to a conflict between two
transactions, such that (71,7%) € E(H:) if To € Cy(Ty)
(and symmetrically, 77 € Cy(T»)). The graph H, is actually
weighted, such that the weight of an edge represents the
distance between the respective transactions in G.

Let 7/ = T UZ(T;) denote the extended set of live transac-
tions at time ¢. We can define the extended dependency graph
H| with respect to the extended conflict sets of transactions.
The set of nodes in H are all the extended live transactions 7,



Algorithm 1: Online Greedy Schedule

1 foreach time step t do

2 Let 7;9 denote the transactions generated at time ¢;

3 Let Hj be the extended conflict graph of the transactions in 7, at
time t;

4 Transactions that have already been scheduled (7, \ 7;9 ) are
assumed to have a color in H, equal to their execution time
minus t;

5 Assign greedily a color ¢(T') to each transaction T € T2 by
repeatedly applying Lemma 1 to uncolored transactions of H;

6 Each transaction 7' € 7,7 is scheduled to execute at time ¢ 4 ¢(T');

at time ¢ namely, V (H/) = 7/, and set of edges in H] is such
that (T1,T>) € E(H]) if T, € C{(T1) (and symmetrically,
T, € Cé (Tg))

b) Greedy Scheduling: A valid coloring of a set of
transactions S C V(H;) (or S C V(H])) assigns a unique
positive integer (color) to each transaction in S such that any
two adjacent transactions in S receive colors which differ by at
least the weight of the incident edge that connects them in H;
(or H}). A valid coloring can translate to an execution schedule
such that the colors assigned to the transactions correspond to
the distinct time steps that transactions execute. Since at time
t some objects may be in transit, a coloring of H; is not
adequate to provide a realistic schedule without knowing the
current positions of the objects. For this reason, we consider
a valid coloring based on the extended dependency graph H;
which includes the current transactions for the objects that hold
the objects at time ¢, including the temporary transactions for
the objects that are in transit at time .

Algorithm 1 has the details of the greedy scheduling
algorithm. The main objective is to give a valid coloring
to all the newly generated transactions in 7,7 assuming the
existing schedules of the previously generated transactions and
the current positions of the objects. Since each transaction
in 7/ \ 77 has already been scheduled, it is assumed to
have a color equal to its scheduled execution time minus ¢
(the remaining time until execution of the transaction). As a
consequence, those transactions in 7; \ 77 that are executing
at time ¢ get color 0.

The algorithm applies repeatedly Lemma 1 on the extended
dependency graph H; to assign a color to each transaction of
T2 The color is then translated to an execution time by adding
the current time ¢. The objects move to the next scheduled
transactions that use them by following shortest paths in G.

We continue with an analysis of Algorithm 1. Let A}(T;)
and I'}(T;) denote the respective regular and weighted degree
of a transaction T; in extended dependency graph Hj.

Theorem 1 (Greedy online schedule): There is an execution

schedule such that each transaction 7; generated at time ¢
executes by time t + 2I'}(T;) — AL(T;).
Proof. Given an arbitrary valid coloring of the transactions in
T/\ T? in HJ, by repeatedly applying Lemma 1 to uncolored
transactions of H, we obtain a valid coloring of the newly
generated transactions 7,7 in H, such that each transaction
T; € T, can receive a color at most 2I',(T;) — AL(T5).

We can sort the transactions that request any specific object
according to their respective t4c where ¢ is the generation time
of the transaction and c is its respective color. An object will
move from node to node in ascending time order. According
to this schedule, each object in O(T;) will reach T; no later
than time ¢ + ¢, since the valid coloring gives enough time
for each object to be transferred to 7; by that time. Therefore,
a transaction 7; will execute by time no later than ¢t + ¢ <
t+ 20 (T) — AYT). O

In Algorithm 1 if we use Lemma 2 instead of Lemma 1, we
can obtain an improved result for the case where all edges in G
have the same weight 5. Here, we can execute the transactions
at time steps which are multiples of 5.

Theorem 2 (Schedule for uniform weights): If all the edges
of the graph G have the same weight, then there is an execution
schedule such that each transaction 7; generated at time ¢
executes by time t + I'}(T;).

