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Abstract
Estimation of low or high conditional quantiles is called for in many applications,
but commonly encountered data sparsity at the tails of distributions makes this a
challenging task. We develop a Bayesian joint-quantile regression method to bor-
row information across tail quantiles through a linear approximation of quantile
coefficients. Motivated by a working likelihood linked to the asymmetric Laplace
distributions, we propose a new Bayesian estimator for high quantiles by using a
delayed rejection and adaptive Metropolis and Gibbs algorithm. We demonstrate
through numerical studies that the proposed estimator is generally more stable and
efficient than conventional methods for estimating tail quantiles, especially at small
and modest sample sizes.
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1 Introduction

The modeling and prediction of extreme and rare events, e.g., heavy rainfall and big
financial loss, is an important and difficult task in many fields. For such events, the
interest is often on the characteristics of tail quantiles rather than the averages or
the median. Quantile regression, formally proposed in Koenker and Bassett (1978),
provides a useful tool for studying the conditional distribution of the response. In finite
samples, however, the conventional quantile regression estimator is often unstable at
tails due to data sparsity. Improving the estimation of quantiles at tail regions would
require additionalmodel assumptions or information, leading to twoclasses ofmethods
in the literature.

The first class is based on extreme value theory by making additional assumptions
on the tail properties of the conditional distribution of the response. For instance,
in the reference (Wang et al. 2012), the authors assumed that the conditional distri-
bution is heavy-tailed and lies in the maximum domain of attraction of an extreme
value distribution. Based on this assumption, estimates of intermediate quantiles from
the conventional quantile regression can be extrapolated to the far tail to estimate
extremely high quantiles. Some other developments in this direction include the ref-
erences (Chernozhukov and Du 2008; Gardes and Girard 2011; Wang and Li 2013),
to name a few. All the methods in this class are based on extreme value theory, which
would require relatively large samples for the approximation to work well.

The other class of work is based on joint-quantile analysis by assuming and sharing
some common information across quantiles. For instance, for linear quantile regres-
sion, one may assume that the slope coefficients are constant across quantiles (in a
given region). Under this assumption, the composite quantile estimator can be obtained
by minimizing the combined quantile loss function at multiple quantiles to estimate
the common slopes. Some developments along this line include the references (Jiang
et al. 2013a, 2018; Koenker 1984; Wang and Wang 2016; Wu et al. 2020; Zhao and
Xiao 2014; Zou and Yuan 2008) for linear models, and (Guo et al. 2012; Jiang et al.
2013b; Kai et al. 2010; Tang et al. 2018) for semiparametric regressionmodels, among
others.

We develop a new method for estimating tail conditional quantiles under the
Bayesian framework. The Bayesian approach provides a convenient way to incorpo-
rate prior information, if available. The idea is to improve the tail quantile estimation
by borrowing information across quantiles through a linear approximation of quan-
tile coefficients in the tail quantile region. The proposed linear expansion covers the
common-slope assumption considered in the literature as a special case, but offersmore
flexibility and thus is useful in broader applications. In addition, under the Bayesian
framework, common features across quantiles can be captured and incorporated in a
more natural way.

Bayesian methods have been developed for various quantile regression models.
Some of these focused on the analysis at a single quantile level; see for instance,
(Kozumi and Kobayashi 2011; Li et al. 2010; Yu and Moyeed 2001; Yu and Stander
2007). There have been a number of Bayesian studies for multiple-quantile analysis.
Specifically, Alhamzawi (2016), Huang and Chen (2015) and Tian et al. (2017) con-
sidered Bayesian composite quantile regression by assuming that quantile slopes are
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constant across quantile levels, Reich et al. (2011), Reich and Smith (2013), Rodrigues
and Fan (2017), Rodrigues et al. (2019) and Yang and Tokdar (2017) developed meth-
ods for modeling quantile process to overcome challenges such as quantile crossing
and spatial dependence.

