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ABSTRACT
In this paper, we present GraphTM, an efficient and scalable frame-
work for processing transactions in a distributed environment. The
distributed environment is modeled as a graph where each node of
the graph is a processing node that issues transactions. The objects
that transactions use to execute are also on the graph nodes (the
initial placement may be arbitrary). The transactions execute on
the nodes which issue them after collecting all the objects that they
need following the data-flow model of computation. This collection
is done by issuing the requests for the objects as soon as transaction
starts and wait until all required objects for the transaction come to
the requesting node. The challenge is on how to schedule the trans-
actions so that two crucial performance metrics, namely (i) total
execution time to commit all the transactions, and (ii) total com-
munication cost involved in moving the objects to the requesting
nodes, are minimized. We implemented GraphTM in Java and as-
sessed its performance through 3 micro-benchmarks and 5 complex
benchmarks from STAMP benchmark suite on 5 different network
topologies, namely, clique, line, grid, cluster, and star, that make
an underlying communication network for a representative set of
distributed systems commonly used in practice. The results show
the efficiency and scalability of our approach.
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1 INTRODUCTION
Concurrent processes (threads) need to synchronize to avoid intro-
ducing inconsistencies while accessing shared data objects. Tradi-
tional synchronization mechanisms such as locks and barriers have
well-known limitations and pitfalls, including deadlock, priority
inversion, reliance on programmer conventions, and vulnerability
to failure or delay. Transactional memory (TM) [14, 26] has emerged
as an attractive alternative. Recently, several commercial proces-
sors support TM, for example, Intel’s Haswell [17] and IBM’s Blue
Gene/Q [12], zEnterprise EC12 [23], and Power8 [4].

Using TM, program code is split into transactions, blocks of
code that appear to execute atomically. Transactions are executed
speculatively: synchronization conflicts or failures may cause an
executing transaction to abort: its effects are rolled back and the
transaction is restarted. In the absence of conflicts or failures, a
transaction typically commits, causing its effects to become visible.

The TM paradigm has been studied heavily in the past for shared
memorymulti-core systemswhere tightly-coupled processing cores
share a single shared memory and the latency to perform a memory
access is the same for all the processors. Having a single shared
memory allows to focus on how to execute and commit transactions
so that the total time to commit all the transactions is minimized,
not worrying about how to minimize the memory access latency.
However, with the recent multi-faceted advances in computing
architectures, this tightly-coupled single shared-memorymulti-core
paradigm is shifting toward many-core to non-uniform memory
access (NUMA) to cluster and more general distributed networked
architectures, where the latency to perform a memory access varies
depending on the processor in which the thread executes and the
physical segment of memory that stores the requested memory
location. Therefore, researchers shifted their focus recently on how
to support TM in these architectures, incorporating latency into
analysis and evaluation. Some of the proposals include TM2C for
many-core architectures [11], Nemo for NUMA architectures [22],
the systems in [1, 20] for clusters [1, 20], the system in [10] for
clusters of GPUs, and the Hyflow framework for more general
distributed systems [21, 25, 27, 28].

Supporting the TM paradigm in many-core and NUMA architec-
tures seems relatively easier compared to supporting it in cluster
and more general distributed systems. There are three main reasons:
(i) many-core and NUMA architectures have a relatively simple un-
derlying interconnection network, namely network-on-chip, which
interconnects all cores and carries the memory traffic; (ii) a sin-
gle node typically contains one (or more) multi-core architecture
(which is called a NUMA zone) and the number of such nodes is
very few and connected to all others so that the latency to perform
a memory access to a remote node is within a constant factor of the
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latency to perform a memory access in the local node (independent
of the network size); and (iii) many-core and NUMA architectures
might be equipped with an underlying cache-coherence protocol
which can be exploited to support TM.

The aforementioned advantages of many-core and NUMA ar-
chitectures vanish when looking into more general cluster and
distributed systems. For example, the underlying interconnection
network might be arbitrary and hence the latency to perform a
memory access to a remote node might be significantly high, no
high-speed network-on-chip connection, and no underlying cache-
coherence support. This necessitates the communication between
the nodes through message passing since shared-memory based
synchronization is not possible. Furthermore, cache-coherence for
objects has to be supported through the implementation itself. De-
spite many difficulties to deal with, this setting is strong enough to
model any complex processing system and it is a natural direction
to explore whether TM can be supported efficiently and scalably in
these environments.

