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ABSTRACT: We provide an in-depth convolutional neural net-
work (CNN) analysis of optical responses of liquid crystals (LCs)
when exposed to different chemical environments. Our aim is to
identify informative features that can be used to construct
automated LC-based chemical sensors and shed some light on the
underlying phenomenon that governs and distinguishes LC
responses. Previous work demonstrated that, by using features
extracted from AlexNet, grayscale micrographs of different LC
responses can be classified with an accuracy of 99%. Reaching such
high levels of accuracy, however, required the use of a large number
of features (on the order of thousands), which was computationally
intensive and clouded the physical interpretability of the dominant
teatures. To address these issues, here we report a study on the
effectiveness of using features extracted from color micrographs
using VGG16, which is a more compact CNN than Alexnet. Our analysis reveals that features extracted from the first and second
convolutional layers of VGG16 are sufficient to achieve a perfect classification accuracy while reducing the number of features to less
than 100. The number of features is further reduced to 10 via recursive elimination with a minimal loss in classification accuracy (S—
10%). This reduction procedure reveals that differences in spatial color patterns are developed within seconds in the LC response.
From this, we conclude that hue distributions provide an informative set of features that can be used to characterize LC sensor
responses. We also hypothesize that differences in the spatial correlation length of LC textures detected by VGG16 with DMMP and
water likely reflect differences in the anchoring energy of the LC on the surface of the sensor. Our results hint at fresh approaches for
the design of LC-based sensors based on the characterization of spontaneous fluctuations in the orientation (as opposed to changes
in time-average orientations reported in the literature).
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B INTRODUCTION

Liquid crystals (LCs) provide a versatile platform for the
sensing of air contaminants (chemical sensing)l’2 and for the

brightness of the optical signal has been shown to be strongly
correlated to the differential binding energy between the
analyte and mesogen to the surface. The physicochemical

sensing of heat transfer and shear stress (mechanical sensing).3
In the context of chemical sensing, LC sensors can be designed
to change their orientational ordering and optical birefringence
upon exposure of the LC to a certain targeted chemical
environment. For instance, an LC sensor can be prepared by
supporting a thin LC film (thickness of micrometers) on a
chemically functionalized surface. Typically, the molecules
within the LC film (the mesogen) bind to the surface and
assume a homeotropic (perpendicular) orientation that
provides an initial optical signal. Subsequent exposure of the
LC film to an analyte leads to the diffusive transport of the
analyte through the LC phase and the displacement of the
mesogen at the surface, triggering rich space—time optical
responses (Figure 1). The response time of the spatial-average
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principles of LC chemical sensors are explained in detail
elsewhere.'

A primary challenge for the development of LC sensors (as
in other sensing technologies) is their potential sensitivity to
interfering chemical species. For instance, LC sensors designed
for the detection of dimethyl methylphosphonate (DMMP),
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Figure 1. Working design principles of a liquid crystal chemical sensor.
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CH,PO(OCH,;),, might exhibit similar optical responses when
exposed to humid nitrogen.* Moreover, LC responses can also
be slow, as these require the diffusion of the air contaminant
through the LC film and the displacement of the mesogen at
the surface. Sluggish responses limit the applicability of the LC
sensor (e.g, when detecting highly toxic chemicals). These
issues are illustrated in the experimental responses shown in
Figure 2. Although the selectivity of LC sensors can be
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Figure 2. Optical responses of liquid crystals under gaseous N,—water
(30% relative humidity) and N,—DMMP (10 ppm) environments.
LCs were deposited into microwells with a diameter of 3 mm to
enable high-throughput data collection. LC responses were recorded
at room temprature.

optimized by chemical design to largely eliminate the effects of
humidity, a natural step is to determine whether or not one can
unravel hidden patterns in the optical responses that can help
discern between chemical species. The identification of such
patterns can also help reduce detection times and simplify the
design of LC sensors.