The proposed method is based on a working composite-quantile likelihood, moti-
vated by the connection between quantile regression at a single quantile level and the
asymmetricLaplace distribution proposed inYu andMoyeed (2001). The posterior dis-
tributions of the quantile regression parameters do not have closed expressions, andwe
propose posterior sampling by adopting the delayed rejection and adaptive Metropolis
(DRAM) algorithm,which is the combination of the delayed rejection (Green andMira
2001; Mira 2002) and adaptive Metropolis (Haario et al. 1999, 2001) methods. Com-
pared to the standard Metropolis–Hastings algorithm, the DRAM algorithm provides
better protection against both over- and under-calibrated proposals, and thus relaxes the
burden of identifying suitable proposal distributions for each parameter involved. We
note that the problem of multiple quantile estimation in a pseudo-Bayesian framework
has been studied in Sriram et al. (2016), where the authors proved posterior consistency
under correct specifications of the quantile functions. In contrast, the present paper
uses local linear approximations to the quantile coefficients with which we aim to bor-
row information across quantiles in a small region for better bias-variance trade-off in
quantile estimation.

The rest of the paper is organized as follows. In Sect. 2, we present the proposed
working likelihood andposterior sampling algorithm. InSect. 3,we conduct simulation
studies to compare the performance of the proposed estimator with existing methods.
We further demonstrate the practical value of the proposedmethod through the analysis
of a Chicago precipitation data in Sect. 4. Some final conclusions are given in Sect. 5.

2 The proposedmethod

2.1 Basic setup and the target posterior distribution

Consider the linear quantile regression model

QY (τ |X = x) = xTβ(τ ), τ ∈ [ω, 1), (1)

where Y is the response variable, X is the p-dimensional covariate vector with the
first element one to include the intercept term, QY (τ |X) is the τ -th quantile of Y
givenX, β(τ ) = (β1(τ ), . . . , βp(τ ))T is the unknown quantile coefficient vector, and
ω ∈ (0, 1) is a constant close to one.

Based on a random sample D = {(yi , xi ), i = 1, . . . , n} of (Y ,X), the coefficient
β(τ ) can be estimated by

̂β(τ ) = arg min
β∈Rp

n
∑

i=1

ρτ (yi − xTi β), (2)
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where ρτ (u) = u{τ − I (u < 0)} is the quantile loss function. At a fixed quantile level
0 < τ < 1, the conventional estimator ̂β(τ ) is known to be consistent and asymp-
totically normal under some regularity conditions; see Koenker (2005). However, in
finite samples, the estimator ̂β(τ ) is often unstable for τ close to one or zero due to
the lack of sufficient data in tail regions. To reduce the instability at high quantiles,
we propose to conduct a joint-quantile analysis through the linear expansion of β(τ )

in a small region of τ .
Let τ = {τ1, · · · , τL}, ω ≤ τ1 < · · · < τL < 1 be a grid of quantile levels in

the upper tail, and τ � ≥ τL be the high quantile level of interest. Suppose that β j (τ ),
j = 1, · · · , p, are smooth functions of τ . Then by the Taylor expansion at a given
quantile level τ0, it follows that

β j (τ ) = β j (τ0) + β ′
j (τ0)(τ − τ0) + o(τ − τ0) (3)

for τ near τ0. In practice, we let τ0 = ∑L
l=1 τl/L. Therefore, we have

β j (τ ) ≈ θ1 j + θ2 j (τ − τ0),

where θ1 j = β j (τ0) and θ2 j = β ′
j (τ0). Under this approximation, the linear quantile

regression model (1) can be rewritten as

QY (τ |x) = xT (ϑ1 + ϑ2δ), (4)

where ϑ1 = (θ11, · · · , θ1p)
T ,ϑ2 = (θ21, · · · , θ2p)

T and δ = τ − τ0. By applying
the linear approximation of β(τl) at τl around τ0 for l = 1, . . . , L , we can estimate
the common parameters ϑ1 and ϑ2 by minimizing the combined quantile objective
function, that is, by

(˜θ1,˜θ2) = argmin
n

∑

i=1

L
∑

l=1

ρτl {yi − xTi (ϑ1 + ϑ2δl)}, (5)

where δl = τl − τ0, l = 1, . . . , L . Hereafter, we will refer to the estimator (˜θ1,˜θ2) as
the frequentist linear composite quantile estimator.

