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Abstract—We introduce a novel method for summarization
of whiteboard lecture videos using key handwritten content
regions. A deep neural network is used for detecting bounding
boxes that contain semantically meaningful groups of hand-
written content. A neural network embedding is learnt, under
triplet loss, from the detected regions in order to discriminate
between unique handwritten content. The detected regions
along with embeddings at every frame of the lecture video
are used to extract unique handwritten content across the
video which are presented as the video summary. Additionally,
a spatiotemporal index is constructed from the video which
records the time and location of each individual summary
region in the video which can potentially be used for content-
based search and navigation. We train and test our methods
on the publicly available AccessMath dataset. We use the
DetEval scheme to benchmark our summarization by recall
of unique ground truth objects (92.09%) and average number
of summary regions (128) compared to the ground truth (88).

I. INTRODUCTION

The ubiquity of cameras has resulted in the availability of

large amounts of video data captured across many domains.

Lecture videos are a subset of this growing data stream that

contain handwritten or printed text elements in the scene

which can typically be classified into white or black board

data, or slides-based data. Lecture videos enable quality

educational content to be broadcast anywhere in the world,

acting as a valuable tool for students and educators across the

globe. While current search engines primarily support meta-

data based search and retrieval of lecture videos, effective

video summarization techniques are needed to extract key

content and condense this data into an easily searchable

form, to facilitate content based search.

In this work, a framework for automated lecture summa-

rization by key handwritten content is provided. The gener-

ated summary is in the form of a small set of handwritten

content objects which represent all the unique content on

the whiteboard. Further, a spatio-temporal data structure is

provided, mapping each summary content object to all of its

instances within the video. The summary and mapping can

potentially be used for further downstream applications like

recognition and indexing for visual search.

Lecture content on a whiteboard is often loosely structured

and exhibits large variances in semantic grouping. Examples

include sentences, multi-line phrases, sketches, plots and

Figure 1: An overview of our proposed summarization

method. We detect handwritten content regions on all frames

of a lecture video and extract feature representations from

these regions. We then generate a small subset of summary

regions for the entire lecture video which can be used for

later recognition or indexing for search.

mathematical expressions. Further, background noise, illu-

mination changes and occlusions are also present. Limited

public annotated datasets, time and cost of annotation,

further amplify these issues.

Another challenge for lecture videos is to arrive at a robust

representation given the variety of text content. Recognition

of unstructured handwritten text is a hard problem and

requires extensive annotation. Further, the usual assumptions

about text granularity at word/line level are also not reason-

able for whiteboard text. Therefore, in our work we employ a

triplet loss based method to extract visual embeddings from

detected content regions.

After handwritten content and features are extracted from

all frames of videos, the next task is to analyze the detected

regions by extracting visual features and reducing the set

of all detected text into unique content regions, which falls

under the paradigm of video summarization by extraction

of key objects. For such work, the number of key objects

produced as well as the recall of key content (at the level

of bounding boxes) with respect to all unique text content

in the lecture video, are used as evaluation metrics.

The main research questions being investigated in our
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work include 1) Can lecture videos be summarized by key

handwritten content instead of the prior art of key frames and

how do we evaluate them? 2) Can we learn an embedding

for content regions under lack of explicit targets such as

recognized text?

II. BACKGROUND

We broadly discuss the field of video summarization, in

particular, lecture video summarization and some work on

representing and tracking text in images and videos.

Video Summarization: Video summarization method-

ologies can be classified by the nature of the summary.

Keyframes that contain the highlights of the video content

are a typical form of summary found in the literature

[1]. Shorter versions of the videos - skims, montages and

synopses have also been used [2].

Many existing methods generate video summaries driven

by detection and feature representation of objects [1, 2]. Re-

cently, a method to summarize videos by key objects instead

of keyframes was proposed [3]. In this work, summarization

is posed as a representative selection problem from detected

candidate regions. In our work, we aim to summarize lecture

videos by key handwritten content regions. We use neural

network based detection and feature extraction, and match

extracted features guided by spatiotemporal constraints in

order to produce key content regions.

Lecture Summarization: Whiteboard lecture videos are

typically preprocessed by background removal and bina-

rization followed by content extraction and summarization

[4, 5, 6]. After preprocessing, handwritten content is ex-

tracted and grouped into meaningful sets, primarily using

spatiotemporal cues [4, 6, 7] or OCR [4]. Neural networks

have recently been used for direct content extraction [7].

