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Abstract. Problem definition: Many cities worldwide are embracing electric vehicle (EV)
sharing as a flexible and sustainable means of urban transit. However, it remains chal-
lenging for the operators to charge the fleet because of limited or costly access to charging
facilities. In this paper, we focus on answering the core question—how to charge the fleet to
make EV sharing viable and profitable. Academic/practical relevance: Our work is mo-
tivated by the setback that struck San Diego, California, where car rental company car2go
ceased its EV-sharing operations. We integrate charging infrastructure planning and
vehicle repositioning operations that were often considered separately. More interestingly,
our modeling emphasizes the operator-controlled charging operations and customers’
EV-picking behavior, which are both central to EV sharing but were largely overlooked.
Methodology: Supported by the real data of car2go, we develop a queuing network model
that characterizes how customers endogenously pick EVs based on energy levels and how
the operator implements a charging-up-to policy. The integrated queuing-location model
leads to a nonlinear optimization program. We then propose both lower and upper bound
formulations as mixed-integer second-order cone programs, which are computationally
tractable and result in a small optimality gap when the fleet size is adequate. Results: We
learn lessons from the setback of car2go in San Diego. We find that the viability of EV
sharing can be enhanced by concentrating limited charger resources at selected locations.
Charging EVs either in a proactive fashion or at the 40% recharge threshold (rather than
car2go’s policy of charging EVs only when their energy level drops below 20%) can boost
the profit by more than 15%. Moreover, sufficient charger availability is crucial when
collaborating with a public charger network. Increasing the charging power relieves the
charger resource constraint, whereas extending per-charge range or adopting unmanned
repositioning improves profitability. Finally, we discuss how EV sharing operations de-
pend on the urban spatial structure, compared with conventional car sharing. Managerial
implications: We demonstrate a data-verified and high-granularity modeling approach.
Both the high-level planning guidelines and operational policies can be useful for
practitioners. We also highlight the value of jointly managing demand fulfillment and
EV charging.

Funding: This work was supported by the National Science Foundation [CNS Award 1637772], Fonds
de Recherche du Québec-Société et Culture [Grant 267792], the National Natural Science Foun-
dation of China [Grants 71602142, 91646118, and 91746210], the National University of Singapore
[Start-Up Grant R-314-000-106-133], and the Natural Sciences and Engineering Research Council of
Canada [NSERC Grant RGPIN-2019-04769].

Supplemental Material: The online appendices are available at https://doi.org/10.1287 /msom.2019.0851.
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1. Introduction

for a trip, and drop it off anywhere with signage on

One of the building blocks for a smart city future is an
electrified and shared mobility system. Such a system
provides flexible on-demand transit services using a
pool of electric vehicles (EVs). One representative
business practice is the car-sharing service of car2go, a
car rental company that runs Smart Fortwo EV fleets
in cities such as Amsterdam and Madrid. Car2go
members can pick up an available EV nearby, drive it

the street within its service region. This EV-sharing
business model is gaining momentum worldwide,
attracting market entrants including Volkswagen in
Europe, Shougi in China, and Communauto in Canada.
Meanwhile, local governments, such as those of Singa-
pore, Amsterdam, and Columbus, Ohio, also highlight
the promotion of electrified and shared mobility in
their race to launch smart city initiatives."
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Electrified and shared mobility is widely expected
to prevail because of two driving forces. First, economic
restructuring, in the form of the booming sharing
economy along with online/offline service integra-
tion, has its largest impact on the transportation sector.
Global Market Insights (2018) projects that the global
revenue of the car sharing industry will rise to
$12 billion by 2024. Second, stringent environmental
regulations on emissions spur vehicle electrification
by phasing out fossil-fuel vehicles. For example, the
United Kingdom and France will prohibit the sale of
new internal-combustion cars by 2040, India has set
its deadline to 2030, and China is working on its
timetable for a similar mandate (Condliffe 2017).

Nonetheless, a smart EV-sharing system cannot be
built in one day. A recent setback occurred in San
Diego, where car2go ceased operations of its EV-
sharing fleet in 2016. The San Diego Union-Tribune
reported the EV-sharing operator’s reason:

We're just not able to keep the cars charged, and
people aren’t able to charge them on their own. ... We
justdon’t have the infrastructure we need here to make
it work now. (Dacyl Armendariz, car2go spokesper-
son, quoted in Garrick 2016)

Indeed, insufficient charging causes low battery
energy levels and thus limited availability of EVs to
fulfill travel demands, which can ultimately throttle
the operation. To tackle this issue, EV-sharing oper-
ators face grand challenges:

e At the strategic level, unlike sharing conven-
tional fossil-fuel vehicles, EV sharing crucially de-
pends on the infrastructure for battery charging.
Unfortunately, such infrastructure is often scarce. For
example, in 2011, a federally subsidized nonprofit,
ECOtality, promised it would install 1,000 Blink chargers
in San Diego. However, only about 400 were installed
when car2go finally stopped doing business (Garrick
2016). Moreover, those 400 public chargers were only
partially available to car2go while accommodating
competing charging demands from other EV owners.
Given the high construction cost of charging infra-
structure and its scarcity, it is imperative to care-
fully decide the locations and quantities of chargers
to install.