At a single quantile level, that is, when L = 1, the quantile loss function in (5)
is proportional to the negative log density of the asymmetric Laplace distribution
(ALD) (Yu andMoyeed 2001). This motivated researchers to consider the ALworking
likelihood for Bayesian quantile regression at a single quantile level τ ∈ (0, 1):

L(β(τ );D) =
n

∏

i=1

τ(1 − τ)

σ
exp

{

−ρτ (yi − xTi β(τ ))

σ

}

, (6)

where σ > 0 is a scale parameter. More discussions can be found in Geraci and Bottai
(2007), Yang et al. (2016), Yu and Stander (2007), and other works reviewed in Wang
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and Yang (2018). For the joint-quantile analysis, a natural and analogous choice is the
following working likelihood,

n
∏

i=1

C(xi ,ϑ1,ϑ2, σ, τ )
1

σ
exp

{

−
∑L

l=1 ρτl (yi − xTi (ϑ1 + ϑ2δl))

σ

}

, (7)

where

C(x,ϑ1,ϑ2, σ, τ ) ×
∫

1

σ
exp

{

−
∑L

l=1 ρτl (y − xT (ϑ1 + ϑ2δl))

σ

}

dy = 1.

Note that the normalizing constantC(x,ϑ1,ϑ2, σ, τ ) depends on x and the parameters
in a rather intractableway. It was argued in Sriram et al. (2016) that a pseudo-likelihood
without this normalizing factor would ensure posterior consistency for a broad range
of priors. The pseudo-likelihood takes the form

L(ϑ1,ϑ2;D) ∝
n

∏

i=1

1

σ
exp

{

−
∑L

l=1 ρτl (yi − xTi (ϑ1 + ϑ2δl))

σ

}

. (8)

Thenwe can use independent flat priors forϑ1 andϑ2, i.e.π(ϑ1) = ∏p
j=1 π(θ1 j ) ∝

1, π(ϑ2) = ∏p
j=1 π(θ2 j ) ∝ 1, and for the scale parameter σ , π(σ) ∝ I (σ > 0)/σ.

The posterior for (ϑ1, ϑ2, σ ) can be derived as

π(ϑ1,ϑ2, σ |D) ∝ 1

σ n+1 exp

{

− 1

σ

n
∑

i=1

L
∑

l=1

ρτl (yi − xTi (ϑ1 + ϑ2δl))

}

. (9)

We can arrive at the same posterior from the working likelihood (7) but with a
prior density that is proportional to 1/C(xi ,ϑ1,ϑ2, σ, τ ). Whatever the motivation,
the posterior mode from (9) is equivalent to the frequentist linear composite quantile
estimator (˜θ1,˜θ2) in (5). Following the similar proof as in Sriram et al. (2016) and
Zou and Yuan (2008), we can show that (˜θ1,˜θ2) is consistent to (θ1, θ2).

2.2 Computation

The posterior of (ϑ1, ϑ2, σ ) is analytically intractable. It is natural to use the MCMC
method for posterior sampling. For quantile regression at a single quantile level, the
authors of Yu and Moyeed (2001) proposed to use a random-walk Metropolis algo-
rithm with a Gaussian proposal density centered at the current state of the chain to
update each parameter. The authors of Kozumi and Kobayashi (2011) proposed a
three-variable Gibbs sampling algorithm that can simplify the posterior sampling by
using the Normal-mixture representation of ALD, and as shown in Khare and Hobert
(2012), the Markov chain underlying this three-variable Gibbs sampling algorithm
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converges at a geometric rate. However, this mixture representation is not applicable
to the joint-quantile working likelihood.