The goal in this paper is to study whether TM can be sup-
ported efficiently and scalably in cluster and distributed sys-
tems. Cluster and distributed systems are widely available these-
a-days and there is a growing interest in implementing TM on
them [1, 10, 20, 21, 25, 27, 28]. However, the previous studies
[1, 10, 18, 20, 21, 25, 27, 28, 30] lack on one or more aspects. One
major aspect that they lack is efficiency guarantee, in other words,
how the total execution time and communication cost to execute
transactions compared to the best possible execution time and
communication cost, knowing everything about the application
workload? The framework we present here provides these efficiency
guarantees. Moreover, our framework allows to make better deci-
sions on processing transactions taking into account the knowledge
of the topology used by the distributed system considered; previ-
ous implementations lack this and hence they may not be able
to optimize processing transactions with respect to the underly-
ing communication topology. Furthermore, most of the previous
studies, e.g., [1, 18, 20], replicate shared-memory multi-core TM
implementations to different nodes and synchronize the execution
through global lock, serialization lease, or commit-time broadcast-
ing, which do not scale well with the size of the network, Moreover,
they hamper either or both performance metrics.
Contributions. We present a framework, called GraphTM, that
supports TM paradigm in cluster and distributed systems efficiently
and scalably removing many limitations of the previous studies (as
mentioned in the previous paragraph). For achieving efficiency and
scalability, GraphTM is designed to be polymorphic – the under-
lying mechanism of transaction processing is switched depending
on the underlying network topology used by the distributed sys-
tem. This is crucial since the recent previous studies [2, 3] showed
that no “universal” scheduling strategy works best under different
topologies. We design, develop, and implement GraphTM in Java
with necessary underlying algorithms to schedule transactions in
both offline and online settings. We present evaluation results run-
ning our GraphTM implementation against 3 well-known micro-
benchmarks, namely bank, linked list, and skip list, and 5 complex
benchmarks, namely bayes, genome, intruder, kmeans, and vacation,
from the STAMP benchmark suite, in 5 different communication

topologies, clique, line, grid, cluster, and star. Themotivation behind
choosing these networks for experimentation is that they make
an underlying communication network for a representative set of
distributed systems commonly used in practice [5, 19]. Currently,
GraphTM simulates the execution of distributed transactions in a
synchronous setting and presents the results on the maximum time
steps for execution time and total number of hops for the communi-
cation cost. The framework and results presented here are crucial
for design decisions while implementing execution framework in a
real cluster environment. In summary, we have the following four
contributions in this paper:
• We provide an implementation of efficient and scalable ex-
ecution framework, called GraphTM, for supporting TM
paradigm in a distributed environment.
• We present offline and online algorithms for scheduling
transactions using GraphTM. These algorithms follow and
extend provably-efficient scheduling studied in [2] for dif-
ferent special graph topologies.
• We extensively evaluate the scheduling algorithms designed
for GraphTM using a set of micro-benchmarks and STAMP
benchmarks under five different network topologies and
report the results on execution time, communication cost,
and waiting time under various settings.
• We design an approach to simulate the communication over-
head in processing transactions in a distributed setting by
running the benchmarks in a multicore environment. We
then report the communication overhead results obtained
for different benchmarks.

Paper Organization. We discuss related work in detail in Sec-
tion 2. We discuss model in Section 3 and the design overview of
GraphTM in Section 4. The implementation details of GraphTM
are provided in Section 5 and evaluated against different bench-
marks and topologies in Section 6. We finally conclude in Section 7
with a short discussion. Some figures, algorithms and details are
omitted due to space constraints.

2 RELATEDWORK
The TM paradigm has been studied for many-core architectures,
such as Intel, AMD, and Tilera, in [11]. The authors proposed a
system, called TM2C, that exploits shared memory and distributed
aspects to provide scalability in TM support. The TM paradigm for
NUMA architectures has recently been studied in [22]. The authors
proposed a TM system, called Nemo, that focuses on exploiting the
properties of the current NUMA designs so that scalable parallelism
can be obtained. They observed that increasing parallel execution
of threads in different NUMA zones is the key to scalability.

For general distributed systems, quite a few systems have been
developed in the literature. Hyflow [25] and Hyflow2 [27] frame-
works written in Java support processing transactions in a dis-
tributed environment. HyflowCPP [21] extends Hyflow [25] and
Hyflow2 [27] frameworks to non-VM-language CPP. Atomic RMI
2 [28] extends the popular java RMI system with support for dis-
tributed transactions. Atomic RMI 2 is an extension of Atomic RMI
which extends Java RMI system to run transactions in many JVMs
located on different network nodes. Zhang and Ravindran [29] pro-
vided a distributed dependency-aware (DDA) model for distributed
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Figure 1: An illustration of (distributed) transaction execution in a distributed systemof 6 nodeswith three shared objects a,b, c
(shown inside box). (i) shows the transactions at different nodes requesting objects a,b, and/or c. (ii)–(v) show how transactions
commit and the objects move from one transaction to another that request them.
TM that manages dependencies between conflicting and uncommit-
ted transactions so that they can commit safely. But the model has
an inherent tradeoff between the concurrency and communication
cost. All these systems lack polymorphism and (provable) efficiency
guarantees on time and communication cost that GraphTM has.

Several other distributed TM systems were also proposed, e.g.,
[1, 6, 16, 18]. However, most of them replicate a non-distributed TM
on many nodes and guarantee consistency of replicas. This model
is different from the model we use, and has different applications
(high-reliability systems rather than for example distributed data
stores). Other systems extended non-distributed TMswith a commu-
nication layer, e.g., DiSTM [13] extends D2STM [4] with distributed
coherence protocols. Moreover, these studies either use global lock,
serialization lease, or commit-time broadcasting technique which
may not scale well with the size of the network. Moreover, they
do not provide formal analysis of either the execution time or the
communication cost.

Furthermore, there are distributed TM proposals that employ
replication and multi-versioning [20, 24]. In replicated TMs, multi-
ple copies are available for each shared object, whereas multiple
versions of each object are available in multi-versioning TMs [20].
This line of work is different than ours.