We also use deep learning based detector for direct content

extraction and combine spatiotemporal constraints and visual

features to summarize content.

The final stage is the summarization of the lecture video.

Keyframes (which contain most of the unique content within

a video segment) [5, 6, 7], recognized text lines [4] and

production of composite images that contain all content

[5] are some of the typical methods of summaries for

whiteboard lecture videos. As far as we know, there is no

evaluation scheme in the literature for summarizing lecture

videos by key content regions.

Spotting Text in Images and Videos: Mapping bagged

keypoint-based [8] or deep neural network based features

from word images, to pyramidal hierarchy of character

label (PHOC) embeddings of corresponding text strings [8]

has been used for both handwritten words [9] and scene

text [10]. In these methods, either the word segmentation

information is accessible during testing or the text transcript

is available during training or both.

Earlier video text tracking methods followed the paradigm

of text segmentation and spatiotemporal enhancement [11].

Recently, tracking by detection and/or recognition along

with local and global spatiotemporal analysis methods such

as using dynamic programming [12] and Markov Decision

Process [13] have been explored. Evaluation of these meth-

ods rely on Multi-Object Tracking metrics [11].

In our work, we need to simultaneously detect and learn to

represent irregularly structured handwritten content without

access to the text transcriptions. Thus, we use a triplet loss

based metric learning scheme to overcome this challenge.

Datasets and Evaluation: AccessMath is the largest, pub-

licly available, benchmarked dataset for whiteboard lecture

video summarization [6]. It consists of 12 lecture videos (5

training and 7 testing), recorded with a single still camera

at 1920× 1080 resolution spanning the whole whiteboard.

AccessMath consists of ground truth summary keyframes

and is evaluated by the average number of keyframes pro-

duced and the average recall and precision of all binary

connected components (CC) in the summary as well as in all

frames of the video. The matching scheme for binary CCs is

detailed along with benchmarking procedure by the creators

of the dataset [6] and allows split and merged matches.

Additionally, content region ground truth bounding boxes

are also provided. The boxes are drawn around content that

is created and erased at roughly the same time [7].

Meng et al. summarize general videos by key objects [3].

They test their methods on a set of 10 commercial videos

from YouTube [14] sampled at two frames per second.

Topical objects (such as products and logos) are annotated.

The ten videos have a duration of a few minutes each and

on average contain 36 instances of roughly 8 key objects

per video. However, in AccessMath, each test video has on

average 88 key content regions and total instance count per

video is of the order of ten thousand.

In our work, we propose a new evaluation scheme which

is independent of binarization and keyframes while shifting

the focus onto regions of handwritten content. Similar to

Meng et al., we use number of proposed regions and average

recall [3] of unique handwritten content across frames to

evaluate summarization. The DetEval scheme [15] is used

to obtain average recall as it is more suited for text.

III. LECTURE VIDEO SUMMARIZATION

We use a deep neural network for detection and propose a

feature extraction network trained using triplet loss learning.

Feature similarity along with spatiotemporal constraints that

model detector uncertainty are used to summarize the video

by generating key handwritten content regions.

A. Detection of Content

We adapt EAST [16] for this task, mainly because it is

anchor-free, i.e. it does not assume any priors on text content

areas and aspect ratios, which allows handling the variety of

text shapes found in lecture videos.
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1) Structure: The general EAST detector consists of a

convolution-deconvolution feature extraction block, a convo-

lutional region proposal network consisting of sub-networks

for text/non-text classification, regression to top, right, bot-

tom, left edges and angle of rotation of a ground truth

minimum bounding rotated rectangle. We use a Feature

Pyramid Network (FPN) for feature extraction [17] with

ResNet [18] backbone, deconvolution layers and activations

as originally prescribed for FPN [17]. This structure is

chosen because it extracts multi-scale features, has readily

available initialization weights from ImageNet training and

has state-of-the-art object detection performance.
The region proposal sub-network is designed as prescribed

by EAST [16] with sigmoid activations. The angle prediction

output of this sub-network is suppressed since the Access-

Math annotations are axis-aligned bounding boxes. The final

structure of the detector is shown in Figure 2.

Figure 2: Our structure for EAST Detector. Here, k × k, c
indicates kernel size (k) and the number of channels (c) of

a convolutional layer, /n or ×n indicates downsampling or

upsampling by factor of n. C and D stands for block of mul-

tiple convolutional layers and transpose convolutional layers

respectively according to the Feature Pyramid Network [17].