In this paper, we suggest posterior sampling by adopting the delayed rejection and
adaptiveMetropolis (DRAM) and Gibbs algorithms. The DRAM algorithm, proposed
in Haario et al. (2006), is the combination of delayed rejection (DR) and adaptive
Metropolis (AM). The AM can enhance the efficiency of DR if no good proposal
distributions are available, and the DR provides a systematic remedy when AM has
a slow start. To be more specific, upon rejection in a Metropolis–Hastings (M–H)
algorithm, the DR proposes a second stage move instead of staying at the current
position. The process of DR can be iterated for a fixed or random number of stages.
The basic idea of AM is to create a Gaussian proposal distribution with a covariance
matrix depending on the history of the chain. The DRAM algorithm used in this
paper is a direct way of combining AM adaptation with a J -stage DR algorithm. Our
numerical results show that the DRAM algorithm is computationally more efficient
and leads to chains with less autocorrelation than the M–H algorithm.

The detailed procedure of posterior sampling with DRAM and Gibbs algorithms
is as follows. Let M be the length of the chain and m0 be an initial non-adaptation
period. Also let ϑ = (ϑT

1 ,ϑT
2 )T . Suppose that (ϑ0, σ 0) is the initial value sampled

from the uniform distribution U (0, 1). At the step m (m = 1, . . . , M), sample ϑ (m)

and σ (m) based on the following procedure.

(i) Sample ϑ (m):

(a) At the first stage of DR, we take the Gaussian proposal to be centered at the
current position ϑ (m−1) and set the covariance C1

m to be

C1
m =

{

C0, m ≤ m0;
s p̃Cov(ϑ0, . . . ,ϑ (m−1)) + s p̃ε I p̃, m > m0,

where C0 is the initial covariance and in this paper we set C0 = I p̃, the p̃-
dimensional identity matrix with p̃ being the dimension of ϑ , s p̃ is a scaling
parameter depending on p̃, and ε ≥ 0 is a chosen constant to ensure that
Cm will not become singular. We take s p̃ = 2.382/ p̃ according to Haario
et al. (2006) and Gelman et al. (1996) because this value optimizes the
mixing properties in the case of Gaussian targets and Gaussian proposals.
Throughout our numerical studies, we simply let ε = 0 since this choice did
not lead to any singular Cm in our setup.

(b) For the j th ( j = 2, . . . , J ) stage, the covariance C j
m of the proposal is

computed simply as a scaled version of the proposal of the first stage, that
is C j

m = γ jC1
m for some constants γ j . We simply set J = 2 and γ2 = 0.01

in this paper.

(ii) Sample σ (m):

σ (m) is sampled from IG
(

n,
∑n

i=1
∑L

l=1 ρτl {yi − xTi (ϑ
(m)
1 + ϑ

(m)
2 δl)}

)

, where

IG(a, b) is the Inverse Gamma distribution with shape parameter a and scale
parameter b.
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2.3 Estimation of the tail conditional quantile

Based on the Markov chains, we can calculate the posterior means of ϑ1 and ϑ2,
denoted aŝϑ1 and̂ϑ2. The quantile coefficient vector at the quantile level τ � can then
be estimated through extrapolation by

̂β(τ �) = ̂ϑ1 + ̂ϑ2

(

τ � −
L

∑

l=1

τl/L

)

.

Then the conditional quantile at the quantile level τ � can be estimated by

̂QY (τ �|x) = xT̂β(τ �).

When the interest is on a single high quantile level τ �, our empirical study shows
that letting τL = τ �, that is, including τ � in the quantile grid, often leads to more
stable estimation than extrapolating from τL < τ�.

3 Simulation study

We conduct a simulation study to assess the finite sample performance of the proposed
Bayesian joint-quantile regression estimator, referred to as BJQR. For comparison, we
also include (1) the conventional linear quantile regression estimator (QR), computed
by using the R function “rq” in the quantreg package; (2) the constant composite quan-
tile regression estimator (CCQR), which assumes that the quantile slope coefficients
are constant and estimates the constant slope by combining information from quantile
levels τ1 < · · · < τL ; (3) the extreme-value-based method in Wang et al. (2012),
which extrapolates from intermediate quantiles to estimate conditional quantiles at
the extreme tail, referred to as EXQR.