3 MODEL AND PRELIMINARIES
We consider a distributed system with a set of nodes N =

{N1,N2, . . . } of a communication graph G that communicate via
the message-passing links. We assume that the communication
links are of unit weights and take one time step to traverse. Let
T = {T1,T2, . . . } be the set of transactions and O = {O1,O2, . . . }
be the set of objects accessed by the transactions. We have an offline
setting if the transactions in the set T are known before execution
starts. Otherwise, it is an online setting. In both the settings, it is
assumed that the objects in O accessed by a transaction are known
as soon as transaction arrives, so that they can be requested (if not
presently at the local node). We consider the data-flow model (see
Fig. 1) of distributed execution where transactions are immobile,
but objects move from one node to another [15]. Each object Oi
is represented with a unique identifier, obj_id . Each object has an
owner node, denoted by node_id . Although, an object may have
cached copy at different nodes, it has a single owner node and the
owner node can be changed during the movement of the object.
A change in ownership occurs upon the successful commit of a
transaction which modified the object. Similarly, each transaction
has a unique identifier (tx_id), read set (rset ), and write set (wset ).
A transaction contains a sequence of operations, each of which is a
read or write operation on an object. An execution of a transaction

Figure 2: GraphTM architecture
ends by either a commit (success) or an abort (failure). A transac-
tion can have five possible states: idle, waiting, running, committed,
and aborted. Any aborted transaction is later retried using a new
identifier until eventually it commits.

The communication model is assumed to be synchronous where
time is divided into discrete steps such that in a time step, a node
can receive the messages, process, and send the messages to the
adjacent nodes [2, 3]. The execution time is thus measured as the
number of time steps taken to execute all the transactions. The
communication cost is measured as the total distance (the number
of hops) the objects traverse while executing transactions. We also
assume that the nodes and links are not faulty and the links deliver
messages in FIFO order.

4 GRAPHTM DESIGN OVERVIEW
4.1 GraphTM Architecture
The system architecture of GraphTM is shown in Fig. 2. In
GraphTM, we simulate a distributed system environment by using
graph networks where a node of a graph represents a networked
component (processors) and the edge between two nodes represents
the communication path between those networked components.
We simulate the transaction processing environment in the dis-
tributed system by defining a set of transactions, a set of objects
accessed by those transactions, the owner node of each object and
the movement of those objects between the nodes of the graph.
Each transaction consists of read set and write set of objects resid-
ing at different nodes of the graph. The transaction requires those
objects to move to the node at which it is issued during the exe-
cution phase. We generate nodes, graphs, objects and transactions
scalably in GraphTM.
Nodes and Graph Generation. The first task of GraphTM is
to generate a graph with a desired number of nodes. We have
considered five different types of graph, clique, line, grid, cluster,
and star (GraphTM is general enough to be applied beyond these
topologies as well). Each graph is represented by the graph structure
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(Gtype ), total nodes (Nnodes ), total edges (Nedдes ), and list of nodes
(Lnodes ). To have a graph, nodes are generated first. Each node has
uniquenode_id and is represented by a point (x ,y) in 2-dimensional
plane. Each node also consists of a list of objects that are contained
by it and a list of neighboring nodes. Total number of nodes (Nnodes )
are created for each type of graph separately and added to the list
Lnodes of the graph Gtype . Total number of edges Nedдes for the
graph are calculated thereafter.
Objects Generation. After generating the graph, the framework
generatesM objects in the system. Each generated object is repre-
sented by a unique obj_id and the size of the object is defined by
obj_size . Each object has a unique owner node defined by obj_node
at which the object resides.
Transaction Generation. Now, the important part of the frame-
work is transaction generation. A transaction is represented by
a unique id (tx_id), read/write set size (rws_size), update rate
(update_rate), state (state), and lists of objects in read set and
write set (rset ,wset ). Read/Write set size (rws_size) for a trans-
action defines the total size of objects in read set and write set of
a transaction. Considering the size of an object as 1, the rws_size
for each transaction can be as much as total number of objects,
i.e., 0 ≤ rws_size ≤ M . The update_rate is used to compute the
read set size (rs_size) and write set size (ws_size) of a transac-
tion Ti where ws_size(Ti ) = rws_size(Ti ) × update_rate(Ti ) and
rs_size(Ti ) = rws_size(Ti ) − ws_size(Ti ). The update_rate for a
transaction Ti lies between 0 and 1 i.e. 0 ≤ update_rate(Ti ) ≤ 1.
The read set, rset(Ti ) and write set,wset(Ti ) of each transaction Ti
hold the following two properties:
• rset(Ti ) contains exactly rs_size(Ti ) number of objects and
wset(Ti ) contains exactlyws_size(Ti ) number of objects.
• rset(Ti ) andwset(Ti ) do not contain any common object (i.e.
read set and write set of a transaction do not conflict with
each other).

The state of a transaction represents the current state among
idle,waitinд, runninд, committed , and aborted . Initially, when a
transaction is not assigned to any node, it is in idle state. When
a transaction is issued to a node, we denote it as in waitinд state.
When a transaction starts executing, it is in runninд state. If the
transactions commits successfully, it reaches to the committed state,
otherwise it aborts and reaches to the aborted state. We define the
following notions that are required in the transaction execution:

Definition 4.1 (Dependecy Graph). A transaction dependency
graphDG is a directed graph between the set of transactions computed
using the objects in rset andwset of each transaction Ti , where the
nodes of the graph represent the transactions and the directed edge
between the two nodes represent the dependency (at least a write)
between the transactions.

If an objectOi contained in the rset(T1) orwset(T1) of a transac-
tion T1 also lies in the rset(T2) orwset(T2) of another transaction
T2, T1 is dependent on T2 and vice-versa.