Note that for each time step ¢, the sequential run time
complexity of Algorithm 1 is polynomial to the size of the
extended dependency graph H; at time t. Specifically, it is
O(n’ +m'logn') where n’ and m’ are the respective number
of nodes (transactions) and edges of H,. This is because it
applies Lemma 1 for each of the n’ nodes. Each node with k
neighbors in H] can be processed by first sorting the neighbors
according to their current colors (requires O(klogk) steps),
and then checks if the new color choices conflict with each
neighbor node (requires O(k) steps), which gives O(klog k)
steps in total per node. Since k < n’ and > oy (5 A(v) =
2m’, we get O(n’ +m'logn’) steps for processing all nodes.
However, according to the execution model in Section II, all
these sequential steps are subsumed within a single time step ¢
of the concurrent execution, since the network communication
delay is more detrimental to the overall execution time.

We continue to apply Algorithm 1 in several special case
graphs, such as the complete graph, hypercube and butterfly.

C. Complete Graph

a) Scheduling Problem: Consider a unweighted complete
graph (clique) G' with n nodes where every node is connected
to every other node with an edge of weight 1. Every node
holds one transaction. Each transaction requests an arbitrary
set of k objects. Once a transaction completes execution, the
node of the transaction issues in the next step a new transaction
requesting an arbitrary set of k objects. The process repeats.

b) Algorithm and Analysis: We use the greedy schedule
of Algorithm 1 (with Lemma 2 instead of Lemma 1). Consider
a transaction 7 that is generated at time ¢. From Theorem 2,
T can execute by time ¢+ I'}(7T"). Suppose that T uses objects
O(T) = o0i,,...,0;,. Suppose also that each object o;; is
used by [;; transactions in 7;'. Then, since the edge weight is
8 =1, the Weighted degree in the extended dependency graph
is TH(T) < ijl li; < klmax, where lax = max; [;;. Thus,
T will execute no later than ¢ + Kkl ax.

The transactions scheduled at time ¢ are not affected by
the transactions generated at later time. For the transactions



generated at time ¢, the execution time to execute all of them
is at least l;,ax, Since at least so many transactions at time ¢
request some object, and that object has to be transferred to
all of them. Therefore, we obtain the following result:

Theorem 3 (Complete graph): In the complete graph the
greedy online schedule has competitive ratio O(k).

D. Hypercube and Related Graphs

In a hypercube graph [22] with n nodes any pair of nodes is
connected with a path of length at most log n edges (logarithm
is base 2). Thus, the hypercube graph can be represented
as a complete graph with n nodes where the weight of any
edge ranges between 1 and logn. Assume for simplicity that
the weights in the complete graph are all set to the worst
case uniform value g = logn. If we apply Algorithm 1
and Theorem 2, we get that each transaction generated at
time T executes by time ¢ 4+ I';(T). Since the edge weight
is § = logn, for k distinct objects the weighted degree is
r(r<g Z?Zl li; < Bklmax, Where Iy = max; l;,. Thus,
T will execute no later than time ¢ + Sklyax. Since [y is a
lower bound on the execution time, we get that the resulting
execution schedule has competitive ratio O(8k) = O(klogn).

The same result applies to other networks where the maxi-
mum distance between nodes is bounded by 5 = O(logn), as
for example in butterfly networks [22] and log n-dimensional
grids [7].

Note that Theorem 2 is useful for getting upper bounds for
the worst case scenario, but Algorithm 1 with Theorem 1 can
give better execution schedule when used in practice.

E. Simple Centralized Online Scheduler

The online greedy schedules described above are obtained
assuming a central authority with instant knowledge about
the current positions of all the transactions and objects in
the system. However, in reality such a centralized authority
may not exist since transactions and objects are created in a
distributed manner independent of each other.

Since all the above graphs have small diameter, O(logn), a
simple remedy is to have a designated node in G to collect all
the information as new transactions are generated and objects
move. With this, each actual time step of the execution can be
simulated with O(logn) time steps which is enough time to
collect the information in the designated node and then decide
on the actions of the next step of the execution. Thus, all the
upper bounds on the execution schedule can be scaled with a
O(logn) factor, proportional to the graph diameter.