Machine learning techniques are actively being used for
pattern recognition in diverse branches of science and
engineering. Specifically, convolutional neural networks
(CNNs) have been used for brain tumor and skin lesion
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classification.”® The goal of a classification strategy is to

separate different images by using numerical features
(descriptors) that characterize such images. Features are
projections of the original image into an information space
that seek to best summarize or describe an image (features are
characteristic patterns of the image). Certain features can be
strongly correlated to physical phenomena that govern a
system; for instance, image features such as textures are often
correlated to structural properties of materials.” Interestingly,
informative features that capture multiscale spatial patterns can
be extracted from CNNs that have been pretrained using
generic images (that are not directly related with the
application at hand). Such features can then be used in an
external classification engine such as a fully connected network,
logistic regression, or support vector machine. For instance, in
the work of Kawahara et al,° the pretrained CNN Alexnet”® was
used to classify skin lesions. In the work of Ling et al.,” textures
extracted from the pretrained CNN VGG16'’ are used to
predict material properties. The principle behind the
exploitation of pretrained CNNs is known as transfer
learning.""

Cao and co-workers recently used Alexnet to characterize
optical LC responses (as grayscale images) and demonstrated
that spatial features of the LC response can be used to discern
the chemical environment.'” Specifically, the authors demon-
strated that spatial features extracted from the deep layers of
AlexNet can be used to achieve classification accuracy levels of
99%. Notably, they also observed that snapshots taken within
three seconds of exposing the LC are sufficient to classify the
environment (either DMMP or humid nitrogen). Unfortu-
nately, reaching such high levels of accuracy required an
extremely large number of features (on the order of
thousands), which resulted in computational issues and
clouded the physical interpretability of the dominant features.
In particular, features extracted from deep CNN layers, while
informative, are difficult to interpret.

In this work, we extend the results of Cao and co-workers by
analyzing LC response features extracted from VGG16, which
is a CNN that embeds a smaller set of convolutional filters
than that of Alexnet. Moreover, in the current study, we use
RGB (color) images directly (in previous work grayscale
images were used). Our findings demonstrate that features
extracted from the first and second convolutional layers of
VGG16 allow for a perfect classification accuracy for the same
data set studied by Cao and co-workers while reducing the

https://dx.doi.org/10.1021/acs.jpcc.0c01942
J. Phys. Chem. C 2020, 124, 15152—-15161


https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01942?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01942?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01942?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01942?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01942?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01942?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01942?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01942?fig=fig2&ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://dx.doi.org/10.1021/acs.jpcc.0c01942?ref=pdf

The Journal of Physical Chemistry C

pubs.acs.org/JPCC

number of features to approximately one hundred. We
demonstrate that the number of features can be further
reduced to 10 via recursive feature elimination with minimal
losses in sensor accuracy. This feature reduction procedure
reveals that complex spatial color patterns are developed within
seconds in the LC response, which leads us to hypothesize that
differences in spontaneous fluctuations in the LC tilt
orientation (angle) play a key role in sensor selectivity and
responsiveness. Our analysis also reveals that hue distributions
provide an effective set of features to characterize LC

responses.

B METHODS

Experimental Methods. As described in our prior
publication,'* we recorded six videos that show the response
of LCs to N,—DMMP at 10 ppm (the length of each video
ranges from 4 to 13 min) and six videos that show the response
of LCs to N,—water (the length of each video ranges from 7 to
30 min). The experimental system is sketched in Figure 3.
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Figure 3. Sketch of experimental system used for collecting LC
response data. Reproduced with permission from ref 12. Copyright

2018, American Chemical Society.

Each video tracks the dynamic evolution of multiple
independent microwells (the total number of microwells
recorded was 391). We captured a frame (micrograph) from
each video every 3.3 s. We split each frame into several images,
each containing a single microwell at a specific time. The total

number of microwell images (snapshots) generated was
75081, and each image is resized to 60 pixels X 60 pixels
(see Figure 2 for some example micrographs). The
experimental procedure followed to obtain the LC response

data was the following:

e Formation of thin films of LC supported on metal—
salt-decorated surfaces: Aluminum perchlorate salts (S0
uL, 10 mM) in ethanolic solution were deposited by
spin-coating (3000 rpm for 30 s) onto the glass surfaces
at the bottom of the polymeric microwells. Next, 2 yL of
S5CB (4—cyan0—4’—pent?flbiphenyl) was deposited into the
3 .
with a depth of 5 ym using a
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polymeric microwells

micropipette. The excess LC was removed from the
array by wicking it into a microcapillary.