We consider the following three examples. In all the cases, x1, x2, ε (or u) are
mutually independent.

– Example 1:

yi = 1 + 3x1i + 3x2i + εi , i = 1, . . . , n,

where x1i , x2i ∼ N (0, 1) and εi ∼ t3.
– Example 2:

yi = β0(ui ) + β1(ui )x1i + β2(ui )x2i , i = 1, . . . , n,

where x1i , x2i ∼ U (0, 4), ui ∼ U (0, 1). In addition, the coefficients β j (u) ( j =
0, 1, 2) are defined in the following way:

1. if u < 0.93, β0(u) = 1 + F−1(u) − F−1(0.93), β1(u) = 2 − F−1(0.93) +
F−1(u), β2(u) = 3 − F−1(0.93) + F−1(u), where F is the CDF of t(3)
distribution;
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2. if u ≥ 0.93, β0(u) = 1 + u − 0.93, β1(u) = 2 + 4(u − 0.93)u, β2(u) =
3 + 5(u − 0.93).

– Example 3:

yi = 1 + x1i + 3x2i + (2 + 1.5x1i )εi , i = 1, . . . , n,

where x1i ∼ U (−1, 1) and x2i , εi ∼ N (0, 1).

For the three examples, the true conditional quantile function is QY (τ |x1, x2) =
β0(τ )+x1β1(τ )+x2β2(τ ). Example 1 contains independent and identically distributed
(i.i.d.) errors so the quantile slope effects β1(τ ) = β2(τ ) = 3 are constant across τ .
Both examples 2 and 3 have heteroscedastic errors. In Example 2, the three quantile
coefficients β j (τ ), j = 0, 1, 2, are all linear in τ ∈ [0.93, 1). In Example 3, β2(τ ) = 3
is constant and β1(τ ) = 1 + 1.5Φ−1(τ ) is a nonlinear function of τ .

We consider four sample sizes n ∈ {50, 200, 500, 2000}. The simulation is repeated
500 times for each scenario.We focus on two high quantile levels τ � = 0.99 and 0.995.
For both BJQR and CCQR, we let the L quantile levels in the grid be equally spaced in
the interval in [τ1, τL = τ �], andwe choose τ1 = τL −d with d ∈ {0.01, 0.02, 0.05} to
assess the sensitivity of the methods against the length of the quantile interval. Results
for both BJQR and CCQR are based on L = 5.

For the BJQR method, we obtain MCMC chains using the DRAM sampling pro-
cedure with an initial non-adaptation period m0 = 100 and a 2-stage DR algorithm.
We let the initial covariance C0 be the identity matrix, s p̃ = 2.382/ p̃ with p̃ = 6, and
γ = 0.01. In all cases, the initial values of the parameters are randomly drawn from
U (0, 1), the length of the chain is set as M = 40,000 with a burn-in period of 10,000.

Tables 1, 2 and 3 summarize the bias and mean squared error of the quantile
coefficient estimation, and the mean integrated squared error (MISE) of the condi-
tional quantile estimation at τ � = 0.995 in three examples, respectively. Results for
τ � = 0.99 are similar and thus omitted. The MISE is defined to be the average of ISE
across simulations, where

ISE = 1

n

n
∑

i=1

{̂QY (τ �|xi ) − QY (τ �|xi )}2.

For both CCQR and BJQR, the tuning parameter d measures the range of quantile
levels, over which a constant and linear expansion are used to approximate the quan-
tile coefficients, respectively. The parameter d plays a similar role as the bandwidth
parameter in kernel smoothing for balancing between bias and variance: a larger d
tends to give smaller variance but larger bias. To achieve a better balance between bias
and variance, we suggest a smaller d for larger samples, and our numerical studies
showed that the rule of thumb d = max(0.7n−0.7, 0.01) worked well; the correspond-
ing choices of d are marked bold in Tables 1, 2 and 3.