Later we will give a more elegant decentralized solution
in Section V with smaller dependence of the graph diameter.
Thus, that solution is more suitable for larger diameter graphs.
Since it involves a hierarchical decomposition of the graph,
that approach’s overhead to the overall schedule is more
significant by a higher order poly-log factor. Therefore, it does
not benefit significantly the low diameter graphs which we
considered in this section.

IV. ONLINE BUCKET SCHEDULE

We continue with an approach that converts offline schedul-
ing algorithms to online. Consider an arbitrary offline batch
scheduling algorithm A which can schedule any given set
of transactions in graph G. We will convert A to an online
algorithm using buckets of transactions. Before we describe
the actual conversion to online, we need to perform two simple
modifications to A on the way it operates to batch problems
which leave unaffected its asymptotic performance.

A. Basic Modifications

The first basic modification of Algorithm A is to allow
it to operate even if some of the batch transactions under
consideration have already been scheduled. This can be easily
achieved by computing an execution schedule for the currently
unscheduled transactions with algorithm .4 which is appended
at the end of the schedule of the already scheduled trans-
actions. This does not alter the execution times of already
scheduled transactions. In the worst-case the execution time of
all the transactions doubles, leaving unaffected the asymptotic
performance of A.

For any set of transactions X, where some transactions in
X may have already a determined schedule, let F'4(X) denote
the time to execute all the transactions X using algorithm A.

In the second basic transformation of A we will require that
it has the following suffix property for batch execution sched-
ules: for any set of transactions X the execution schedule S by
A is such that every suffix S’ with respective transactions X’
execute in time F4(X’) assuming that the initial positions of
the objects when S’ starts are those from the last transactions
executed in the prefix of S before 5.

If a batch schedule S does not satisfy the suffix property,
then it can be easily modified to satisfy the suffix property
by repeatedly applying algorithm A to any suffix that violates
the property, starting from the longest suffix until there is no
smaller suffix that violates the property anymore.

The purpose of the first modification to A is that in
the online schedules some of the transactions have already
been scheduled while we attempt to schedule a new set of
transactions. The purpose of the second modification to A is
that suffixes of schedules of previously executed transactions
are affecting the performance of the schedules for the new
transactions. With these two basic modifications we will be
able to bound the performance of the online algorithm with
respect to the performance of the offline algorithm .A.

B. The Bucket Algorithm

We are now ready to give the transformation of the offline
algorithm A to an online algorithm. The details appear in
Algorithm 2. We assume that the basic modifications described
earlier have already applied to A.

We will use buckets to store the newly generated trans-
actions at time ¢, 7,7 C 7, until their execution schedules
are determined. Let 7,° C 7; denote the set of transactions
whose schedule has already been determined at time ¢ (the



Algorithm 2: Online Bucket Schedule

1 Consider a batch scheduling algorithm .A;

2 Assume disjoint buckets B; at levels ¢ > 0, such that bucket B;
activates every 2° time steps;

3 foreach time step t do

4 Each T € 7;9 will be inserted into the bucket B; with smallest
index i such that F 4 (7> U B; U{T}) < 2%

5 if B; activates at time t then

6 All transactions in B; get scheduled using algorithm A with
transactions 7,° U By;

7 The schedule does not modify the execution times of the
already scheduled transactions in 7,%;

8 B; becomes empty and all its transactions are inserted in 7,°;

transactions in 7,° may execute at ¢ or later according to their
scheduled execution time).

A bucket B; at level i, where ¢ > 0, is a set of unscheduled
transactions which are expected to execute in at most 2¢ time
steps. At time ¢ each transaction 7' € T will be inserted
into the bucket B; with smallest index ¢ such that F4(7,° U
B; U{T}) < 2¢. That is, T is inserted into the smallest index
bucket B; that does not increase the offline execution time of
that bucket beyond its limit, given the fixed execution times
of the already scheduled transactions in 7,°.

Buckets get activated periodically so that the transactions
within get actual execution times. Bucket B; gets activated
every 2 time steps. Once B; activates, say at time t', all
transactions in B; get scheduled using algorithm .4 on the set
B; UT,;. The generated schedule does not alter the execution
times of the already scheduled transactions in 7.7. Then, we
remove the transactions from B; (which becomes an empty
bucket), since the transactions in B; are considered scheduled
and become part of 77.