e Optical characterization of LC films: The optical
appearance of the LC was characterized by using an
Olympus BX-60 polarizing-light microscope in trans-
mission mode (Olympus, Japan). Conoscopic imaging of
the LC films was performed by inserting a Bertran lens
into the optical path of a polarized-light microscope to
confirm the homeotropic orientation. '

® Ordering transitions induced by DMMP and humid
N,: The LC-filled microwells were exposed to a stream
of dry N, containing DMMP (10 ppmv) within a flow
cell'” with glass windows that permitted the character-
ization of the optical appearance of the LC using a
polarized optical microscope. The gas containing
DMMP was delivered to the flow cell at 300 mL/min
by using a rotameter (Aalborg Instruments and Control,
Orangeburg, NY). For experiments performed to
evaluate the response of the LCs to water vapor,
nitrogen containing 30% relative humidity was delivered
to the flow cell at 300 mL/min with the same rotameter
(we call this mixture N,—water). The optical appearance
of the LC film was recorded using an Olympus camera
(Olympus C2040Zoom, Melville, NY) and WinTV
software (Hauppauge, NY).

Computational Methods. In this section, we summarize
the machine learning methods used to analyze optical
micrographs of LCs. We focus on classifying whether an LC
sensor has been exposed to DMMP or humid air (we call this
water, for convenience). In other words, our framework is
focused on binary classification. We use the same data set
reported by Cao and co-workers'” but focus on patterns
developed within the first 30 s of the LC response. Details
regarding the experimental system and data preparation
methods can be found in."”

In summary, the data set analyzed was obtained from six
videos that show the response of LCs to a gaseous stream of
N, containing 10 ppm DMMP and six videos that show the
response of LCs to a gaseous stream of N, containing 30%
relative humidity (both at room temperature). Each video
tracks the dynamic evolution of multiple independent

microwells (the total number of microwells recorded was
391). We captured a frame (a micrograph) from each video
every 3.3 s. We split each frame into several images, each
containing a single microwell at a specific time. The total
number of microwell snapshots generated was 75 081 (the data
set analyzed is extensive).

Examples of snapshot sequences collected during the
microwell responses are presented in Figure 2. Our machine
learning analysis treats snapshots as time-independent; this
type of analysis is more challenging than the analysis of time-
dependent sequences, and it is more desirable from a sensor
design perspective; this is because we want to detect a
contaminant by ignoring its response history. Specifically, our
aim is to show that machine learning techniques can detect a
contaminant by just looking at a snapshot at any time (by
exploiting the spatial pattern of the response).

Classification. In an ideal setting, in which an image can be
characterized using highly informative features, classification
can be performed using a linear hyperplane, where the
dimension of the hyperplane is equal to the number of
features minus one. For instance, if an image can be

https://dx.doi.org/10.1021/acs.jpcc.0c01942
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characterized using two features, the hyperplane will be a line.
This hyperplane provides a decision boundary under which
every image on one side is considered a member of one class
and every image on the opposite side is considered a member
of the contrasting class. In most settings, these classes are
provided a numerical label of +1 or —1. In our setting, water is
considered the +1 class and DMMP is considered the —1 class.

The classification engine used for the LC data set is a linear
support vector machine (LSVM), which is trained using image
features extracted from the CNN VGG16. An illustration of
the LSVM method is presented in Figure 4. LSVM is a
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Feature 2
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Figure 4. Illustration of a linear support vector machine.

classification method that builds a linear decision boundary
between observations. This is done by finding a hyperplane
that maximizes the margin between the set of closest images to
the hyperplane (known as the support vectors) and the
hyperplane itself. The hyperplane is a weighted linear
combination of all the CNN features representing each
observation. The magnitude of each feature weight represents
its relative importance (a proxy for information content); in
other words, a feature that is highly informative (explains
differences in the images well) will tend to have a large weight
while a noninformative feature will tend to have a small weight.
The images that are closest to the margin are the most difficult
to classify (difficult to distinguish), while the ones that are
farthest away from the margin can be easily classified (easy to
distinguish). The support vectors are the images that define the
separation boundary.