Definition 4.2 (PriorityQueue). A priority queue for the transac-
tion execution is a list containing the priority order for the execution
of the transactions.

Definition 4.3 (Conflict). When two transactions T1 and T2 are
accessing the same object Oi and at least one transaction (T1 and/or

Figure 3: Illustration of division of 5 types of graph into sub-
graphs and the priority queue generation.

T2) is performing a write operation on that object, conf lict is said to
be occurred between the transactions T1 and T2.

Definition 4.4 (Conflict Graph). A transaction conflict graphCG
of a set of transactions T is a graph where each transaction Ti ∈ T
represents the node and an edge between the two transactions Ti and
Tj represents the conflict between Ti and Tj .

The transaction conflict graph CG is similar to the transaction
dependency graph DG where the dependency is calculated based
on the conflict occurrences between the set of transactions T . The
conflict graph together with the priority queue can be represented
by a directed acyclic graph (DAG).

Definition 4.5 (Execution Time). The execution time for a set of
transactions T is the total time steps required to finish the execution
of all the transactions in T .

Definition 4.6 (Communication Cost). The communication cost
for a transaction Ti is the total distance objects in rset(Ti ) and
wset(Ti ) traverse while bringing them to the executing node of Ti .

Definition 4.7 (Waiting Time). The waiting time for a transaction
Ti is defined as the total time steps spent by the transactionTi residing
at a node before starting its execution.

As long as there is no conf lict between the transactions at two
different nodes, those transactions can execute in parallel and com-
mit successfully. But when conflict occurs, only one transaction
can commit successfully and at least one of them must be aborted
when executed in parallel. To decide which transaction to execute
and commit successfully in case of conflict occurrence, the priority
queue of transactions helps; the transaction with higher priority ex-
ecutes and commits first, while the transaction with lower priority
waits until the previously running transaction commits.
Priority Queue Generation. The priority queue for each type of
graph is computed separately. This is useful in the offline scheduling
algorithms where each node contains a transaction. First, a graph is
divided into a number of sub-graphs and transactions are executed
in parallel within each sub-graph. Within each sub-graph, the prior-
ity order of transaction execution is defined based on the position
of each node. Fig. 3 illustrates the division of each type of graph into
sub-graphs to generate the priority queue. The priority queue com-
putation for five different graphs (line, clique, grid, cluster, and star)
that we incorporate in GraphTM follows the schedule proposed
for each type of graph in [2]. The provably-efficient guarantee of
GraphTM also implies from [2].
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4.2 High Level Overview of Algorithm
In this paper, we propose two variants of algorithms for processing
transactions in a distributed environment based on the initial set of
known parameters. One is the offline algorithm in which the graph
structure (Gtype ), all the available transactions (T ), total number of
nodes (N), and total objects (O) are known before the transactions
start executing. The other one is online algorithm in which the
graph structure (Gtype ) is known beforehand and other parameters
are known only after transactions arrive.
Offline Algorithm. In the offline algorithm, a centralized sched-
uler schedules transactions in all the nodes of a distributed system;
the scheduler knows total available transactions, objects, nodes
and graph structure. The scheduler also computes non-conflicting
transactions among them to execute concurrently. In case of con-
flict occurrence between two transactions at two different nodes,
transaction assigned to the node with higher priority is executed
first and the other transaction waits until the first transaction com-
mits. We have two different versions of the offline algorithm: (i)
OfflineBatch and (ii) OfflineStream.
OfflineBatch: In the OfflineBatch algorithm, transactions are
executed in batch in such a way that one transaction is executed
at each node in every round. When a transaction Ti,1 running at a
node Ni commits in round j , next available transactionTi,2 reaches
Ni to execute in round j + 1. Ti,2 waits to start its execution until
all the transactions assigned to different nodes for current round j
finish their execution and commit. In this algorithm, each node runs
equal (±1) number of transactions when execution is completed.
This technique provides better performance when the transactions
are of constant size and not conflicting with each other. In this case,
transactions run concurrently at all the nodes in each round. But in
the case where transactions have varying read/write set sizes and
are conflicting to one another, the batch technique penalizes the
performance. This is because transactions may need to wait for a
longer period due to conflicts and non-uniform read/write set sizes.
OfflineStream: In the OfflineStream algorithm, the transactions
at different nodes do not require to be executed in batch. Any new
transaction Ti, j is taken into account to create the transaction con-
flict graphCG as soon as it reaches node Ni . Then, after generating
the components and independent sets ofCG , all the non-conflicting
transactions at separate independent sets start their executions
concurrently. The new non-conflicting transaction does not need to
wait for other transactions to commit. Still, the transactions at the
node(s) having low priority order may wait for a long time when
transaction conflict rate is high.
Online Algorithm. In the online algorithm (denoted as Online),
each node is known only about the graph structure and the trans-
action(s) arrived on it. There is no synchronicity on when the
transaction(s) reach to the free nodes. That means a node may
remain idle (free) for an undefined period of time. For each ob-
ject, a data structure containing the information about accessing
transactions is maintained which is updated after each transaction
commit. Therefore, a node can detect the case if the objects in read
set (rset(Ti )) and write set (wset(Ti )) of a transaction Ti assigned
to it are concurrently accessed by any other transaction(s). If no
conflict is detected for the transaction Ti , it starts running. After a
transaction Ti at a node commits, next transaction Tj will reach to

Figure 4: Illustration of flow of transactions in GraphTM.

the node anytime later. But, as soon as the transaction Tj reaches
the node, the conflict detection is performed and the non-conflicting
transactions are executed in parallel.