If multiple buckets get activated simultaneously at time
t’, then we first schedule the transactions of the lower level
buckets. Thus, when higher level buckets are scheduled at ¢’
they assume that the lower level bucket transactions are already
scheduled as members of 7,7.

We give a few remarks about this algorithm. The maximum
bucket level is bounded and determined by the diameter and
number of nodes in G (see Lemma 3). The activation times
of different levels are not required to be aligned.

C. Analysis of Bucket Algorithm

We continue with an analysis of Algorithm 2. We first prove
two lemmas that lead to the main result in Theorem 4.

Lemma 3: The level of a bucket is at most log(nD) + 1.
Proof. The worst execution schedule is when the transactions
execute sequentially. At any time step, there can be no more
than n scheduled transactions (one from each node). The
maximum distance in G between any pair of transactions is
no more than the graph diameter D. Thus, the worst in time
schedule will execute the transactions in sequence requiring
at most time nD. Hence, the maximum bucket level will not
exceed [log(nD)] < log(nD) + 1 (log is base 2). O

Lemma 4: Any transaction T € T,9 (generated at time t)

which is inserted into bucket B; will be executed by time
t+ (i +1)202,
Proof. We prove this by induction on k, the level of bucket
By For the basis case the level is k = 0. The bucket By gets
activated at every time step. Thus, the bucket By gets activated
at time ¢ (i.e. instantly). Since for 7' € By it was determined
that Fo(7,° U By U {T}) < 2" = 1, the transaction 7" will
execute by time t + 1 =t + 2! <t + (i + 1)2F2 (i = 0).

Suppose that the claim holds for all & <= i. We consider
now the case £ = ¢ + 1. The bucket B;;; gets activated no
later than time ¢’ = ¢ 4+ 2'*!. Let B;11,+ denote the contents
of B, at time t (after new transactions were inserted in
B;y1 at time t). Consider the latest transaction 7" that was
inserted into B;,1 at some time ¢, t < ¢t < ¢'. It must be
that F_A(Tf, U Bi—i—l,t”) < 2i+1,

Suppose that no additional transactions had their execution
schedule determined between t” and ¢’ (that is, ’7? C 7.7, for
" <t <t). Since T U Bip1p C Ty UBiy,pr, Fa(T3 U
Biv1t) < FA(T3 U Bjy1,0) < 271 Thus, in this case all
the transactions in B;; can be executed no later than

t' 2t )

However, between ¢” and ', some other buckets may get
activated causing a set of new transactions, say transactions A,
having their schedules determined. According to the algorithm,
these additional transactions must have been from buckets at
level ¢ or lower. In the worst case, from induction hypothesis,
those buckets are activated the latest at time ¢’ (before B;y1),
with the latest execution time of any transaction from those
buckets ¢’ + (i + 1)2i72. To accommodate the transactions in
A the schedule of B;; may be shifted by time,

20t —t" 4 (i +1)2°12), 3)

which is enough time to allow the shared objects used by the
transactions in A to move to the positions where they execute
(according to their scheduled execution times) and then return
back to the original positions they were at time t”.

Therefore, combining Equations 2 and 3 the transactions in
B, will execute no later than

t/ 4 21‘+1 + Q(t/ _ t” + (Z T 1)2i+2)
20 42t g2t 4 (74 1)202)
t+ (i 4 2)27+3.
O

Theorem 4 (Bucket schedule competitiveness): The online
schedule has competitive ratio O(b4log®(nD)), where b4 is
the approximation ratio of offline algorithm A.

Proof. Consider some arbitrary time ¢ where the live trans-
actions are 7; = T,° U T,7. If the transactions in 7,7 were
scheduled alone by algorithm .4 then their execution schedule
time would be within b4 from optimal. However, the newly
generated transactions 7,7 are going to be scheduled based on
the restrictions imposed by the already scheduled transactions



T.. In the worst case scenario, the newly generated transac-
tions 7,7 will execute after the transactions in 7;%. Therefore,
we need to estimate how long it will take to execute the last
transactions in 7;° in order to determine when the transactions
in 7;9 will execute, and hence determine the duration of the
whole schedule.