The identification of relevant features can be achieved by
penalizing the /; norm of the weights of the LSVM classifier.
This penalization term seeks to sparsify the weight vector
(have few nonzero entries). Consequently, a penalized LSVM
classifier is tasked with finding a separating hyperplane that
best classifies the images, and the classifier is also required to

complete this task with a minimal number of features (this set
of features are interpreted as the ones that provide most
information). The mathematical formulation of the LSVM
problem is

n

mlnwo,w E

i=1

9
1 —ylw, + Z wa, [+ Allwll;
=1 (1)

Here, n is the number of images (observations). m is the
image feature dimension. w € R™ represents the feature
weights. x; € R™ are the features of observation i. y;, €{—1,
+1} represents the label for observation i. A €R, is a
hyperparameter for the penalization of the I, norm.'® The
solution of eq 1 is often called the training phase and the
images used for its solution are often called the training set.
Once the classifier has been trained, one uses the optimal
hyperplane weights w* identified in the training phase to
predict the label of a new image that is not in the original
training set. The new images are known as the test (validation)
data set. This process is repeated five times, each time with a
new training and validation set (five-fold validation). This
allows for a robust testing of the effectiveness of the
classification model on the entire data set.

Feature Extraction. In order to train the LSVM classifier,
we first need to identify features that best explain each image.
Cao and co-workers previously used Alexnet to conduct feature
extraction from LC micrographs. Alexnet is a CNN that has
been pretrained using the Imagenet database.'” This database
is a collection of millions of images that contains over 1000
categories. The original goal of Alexnet was to work as a
classifier;® however, one can also use features extracted by
Alexnet to train an external classifier such as an LSVM
(transfer learning). This approach avoids retraining the CNN,
which can be highly computationally expensive. Cao and co-
workers demonstrated that the transfer learning approach can
be effectively used to classify optical micrographs of LCs using
LSVM; their analysis, however, used over 5000 features to
explain each micrograph. Moreover, in their approach, the
micrographs were transformed into grayscale images; as we will
see, this transformation leads to significant losses of
information and hides the physical LC behavior.

In this work, we consider a different pretrained CNN that
we hypothesize may be better suited to our given application.
We sought to merge our understanding of working principles
of CNNs with our knowledge of the physical behavior of LCs.
A primary consideration is the length scale that characterizes
the LC reponse. Specifically, we know that nematic ordering
and interfacial interactions within LCs give rise to optical
patterns of orientation on the micrometer scale; because of
this, the patterns created by the LCs need to be captured with
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Figure 6. Schematic of feature extraction and classification framework (E(:) represents spatial average).

a small observation lense. Moreover, the interference colors
created by the LCs are an indicator of their tilt angles
(orientation), and thus, the CNN selected should be trained
using RGB images directly (as opposed to grayscale images). A
CNN that fits these requirements is VGG16, which has been
pretrained by the visual geometry group at Oxford.'’ The
VGG16 CNN has been trained on the Imagenet database. The
structure and optimal weight values for the trained VGG16
network are freely available through the Keras software and are
what is used during feature extraction.'® VGG16 utilizes the
smallest possible convolutional filter size (3 X 3), which should
be best for capturing small-scale structural patterns in images.
Moreover, VGG16 is a much shallower CNN than AlexNet,
and thus, its features are easier to interpret. A simplified
representation of the VGG16 architecture is shown in Figure S.

The basic idea behind feature extraction using a CNN such
as VGGI16 is to reduce a given input image into a small set of
numerical values that can be used to best summarize and
classify the image. Each image is represented by a set of input
channels, and each set of input channels is expressed as a two-
dimensional pixel field (a matrix). The input channels are
typically the red, green, and blue (RGB) channels of an image.
Image reduction is performed through a sequence of matrix
convolution operations in which spatial information is
extracted from the image using filters (matrices with specific
patterns). Subsequent convolutions compress this image to the
point where a decision (e.g., classification or regression) can be
made, which is represented by the fully connected layer in
Figure 5. More details on this procedure can be found in ref
10.