5 IMPLEMENTATION DETAILS
In this section, we first present the data structures used by
GraphTM to realize scheduling through offline and online algo-
rithms and then describe the execution of transactions in GraphTM
followed by the implementation details. Finally, we discuss the cor-
rectness of algorithms adapted in GraphTM.
Data Structures. GraphTM uses the following data structures to
efficiently issue a transaction to a node for execution:
• txs_pool : The set of total available transactions. GraphTM
stores all the initially generated transactions in txs_pool .
• waitinд_txs : A set of transactions arrived at nodes but wait-
ing for execution turn.
• ready_txs: A set of waiting transactions at nodes that are
ready to competing for execution turn. This is a subset of
waitinд_txs i.e. ready_txs ⊆ waitinд_txs .
• runninд_txs : A set of in-flight transactions at different nodes.
• txs_access_list : A list consisting of transactions arrived at
different nodes and are going to write on an object Oi . This
data structure is used in online algorithm to find the concur-
rently executing conflicting transactions.
• committed_txs: A set of committed transactions.
• aborted_txs: A set of aborted transactions.

Transactions Execution. The execution of a transactionTi begins
after it reaches to a node Ni . Each transaction in txs_pool is in idle
state. Transaction Ti changes its state from idle towaitinд when it
reaches to a node and is added towaitinд_txs . The waiting trans-
action is then added to the ready_txs denoting that it is ready to
compete for an execution turn. IfTi does not detect another concur-
rent and conflicting running transaction Tj , it starts its execution
and changes its state fromwaitinд to runninд. Thewaitinд_txs and
the runninд_txs lists are also updated accordingly by removing the
transaction Ti fromwaitinд_txs and adding it to the runninд_txs .
Since GraphTM has implemented the data-flow model, each trans-
action needs to collect the required objects before performing read
and write operations on them. The accessed objects of a transaction
Ti in read set (rset(Ti )) and write set (wset(Ti )) are collected to the
executing node Ni where Ti is issued by following the shortest
path. The objects can move in parallel to reach the destination
node. When all the required objects are collected to the executing
node Ni , Ti starts write operation on them. As soon as Ti finishes
writing successfully to the objects, it commits and changes its state
to committed from runninд. If Ti fails due to any reason, it aborts
and changes its state to aborted and restarted later adding it to the
txs_pool . The total communication cost, total execution time and
waiting time of each transaction is updated when the transaction
commits. The node Ni is marked f ree afterTi commits. The overall
flow of the execution of transactions is depicted in Fig. 4.
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Algorithm 1: OfflineStream()
Input :txs_pool and graph G with N nodes;
Output : total exec time, total comm cost and committed_txs;

1 total_txs ← txs_pool · size();
2 ready_txs ← ϕ; runninд_txs ← ϕ;waitinд_txs ← ϕ;
3 while committed_txs · size() < total_txs do
4 for each node nd ∈ N do
5 if nd · state = f ree ∧ txs_pool , ϕ then
6 t ← txs_pool · дet(0);
7 t .node ← nd ; t .state ← waitinд; nd .state ← busy;
8 ready_txs · add(t);waitinд_txs · add(t);
9 txs_pool · remove(t);

10 C ← list of components generated using ready_txs;
11 for each component ci ∈ C do

// sort based on priority queue

12 cis ← sorted ci containing txs with priority order;
13 I ← list of non-conflicting txs (independent set);
14 for each transaction tx ∈ I do
15 if tx < runninд_txs then
16 runninд_txs · add(tx);
17 ready_txs · remove(t);waitinд_txs · remove(t);
18 tx · beдin(); tx · execute();
19 for each transaction tx ∈ runninд_txs do
20 update total exec time and comm cost;
21 if tx · commit() then
22 tx · state ← committed ; committed_txs · add(tx);
23 for each obj ∈ wset(tx) do
24 obj · node ← tx · node;
25 else if tx · abort() then
26 tx · state ← aborted ; aborted_txs · add(tx);
27 runninд_txs · remove(tx); (tx · node) · state ← f ree;
28 for each transaction tx ∈ aborted_txs do
29 tx · state = idle; txs_pool · add(tx);

Implementation of Offline Algorithm. The pseudocode for Of-
flineStream is provided in Algorithm 1. The pseudocode for Of-
flineBatch is removed due to space constraints. In the offline
algorithm, the centralized scheduler is known about the complete
list of transaction execution parameters for all the nodes before-
hand. All the transactions are buffered in a pool, txs_pool , before
the scheduler issues them to a node. The scheduler issues a transac-
tion to a free node following the offline algorithm (OfflineBatch
or OfflineStream) and marks the node as busy. The issued trans-
action is added to the listwaitinд_txs denoting that the transaction
is waiting for its turn to execute. In OfflineStream algorithm, all
the waiting transactions inwaitinд_txs are immediately added to
the list ready_txs as well. Whereas in OfflineBatch algorithm,
the transactions inwaitinд_txs are added to ready_txs only after
the completion of current round. Here, round denotes the total pe-
riod during which all the nodes finish executing one transaction
each. We use a counter (exec_count ) for each node to keep record
of executed transaction at that node. The priority order of trans-
action execution for each type of graph is computed as described

in Section 4. Instead of sequentially executing the transactions at
every node following the priority order, the algorithm finds the
non-conflicting concurrent transactions for execution. For this, a
transaction conflict graph (Definition 4.4) is generated first from
the transactions in ready_txs . To construct the transaction conflict
graph, each transaction is denoted as a node and the conflict be-
tween two transactions is donated as an edge between the nodes
representing the respective transactions. The conflict between the
two transactions T1 and T2 is found by checking the read sets and
write sets of both the transactions. After this, it computes the com-
ponents (Definition 5.1) of the conflict graph.