* Atthe operational level, the EV-sharing operator
has to conduct intertwined repositioning and battery
charging operations to meet travel demand. Un-
balanced customer trips often lead to either too few or
excessive EVs at some locations. It is thus important
for the operator to reposition EVs to improve vehicle
utilization by meeting more demands at more loca-
tions. However, the repositioning of EVs is much
more challenging than that of fossil-fuel vehicles—EVs
take significantly longer charge time yet with shorter
per-charge range. The energy remaining in the battery,

hereafter referred to as the energy level, is critical to
demand fulfillment and the feasibility of reposition-
ing. A salient feature of EV sharing is that the energy
levels of vehicle flows should be closely tracked to
ensure charging EVs timely, as well as to improve
demand fulfillment.

We try to address these challenges by proposing
models, analytics, and insights for designing a better
EV-sharing system. The objective is to satisfy urban
mobility demands in a shared and electrified fashion
while maximizing the revenue net of the infrastruc-
ture investment and operating cost. Our paper presents
an integrated model to jointly determine the locations
and sizes of battery charging sites, along with the
coupled fleet charging and repositioning operations.
Through a case study based on real data, we aim to
understand whether car2go could have performed
better. More important, we provide managerial in-
sights into the future development of EV sharing for
cities and companies that pursue this mobility para-
digm. We briefly summarize the contributions of this
paper as follows:

1. To the best of our knowledge, this work is the
first attempt to provide models to jointly plan and
operate an EV-sharing system, with an emphasis on
high-granularity modeling of energy-level-indexed EV
flows, endogenous customers’ EV-picking behavior,
and the operator’s charging operations. These oper-
ational aspects are central to EV sharing buthave been
overlooked at the network scope in the literature.

2. Our work also demonstrates a data-verified mod-
eling approach. We rely on real data and empirical
evidence to guide our modeling process (e.g., EV arrival
and departure processes, customers’ EV-picking be-
havior, and the operator’s charging policy). Our de-
mand recovery method helps correct observational
bias from the censored data. Collectively, our model
and managerial insights can be of practical value to
EV-sharing practitioners.

3. We propose a new solution technique to tackle
the resulting optimization model—a nonlinear pro-
gram with fractional constraints (involving quadratic
denominators). Our lower and upper bound solutions
can be obtained by solving mixed-integer second-
order cone programs (MISOCPs). The bounds re-
sult in small optimality gaps (for cases with adequate
fleets), allowing efficient computation and signifi-
cantly more straightforward implementation than the
branch-and-bound solution techniques in the literature.

4. By examining car2go operations from compu-
tational studies on real data, we provide managerial
insights to help launch future EV-sharing programs:

e Contrary to car2go’s practice of charging EVs
only at energy levels below 20%, car2go should,
ideally, proactively charge EVs from varying energy
levels contingent on the operational status of the entire
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system. Alternatively, a more implementable adjust-
ment is to increase the charging activation threshold
to 40% (with reoptimized charging infrastructure). Fur-
thermore, its fleet size may be reduced by up to 20%
without incurring significant profit loss.

* Ensuring sufficient charger availability is crucial
when collaborating with a public charger network. When
the availability of the public chargers is low, the EV-
sharing service provider should consider installing
private chargers to ensure timely access to energy at
optimal locations.

¢ Various EV technological advancements lead
to different performance improvements. Elevating
charging power relieves the charger resource con-
straint, thus enhancing the business viability in the
early stage. By contrast, extending the per-charge
range or adopting unmanned repositioning improves
profitability, thus being favorable in the long run.

e Finally, EV sharing also differs from conven-
tional car sharing in how its profitability and oper-
ations depend on the urban spatial structure. A more
centralized customer trip pattern (into and out of a
central business district) can be favorable to EV
sharing because the savings from charging operations
and investment may dominate the expenditure on
rebalancing supply/demand.

The remainder of this paper is organized as follows.
Section 2 reviews the related literature. Section 3
describes the optimization model of planning and
operating an EV-sharing system. Section 4 develops
tractable formulations to obtain lower and upper
bounds for the optimal profit. Section 5 presents the
case study and managerial insights into the future
development of EV sharing. Finally, Section 6 con-
cludes the paper. A summary of notations, additional
proofs, formulations, and results are available in the
online appendices.