2) Training Labels: Lecturer bounding box for every

frame of the training videos are obtained using an SSD

[19] detector trained on the PASCAL VOC object detection

dataset [20]. Ground truth text boxes which overlap with

the bounding box of the lecturer are removed if their area

of intersection is greater than 25% of the text box area and

training targets for pixel mask and edge displacements are

generated as described in the original EAST paper [16].
3) Loss Functions: A generalized DICE coefficient loss

is computed between text pixel predictions and ground truth

targets for every iteration. This has shown good segmenta-

tion performance under unbalanced labels for bio-medical

images [21]. We compute the intersection over union (IOU)

loss as described by Zhou et. al. with respect to the ground

truth [16]. The sum of DICE and IOU losses is the total

loss for the network. We chose DICE loss over weighted

Binary Cross Entropy (BCE) loss because we observed

better numerical stability during training, possibly due to

exponential and logarithmic computation in the BCE loss.

4) Inference: After training (see Section IV for details),

the detector produces a set of redundant and overlapping

bounding boxes due to the dense prediction layers. The

predictions are scanned row-wise and greedily merged if

the IOU between two successive bounding boxes are greater

than a threshold (θloc). Non-maximum suppression, with

threshold (θnms), is used on the remaining predictions to

obtain the final set of proposed regions.

B. Feature Extraction

The proposed regions from the detector stage need to be

represented by a feature vector that can distinguish between

instances of different unique content regions. Since Access-

Math does not include text transcriptions, we use a metric

learning method to learn this feature embedding. We choose

triplet loss formulation since it has shown good performance

on disjoint face identities in biometric applications [22].

Figure 3: Our proposed feature extraction model uses In-

ception Block A (left) and Inception Block B (right) as the

basic units. The layers are chained together and followed

by s linear layer and L2 normalization to obtain embedding

from resampled content regions.

1) Structure: The extracted bounding boxes from the de-

tector model are first passed through a bilinear interpolation

layer to get proposals of uniform size. We use interpolated

size 64 × 64 with channel size, c = 256, retained from the

detector D2 layer. This size is chosen to accommodate all

the variety in aspect ratios seen in the lecture content, where

text is not predominantly horizontal like in natural images.

These uniformly shaped feature maps are then passed

to a series of inception [23] blocks stripped of any non-

linearity functions. The structure of each block is illustrated

in Figure 3. The blocks are connected as A-A-B-A-A-A-A-

B-A-A. The architecture of the feature extractor is based on

TextSpotter [24], which has state-of-the-art end-to-end text
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recognition performance in natural scene images. Each block

has added LeakyReLU activations (negative slope of 0.001)

at the end. The last inception block output is propagated

through a 1 × 1 convolutional layer with stride (2 × 2)
and a fully connected layer of size 2048 followed by a L2
normalization generating an embedding for the input region.

2) Loss Function: A generalized triplet loss is computed

between a pair of positive samples with anchor and negative

sample with anchor using Equation 1.

L = max(0,m+ ‖f(xa)− f(xp)‖22 − ‖f(xa)− f(xn)‖22)
(1)

where, f(xa) is the anchor embedding and f(xp) and

f(xn) are the positive and negative sample embeddings

respectively, m is a margin which indicates the ideal min-

imum separation between the distances computed from the

positive-anchor and anchor-negative pairs of embeddings.

3) Triplet Sampling Strategy: Triplet sampling strategies

are often key to learning robust representations of content

regions. Typically, in every iteration, positive anchor and

negative samples are chosen such that positive-anchor and

anchor-negative pair distances fall within the margin.

In our case, additional priority is given during sampling to

select negative regions within a certain distance of the anchor

sample. For further augmentation, the triplet bounding boxes

from the ground truth are perturbed with random noise and

the negative samples have a 20% chance to be dropped in

favor of a background region sample.

4) Inference: The feature embedding layers are trained

using the ground truth triplet samples generated from the

training lecture video sets. For testing, the proposed bound-

ing boxes from the detector, after the non-maximum suppres-

sion stage, are used to generate features for each region.

C. Content Summarization

Detected regions and corresponding feature embeddings

are extracted from the test set of lecture videos. Detected

regions are filtered using person detection using the same

procedure as during training (Section III-A2).

The video frames are then grouped in intervals of 60

seconds such that each successive interval overlaps the

previous by 30 seconds. The summarization by key objects

takes place in two passes. In the first pass, seed summary

regions are obtained on the basis of strong feature similarity

and strong spatial constraints. Then, weakly matched regions

are re-examined and grouped or merged appropriately to

produce the summary content. As a last step, summary

content is pruned based on number of regions.