Definition 5.1 (Component). A component of a transaction con-
flict graph is a sub-graph of transactions where any two transactions
inside the same component conflict with each other but the transac-
tions from two different components do not conflict with each other.

Note here that two different components of a conflict graph
consist of disjoint set of transactions such that there is no common
object in read sets and write sets of two transactions from the two
different components. Moreover, no object in read set and write set
of a transaction issued to a node from one component resides at a
node to which another transaction is issued in the next component.
Inside each component, the transactions are sorted based on the
order computed in priority queue. From each component, at least
one transaction can run concurrently without conflict. To increase
the parallelism, we further compute independent sets (Definition 5.2)
inside each component by picking up the available transactions
with higher priority order for execution.

Definition 5.2 (Independent Set). An independent set I of a com-
ponent C having n number of transactions is a list consisting of a
group of transactions TI S = {T1,T2, . . . ,Tk }, 0 < k ≤ n, where there
is no edge (conflict) between any two transactions Ti ,Tj ∈ TI S in C .

The independent set I of a component consists of a set of trans-
actions having no directly connected edge between them. That
means I represents the set of non-conflicting transactions within
a component and those transactions can execute in parallel. The
scheduler selects the transaction with higher priority order first to
add in the independent set. The computation of the components
and the independent sets is performed when a new transaction
is added to ready_txs . Once the transaction starts running, it is
removed from both the lists ready_txs andwaitinд_txs and added
to the list runninд_txs containing current set of in-flight transac-
tions. When a transaction Ti ∈ runninд_txs running at a node
commits,Ti is removed from runninд_txs and is added to the list of
committed transactions committed_txs . WhenTi aborts, it is added
to the aborted_txs list and is restarted later after collecting it to
the txs_pool . The execution time and communication cost for the
transaction is noted down at the time of commit (or abort). Also,
the node at which the transaction was executed is marked f ree and
next available transaction Tj from txs_pool is assigned to the free
node changing it to busy. In the OfflineStream algorithm, the
new transaction Tj is added to the ready_txs immediately in the
next time step and which will participate to find the non-conflicting
concurrent transactions. But, in the OfflineBatch algorithm, al-
though the transaction Tj is available at the node, it is not added to
the ready_txs immediately, rather it waits for next round.
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Algorithm 2: Online()
Input :txs_pool and graph G with N nodes;
Output : total exec time, total comm cost and committed_txs;

1 total_txs ← txs_pool · size();
2 ready_txs ← ϕ; runninд_txs ← ϕ;waitinд_txs ← ϕ;
3 while committed_txs · size() < total_txs do
4 for each node nd ∈ N do
5 if nd · state = f ree ∧ txs_pool , ϕ ∧ Random() then
6 t ← txs_pool · дet(0);
7 t .node ← nd ; t .state ← waitinд; nd .state ← busy;
8 ready_txs · add(t);waitinд_txs · add(t);
9 txs_pool · remove(t);

10 for each transaction tx ∈ ready_txs do
11 conf lict ← f alse;
12 for each object obj ∈ wset(tx) do
13 T ← txs_access_list(obj);
14 for each transaction t ∈ T do
15 if t ∈ runninд_txs then conf lict ← true;
16 if conf lict = f alse then
17 runninд_txs · add(tx); tx · beдin();
18 tx · execute();
19 for each transaction tx ∈ runninд_txs do
20 update total execution time and communication cost;
21 if tx · commit() then
22 tx · state ← committed ; committed_txs · add(tx);
23 for each obj ∈ wset(tx) do
24 obj · node ← tx · node;
25 else if tx · abort() then
26 tx · state ← aborted ; aborted_txs · add(tx);
27 runninд_txs · remove(tx); (tx · node) · state ← f ree;
28 for each transaction tx ∈ aborted_txs do
29 tx · state = idle; txs_pool · add(tx);

Implementation of Online Algorithm. The pseudocode for the
Online algorithm is given in Algorithm 2. In the online case, the
distributed system is aware only of the graph structure (e.g., clique,
grid, star, etc.) but it does not know how many nodes on the graph.
Moreover, the total number of transactions in the system is also
not known. Therefore, each node only has the information of trans-
action issued to it. We implement the visible write and invisible
read operations. That means, each transaction Ti can detect other
concurrent and conflicting transaction Tj writing on the memory
location(s) of any object in its write set, wset(Ti ). But it does not
know about the concurrent transaction reading the memory loca-
tion of any object in its read set (rset(Ti )) and write set (wset(Ti )).
The information of each transaction writing to the memory loca-
tion of an object is maintained by using the txs_access_list data
structure for each object Oi denoted as txs_access_list(Oi ).