Throughout the paper, we denote sets by calli-
graphic uppercase English letters, system parameters
by lowercase English letters, vehicle flow decision
variables and service levels by lowercase Greek let-
ters, and other decision variables by uppercase En-
glish letters.

2. Literature Review

Infrastructure planning for shared and electrified
mobility is essential to the development of smart cities
but has drawn little attention in the literature. The
majority of the literature on vehicle-sharing service
systems considers vehicles without battery charging
concerns (e.g., fossil-fuel cars and bikes). For one-way
mobility sharing, a main operational challenge is that
the operators have to proactively reposition their
fleets to maintain a certain service level in the pres-
ence of spatially asymmetric trip demands. Recent
studies have made some progress in this direction. At

the strategic level, Kabra et al. (2018) develop a
structural choice model to empirically analyze the
impacts of accessibility of stations and the availability
of vehicles in a bike-sharing system. Lu et al. (2017)
consider the problem of allocating parking lots or
permits in joint with fleet repositioning operations.
Similarly, Kaspi et al. (2014, 2016) study parking
reservation policies and regulations. At the opera-
tional level, Adelman (2007) develop a queuing network
to study the rail equipment repositioning problem. Nair
and Miller-Hooks (2011) consider a vehicle reposi-
tioning problem with service-level constraints. Shu
et al. (2013) solve a bike redistribution network flow
problem. Benjaafar et al. (2018) and He et al. (2020)
propose different approaches to solving the stochastic
dynamic rental product or vehicle repositioning prob-
lems. However, those one-way mobility-sharing models
cannot be directly applied to EV-sharing fleets be-
cause the battery charging operations are absent. As
implied by the failure of car2go in San Diego, managing
charging operations is critical to the success of the EV-
sharing business.

Our paper aims to address several obstacles that
arise from electrifying car-sharing systems, includ-
ing planning battery charging infrastructure, man-
aging coupled charging and repositioning opera-
tions, and estimating travel demand. Among few
related studies, Boyaci et al. (2015) build a planning
model to analyze station-based EV sharing, consid-
ering station location, parking space allocation, fleet
size management, and vehicle relocation. He et al.
(2017) propose a mathematical programming model
to solve for the optimal service region planning for
EV sharing, incorporating customer subscription de-
cisions and fleet operations. By considering an aggre-
gated market without heterogeneities across locations
and EVs, Abouee Mehrizi et al. (2018) develop an
analytical model to discuss the viability of using EVs
in a car-sharing system. However, those papers ab-
stract away detailed operations that are critical to EV
sharing such as, for example, endogenized cus-
tomers” EV-picking behavior and the operator’s EV
charging management.

Among those papers, Heetal. (2017) is the closest to
ours. Nevertheless, they do not consider heteroge-
neous energy levels of EVs and simply assume that
20% of all EVs arriving at each location enter the
charging process and that all EVs available for cus-
tomers are fully charged. Moreover, they consider
demand fulfillment as a centralized decision by the
operator. By contrast, our model incorporates energy-
level tracking, heterogeneous and stochastic charging
durations of EVs, and how customers pick EVs based
on available energy levels under the range anxiety
studied in Lim et al. (2015) and observed empirically
in Kim et al. (2018). These considerations are realistic
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but novel to the literature, resulting in a high-granularity
characterization of EV-sharing operations. Moreover,
those papers implicitly assume that charging facilities
areavailable atall locations. In reality, charging facilities
are scarce and costly to build in the early stage of this
business, which our model explicitly addresses.

Finally, our paper also relates to the literature on
EV-related service planning and operations man-
agement in the conventional nonsharing contexts. For
instance, Mak et al. (2013) apply robust optimization
to solve for battery-swapping locations along high-
ways to accommodate exogenous EV flows. Our
modeling of the plug-in battery-charging process is
novel and fundamentally different from that of bat-
tery swapping, which requires negligible time. Lim
et al. (2015) compare potential mass EV adoption
under different business settings (e.g., selling and
leasing) with consumer anxieties about the range and
resale of EVs. Jiang and Powell (2016) propose a risk-
averse Markov decision process model for dynami-
cally charging EVs in the presence of electricity spot
price variations. Zhang etal. (2018) address the coupling
between transportation and electrical grid networks
when planning EV charging facilities. The charging
requirement also brings new challenges to freight lo-
gistics services when employing EVs. Schneider et al.
(2014) and Desaulniers et al. (2016) formulate EV
routing problems with charging schemes under time-
window constraints and propose-optimization al-
gorithms. The key distinction of our work from those
papers is the explicit characterization of the coupled
charging and repositioning operations as well as the
distributions of EV energy levels, which are central in
the EV-sharing context.

3. EV-Sharing System Planning

and Operations

We model the fleet operations in the EV-sharing
system using a queuing network. Planning charg-
ing infrastructure includes charging site selection and
charger installation, which configures the network.
We use binary decision variable X; to denote whether
the operator deploys any charger in zone i € $, where
$ is the set of zones that form the service region. At
selected site i (i.e., X; = 1), the operator further spec-
ifies the number of chargers Y.

