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Abstract—We introduce a novel method for summarization
of whiteboard lecture videos using key handwritten content
regions. A deep neural network is used for detecting bounding
boxes that contain semantically meaningful groups of hand-
written content. A neural network embedding is learnt, under
triplet loss, from the detected regions in order to discriminate
between unique handwritten content. The detected regions
along with embeddings at every frame of the lecture video
are used to extract unique handwritten content across the
video which are presented as the video summary. Additionally,
a spatiotemporal index is constructed from the video which
records the time and location of each individual summary
region in the video which can potentially be used for content-
based search and navigation. We train and test our methods
on the publicly available AccessMath dataset. We use the
DetEval scheme to benchmark our summarization by recall
of unique ground truth objects (92.09%) and average number
of summary regions (128) compared to the ground truth (88).

I. INTRODUCTION

The ubiquity of cameras has resulted in the availability of
large amounts of video data captured across many domains.
Lecture videos are a subset of this growing data stream that
contain handwritten or printed text elements in the scene
which can typically be classified into white or black board
data, or slides-based data. Lecture videos enable quality
educational content to be broadcast anywhere in the world,
acting as a valuable tool for students and educators across the
globe. While current search engines primarily support meta-
data based search and retrieval of lecture videos, effective
video summarization techniques are needed to extract key
content and condense this data into an easily searchable
form, to facilitate content based search.

In this work, a framework for automated lecture summa-
rization by key handwritten content is provided. The gener-
ated summary is in the form of a small set of handwritten
content objects which represent all the unique content on
the whiteboard. Further, a spatio-temporal data structure is
provided, mapping each summary content object to all of its
instances within the video. The summary and mapping can
potentially be used for further downstream applications like
recognition and indexing for visual search.

Lecture content on a whiteboard is often loosely structured
and exhibits large variances in semantic grouping. Examples
include sentences, multi-line phrases, sketches, plots and

978-1-7281-5054-3/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDARW.2019.30058

13

Lecture Frames
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Figure 1: An overview of our proposed summarization
method. We detect handwritten content regions on all frames
of a lecture video and extract feature representations from
these regions. We then generate a small subset of summary
regions for the entire lecture video which can be used for
later recognition or indexing for search.

mathematical expressions. Further, background noise, illu-
mination changes and occlusions are also present. Limited
public annotated datasets, time and cost of annotation,
further amplify these issues.

Another challenge for lecture videos is to arrive at a robust
representation given the variety of text content. Recognition
of unstructured handwritten text is a hard problem and
requires extensive annotation. Further, the usual assumptions
about text granularity at word/line level are also not reason-
able for whiteboard text. Therefore, in our work we employ a
triplet loss based method to extract visual embeddings from
detected content regions.

After handwritten content and features are extracted from
all frames of videos, the next task is to analyze the detected
regions by extracting visual features and reducing the set
of all detected text into unique content regions, which falls
under the paradigm of video summarization by extraction
of key objects. For such work, the number of key objects
produced as well as the recall of key content (at the level
of bounding boxes) with respect to all unique text content
in the lecture video, are used as evaluation metrics.

The main research questions being investigated in our
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work include 1) Can lecture videos be summarized by key
handwritten content instead of the prior art of key frames and
how do we evaluate them? 2) Can we learn an embedding
for content regions under lack of explicit targets such as
recognized text?

II. BACKGROUND

We broadly discuss the field of video summarization, in
particular, lecture video summarization and some work on
representing and tracking text in images and videos.

Video Summarization: Video summarization method-
ologies can be classified by the nature of the summary.
Keyframes that contain the highlights of the video content
are a typical form of summary found in the literature
[1]. Shorter versions of the videos - skims, montages and
synopses have also been used [2].

Many existing methods generate video summaries driven
by detection and feature representation of objects [1, 2]. Re-
cently, a method to summarize videos by key objects instead
of keyframes was proposed [3]. In this work, summarization
is posed as a representative selection problem from detected
candidate regions. In our work, we aim to summarize lecture
videos by key handwritten content regions. We use neural
network based detection and feature extraction, and match
extracted features guided by spatiotemporal constraints in
order to produce key content regions.

Lecture Summarization: Whiteboard lecture videos are
typically preprocessed by background removal and bina-
rization followed by content extraction and summarization
[4, 5, 6]. After preprocessing, handwritten content is ex-
tracted and grouped into meaningful sets, primarily using
spatiotemporal cues [4, 6, 7] or OCR [4]. Neural networks
have recently been used for direct content extraction [7].
We also use deep learning based detector for direct content
extraction and combine spatiotemporal constraints and visual
features to summarize content.