When a transaction Ti arrives at a free node, it is added to
the txs_access_list of each object in its write set, wset(Ti ) and
the node is marked busy. The transaction Ti is also added to
the ready_txs and waitinд_txs lists. The arrival of a new trans-
action at a node is implemented by using a random function.

For each transaction Ti ∈ ready_txs , the online algorithm com-
putes the conflict by checking concurrently executing transac-
tions in txs_access_list(Oi ),∀Oi ∈ wset(Ti ). When a transaction
Ti does not conflict with any other transactionTj , it is added to the
runninд_txs and started executing concurrently. When the transac-
tionTi running at a node commits (aborts), the node is marked free
andTi changes its state to committed (aborted). The transactionTi
is removed from the runninд_txs and added to the committed_txs
(aborted_txs). New transaction may arrive to the free node any-
time later. When a new transaction arrives at the node, the above
procedure is repeated. If a transaction Ti conflicts with previously
running transactionTj ,Ti has to wait until theTj finishes execution.

6 EVALUATION
The experiment is performed on an Intel Core i7-7700K proces-
sor with 32 GB RAM by simulating the distributed environment
in GraphTM. We conducted the experiment by considering five
different communication graphs as the distributed environment
and varied the total number of nodes from 100 to 1,000 for each
graph. The total number of objects, total number of transactions
and the transaction sizes vary on different benchmarks. Also, each
transaction is executed with 20 percent update rate. Each test case
is run 10 times and the results presented are the average of these 10
runs. We used a set of micro-benchmarks and complex benchmarks
from STAMP in the empirical evaluation.

We measure three execution parameters namely execution time,
communication cost and waiting time for all three algorithms Of-
flineBatch, OfflineStream and Online.We compute the optimal
execution time considering an optimal algorithm (denoted as Opti-
mal). In Optimal, transactions are scheduled in such a way that
every time, a non-conflicting transaction reaches to a free node and
it can start executing immediately. The respective communication
cost for the Optimal algorithm is also computed. Since no trans-
action is required to wait for execution turn after reaching a node,
the waiting time for Optimal becomes zero.

We also compare the communication overhead for processing
transactions in distributed environment by running the set of micro-
and complex benchmarks in a multi-core system using TinySTM
[8, 9]. TinySTM is a word-based software transactional memory
(STM) implementation for tightly-coupled multi-core systems shar-
ing a single shared memory. Similar to GraphTM, we measure the
time steps and number of hops in TinySTM. In TinySTM, multiple
threads can be run in parallel to execute transactions concurrently.
The total number of parallel threads in multi-core system are analo-
gous to the total number of nodes in distributed system. But, since
every thread is accessing the same sharedmemory in a single proces-
sor, we count every memory access as one time step. A transaction
commits upon successful read/write operationwithout conflict. Oth-
erwise, transaction aborts and changed memory locations by the
transaction are rolled back to the previous consistent state. This sug-
gests that every commit takes one time step to reflect the changes
on the memory locations and every abort takes two time steps; first
step, to make changes on a memory location and second step, to
roll back the changes to the previous consistent states. Thus, in the
multi-core system, using TinySTM, wemeasure the communication
cost as total_communication_cost = tC + 2 × tA where tC and tA
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Figure 5: Illustration of execution results in five different graphs for bank micro-benchmark varying the graph size.

Figure 6: Illustration of communication overhead by run-
ning micro-benchmarks on grid graph.

are the total number of commits and total number of aborts in all
the parallel threads, respectively. If t iC and t iA be the total number
of commits and total number of aborts in a thread i, 0 ≤ i ≤ n − 1,
the execution time is measured as exec_time =max(t iC + 2 × t

i
A).

Porting the Benchmarks to GraphTM. The micro and STAMP
benchmarks have been extensively used for evaluation of TM im-
plementation in multi-core systems processors [7, 13, 16]. Bank,
linked list, and vacation have also been used for evaluation of TM in
previous distributed TM implementations [11, 21, 22, 27]. Since the
micro and STAMP benchmarks were designed for multi-core sys-
tems, the benchmarks need modifications to execute in a distributed
scenario. For this purpose of porting them to GraphTM, we use
TinySTM API. Each benchmark is first executed with TinySTM
generating a set of transactions T = {T1,T2, . . . ,Tn }. Each memory
location accessed (read/written) by a transaction is mapped to a
unique object defined by obj_id . Total objects for GraphTM are
then computed by finding the union of all those objects (memory
locations) accessed by the transactions. Since objects are located at
different nodes in a distributed environment, each object is mapped
to a (owner) node of the graph defined by obj_node . Note that the
GraphTM uses a single writable copy of each object and hence one

object has no more than one owner node. Now, T consists of a set
of transactions having objects in read set and write set distributed
over the nodes of a graph. These transactions are stored in pool
txs_pool . During runtime, one available transaction from the pool
is assigned to a free node at a time. Moreover, in Online algorithm,
a transaction may not reach to a node as soon as it becomes free. To
simulate this online scenario, we use a random function to assign
the available transaction from the pool to a free node.
Results onMicro-benchmarks.We executed 10,000 transactions
for each micro-benchmark and measured the execution time, com-
munication cost and waiting time for each algorithm. Fig. 5 il-
lustrates the execution result for bank micro-benchmark for all
5-different graphs (distributed environments) with varying sizes
from 100 to 1,000 nodes. The plots for linked list and skip list are
omitted due to space constraint.