We consider a multiclass open queuing network
consisting of single-server nodes for the demand
zones, infinite-server nodes for the roads, and mul-
tiserver nodes for the charging sites. Constructed
from a vehicle’s perspective, EVs are viewed as the
entities in the queuing network. We briefly explain
each type of node and its connections before the
detailed discussions in the following subsections.

¢ Each demand zone is considered as a single
“server.” An “arrival” event indicates that an EV is

dropped offina zone, and a “departure” event indicates
that an EV leaves a zone. The available EVs that wait
in zone i will be picked up by customers at the service
rate that is endogenously determined by the de-
mand rate and customers’ EV-picking behavior. Note
that EVs are differentiated by their energy levels,
and customers tend to pick available EVs with the
highest energy. Thus, each demand node is mod-
eled as a multiclass M/M/1 queue with preemptive-
repeat priority and class-dependent service rates in
Section 3.2.

e The roads are modeled as M/G/oco nodes with
generally distributed travel times, because EVs leaving
a demand zone can immediately get on the road (enter
“service”). We choose to model the transit traffic
using an infinite-server queue because it has been
discussed in various settings for traffic on a long road
with free overtaking (Daley 1976) and also commonly
used in vehicle sharing studies (e.g., George and Xia
2011, He et al. 2017).

e The charging node in zone i, if available, is
represented by an M/G/Y; queue where Y; specifies
the number of chargers. Its service time distribution
depends on the specific charging policy, which we
will analyze in Section 3.3 under a charging-up-to
policy motivated by the data.

* Nodes in the network interact with each other
through the movements of vehicles. Instead of using a
closed queuing network, our model “loosely” con-
nects all nodes by the mean flow balance in each node
and the expected total fleet size in the system for the
practicality and tractability reasons. First, in reality,
the number of EVs in the system is not always con-
stant. We characterize the expected total fleet size as
the system’s capacity. Second, although the closed
queuing networks in George and Xia (2011) and He
etal. (2017) preserve product-form solutions, it is not
the case in our problem. In those papers, all vehicles
are homogeneous, and thus their networks only consist
of infinite-server nodes with generally distributed ser-
vice times and single-server nodes with exponential
service times, which fall into the class of BCMP (Baskett,
Chandy, Muntz and Palacios) networks (Baskett et al.
1975). Our challenge here is that EVs are nonidentical
by their energy levels, which prohibits use of the
BCMP network. Nonetheless, it is realistic and im-
portant to explicitly differentiate EVs by energy level
in this study. In Section 3.4, we discuss the interaction
among nodes and the integration of all modeling
components into an optimization model.

The key assumption underlying the queuing net-
work is the Poisson vehicle arrivals and departures,
which have been widely adopted to model vehicular
flows (e.g., Freund et al. 2019 in bike sharing). In what
follows, we first examine this assumption using an
operational data set from car2go in San Diego.
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3.1. Poisson Vehicle Arrivals and Departures
We collected one-month records of EVs within the
entire service region of 16 zip code areas (as zones)
every five minutes from car2go in March 2014. The
attributes recorded include time stamps, location
coordinates, battery energy levels, and charging status
(i.e., being charged or not) for each idle EV. For the
purpose of this study, we translate the time-stamped
data into trip-level data. We identify 19,380 trips (with
travel times longer than 10 minutes) with origins and
destinations, energy consumption, and travel times.
We conduct statistical testing for the Poisson ve-
hicle arrival and departure assumption for the entire
system instead of individual zones because the sample
sizes become too small for each zone at the hourly
level. We set up the tests following Kim and Whitt
(2014), who examine the classical conditional uniform
property of Poisson process. That is, conditional on
the number of arrivals (departures) 7 in any interval,
the n-ordered arrival (departure) times are indepen-
dently and identically distributed random variables
with uniform distribution along the interval. Because
the trip records are time stamped at every five minutes,
therecorded customer arrival (departure) time (i.e., the
trip start (end) time) is not continuous. Therefore, we
construct tests for the discrete uniform distribution.
We start by visualizing the arrival and departure
time stamps of EVs in the entire system. Figure 1
shows the histograms of the time stamps within
each hour. Because the trip records are at the five-
minute granularity, the bin size in the histograms is
also set to be five minutes. Note that most of the bins
have similar heights for both arrivals and departures.
To statistically test for the discrete uniform distri-
bution, we consider all one-hour intervals over 25 days
in the trip data. Suppose that n, arrivals occurred