A convolution is a manipulation of an image matrix with a
filter matrix. Specifically, a convolution is the process of finding
the extent to which a given pattern (defined by a convolutional
filter) is present within a neighborhood of an image (and
repeating the process by spanning all neighborhoods of the
image). In other words, the convolution seeks to identify to
what extent a specific spatial morphology and/or correlation
structure (defined by the filter matrix) is present in the image.
An example of applying a convolution filter to an image is
illustrated in Figure 7. Convolutional filters provide a
quantifiable approach for identifying multiple spatial structures
within a given neighborhood (different filters identify different
types of patterns). The larger the value of the filter output is,
the more similar the given neighborhood is to the pattern that
the filter is attempting to find. Optimal filter matrices that best
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Figure 7. Illustration of the application of a convolution filter to a
neighborhood of two different images.

classify a set of images (optimal patterns) can be found by
training the CNN directly on the data set. Specifically, the
training process aims to compute the entries of the filter
matrices that best separate the images). Matrices are high
dimensional objects, and as such, training a CNN involves a
highly computationally expensive procedure. Filters extracted
from training over a given set, however, can also be reused to
search for similar patterns in a different data set. In other
words, pretrained filters (preidentified spatial patterns) can be
used on a different image set with the sole purpose of obtaining
feature information. While the filters are not optimal for the
new data set, this procedure is often effective at detecting
general patterns in images, and the obtained feature
information can be used in an external classifier such as LSVM.

In the example provided in Figure 7, we see that the
convolutional filter is seeking to match the neighborhood to a
cross-pattern, and thus, the top neighborhood has a higher
output (perfect match) than that of the lower output
(imperfect match). In the CNN, the matching is applied to
every pixel in the image, and thus, there is a convolution value
for every pixel neighborhood (resulting in a matrix of filter
outputs). In our approach, the entire set of outputs for each
filter are averaged and utilized as a feature for the LSVM
classification. This is done in order to ensure that the features
are spatially invariant. Spatial invariance allows for images that
are not of a uniform size or perfectly centered to be treated as
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similarly as possible. This practice also forces the classifier to
seek meaningful and generalizable features associated with the
sensors rather than arbitrary features based upon the location
of the sensor in the given frame (thus leading to more
consistency in the results).

The next decision to be made is what feature information
should be extracted from VGG16. The VGG16 network has
been trained to classify highly complex images, and the deepest
layers have been carefully tuned to differentiate such images.
The early layers of the network, however, are the most general
and are easier to interpret (they are less evolved). Accordingly,
in our approach, we use the outputs of the first and second
convolutional blocks to inform features for LSVM classifica-
tion. Feature extraction is conducted by feeding a given image
into VGG16. We modified the network so that the only output
it provides is information extracted from the first and second
convolutional blocks. This information is extracted in the form
of convolutional filter activations via convolutions.

In summary, the CNN used here provides a number of
features equal to the number of convolutional filters used for
each image. In our case, the total number of features reaches
192 (64 for the first block and 128 for the second block). Note
that the number of features increases with the depth of the
layer, which precisely reinforces our desire to focus on the first
layers. A visual representation of this process for the first and
second convolutional blocks is provided in Figure 6. Feature
extraction and network modification were performed using
Keras'® and Tensorflow.'” The VGG16 network and trained
weights are made available in the Keras software, which allows
for easy manipulation of the VGG16 network so that this
process may be completed for any number of image sets. With
the extraction of the features from the first two layers of the
VGG16 network, analysis of the classification may be
conducted.

B RESULTS AND DISCUSSION

We now describe our findings when applying CNN techniques
to analyze LC micrographs. All scripts and data needed to
reproduce the results are available at https://github.com/
zavalab/ML/tree/master/LC_CNN_Color.

Classification and Feature Reduction. Our machine
learning (ML) framework using VGG16 features and LSVM
was able to classify water and DMMP micrographs with 100%
accuracy. Notably, these results were obtained for micrographs
collected within 30 s of exposing the LCs to the chemical
environments. This result was achieved when using all of the
128 features of the second convolutional layer. Table 1 reports
the results for a five-fold cross-validation; here, we can see that
an accuracy of 98% is obtained when we use the 64 features of
the first convolutional layer. These results indicate that LC
features developed early in the sensor response are highly

Table 1. Five-Fold Cross-Validation of SVM Classification
Using VGG16 Features

conv” layer feature accuracy SD
second 128 100% +0%
second 10 93% +2%
first 64 98% +1%
first 10 90% +3%

“The abbreviation conv stands for convolutional layer.
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informative and sufficient to discriminate among chemical
environments.