EXQR method is not included in Example 2, since in this case the conditional
distributions of Y given X have bounded ranges so the extreme value theory based
method EXQR does not really apply. Results show that the EXQRmethod fromWang
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Fig. 1 The mean integrated squared errors of the QR (solid), CCQR (dotted) and BJQR (dashed) estimators
at τ� = 0.995 across L ∈ {2, 3, . . . , 10} based on the rule of thumb d = max(0.7n−0.7, 0.01) in Examples
1–3 for n = 50, 200, 500 and 2000

et al. (2012) performs better in Example 1 (with homoscedastic heavy-tailed errors)
for larger sample sizes with n ≥ 200. However, EXQR gives worse performance
for small samples with n = 50 and in Example 3 with heteroscedastic errors. Such
results are not surprising since the EXQR is based on the extreme value theory, whose
approximation would require a large sample size. The EXQR method has advantages
for estimating extreme quantiles of heavy-tailed distributions with large samples. In
contrast, the proposed BJQR method has advantages for estimating tail quantiles with
modest samples.

We also assess the sensitivity of the proposed method against the choice of L .
Figure 1 presents the MISE of QR, CCQR and BJQR at τ � = 0.995 across L ∈
[2, 10] based on the rule of thumb d = max(0.7n−0.7, 0.01) in Examples 1–3 with
n ∈ {50, 200, 500, 2000}. Results show that the BJQR method performs quite stably
and better than QR for L ∈ [4, 10], except in Example 2 with n = 50. In contrast, the
CCQR method is more sensitive to the choice of L , and it could perform much worse
than QR if L is not chosen well, e.g., for n = 2000.

For multiple-quantile analysis, quantile crossing may happen in numerical studies,
that is, the lower quantiles may be estimated to be larger than the upper quantiles. We
compare different methods for checking how often the estimated conditional quantiles
cross each other. Table 4 summarizes the percentage of times the estimated quantiles
{Q̂Y (τl |xi ), l = 1, . . . , L} cross at two or more quantile levels over {xi , i = 1, . . . , n}
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Table 4 The average percentage of times the estimated quantiles {Q̂τl (xi ), l = 1, . . . , L} cross at two or
more quantile levels over {xi , i = 1, . . . , n} from different methods in Examples 1–3, where τL = 0.995

Example d Method n=50 n=200 n=500 n = 2000

1 0.01 QR 25.94 68.66 45.02 13.58

CCQR 81.40 40.60 5.20 5.60

BJQR 0.39 2.01 1.92 0.35

0.02 QR 65.14 52.24 25.75 5.69

CCQR 57.80 5.79 0.00 1.80

BJQR 0.09 1.44 0.79 0.09

0.05 QR 71.90 26.12 11.16 1.16

CCQR 28.00 0.00 0.00 0.00

BJQR 0.03 0.53 0.19 0.01

2 0.01 QR 43.45 72.88 56.52 15.56

CCQR 80.80 42.00 3.05 0.00

BJQR 0.09 0.08 0.04 0.13

0.02 QR 60.23 60.84 33.62 6.91

CCQR 64.00 3.80 0.00 0.00

BJQR 0.00 0.13 0.04 0.06

0.05 QR 70.57 35.66 12.93 2.31

CCQR 29.60 0.00 0.00 0.00

BJQR 0.00 0.12 0.05 0.02

3 0.01 QR 13.78 69.43 49.71 15.48

CCQR 81.17 44.78 4.15 1.80

BJQR 0.16 1.16 1.48 0.51

0.02 QR 53.80 57.80 28.77 7.75

CCQR 66.00 5.40 0.00 0.00

BJQR 0.00 0.84 0.56 0.13

0.05 QR 67.18 28.91 12.32 2.52

CCQR 26.40 0.00 0.00 0.00

BJQR 0.00 0.30 0.15 0.01

from different methods with L = 5 and τL = 0.995. We do not include EXQR since
its estimation is based on extrapolation and is ensured to be increasing in τ . The results
show that quantile crossing happens rarely and much less frequently from BJQR than
the QR and CCQR methods. This is likely due to the approximation of the quantile
coefficient β j (τ ) as a local linear function of τ used in BJQR. Note that to ensure
the monotonicity of QY (τ |x) in τ under the model (4), the sufficient and necessary
condition is xTϑ2 > 0. Therefore, under the Bayesian framework, we can improve
the proposed algorithm to avoid quantile crossing by posing priors with constraints
on ϑ2, and one possible prior is the truncated normal as in Feng et al. (2015).