during hour / on day 4. The trip start times t;,lq, Vje

{1,---,nyy} are hypothesized to follow the discrete
uniform distribution among all 12 distinct time stamps
(at the five-minute level) in the interval. Each time
stamp is then viewed as a bin, and the number of trips
in the bin is counted as z’,; ,VYk € {1,---,12}. Therefore,
we formulate the null hypothesis as follows: z’,j ,Vk €
{1,---,12} follows the discrete uniform distribution with
probability mass function 5. In our data set, a total of
275 one-hour intervals over 25 days have trip sample
sizes larger than 50. We only conduct hypothesis tests
for those intervals to ensure the accuracy of Pearson’s
x> test. Because 94.5% of the tests report p-values
larger than 0.05, the uniform arrivals hypothesis is not
rejected. Similarly, we apply the test to departure time
stamps, where 93.5% of the tests report p-values larger
than 0.05. Consequently, we do not reject the uniform
departure hypothesis either. Hence, the test suggests
that the Poisson assumption is reasonable for both
vehicle arrivals and departures.

Furthermore, the data suggest that customer de-
mand rates vary over time. To incorporate the system
dynamics, we divide a day into multiple periods and
employ the point-wise stationary approximation ap-
proach in Green and Kolesar (1991) such that the
customer demands are considered stationary within
each period. Based on the travel intensity, we divide
a day into five periods and summarize the average
trip rate, energy consumption, and travel time in Ta-
ble 1. The detailed multiperiod optimization formu-
lation is provided in Online Appendix B and used in
our case study in Section 5. For ease of exposition, we
present the modeling of the EV-sharing system in a
single period.

3.2. Customers’ EV Picking
From an EV-sharing operator’s perspective, it is im-
portant to understand how customers choose EVs to

Figure 1. (Color online) Histograms of EV Arrival and Departure Times Within Each Hour (Bin Size Is Five Minutes)
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Table 1.
Time per Trip

Average Hourly Customer Trip Rate, Energy Consumption per Trip, and Travel

Period Hourly trip rate Per-trip energy consumption (kWh) Travel time (in minutes)
7 a.m.—9:59 a.m. 38.57 1.19 32.82
10 a.m.—12:59 p.m. 39.93 1.20 31.29
1 p.m.-3:59 p.m. 45.12 1.19 27.15
4 p.m.—6:59 p.m. 48.74 1.34 27.36
7 p.m.~6:59 a.m. 17.2 1.28 33.50

fulfill their travel needs. For this purpose, we first
distinguish EVs by their energy levels. Specifically,
we use e to label the energy levels of EVs and dis-
cretize the range of energy levels into a finite set
€ =1{0,1,...,¢e}, where ¢ is the highest energy level.
That is, we can map the actual battery levels into the
discretized energy levels. For example, if the battery
capacity is 20 kWh and & = 10, one unit of energy level
represents 2 kWh. Online Appendix A provides a
table of key notations in this paper.

In EV-sharing systems, customers usually have
access to the energy-level information of EVs through
the website or mobile applications. A customer to travel
from zone i to zone j will seek in zone i an available EV
that has at least ¢;; amount of energy remaining, where ¢;;
is the energy consumed by a customer trip from i to j.
If there is no available EV or all available EVs do not
have sufficient energy (i.e., e < ¢;) in zone i, the de-
mand will be lost. Otherwise, there are three potential
modes of customer EV-picking behavior:

1. The “indifference” mode assumes that the cus-
tomer will randomly pick up an EV among the
available ones with sufficient energy.

2. The “angel” mode assumes that the customer
will choose the EV with the least (yet sufficient) amount
of energy so as to leave EVs with higher energy levels
to other customers.

3. The “risk-averse” mode assumes that the customer
will choose the EV with the highest energy level to min-
imize the risk of battery depletion before the trip ends.

We choose to model the customers” EV-picking
behavior based on the risk-averse mode. First, the
risk-averse mode is empirically verified. Kim et al.
(2018) observe that in car2go San Diego, EV range
anxiety impelled EV-sharing customers to strictly prefer
higher energy levels to lower ones. Second, from the
operator’s perspective, the risk-averse mode is more
conservative to assume than the other two modes.
Theresulting charging and repositioning schemes are
reliable even if the realized customers” EV-picking be-
havior may deviate from such an assumption. Third,
the assumption of the risk-averse mode admits tractable
modeling of the demand-fulfillment process with high
granularity. By contrast, it is challenging to integrate the
other two behavioral modes into our model, which we
leave for future research.