From Table 1, we also see that it is possible to drastically
reduce the feature set (this is done by selecting the features
with the largest LSVM weights) while retaining a high accuracy
level of 90—93%. The fact that we can obtain such high levels
of accuracy with a reduced feature set can be attributed to the
fact that the VGG16 network was pretrained using highly
complex images, which suggests that many of the features
extracted may be redundant or unnecessary (i.e.,, optical LC
micrographs are simpler images than those used in generic
databases such as ImageNet). In Table 2, we observe that the

Table 2. Five-Fold Cross-Validation of Select Time SVM
Classification Using VGG16 Features

time (s) second conv” SD first conv SD

3 100% +0% 96% +2%
100% +0% 95% +2%

100% +0% 94% +2%

12 100% +0% 96% +1%

15 100% +0% 94% +2%

18 100% +0% 95% +1%

21 100% +0% 95% +2%
24 100% +0% 96% +2%

27 100% +0% 96% +2%

“The abbreviation conv stands for convolutional.

performance of the classifier is independent of the time at
which the samples are collected. This reinforces our
observation that differences in LC features develop early in
the response, and they seem to persist. Our results achieve a
reduction in the number of required features reported in
previous work by 2 orders of magnitude. This reduction
facilitates the physical interpretation of the LC features.

To validate the classification results of our ML framework,
we compared our results against those of the classification
achieved with principal component analysis (PCA). Here, we
use PCA to project the 128-dimensional feature spaces of the
second layer into two dimensions.”” The results of the
projection are visualized in Figure 8. The clustering and
separation of the water and DMMP features indicate that
perceptible differences in the CNN features of water and
DMMP exist. These PCA results indicate that the features
extracted from the CNN are indeed highly informative, but the
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Figure 8. Classification using principal component analysis of VGG16
features.
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existence of a significant overlapping region also highlights that Randomized Tmage Filter
an accurate classification between micrographs requires more of1fo 1100
than two features. o|1] 1| * 1lof=
Achieving a high classification accuracy, while having a high 0]0]0 0]o

importance from a sensor design standpoint, is not the only
goal of our analysis. Specifically, we are interested in assigning
the physical interpretation of the extracted features. To do so,
we analyzed the features extracted from the first convolutional
layer of VGG16 (visualized in Figure 6). These features are
basic and highly informative, and they do not depend on
previous layers of convolution. Consequently, the features of
the first layer are generalizable and more suitable for physical
analysis. We also recall that the features extracted from the first
layer of VGG16 are the average outputs of 64 different filters.
The LSVM hyperplane feature weights (shown in Table 3)
help us identify which of these 64 filters are most dominant.
Here, we see that Filters 8, 4, 52, and 38 are the most
dominant ones.

Table 3. Optimal LSVM Weight Vector Obtained from the
Training Set”

filter number filter weight percent filter association

8 16.8% water

4 16.5% water
52 14.3% DMMP
38 14.2% DMMP
17 12.3% water
18 9.3% DMMP

6 8.0% DMMP
37 5.0% water
43 3.6% water
10 0.1% DMMP

“Using 10 features from the first CNN layer.

Maximally Activating Textures. To obtain some insight
into the spatial patterns (textures) that the most dominant
VGGI16 filters (identified in Table 3) are capturing, we
generated synthetic textures and identified the ones that
maximized the average output for the different filters. This was
done by feeding white noise images into VGG16 and
modifying the image to maximize the output of each filter.
We refer to these textures as the maximally activating textures.
A visualization of this process is seen in Figure 9. Visualizations
of the top five maximally activating textures for water are
presented in Figure 10, and those for DMMP are presented in
Figure 11. Here, we also show the activation fields on the input
image associated with each filter. Two important aspects to
consider when evaluating maximally activating textures are the
color and the texture (spatial pattern). The hue (color) is of
particular interest in the analysis of LCs, as different hues are a
result of different orientations of the LCs within the film'**!
(assuming that the LC film thickness is relatively uniform).
Moreover, the hue covers a spectrum of color, so it is preferred
over RGB channels. In other words, a hue value captures the
three values of RGB associated with a color. The maximally
activating textures in Figures 10 and 11 reveal that DMMP and
water have a distinct set of hues. From this observation, we
conclude that the hue plays an important role in characterizing
both water and DMMP responses.