The final stage is the summarization of the lecture video.
Keyframes (which contain most of the unique content within
a video segment) [5, 6, 7], recognized text lines [4] and
production of composite images that contain all content
[5] are some of the typical methods of summaries for
whiteboard lecture videos. As far as we know, there is no
evaluation scheme in the literature for summarizing lecture
videos by key content regions.

Spotting Text in Images and Videos: Mapping bagged
keypoint-based [8] or deep neural network based features
from word images, to pyramidal hierarchy of character
label (PHOC) embeddings of corresponding text strings [8]
has been used for both handwritten words [9] and scene
text [10]. In these methods, either the word segmentation
information is accessible during testing or the text transcript
is available during training or both.

Earlier video text tracking methods followed the paradigm
of text segmentation and spatiotemporal enhancement [11].

Recently, tracking by detection and/or recognition along
with local and global spatiotemporal analysis methods such
as using dynamic programming [12] and Markov Decision
Process [13] have been explored. Evaluation of these meth-
ods rely on Multi-Object Tracking metrics [11].

In our work, we need to simultaneously detect and learn to
represent irregularly structured handwritten content without
access to the text transcriptions. Thus, we use a triplet loss
based metric learning scheme to overcome this challenge.

Datasets and Evaluation: AccessMath is the largest, pub-
licly available, benchmarked dataset for whiteboard lecture
video summarization [6]. It consists of 12 lecture videos (5
training and 7 testing), recorded with a single still camera
at 1920 x 1080 resolution spanning the whole whiteboard.

AccessMath consists of ground truth summary keyframes
and is evaluated by the average number of keyframes pro-
duced and the average recall and precision of all binary
connected components (CC) in the summary as well as in all
frames of the video. The matching scheme for binary CCs is
detailed along with benchmarking procedure by the creators
of the dataset [6] and allows split and merged matches.
Additionally, content region ground truth bounding boxes
are also provided. The boxes are drawn around content that
is created and erased at roughly the same time [7].

Meng et al. summarize general videos by key objects [3].
They test their methods on a set of 10 commercial videos
from YouTube [14] sampled at two frames per second.
Topical objects (such as products and logos) are annotated.
The ten videos have a duration of a few minutes each and
on average contain 36 instances of roughly 8 key objects
per video. However, in AccessMath, each test video has on
average 88 key content regions and total instance count per
video is of the order of ten thousand.

In our work, we propose a new evaluation scheme which
is independent of binarization and keyframes while shifting
the focus onto regions of handwritten content. Similar to
Meng et al., we use number of proposed regions and average
recall [3] of unique handwritten content across frames to
evaluate summarization. The DetEval scheme [15] is used
to obtain average recall as it is more suited for text.

III. LECTURE VIDEO SUMMARIZATION

We use a deep neural network for detection and propose a
feature extraction network trained using triplet loss learning.
Feature similarity along with spatiotemporal constraints that
model detector uncertainty are used to summarize the video
by generating key handwritten content regions.

A. Detection of Content

We adapt EAST [16] for this task, mainly because it is
anchor-free, i.e. it does not assume any priors on text content
areas and aspect ratios, which allows handling the variety of
text shapes found in lecture videos.
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1) Structure: The general EAST detector consists of a
convolution-deconvolution feature extraction block, a convo-
lutional region proposal network consisting of sub-networks
for text/non-text classification, regression to top, right, bot-
tom, left edges and angle of rotation of a ground truth
minimum bounding rotated rectangle. We use a Feature
Pyramid Network (FPN) for feature extraction [17] with
ResNet [18] backbone, deconvolution layers and activations
as originally prescribed for FPN [17]. This structure is
chosen because it extracts multi-scale features, has readily
available initialization weights from ImageNet training and
has state-of-the-art object detection performance.

The region proposal sub-network is designed as prescribed
by EAST [16] with sigmoid activations. The angle prediction
output of this sub-network is suppressed since the Access-
Math annotations are axis-aligned bounding boxes. The final
structure of the detector is shown in Figure 2.
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Figure 2: Our structure for EAST Detector. Here, k£ X k, ¢
indicates kernel size (k) and the number of channels (¢) of
a convolutional layer, /n or xn indicates downsampling or
upsampling by factor of n. C and D stands for block of mul-
tiple convolutional layers and transpose convolutional layers
respectively according to the Feature Pyramid Network [17].