In summary, compared to CCQR, the BJQR method is more flexible and robust
against model misspecifications. When the constant slope assumption required by
CCQR is correctly specified in Example 1, BJQR gives competitive performance to
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CCQR. However, when the assumptions required by both methods are misspecified
(Example 3), the performance of CCQR could be even worse than QR, while BJQR
still gives better estimation at tails than QR. In terms of computing time, the QR is
computationally more efficient since the estimation is obtained at each single quantile
separately by minimizing the quantile objective function. In this simulation study, it
took about 0.08, 0.202 and 21.7 s for QR, CCQR and BJQR to obtain the quantile esti-
mations for a sample with n = 2000 observations, and with L = 5 and M = 40,000.
Overall, BJQR provides more stable and efficient estimation than the conventional QR
method at tail quantiles for small and modest sample sizes. For larger samples, the
gain of reduced variance in the BJQR estimator is offset by the relatively larger bias,
especially for larger d, which is caused by the Taylor approximation. Considering both
numerical and computational efficiency, we would recommend the proposed BJQR
for small to modest samples n ≤ 500 at quantile levels around 0.99 or higher.

Although we focus on the upper quantiles in this paper, we also conducted simula-
tion at τ � = 0.005 and the main observations are similar; the results can be found in
the online Supplementary Material.

4 Application to the Chicago precipitation data

In this section, we apply the proposed method to perform statistical downscaling of
daily precipitation data in the Chicago/Aurora airport station in Illinois. One aim of
the statistical downscaling is to establish a relationship between local-scale historical
measurement and large-scale general circulation model predictions, and to extend the
relationship to future projections.We focus on the modeling and prediction of extreme
heavy precipitations, which is one type of extreme events which happen rarely but
have huge societal impacts. For the analysis of extreme events, the estimation of tail
quantiles would bemore interesting than the central summaries. On the other hand, the
problem is challenging due to the sparseness of data in the tail areas, and this motivates
us to apply the proposedmethod to providemore stable tail quantile estimation through
joint-quantile analysis.

We take the observed daily precipitation (in inches), at theAuroraMunicipalAirport
from September 1957 to August 2002 as the response variable Y . The predictors are
the simulated daily maximum temperature (X1), daily humidity (X2) and daily precip-
itation (X3), all generated from the ERA-40 reanalysis model in Uppala and Kallberg
(2005). We focus on the wet days only, and this results in total 5132 observations.
Our main objective is to predict the high conditional quantiles of local precipitation
based on the simulated reanalysis variables generated from the global climate model.
We focus on the high quantile τ � ∈ {0.99, 0.995, 0.999, 0.9999}. Before analyzing
the data, we standardize each predictor by subtracting the mean and dividing by the
standard deviation.

For demonstration, we randomly selectm = 200 observations as training data, and
leave the rest as testing data. For each method, we use the training data to estimate
the quantile coefficients, which are then used to predict the τ �th conditional quantile
of the testing data. We then calculate the prediction error (PE) as
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Table 5 The average predictor
error of three methods for
predicting the τ�th conditional
quantile of the daily
precipitation in the Aurora
station across 500 cross
validations

Method τ�

0.99 0.995 0.999 0.9999

QR 126.75 90.25 60.58 53.90

(1.08) (0.91) (1.05) (1.12)

CCQR 118.72 84.43 51.66 45.03

(0.79) (0.86) (0.88) (1.02)

BLCQR 118.77 83.27 48.78 40.06

(0.79) (0.70) (0.83) (0.90)

The values in parentheses are the standard errors

PE =
∑

i∈testing data
ρτ {yi − xTi ̂β(τ �)}.