With the risk-averse mode of EV picking, the demand-
fulfillment process becomes highest-energy-first-out
(HEFO), as shown in Figure 2, which allows us to
modelitasamulticlass M /M /1 queue with preemptive-
repeat priority and class-dependent service rates. Spe-
cifically, recall that zone i is a “server,” whose service
rate depends on the energy levels of the available ve-
hicles. The service rate for an EV with energy level ¢ is
die = Xjeg,, dij, where dj; is the demand rate for trips
from zone i to zone j and $;, = {j : e;; < e} is the set of
destinations reachable by energy level e from origin i.
Suppose that we divide all EVs into e classes accord-
ing to their energy levels (i.e., class e for EVs with
energy level ¢). Under the risk-averse mode, an EV
can be “served by zone i” only when all EVs of higher
class (i.e., with higher energy levels) have been taken,
which clearly suggests the preemptive priority rule—
class € has the highest priority and class 0 has the
lowest priority.

Let e be the fulfilled demand rate for customers
traveling from i to j using EVs with energy level e. The
load of class e can be defined as

oy = 22V 0
die
for zone i. Furthermore, because customers are not
required to inform the operator about their destina-
tions, the operator is not able to ration the demand to
fulfill by trip destinations. Therefore, the satisfied
customer trips follow the proportional rule as

dij ,
Yie =20 2 Yiger V) € Fie @)

ie jeJr
We next express the expected queue lengths for EVs
with different energy levels in zone 7 in terms of the

load aj.. We apply the queue-length formula for the
multiclass M/G/1 queue with preemptive priority in

Figure 2. (Color online) EV Picking by “Risk-Averse”
Customers with Range Anxiety
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Shortle et al. (2018). Note that this formula is derived
under the assumption that interrupted entities re-
sume “service” from the point of interruption. In our
setting, however, the interrupted (lower-energy) EVs
start over the “service” after the interruption in the
demand zone. Nevertheless, given the exponential
service time, this discrepancy is irrelevant in view of
the memoryless property (Shortle et al. 2018) Hence,

with the mean d— and the second moment = of the

exponential service time of class e, the average number
(queue length) of EVs with energy level e in zone i is
given by

aze[l Ze eaze’ +dze g’ egkl]
L., =

T (l—ar— ey — o —agern) . Ve<e ()
(1 - ap = aig-1) = — i)
Qi
Lig=—"—. 4
A 4

3.3. Charging Process

The operator also needs to closely monitor the EV
charging process, which is central to the availability of
EVs. To focus on a practical charging process, we
begin this subsection by analyzing the energy levels
of EVsin the car2go data. In the data set, as described
in Section 3.1, we identify 1,472 trips that went
through a charging process with at least a 10% energy
level increase. We present their energy-level dis-
tributions(in percent) on entering and leaving a charging
process in Figure 3.

Car2go sets a recharge threshold at the 20% energy
level, under which an EV must be moved to charge.
Figure 3(a) shows that the energy levels of most EV's
when entering a charging process are around this
threshold. Occasionally, EVs with an energy level
higher than 20% can also be sent to charge. We refer
to car2go’s practice as a threshold-activated charging
policy. By contrast, we consider a proactive charging
policy where the operator can choose to charge EVs
with different energy levels (lower than é).

After discussing when to charge EVs, we examine
when to finish charging. Figure 3, (b)-(d), shows the
energy levels of EVs departing from a charging process.
These histograms suggest that the energy levels after
charging could depend on location. As implemented
by car2go, EVs can be charged to 50% or 100% before
being released from the charging sites. These obser-
vations motivate us to study a charge-up-to policy to
reflect car2go’s practice. That is, the operator charges
all EVs to energy level e. For ease of exposition, we
consider a single parameter ée—that is, the highest
energy level. In practice, € can potentially vary by time

or location (which a direct extension of our model
can capture).

Wemodel such a charging process at each site i with
Y; chargers as an M/G/Y; queue. Under the proactive
charge-up-to policy, the EVs that arrive with energy
level e follow a Poisson process with rate A;, (which is
controlled by the operator), and the charging time is
&¢ where u denotes the charging power. Therefore,
the charging time of any EV follows a discrete distri-
bution, bemgL “ewith probability Zm , withmeana; =

xz' 2 _ (e L) /\w _ 2
S 8 o ZN i and variance b; Zm i

Then we approximate the expected waiting time in
the queue (excluding the charging time) W/ by using
the heavy-traffic formula from Whitt (1993) as follows:

E[W!] = piai c+c:
Yi(l-p) 2

where the utilization ratio p; = 4 Z{,f/\“’, 2= zz, and
2 =1. The heavy-traffic approximation is asymp-
totically accurate as p; approaches 1. Such approxi-
mation is particularly appropriate in our setting,
where the charging resources, either constrained in
car2go’s practice or optimized in our solution, are
heavily utilized. In fact, for all the numerical instances
in Section 5, the values of p; are sufficiently high
(above 0.96) in the peak period (when the fleet size
constraint is binding, and this formula is relevant).
Note that we choose not to use the alternative heavy-

ai(+pict)
7 2Y(1-pi)’
which is more common in the literature (e.g., Shortle
et al. 2018). This alternative formula would be struc-
turally less tractable in the optimization model in
Section 3.4, and it would only negligibly improve
the accuracy given the close-to-one p; in our setting.