2) Training Labels: Lecturer bounding box for every
frame of the training videos are obtained using an SSD
[19] detector trained on the PASCAL VOC object detection
dataset [20]. Ground truth text boxes which overlap with
the bounding box of the lecturer are removed if their area
of intersection is greater than 25% of the text box area and
training targets for pixel mask and edge displacements are
generated as described in the original EAST paper [16].

3) Loss Functions: A generalized DICE coefficient loss
is computed between text pixel predictions and ground truth
targets for every iteration. This has shown good segmenta-
tion performance under unbalanced labels for bio-medical
images [21]. We compute the intersection over union (IOU)
loss as described by Zhou et. al. with respect to the ground
truth [16]. The sum of DICE and IOU losses is the total

loss for the network. We chose DICE loss over weighted
Binary Cross Entropy (BCE) loss because we observed
better numerical stability during training, possibly due to
exponential and logarithmic computation in the BCE loss.

4) Inference: After training (see Section IV for details),
the detector produces a set of redundant and overlapping
bounding boxes due to the dense prediction layers. The
predictions are scanned row-wise and greedily merged if
the IOU between two successive bounding boxes are greater
than a threshold (). Non-maximum suppression, with
threshold (Onms), is used on the remaining predictions to
obtain the final set of proposed regions.

B. Feature Extraction

The proposed regions from the detector stage need to be
represented by a feature vector that can distinguish between
instances of different unique content regions. Since Access-
Math does not include text transcriptions, we use a metric
learning method to learn this feature embedding. We choose
triplet loss formulation since it has shown good performance
on disjoint face identities in biometric applications [22].
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Figure 3: Our proposed feature extraction model uses In-
ception Block A (left) and Inception Block B (right) as the
basic units. The layers are chained together and followed
by s linear layer and L2 normalization to obtain embedding
from resampled content regions.

1) Structure: The extracted bounding boxes from the de-
tector model are first passed through a bilinear interpolation
layer to get proposals of uniform size. We use interpolated
size 64 x 64 with channel size, ¢ = 256, retained from the
detector D2 layer. This size is chosen to accommodate all
the variety in aspect ratios seen in the lecture content, where
text is not predominantly horizontal like in natural images.

These uniformly shaped feature maps are then passed
to a series of inception [23] blocks stripped of any non-
linearity functions. The structure of each block is illustrated
in Figure 3. The blocks are connected as A-A-B-A-A-A-A-
B-A-A. The architecture of the feature extractor is based on
TextSpotter [24], which has state-of-the-art end-to-end text
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recognition performance in natural scene images. Each block
has added LeakyReLU activations (negative slope of 0.001)
at the end. The last inception block output is propagated
through a 1 x 1 convolutional layer with stride (2 x 2)
and a fully connected layer of size 2048 followed by a L2
normalization generating an embedding for the input region.

2) Loss Function: A generalized triplet loss is computed
between a pair of positive samples with anchor and negative
sample with anchor using Equation 1.

L =maz(0,m + | f(za) — Fxp)3 — [1f (xa) — f(za)ll3)
)]
where, f(x,) is the anchor embedding and f(x,) and
f(z,) are the positive and negative sample embeddings
respectively, m is a margin which indicates the ideal min-
imum separation between the distances computed from the
positive-anchor and anchor-negative pairs of embeddings.

3) Triplet Sampling Strategy: Triplet sampling strategies
are often key to learning robust representations of content
regions. Typically, in every iteration, positive anchor and
negative samples are chosen such that positive-anchor and
anchor-negative pair distances fall within the margin.

In our case, additional priority is given during sampling to
select negative regions within a certain distance of the anchor
sample. For further augmentation, the triplet bounding boxes
from the ground truth are perturbed with random noise and
the negative samples have a 20% chance to be dropped in
favor of a background region sample.

4) Inference: The feature embedding layers are trained
using the ground truth triplet samples generated from the
training lecture video sets. For testing, the proposed bound-
ing boxes from the detector, after the non-maximum suppres-
sion stage, are used to generate features for each region.

C. Content Summarization

Detected regions and corresponding feature embeddings
are extracted from the test set of lecture videos. Detected
regions are filtered using person detection using the same
procedure as during training (Section I1I-A2).

The video frames are then grouped in intervals of 60
seconds such that each successive interval overlaps the
previous by 30 seconds. The summarization by key objects
takes place in two passes. In the first pass, seed summary
regions are obtained on the basis of strong feature similarity
and strong spatial constraints. Then, weakly matched regions
are re-examined and grouped or merged appropriately to
produce the summary content. As a last step, summary
content is pruned based on number of regions.