The plots show that Optimal has minimal execution time com-
pared to OfflineBatch, OfflineStream and Online but the com-
munication cost of Optimal is greater than that of others. We
observed up to 1.54×, 4× and 2× greater communication cost in
Optimal compared to OfflineBatch, OfflineStream and On-
line, respectively for the micro-benchmarks. Fig. 5 also shows that
OfflineBatch and OfflineStream have less execution time and
communication cost than the Online. This is because in offline
case, as soon as a node becomes free, a new transaction can be
assigned to it, while in online case, a node may remain idle for a
random period of time. Also, in offline algorithms, transaction on
each node is scheduled earlier based on the priority order which
decreases the total execution time and total communication cost.

On clique, cluster and star graph, the execution time of Online is
very high compared to OfflineBatch and OfflineStream when
executed with less number of nodes. This is because in clique,
cluster or star graph, there is high contention between transactions
with less number of nodes and hence less number of concurrently
executing transactions. We observed up to 9.6× greater execution
time (in clique) in Online compared to the OfflineStream when
executed with 100 nodes. We see that the execution time in Online
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Figure 7: Illustration of execution results in five different graphs for bayes benchmark from STAMP varying the graph size.

Figure 8: Illustration of execution results in five different graphs for genome benchmark from STAMP varying the graph size.

gradually decreases with more number of nodes. On the other hand,
the waiting time for Offline is greater than that for the Online.
This is relatable from the fact that transactions arrive later in the
online case requiring to wait at a node for less amount of time before
execution. The execution time in offline algorithms increases with
the increase in waiting time.

Fig. 6 illustrates the communication overhead of transactions
execution in grid using micro-benchmarks. The figure shows that
the communication cost in TinySTM (multi-core system) increases
largely with the increase in total number of parallel threads (analo-
gous to nodes in the grid). Compared to the increase in communi-
cation cost, the increase in execution time is less in TinySTM. But,
in GraphTM, execution time increases largely even with the small
increase in communication cost compared to the TinySTM. This
proves our claim that the communication overhead largely affects
the runtime of transactions in distributed environment.

Results on STAMP benchmarks. Fig. 7 and Fig. 8 present the ex-
perimental results for bayes and genome from STAMP, respectively.
The plots for intruder, kmeans and vacation are omitted due to space
constraint. Results for STAMP benchmarks follow similar to the
results for micro-benchmarks. OfflineBatch and OfflineStream
showed better execution time and communication cost than Online.
OfflineStream performed better than OfflineBatch in terms of
both execution time and communication cost.

The plots show that clique and cluster graphs have almost con-
stant execution time and communication cost for any graph size.
In Online, the execution time is high with less number of nodes
and becomes almost constant with large number of nodes. This
is due to the property of complete graph where each node is con-
nected with all others and this controls the concurrently executing
transactions. All the plots show that waiting time for transactions
increases continuously with more number of nodes.



ICDCN 2020, January 4–7, 2020, Kolkata, India P. Poudel and G. Sharma

Execution time gain
Batch/Stream Online/Stream Stream/Optimal

line 3.1 (vacation) 5.4 (kmeans) 38 (linked list)
clique 1.2 (kmeans) 9.6 (kmeans) 84 (genome)
grid 1.3 (skip list) 3.5 (vacation) 55 (genome)
cluster 2.2 (vacation) 9.3 (kmeans) 51 (intruder)
star 2.0 (linked list) 4.5 (bank) 49 (vacation)

Table 1: Summary of comparison of execution time.
Communication cost gain

Batch/Stream Online/Stream Optimal/Stream
line 4.0 (vacation) 4.5 (vacation) 5.6 (vacation)
clique 1.0 1.0 1.0
grid 1.3 (skip list) 2.2 (vacation) 2.7 (vacation)
cluster 2.0 (vacation) 2.0 (vacation) 2.2 (vacation)
star 2.1 (linked list) 2.6 (vacation) 2.7 (vacation)
Table 2: Summary of comparison of communication cost.

Table 1 shows the execution time gain in OfflineStream com-
pared to OfflineBatch and Online. It also shows the execution
time gain of Optimal compared to OfflineStream.We noticed that
OfflineStream achieved up to 9.6× better performance compared
to OfflineBatch and Online. Table 2 shows the communication
cost gain in OfflineStream compared to OfflineBatch, Online
and Optimal algorithms. We observed up to 5.6× communication
gain in OfflineStream compared to Optimal.

In summary, OfflineStream performs better in terms of both
execution time and communication cost among OfflineBatch, Of-
flineStream and Online algorithms. OfflineStream has also less
communication cost compared to the Optimal for execution time.
Also, the execution time for processing transactions in distributed
system is largely affected by the communication cost overhead.

7 CONCLUDING REMARKS
In this paper, we have presented an efficient and scalable simula-
tion framework GraphTM for supporting transactional memory
in a distributed environment. GraphTM avoids the limitations of
previous studies using provably-efficient approach of scheduling
transactions so that the two crucial performance metrics (execu-
tion time and communication cost) are minimized. The evaluation
results show the efficiency of GraphTM against both micro and
complex benchmarks. For future work, it will be interesting to de-
ploy our framework in real distributed system(s) and obtain the
wall clock execution time, communication costs, and other related
parameters. Moreover, it will be interesting to extend GraphTM
to other topologies such as hypercube and butterfly. Furthermore,
it will be interesting to extend STAMP and other benchmarks to
execute them in a distributed setting.
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