Hue Analysis. In order to understand the importance of
hue in the characterization of the DMMP and water responses,
we developed a simple (but interpretable) feature set for each

Optimization
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—
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Texture Filter
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0101 0jo]1

Figure 9. Graphic describing how to find maximally activating
textures. To find the spatial pattern that is being maximized by a given
filter, we feed different synthetic patterns and identify the one that
maximizes the output.

Filter 8 Filter 4 Filter 17 Filter 37 Filter 43

Original

Figure 10. Maximally activating textures (top) and activations
(bottom) for top water filters.

Filter 52  Filter 38 Filter 18 Filter 6 Filter 10

Original .

Figure 11. Maximally activating textures (top) and activations
(bottom) for top DMMP filters.

image. Specifically, we analyzed the normalized distribution of
the image hues. This distribution, which is split into 100 bins,
captures the distribution of the hue within each sample image
(the distribution of color). Each image is then represented as a
100-dimensional H vector in which each element h; represents
the probability (frequency) of finding a pixel in a given point of
the hue spectrum.

Examples of hue distributions for water and DMMP are
shown in Figure 12, and with their cumulative distribution
functions (CDFs) are shown in Figure 13. From the hue
distributions, we see that the intensity peak at a hue value of 65
(yellow to orange) is much stronger for DMMP than that for
water. The CDF comparison reveals that DMMP exhibits no
activity in the hue range 20—60 (blue to yellow), while water
does. The CDFs also indicate that water micrographs have a
more homogeneous coverage of the hue spectrum (reflected as
a smoother CDF curve), while DMMP micrographs have a
more heterogeneous coverage of the hue spectrum.

We used LSVM and hue distribution information to
understand the efficacy of using hue in differentiating water
and DMMP responses. In Table 4, we can see that an accuracy
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Figure 12. Hue distributions for representative water (top) and
DMMP (bottom) micrographs.
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Figure 13. Comparison of the hue cumulative distributions for water
and DMMP.

Table 4. Five-Fold Cross-Validation of LSVM Classification
Using Hue Distribution

feature type feature accuracy SD

hue distribution 100 88% +8%

of nearly 88% can be achieved by using hue distributions of the
images alone. These results reveal that hue (color) is an

informative feature for classification. Moreover, this result
suggests that water and DMMP contain different hue
distributions, which is most likely a result of differing LC
orientations within the sensor film. Our results suggest that
differences in color develop early in the response. These results
make sense, because the optical properties of liquid crystals are
known to be highly sensitive to stimuli. The lower classification
accuracy obtained with hue distributions (compared with that
of CNN features) is attributed to the fact that hue distributions
do not capture spatial pattern (correlation) information (while
CNN features do).

Grayscale Analysis. To understand the information
content that can be attributed to color and to pure spatial
patterns, we used VGG16 feature information extracted from
grayscale images (ignoring color). From this analysis, we found
that the classification accuracy was reduced by 6—12% (Table
5). This further supports the observation that color is an

Table S. Five-Fold Cross-Validation of LSVM Classification
Using Grayscale VGG16 Features

conv” layer feature (grayscale) accuracy SD
second 128 94% +2%
second 10 75% +3%
first 64 87% +3%
first 10 83% +3%

“The abbreviation conv stands for convolutional.

important source of information but also that the spatial
patterns found within the filters cannot be ignored. In order to
analyze the grayscale patterns, we created a single texture that
is a linear combination of the maximally activating textures.
The linear combination was created by using the hyperplane
weights obtained with LSVM. The linear combination is shown
in eq 2, and the coefficients are taken from Table 3. The linear
combinations of the grayscale patterns for DMMP and water
are shown in Figure 14.

0.143
total weight = 0.459
( 0.142 0.093] +

—) + filter 18(—
0.459 459

DMMP texture = filter 52( ] + filter 38

0.168
total weight = 0.541

(m) + filter 17(M] + ...
0.541 541

water texture = filter 8( ] + filter 4

)
The representative textures for both DMMP and water are
used to summarize and understand differences in spatial
patterns. The water texture possess a larger spatial correlation
between the light and dark pixels, while the DMMP texture
appears more randomized. We confirmed this observation
quantitatively by analyzing the spatial autocorrelation of the
textures. This is done by using Moran’s I coeflicient, which is a
measure of global spatial autocorrelation, and is given by

N Z,‘ Zj Wij(xi - 97)(.%] - D_C)
z,‘ Zj Wi Zi (xi - E)Z (3)

Here, N represents the size of the neighborhood being
analyzed. x; represents the intensity of pixel i. ¥ represents the

Moran’s I =
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Figure 14. Textures for water (top) and DMMP (bottom). Textures
are linear combinations of maximally activating filters.

average intensity in neighborhood N. w; represents the inverse
distance weighting matrix in neighborhood N.