The transactions in 7,° have been generated from various
levels at previous buckets. Consider a specific level 7 that has
been used to add transactions in 7,°. From Lemma 4, any
such transaction was generated no earlier than ¢ — (i +1)2¢+2,
During that period the number of level i buckets that have
been activated is at most (i + 1)2¢%2/2¢ = 4(i + 1), since a
level i bucket activates every 2° time steps.

According to Lemma 4, the execution time schedule of
bucket B; is within a factor O(ib4) from the optimal time
of the transactions within B;, since the 2¢ is a O(by4) ap-
proximation of the optimal schedule, by the definition of the
bucket level. Since from Lemma 3 the maximum level is at
most log(nD) + 1, we have that the execution time of any
bucket is within approximation factor { = O(blog(nD))
from optimal. However, this approximation factor is assuming
the current scheduled buckets.

Let £ be the total number of buckets that contribute to 7,°.
From Lemma 3 and since each level contributes at most 4 (i +
1) activated buckets in 7,° we get:

log(nD)+1

>

=0

¢ < 4(i 4 1) = O(log?(nD)).

The & buckets can be ordered according to when they get
activated. Let’s examine the execution time of the transactions
in the £ buckets with respect to starting time ¢.

For the first of the & buckets, the respective transactions in
T,° must execute within factor of ¢ from optimal (after ?).
The reason is that their predetermined schedule corresponds
to a suffix (starting from t) of the original execution schedule
when the bucket was activated. Furthermore, algorithm .4 has
the suffix property such that any suffix of its schedule has ex-
ecution time within b4 from optimal. Moreover, the schedule
of A is only shifted in time to give ( total approximation time
due to other dependencies, as we analyzed in Lemma 4.

Similarly, for the second of the & buckets, the respective
transactions in 7,° must execute within time proportional to a
factor of b4 from optimal starting from ¢ if they were running
alone. Thus, the combined time of the first two of the £ buckets
execute in time 2( from optimal. Generalizing, the execution
time of the & buckets is within £ from optimal.

With a similar argument, each of the corresponding buckets
of T} executes within time which is a factor £¢ + ¢ from
optimal, where £( is the approximation factor contributed
from the previous buckets, while the additional { term is the
approximation from the newly generated transactions. Thus,
the total execution time of the transactions in 7; is within a
factor (€ 4+ 1)¢ = O(b log®(nD)) from optimal. O

D. Applications to Specialized Graphs

We will apply Algorithm 2 to several cases of network
topologies to convert batch scheduling algorithms to online
scheduling algorithms. Busch et al. [4] give offline scheduling
algorithms for a variety of specialized graphs including the
line, cluster, and star. For these batch scheduling problems,
there are w objects, each node generates at most one transac-
tion, and each transaction requests an arbitrary set of k objects
out of w. When we convert these offline algorithms to online
we obtain the following results.

e Line: A line graph is a set of n ordered nodes so that
each node has an edge of weight 1 connecting it to
the next node in order. It is shown [4] that there is
an offline schedule in the line graph which is within a
factor b4 = O(1) from optimal (asymptotically optimal).
From Theorem 4, since D = O(n), we obtain an
online scheduling algorithm which is O(b4 log®(nD)) =
O(log® n) competitive.

o Cluster: A cluster graph consists of a cliques with 3
nodes each; where edges in the clique have weight 1.
Each clique has a designated bridge node. The bridge
nodes from different clusters connect to each other with
edges of weight v > . It is shown [4] that there
is an offline algorithm which gives a schedule with
factor b4 = O(min(kS3,log¥ m)) approximation from the
optimal, for some constant ¢, where m = max(n,w).
From Theorem 4, since D = O(n + ), we obtain an
online scheduling algorithm which is O(b4 log®(nD)) =
O(min(kB,logh m) - log®(n7y)) competitive.

o Star: In the star graph there is a central node that
connects to « rays each consisting of § nodes; all
edges have weight 1. It is shown [4] that there is an
offline algorithm which gives a schedule with factor
ba = O(log B - min(kB,log¥ m)) approximation from
optimal, for a constant c. From Theorem 4, since D =
O(n), we obtain an online scheduling algorithm which
is O(b log®(nD)) = O(log 8- min(kf, log" m) -log® n)
competitive.