Therefore, the expected time an EV spends at site i,
including both the time in the queue and the time
being charged, is given by

traffic approximation from Kingman (1965)

q Ze<é @/\ie
E[W;] =E|W!| +a; = b
(Wil =E[Wi] +a. 2Y? = 2Y; Tece 58 A
e—e Aie
S U e

By Little’s law, the expected number of vehicles Q; at
charging site i is given by

. (Z M)E[WJ

e<e

_ (Ze<§ Aie) Ze<e (Eu;) A " Z e—e

= 2 Ade. 5
2Y12 - 2Yz Ze<e ; Aze ( )

e<e



He et al.: Charging an Electric Vehicle-Sharing Fleet

8 Manufacturing & Service Operations Management, Articles in Advance, pp. 1-17, © 2020 INFORMS

Figure 3. (Color online) Histogram of EV Energy Levels in Percent upon Entering and Leaving a Charging Process
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Note. (a) Energy levels before charging in the entire system; (b) Energy levels after charging at zones 92105, 92109, and 92115 (by zip code); (c)
Energy levels after charging at zones 92102, 92103, 92110, and 92116 (by zip code); (d) Energy levels after charging at zones 92101, 92106, 92107,

and 92108 (by zip code).

Because the utilization ratio p; < 1, we have

Yi> Z eu;e Ae. (6)

e<e

3.4. The Optimization Model

Having described the key features in EV sharing—namely,
the customers” EV-picking behavior and the operator’s
charging-up-to policy—we develop an integrated op-
timization model for the design and operation of a
system with m EVs.

Zooming out the view to the entire service region,
the EV-sharing fleet moves across and within zones.
EV movements consist of both transit trips by cus-
tomers and repositioning trips by the operator, which
we characterize as aggregated EV flows at different
energy levels. As suggested by Section 3.1, we model

the transit trips from zone i to j with EVs at energy
level e on departure as a Poisson process with rate ;je.
Because only those EVs with energy level e > ¢;; are
feasible for such a trip, we have ;;, =0 for e <e;.
Moreover, to rebalance the system in the presence of
asymmetric EV flows by customers, the operator
needs to carry out repositioning trips from zone i
to j with rate ¢, for EVs with energy level e. Sup-
pose that an EV consumes ¢j; energy for repositioning
from zone i to j. We have ¢, = 0 for e <¢j;. The op-
erator also dispatches workers to move EVs within
each zone: EVs with energy level e <e enter the
charging site in zone i (if open) with rate A;, and depart
from the charging process with rate 7; after reaching
energy level é.

Under the Poisson assumption, the actual number
of EV movements (e.g., customer and repositioning
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trips) is stochastic. In practice, the operator can im-
plement the repositioning by splitting Poisson EV
flows (e.g., blocking a proportion of arrived EVs
from customers for repositioning workers). With
necessary repositioning, the operator maintains the
balance of EVs at various energy levels in the sys-
tem. The following energy-flow balance equations char-
acterize the EV flows in each zone and in the charg-
ing sites:

& [%(”“"") " ()]

- ’ )
= Z (lzbi]'f + Qbije) + A, Vie $,ec€\e,
j€s
ni = Z (ll)ijé + ¢ijE) +A; Viey, (8)
j€d
=2 dies Vie . 9)
ecé

The balance equations (7) and (8) trace the EV flows
with energy levels ¢ < & and ¢, respectively, for each
zone i. In Equation (7), the term s ({jiese;) + d)ﬁ( o+ et))
summarizes the total EV inflows into zone i, whose
energy level on arrival is e. The term on the right-hand
side (RHS), Zjey(l,bije + qbl-je) + Ai, represents the total
outflow from zone i by transit trips and reposition-
ing trips for fleet rebalance and to the charging site at
zone i. Note that this equation concerns EV inflows
from other zones, and therefore, their energy levels
areless thane. For EVs with energy level e, Equation (8)
indicates that the inflow comes only from the charg-
ing site in zone i with rate 1);, and the term on the RHS,
Sies(Wize + ¢ijz) + A, is the total EV outflow with en-
ergy level e. The last equation (9) shows the flow
balance at charging site i.