The Moran’s I coeflicients reveal that both DMMP and
water patterns have a positive spatial autocorrelation with high
confidence (Table 6), but the autocorrelation in water is of a

Table 6. Global Moran’s I Coefficient Values

texture Moran’s I P analysis
water 0.54 P < 0.00001
DMMP 0.40 P < 0.00001

longer range. This result may be further validated by
calculating the local Moran’s I coeflicient values for every
pixel in the image in a 3 pixel X 3 pixel neighborhood. The
resulting correlation fields, shown in Figure 15, indicate that
the DMMP texture has a higher variance, and the areas of both
positive and negative autocorrelation are clustered. For the
water texture, on the other hand, we see a more uniform
autocorrelation with a higher overall magnitude (confirming
the observations obtained with the global Moran’s I
coefficient).

Our analysis indicates that VGG16 is capable of unraveling
spatial patterns that result from exposure of the LC sensor to
either DMMP or water. Moreover, we conclude that
perceptible changes in spatial patterns are sufficient for the
LSVM to discern between two chemical environments with a

]
[\*)
Moran's |

Moran's |

-0

Figure 15. Local Moran’s 1 analyses for water (top) and DMMP
(bottom).

high accuracy. We hypothesize that the differences in the
correlation lengths of the LC textures detected by VGG16 with
DMMP and water reflect differences in the anchoring energy
of the LC on the surface of the sensor. Specifically, a high
anchoring energy will suppress LC orientational fluctuations
and lead to a small correlation length. This result suggests that
one key influence of water on the LC is to lower the anchoring
energy at the metal salt-coated surface used in the LC sensor.
The result also suggests that macroscopic orientational
transitions may not be necessary in order to detect targeted
chemical species using LCs, but the characterization of
fluctuations in the orientation by using VGG16 may be a
useful future strategy to explore in experiments.

Overall, analyses of both the grayscale spatial patterns and
hues provide new insight into possible physical mechanisms
that underlie the ability of VGG16 to differentiate the
responses of the LC sensors to water and DMMP. Moreover,
an additional important finding of our study is that perceptible
changes in both color and spatial patterns can be detected with
VGGI16 within seconds of exposure of the LC film to the
chemical environments (a thin bright ring is only perceptible
by human vision early in the response).

Conclusions and Future Work. We have developed a
machine learning framework to obtain high classification
accuracies for optical micrographs of LC-based sensors. The
features are outputs of the convolutional filters over a given
image, which were extracted from the first and second layers of
the VGG16 network. The selection of the VGG16 network was
based upon its high performance on the Imagenet database and
its use of small convolutional filters, which are believed to be
able to extract small-scale texture and hue differences between
LC sensors. The total number of features (filters) was
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recursively reduced to ten, and these features were analyzed
through the creation of a linear combination that represented
water and DMMP textures. Analysis of these spatial patterns
indicates that the correlation structure of the textures has
perceptible differences. Specifically, the water texture is more
uniform and has a higher correlation. The CNN analysis also
reveals that color (hue) is an important feature that develops
early in LC responses, and the use of the simplified grayscale
images results in a large loss of information and a reduction in
classification performance. This information led to the
hypothesis that changes in the optical micrographs detected
by VGGI16 arise from spontaneous fluctuations in the LC
orientations that reflect changes in LC anchoring energies. In
order to explore this hypothesis further, physics-based
molecular simulations that capture the dynamics of LC and
spatiotemporal data analysis techniques are needed. Such
techniques can be used to determine if the evolution of the
spatial patterns follow different dynamic structures and/or
present different time scales. If proven true, our findings may
provide a fresh design principle for LC-based sensors in which
the mesogen and surface are tuned to maximize differences in
textures and hue fluctuations, as opposed to maximizing
differences in average response times (which has been the main
design principle behind LC-based sensors).
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