Note that the cluster and star batch scheduling algorithms
used above are in fact randomized. In the case that the bad
event occurs for a bucket of not getting a batch schedule with
the specified bound (with small probability), then we repeat the
offline algorithm for that bucket until we successfully obtain
a batch schedule. Thus, the online schedules remain feasible.

The sequential run time complexity of Algorithm 2 in
calculating an execution schedule at time step ¢, depends on
the sequential complexity of algorithm 4 for each bucket
level with a small additional overhead since there are only
O(log(nD)) levels of buckets. The offline batch scheduling
algorithms we used above have polynomial time complexity
in computing the schedules [4]. Thus, Algorithm 2, has poly-
nomial time complexity in calculating the respective online
schedules for the network cases we discussed above. However,
according to our execution model these sequential calculations
are subsumed within a single time step ¢ of the concurrent exe-



cution, since the communication delay is the main contributing
factor in the concurrent execution time.

V. DISTRIBUTED BUCKET APPROACH

The online algorithms we presented earlier use a central
authority with knowledge about all current transactions and
objects. Here, we discuss a distributed approach which allows
the online schedule to be computed in a decentralized manner.

The distributed approach is based on the online bucket
scheduling algorithm described in Section IV but adapted
appropriately to work in the distributed setting. In the adapted
version of the bucket algorithm, the buckets of different levels
are split among various nodes of the graph G in what we
call partial buckets. To facilitate the distributed scheduling
algorithm, we use a hierarchy of clusters where designated
leader nodes at the clusters will hold the partial buckets.

Cluster Decomposition. Divide the graph G into a hierarchy
of clusters with H; = [log D] + 1 layers, where D is the
diameter of G (logarithms are base 2). A cluster is a subset of
the nodes, and its diameter is the maximum distance between
any two nodes (we use the weak diameter of the cluster
where distances between nodes in the cluster are measured
with respect to G and not within the subgraph induced by
the cluster). The diameter of each cluster at layer ¢, where
0 < ¢ < Hy, is no more than f(¢), for some function f, and
each node participates in no more than g(¢) clusters at layer
£, for some other function g. Moreover, for each node v in G
there is a cluster at layer ¢ such that the (2° —1)-neighborhood
of u is contained in that cluster (the k-neighborhood is the
set of nodes which are distance at most k& from w; the O-
neighborhood is w itself).

There are cluster constructions [14, 28] which give a
hierarchy with H; layers where f(¢) = O(flogn), and
g(£) = O(logn), known as a hierarchical sparse cover of
G. (These constructions have the strong diameter property,
where distances are measured within the induced subgraph in
the clusters, but these still serve our purpose.)

There is actually a hierarchical sparse cover construc-
tion [28] where each layer ¢ is decomposed into at most
H; = O(logn) sub-layers of clusters, where each sub-layer
is a partition of G. Thus, a node participates in all the sub-
layers of a layer but possibly in a different cluster within each
sub-layer. We use such a sparse cover in our algorithm.

The height h of a cluster which is at layer h; and sub-
layer ho is the pair h = (hy,hs). Heights are ordered
lexicographically. One node in each cluster is designated as
the leader of the cluster.

At each layer ¢ a node u participates in H, clusters, one
in each sub-layer. At least one of those clusters at layer ¢
contains the (2¢ — 1)-neighborhood of u, and we pick one of
them to be the home cluster of u at layer ¢. Thus, a node has
H; home clusters in total, one at each layer.

To facilitate the actions of the distributed transaction
scheduling, each shared memory object o; carries with it some
information to assist the transaction scheduling. The object o;
carries the information of all the transaction locations (node

Algorithm 3: Distributed Bucket Schedule

1 foreach new transaction T' do

2 Transaction 7" discovers the current positions of its objects in G;
say the furthest is « away from T7;

3 Each of the objects of T" informs the transaction 7" about other
conflicting transactions (scheduled and unscheduled);

4 Let y be the maximum of x and the distance to the furthest
conflicting transaction from 7;

5 T picks the lowest layer in the cluster hierarchy that has a cluster
whose home node includes the y-neighborhood of T

6 T reports to the leader v of the chosen home cluster; then, v
places T into a partial ¢-bucket where ¢ is determined by the
transactions reported to v;

7 When the bucket of 7" gets activated, all the objects of T" are
informed about the execution schedule;

addresses) that will use it, and also which of these transactions
have already been scheduled or not. In addition, the object o;
has information about the bucket locations (node addresses)
that have transactions that use it.