1) Generating seed summary content: For every 60 sec-
ond interval of the test video, we examine all pairs (7;,7;)
from the set of detected regions R for spatial proximity
using weak and strong spatial thresholds (f; and 63) as
well as for feature proximity using weak and strong thresh-
olds (0{ and 05 ). We compute the feature distance d{j =

Deriving Strong and Weak Feature Thresholds from Val trong and Weak Spatial Constraints from Validation Lecture Video

(a) Feature Thresholds

Figure 4: Subfigures (a) and (b) shows derivation of strong
and weak thresholds for feature and spatial distance respec-
tively, from validation lectures. Best seen in digital.

2 . . 2
[ f(ri) — f(r;)|l; and spatial distance dj; = [|x; — x;l|5.
Where, f represents the feature extractor network and x;,
x; are the top-left and bottom-right corner coordinates of r;
normalized with respect to frame height and width.

o If dlfj < 95 and dfj < 05, 14, 75 are considered a strong
match and merged into the same summary identity.

o If @ < 0] and 05 < df; < 07 OR d3; < 03 and 0] <
d{j < 6/, r; and r; are placed in separate summary
identities and the two identities are marked as strong-
weak matches.

e If 05 < dl; < 0f and 05 < d3; < 65, r; and 1,
are placed in separate summary identities and the two
identities are marked as weak-weak matches.

« In all other cases, 7;, r; are placed in separate summary
identities and marked as non-matches.

We obtain a set of summary regions S, where each S, is a
unique content region with instances {71, "2m, -+, "nm } -

2) Growing summary content: The initial set of summary
seed content regions S = {51, 5o, ..., S} consist of dis-
crete sets of strongly matched regions within 60 second
intervals. We recursively check all summary regions that
overlap temporally (with a tolerance of 120 seconds) for
spatial and feature based match, stopping when no changes
are observed. During each recursion, the bounding box
and features of each summary region are aggregated by
computing the union and the mean respectively. Surviving
weak matches are grouped via spatial constraint.

3) Determining thresholds: The distances between em-
beddings for all regions within a 60 second interval is
computed and Otsu’s algorithm is used to find the threshold
9{ . The underlying assumption is that the positive and
negative matches form a bimodal distribution. The peak
of the positive matches distribution is also recorded as
a secondary threshold 95 . Figure 4(a) shows accumulated
bimodal distribution estimated for all intervals of a single
lecture video along with selection of 9{ and 9% .

The variation in illumination between frames causes jitter
in the detector predictions. On the validation lecture, we
analyze the displacement between detected bounding boxes
that correspond to the same ground truth box and derive
thresholds on the basis of recall and precision of true and
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false matches. Figure 4(b) shows the recall-precision at
different displacements along with the thresholds 67 and 65.

4) Finalizing Summaries: Groups of summary content
with low instance counts are removed to produce a more
compact summary. We prune each summary so that 90% of
the detections remain. From this, an inverted index is con-
structed, where the entries are the unique summary regions,
and for each entry we store links to all the corresponding
detection instances across the lecture video. The effective
recall for all instances of ground truth content regions in
the video is measured using our modified DetEval scheme
detailed in Section III-D and shown in Table I.

D. Summary Evaluation

Video summarization by key objects use average recall as
the final evaluation metric [3]. Given a video with P object
proposals, ¢ unique key objects and G is the set of instances
of the i-th key object, average recall r is defined as follows:

S(P.Gi) = max  S(pg) )
t
_ 2in 18P, Gi) > 0) 3)

t

where, S(p, g) is the intersection-over-union (IOU) of the
two regions p and g and 1 is the indicator function.
However, in case of text, where segmentation can happen
at multiple levels of granularity, we need to accommodate
merging or splitting of the ground truth into multiple regions.
Therefore, we use the recall as defined in the DetEval
scheme [15] which allows for ground truth to match against
multiple predicted regions provided some minimum thresh-
old of area recall and area precision is met (see Equations 4
and 5). The number of unique summary regions proposed is
also compared to the number of unique ground truth regions.

1, if one-one match with any p

R(g,P,t,tp) = if g matches k boxes

“4)

1
1+log(k)’
0, otherwise

where, one to many (k) matches are allowed if,

Np; Np;
TP > tyand Y P>y ()

ij € Py p

J p;EPK

where, Py is a subset of k summary proposals, ¢, and ¢, are
area-recall and area-precision thresholds which are set equal
to the IOU threshold for one-one match in our experiments.