1) Generating seed summary content: For every 60 sec-

ond interval of the test video, we examine all pairs (ri, rj)
from the set of detected regions R for spatial proximity

using weak and strong spatial thresholds (θs1 and θs2) as

well as for feature proximity using weak and strong thresh-

olds (θf1 and θf2 ). We compute the feature distance dfij =
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Figure 4: Subfigures (a) and (b) shows derivation of strong

and weak thresholds for feature and spatial distance respec-

tively, from validation lectures. Best seen in digital.

‖f(ri)− f(rj)‖22 and spatial distance dsij = ‖xi − xj‖22.

Where, f represents the feature extractor network and xi,

xj are the top-left and bottom-right corner coordinates of ri
normalized with respect to frame height and width.

• If dfij ≤ θf2 and dsij ≤ θs2, ri, rj are considered a strong

match and merged into the same summary identity.

• If dfij ≤ θf2 and θs2 < dsij ≤ θs1 OR dsij ≤ θs2 and θf2 <

dfij ≤ θf1 , ri and rj are placed in separate summary

identities and the two identities are marked as strong-

weak matches.

• If θf2 < dfij ≤ θf1 and θs2 < dsij ≤ θs1, ri and rj
are placed in separate summary identities and the two

identities are marked as weak-weak matches.

• In all other cases, ri, rj are placed in separate summary

identities and marked as non-matches.

We obtain a set of summary regions S, where each Sm is a

unique content region with instances {r1m, r2m, ..., rnm}.

2) Growing summary content: The initial set of summary

seed content regions S = {S1, S2, ..., SM} consist of dis-

crete sets of strongly matched regions within 60 second

intervals. We recursively check all summary regions that

overlap temporally (with a tolerance of 120 seconds) for

spatial and feature based match, stopping when no changes

are observed. During each recursion, the bounding box

and features of each summary region are aggregated by

computing the union and the mean respectively. Surviving

weak matches are grouped via spatial constraint.

3) Determining thresholds: The distances between em-

beddings for all regions within a 60 second interval is

computed and Otsu’s algorithm is used to find the threshold

θf1 . The underlying assumption is that the positive and

negative matches form a bimodal distribution. The peak

of the positive matches distribution is also recorded as

a secondary threshold θf2 . Figure 4(a) shows accumulated

bimodal distribution estimated for all intervals of a single

lecture video along with selection of θf1 and θf2 .

The variation in illumination between frames causes jitter

in the detector predictions. On the validation lecture, we

analyze the displacement between detected bounding boxes

that correspond to the same ground truth box and derive

thresholds on the basis of recall and precision of true and
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false matches. Figure 4(b) shows the recall-precision at

different displacements along with the thresholds θs1 and θs2.

4) Finalizing Summaries: Groups of summary content

with low instance counts are removed to produce a more

compact summary. We prune each summary so that 90% of

the detections remain. From this, an inverted index is con-

structed, where the entries are the unique summary regions,

and for each entry we store links to all the corresponding

detection instances across the lecture video. The effective

recall for all instances of ground truth content regions in

the video is measured using our modified DetEval scheme

detailed in Section III-D and shown in Table I.

D. Summary Evaluation

Video summarization by key objects use average recall as

the final evaluation metric [3]. Given a video with P object

proposals, t unique key objects and Gi is the set of instances

of the i-th key object, average recall r is defined as follows:

S(P,Gi) = max
p∈P,g∈Gi

S(p, g) (2)

r =

∑t
i=1 1(S(P,Gi) ≥ θ)

t
(3)

where, S(p, g) is the intersection-over-union (IOU) of the

two regions p and g and 1 is the indicator function.

However, in case of text, where segmentation can happen

at multiple levels of granularity, we need to accommodate

merging or splitting of the ground truth into multiple regions.

Therefore, we use the recall as defined in the DetEval

scheme [15] which allows for ground truth to match against

multiple predicted regions provided some minimum thresh-

old of area recall and area precision is met (see Equations 4

and 5). The number of unique summary regions proposed is

also compared to the number of unique ground truth regions.

R(g,P, tr, tp) =

⎧⎪⎨
⎪⎩

1, if one-one match with any p
1

1+log(k) , if g matches k boxes

0, otherwise

(4)

where, one to many (k) matches are allowed if,

∀pj ∈ Pk
g ∩ pj
pj

≥ tp and
∑

pj∈Pk

g ∩ pj
g

≥ tr (5)

where, Pk is a subset of k summary proposals, tr and tp are

area-recall and area-precision thresholds which are set equal

to the IOU threshold for one-one match in our experiments.