Distributed Bucket Algorithm. Algorithm 3 has the transac-
tion actions of the distributed bucket approach. The bucket B;
is split into possibly multiple partial i-buckets. The union of
the transactions in the partial ;-buckets make the whole buckets
B;. The partial i-buckets may appear into multiple layers (or
sub-layers) of the hierarchy. In fact, there could be multiple
i-buckets (for the same ¢) in each sub-layer. The partial -
buckets are hosted at leader nodes of the clusters. All of the
partial-i buckets get activated at the same time step every 2°
time steps, that corresponds to the activation time of B;.

Consider a transaction 7" generated at time ¢ at a node v such
that 7" uses a set of objects. Transaction 7' (i.e. the process
that executes 7" in v) looks to find all conflicting transactions
with T that have already been scheduled. It also looks for
buckets that have transactions conflicting with 7". It collects
this information from the objects, as described in Algorithm 3,
which help to determine into which bucket 7" will be inserted.

The objects could be moving from node to node while
the transactions execute. We can track objects in transit by
reaching the node that the object departs from. While a
transaction in v tries to discover the current locations of the
objects that it uses, the objects may drift further away from v
making it difficult to be discovered. For this reason, we require
that an object moves at a slower pace than the discovery
request messages travel. We can achieve this by artificially
having an object travel over a unit weight link at a rate of two
time steps, instead of one, that is, halving the speed that the
object moves. In this way, if at time ¢ an object is at distance
d from v, then it will be discovered by time 2d at most.

Analysis of Distributed Algorithm. We continue with the
analysis of Algorithm 3. Conflicting transactions with 7" could
be reporting to different clusters at various levels due to their
own dependencies, which could be caused from a different set
of objects than those used by 7.

Lemma 5: For any two live conflicting transactions 7' and
T’ it cannot be that neither detect each other before they report
to their home clusters.



Lemma 6: If T reports at a home cluster C' then there is no
other conflicting transaction to 7' that reports in a cluster at
the same sub-layer as that of C.

Proof. Suppose that there is a conflicting transaction 7" that
reports to a cluster at the same sub-layer to 7. From Lemma 5,
T is aware of T" or vice-versa (which is treated similarly).

If T is aware of 7", then the cluster C' must contain 7’ (by
the way T picks the cluster it reports to, which contains all the
transactions that 7' knows it conflicts with); hence, 7" must
have also reported to C, due to the sub-layer being a partition
of G. Symmetrically, if 7" is aware of T', then the cluster that
T’ has reported to must be the same with the cluster of 7. O

From Lemma 6 we obtain the following result.

Corollary 1: In a sub-layer, any two partial ¢-buckets do not
have transactions that conflict with each other.

Lemma 7: The maximum height in the cluster hierarchy that
a partial i-bucket can appear to is (i + 1, Hy — 1).

Define M = max(H;, Ho, L)+3, where L is the maximum
number of distinct bucket levels, which according to Lemma 3
is log(nD) + 1. Note that M = O(log(nD)). Next are
adaptations of Lemma 4 and Theorem 4 in the distributed
setting.

Lemma 8: In the distributed setting, any transaction T &€
TY (generated at time ¢) which is inserted into a partial 4-
bucket B that resides at height (j, k) will be executed by time
t+ (iM? + jM + k + 3)203.

Theorem 5 (Distributed bucket competitiveness): In the
distributed setting, the online schedule has competitive ratio
O(bylog’(nD)), where by is the approximation ratio of
offline algorithm .A.

Algorithm 3 also has polynomial time complexity as it
adapts Algorithm 2 with polynomial time complexity.

VI. CONCLUDING REMARKS

We have presented efficient execution time schedules in
the online dynamic scheduling setting on the data-flow model
of distributed transactional memory. Our results are the first
known attempts to obtain provably efficient online execution
schedules for distributed transactional memory.

There are some open questions. It would be interesting to
examine the impact of congestion, and the case where network
links may also have bounded capacity. Furthermore, it would
also be interesting to evaluate our algorithm against different
application benchmarks in a practical setting.
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