IV. EXPERIMENTS

The AccessMath dataset was used to train and test our
summarization methodology. The training and test videos
are annotated to provide bounding boxes [7]. We randomly
split the training set of 5 videos into 4 and 1 for training
and validation and train the detector using the procedure
mentioned in Section III-A2.

17

(o) Failure Cases

Figure 5: Subfigure (a) shows some of the correctly grouped
summary regions for different type of content detection
instances - words, multiline phrases, sketches and math
expressions. Note that the summarization is robust to minor
occlusions by lecturer, Subfigure (b) shows some of the
failure cases. Top left and top right show long sentences
split into two summary regions; bottom left shows lecturer
induced separation of same content and bottom right shows
merging of different yet similar looking content instances
under same summary region due to overwriting by lecturer.

The ResNet portion of the detector is initialized with pre-
trained ImageNet weights and Kaiming-normal initialization
is used for all other layers. Training is carried out for 20
epochs with a batch size of 16 using a stochastic gradient
descent (SGD) optimizer with an initial learning rate of
0.001. Each sample is augmented as described by EAST
[16], with random 512 x 512 crops. The learning rate is
reduced at a constant rate of v = 0.7943 per epoch.
This ensures that the learning rate drops by a factor of
approximately 0.1 every 10 epochs.

The feature extractor was trained with feature maps gen-
erated from the pre-trained detector network and sampled
triplet bounding boxes (as described in Section III-B), with
a triplet loss margin m = 0.5. Initialization and optimization
scheme is same as those of the content detector. Total accu-
racy plateaued to around 88% in 8 — 12 epochs. Accuracy
is measured as the total sum of all positive embeddings
per iteration having a distance lesser than margin from the
anchor as compared to negative embeddings.

Weak and strong feature thresholds were determined as
the average of computed thresholds for each test lecture
video, and we found that the values were consistently around
9{ 1.2 and 05 1.0 for all test videos. Weak and
strong spatial distance thresholds were computed from the
validation lecture and found to be 6 = 0.24 and 05 = 0.04
as seen in Figures 4(a) and (b).

The final summarization recall and per-frame text box
recall was measured for all videos in the AccessMath test
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Avg. Per-frame Avg. Summ.
10U R P F R
0.50 | 0.7995 0.4230 0.5504 0.9209
0.60 | 0.6816 0.2974 0.4109 0.9024
0.70 | 0.4778 0.1733 0.2524 0.8535
0.80 | 0.2256 0.0738 0.1097 0.7633
0.90 | 0.0324 0.0092 0.0137 0.6254

Table I: Average per-frame Recall, Precision and F-measure
are measured using detector alone. Average Summary Recall
is the recall of ground truth objects by summary regions.
Ny = 87.43 and N, = 127.14 are the average number of
unique ground truth and summary regions respectively.

set at different values of intersection-over-union thresholds
starting from 0.50 to 0.90. As seen in Table I, our feature-
based spatiotemporal analysis and summarization technique
is able to recall key content despite detector noise and jitter
even under stricter IOU matching thresholds.

The limited field of view of the detector induces the sum-
marization to split regions of extreme aspect ratio. Similar
looking but different content tends to get grouped together
due to overwriting. False positives due to lecturer also
contribute to higher number of summary regions. Figure 5
shows some success and failure cases of our summarization.

V. CONCLUSION

We have proposed a novel way of summarizing lecture
videos by key handwritten content regions. The regions
are semantically meaningful and can be lines, words, math
expressions or sketches. A neural network based feature
extractor, under triplet loss, is trained to learn text region
embeddings. These, along with spatiotemporal constraints,
are used to match detected regions that localize the same
content across the video and a summary by key handwritten
content is generated.

Our summarization also generates a spatiotemporal data
structure (inverted index described in Section III-C4) which
links each summary region to all its constituent detections.
We evaluate the summary in terms of recall of ground
truth unique content using DetEval in order to accommodate
different granularity of text. The summary data structure
could potentially be used for downstream applications like
recognition and indexing for visual search.

Our initial efforts focused on a framework for summariza-
tion by key content which shows promise. We would like
to test retrieval performance of the summary and study, in
detail, the relationship between summary by key objects and
keyframes. Making the detector temporally aware by training
on contiguous frames and robust representations of white-
board handwritten content under weak or no supervision are
attractive avenues for subsequent work.
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