IV. EXPERIMENTS

The AccessMath dataset was used to train and test our

summarization methodology. The training and test videos

are annotated to provide bounding boxes [7]. We randomly

split the training set of 5 videos into 4 and 1 for training

and validation and train the detector using the procedure

mentioned in Section III-A2.

Figure 5: Subfigure (a) shows some of the correctly grouped

summary regions for different type of content detection

instances - words, multiline phrases, sketches and math

expressions. Note that the summarization is robust to minor

occlusions by lecturer, Subfigure (b) shows some of the

failure cases. Top left and top right show long sentences

split into two summary regions; bottom left shows lecturer

induced separation of same content and bottom right shows

merging of different yet similar looking content instances

under same summary region due to overwriting by lecturer.

The ResNet portion of the detector is initialized with pre-

trained ImageNet weights and Kaiming-normal initialization

is used for all other layers. Training is carried out for 20

epochs with a batch size of 16 using a stochastic gradient

descent (SGD) optimizer with an initial learning rate of

0.001. Each sample is augmented as described by EAST

[16], with random 512 × 512 crops. The learning rate is

reduced at a constant rate of γ = 0.7943 per epoch.

This ensures that the learning rate drops by a factor of

approximately 0.1 every 10 epochs.

The feature extractor was trained with feature maps gen-

erated from the pre-trained detector network and sampled

triplet bounding boxes (as described in Section III-B), with

a triplet loss margin m = 0.5. Initialization and optimization

scheme is same as those of the content detector. Total accu-

racy plateaued to around 88% in 8 − 12 epochs. Accuracy

is measured as the total sum of all positive embeddings

per iteration having a distance lesser than margin from the

anchor as compared to negative embeddings.

Weak and strong feature thresholds were determined as

the average of computed thresholds for each test lecture

video, and we found that the values were consistently around

θf1 = 1.2 and θf2 = 1.0 for all test videos. Weak and

strong spatial distance thresholds were computed from the

validation lecture and found to be θs1 = 0.24 and θs2 = 0.04
as seen in Figures 4(a) and (b).

The final summarization recall and per-frame text box

recall was measured for all videos in the AccessMath test
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Avg. Per-frame Avg. Summ.
IOU R P F R
0.50 0.7995 0.4230 0.5504 0.9209
0.60 0.6816 0.2974 0.4109 0.9024
0.70 0.4778 0.1733 0.2524 0.8535
0.80 0.2256 0.0738 0.1097 0.7633
0.90 0.0324 0.0092 0.0137 0.6254

Table I: Average per-frame Recall, Precision and F-measure

are measured using detector alone. Average Summary Recall

is the recall of ground truth objects by summary regions.

Nt = 87.43 and Ns = 127.14 are the average number of

unique ground truth and summary regions respectively.

set at different values of intersection-over-union thresholds

starting from 0.50 to 0.90. As seen in Table I, our feature-

based spatiotemporal analysis and summarization technique

is able to recall key content despite detector noise and jitter

even under stricter IOU matching thresholds.

The limited field of view of the detector induces the sum-

marization to split regions of extreme aspect ratio. Similar

looking but different content tends to get grouped together

due to overwriting. False positives due to lecturer also

contribute to higher number of summary regions. Figure 5

shows some success and failure cases of our summarization.

V. CONCLUSION

We have proposed a novel way of summarizing lecture

videos by key handwritten content regions. The regions

are semantically meaningful and can be lines, words, math

expressions or sketches. A neural network based feature

extractor, under triplet loss, is trained to learn text region

embeddings. These, along with spatiotemporal constraints,

are used to match detected regions that localize the same

content across the video and a summary by key handwritten

content is generated.

Our summarization also generates a spatiotemporal data

structure (inverted index described in Section III-C4) which

links each summary region to all its constituent detections.

We evaluate the summary in terms of recall of ground

truth unique content using DetEval in order to accommodate

different granularity of text. The summary data structure

could potentially be used for downstream applications like

recognition and indexing for visual search.

Our initial efforts focused on a framework for summariza-

tion by key content which shows promise. We would like

to test retrieval performance of the summary and study, in

detail, the relationship between summary by key objects and

keyframes. Making the detector temporally aware by training

on contiguous frames and robust representations of white-

board handwritten content under weak or no supervision are

attractive avenues for subsequent work.
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