The cross validation is repeated 500 times to report the average prediction error (APE).
As suggested by the simulation, we let τL = τ �, L = 5 and d = 0.02 for the proposed
BJQR method. For the BJQR method, we let the length of chains be M = 40,000
and burn-in period be 3000. Table 5 summarizes the average prediction errors of the
QR, CCQR and BJQR methods at τ � ∈ {0.99, 0.995, 0.999, 0.9999}. Results suggest
that both CCQR and BJQR give more accurate prediction than QR at the four high
quantiles considered, but BJQR is consistently better than CCQR. This confirms with
what we observed in the simulation study that the proposed BJQR method is more
flexible than CCQR, and it leads to more accurate tail quantile estimation than QR for
small and modest samples.

For illustration, we compare the results from QR, CCQR and BJQR for estimating
the conditional quantiles QY (τ �|X = xu) across τ � ∈ {0.99, 0.995, 0.999, 0.9999}
based on one training data set, where xu = (xu1, xu2, xu3)T , and xu j is taken to the
uth sample quantile of the j th predictor X j , j = 1, 2, 3. Figure 2 plots the estimated
conditional quantiles Q̂Y (τ �|X = xu) from three methods at u ∈ {0.1, 0.4, 0.6, 0.9}.
Results show that the QR estimates become a constant when τ > 0.995 and the
CCQR estimates even decrease with τ for τ > 0.995 in most of the cases. In contrast,
the BJQR estimates increase in τ , confirming the observation from the simulation
study that the BJQR avoids the quantile crossing issue better than the QR and CCQR
methods.

5 Conclusion and discussion

We develop a new Bayesian method for estimating tail conditional quantiles through
joint-quantile estimation and a linear approximation of quantile coefficients in a small
quantile interval. Motivated by the connection of quantile regression at a single quan-
tile level with the asymmetric Laplace distribution, we propose a working likelihood
for joint-quantile estimation and a MCMC sampling procedure that combines the
delayed rejection and adaptive Metropolis and Gibbs algorithms. Numerical results
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Fig. 2 The estimated conditional quantiles Q̂Y (τ |xu) from the QR (solid), CCQR (dotted) and BJQR
(dashed) methods for the Chicago precipitation data

show that the proposed method leads to more accurate estimation at tail quantiles than
the conventional quantile regression method especially for small and modest samples.
In addition, the proposed method is more flexible and robust than the existing compos-
ite quantile regression estimator that relies on a more stringent assumption of common
quantile slopes across quantiles.

The proposed method is based on a working likelihood that gives equal weight
to different quantiles. Under the frequentist framework and for the special case of
common-quantile-slope models, Wang and Wang (2016) and Zhao and Xiao (2014)
studied the optimal choice of weightw(τ) for composite quantile estimation at central
and extreme quantiles, respectively. The optimal weight depends on unknown quanti-
ties and often is difficult to estimate. In addition, at tail quantiles, the optimal weight
may be negative depending on the distribution and this will lead to computational
challenges. It is an interesting future topic to study how to further improve the effi-
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ciency by adopting appropriate and convenient quantile-specific weight in the working
likelihood for Bayesian joint-quantile analysis.

One advantage of the Bayesian framework is that it can provide inference based
on the posterior draws. For the proposed joint-quantile regression, samples from the
posterior distribution may provide uncertainty estimates for the parameters. When an
ALD working likelihood is used for Bayesian quantile regression at a single quantile
level, Yang et al. (2016) showed that the posterior inference is asymptotically valid
with a simple posterior variance adjustment. In the Bayesian joint-quantile problem,
such an adjustment is not as straightforward but can be done based on the work of
Chernozhukov and Hong (2003). The variance estimates for a quantile regression
estimator in the frequentist approach would require us to estimate quantities related to
the conditional densities or to use the bootstrap methods. Formal inference based on
the working likelihood for Bayesian joint-quantile analysis is a challenging problem
and requires further studies.
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