The above-mentioned energy-flow balance equa-
tions connect the flow variables—namely, ¢;e, (j)i]. o Aies
and 7;. We next integrate the two features of EV
sharing (i.e., the customers’ EV-picking and operator-
controlled charging processes) using a fleet size con-
straint. As modeled in Sections 3.2 and 3.3, the ex-
pected number of EVs that idle in zone i and stay at
charging siteiis given by L, and Q; in Equations (3)—(5).
To derive the expected numbers of EVs in another
status (e.g., in transit by customers and repositioning
by the operator), we apply Little’s law. That is, the
expected number of EVs traveling from zone i to j with
initial energy level e is t;;1);; for customer transit and
Si/¢ije for repositioning, where t; and s;; are the ex-
pected travel time in transit and repositioning be-
tween zones, respectively. Let s; be the expected
travel time for EVs entering and leaving the charging
sites. The expected number of EVs repositioned to
and from the charging sites is given by s;i(Ze<z Aie + 11)
in zone i. The sum of all these EV quantities is no

larger than the fleet size m, which the following fleet
size constraint imposes:

> (Qi +2) Lie) IS (tif‘/’iie + Sif¢ffe)

ey ecé icy jed ecé (10)

+ Z Sii (Z Aje + T]l) <m.
i€y e<e

Let p be the revenue from customer usage per unit
time per EV, let ¢ be the repositioning cost per unit
time per EV, let f; be the fixed setup cost of a charging
site in zone i, and let g be the installation cost per
charger. Suppose that the maximum number of chargers
allowed is ; in zone i. Recall that X; € {0, 1} indicates
whether to offer charging service, and Y; € R* in-
dicates the number of chargers installed in zone i. We
formulate the charging infrastructure planning and
fleet operations problem for EV sharing as a nonlinear
optimization problem (NLP):

max  p DI DIDIPILT
a,/{,ﬁ,l;,Q i€y jeg et i€y jeg ec€
—c > si| D Aie + 77:‘) = D> (fiXi +gYy)
ic$ e<e ie$
(s.t.) constraints (1)-(10),

Y; < ini, Vie ﬁ,

qbi].ezo, Vi,je@,e<efj or e>e,
Yije = 0, VijeJ,e<e; or e>e,

0<a,<1,Viedecs,

Yi, Pijer Yijer Aies Mis Lie, Qi 2 0,
Vi,je $,ecé,

X;€{0,1}, Vie 9.

In this formulation, the objective is to maximize the
operator’s expected annual profit, which is the reve-
nue from transit trips by customers net of the repo-
sitioning cost by workers and the investment in
charging infrastructure. Vehicle flow rates (i, ¢, A, 1)
and fixed costs (f,g) are all annualized. The addi-
tional constraint Y; < i;X; ensures that no charger will
be installed without a charging site. As discussed in
Section 3.1, the travel demand rates are time varying.
We thus adopt the point-wise stationary approxi-
mation approach (Green and Kolesar 1991) to in-
corporate system dynamics over multiple periods.
The detailed formulation for multiple periods is pro-
vided in Online Appendix B.

4. Solution Approach

Problem (NLP) is nonlinear and nonconvex owing
to the fractional constraints (3)—(5) with quadratic
terms that define queue lengths L;, and Q. Fractional
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constraints are common in queuing-location models but
known to be difficult to tackle. In this section, we develop
alternative formulations that are computationally efficient
to solve. The idea is to overestimate (respectively, un-
derestimate) L, and Q, to generate a lower (respectively,
upper) bound of the optimal (NLP) objective value.

4.1. Lower Bound

To obtain a lower bound for (NLP), we first develop a
transformation of L;, into L;, in Lemma 1, and then we
construct overestimates of L;, in Lemma 2 and those of
Q;in Lemma 3 as follows. We relegate the proofs and
additional computational details to Online Appendix C.

Lemma 1. The average number of idle EVs waiting in zone i
is given by

Z Li = Z L, where

ecé ecé

0, if e=0,
~A e @
(die_di(e—l)) Zﬂ’ﬂ’iill?

1_25’ = Yie! !

iie:
if e=1,....6  (11)

Although L;, is a ratio of quadratic terms in a;, in (3),
Lemma 1 shows that 3¢ L;, can be effectively sim-
plified as a sum of linear ratios. When solving the
optimization problem, we can safely rewrite the defi-
nition of ﬁie as

. 0, if e=0,

; dio—die-1)) Do 3
bie = {( D ZE 1.6 (12)

e 7
1_25'29 Q!

Lemma 2. For any e > 0 and any constant fit;, > 0, if Li
satisfies the constraint

A ] 2
d 2 ((dz'e - di(e—l)) f e T+ mie)
(Lie + (1 — Z aie’)) > mle €y
e

e'=e
A e 2
+ Lie_ 1_Zaie' 7
e'=e

then L;, also satisfies the constraint (12).

Lemma 3. For any constants 1;, W; > 0, if Q; satisfies the
constraints

_ 2
(Qi -2, ?/\w + Zi)

(13)

e<e

2 2

> +

Q-3 -2

e<e

u 4

(e—e)? -
(Zadﬁ_jAA’Jrni ZKE Aie

2 N
S (Zi + Xiw;)?
- 2W;

(Zyi -> E%e Ae

e<e

_ 2
+ ( > %AE) , (14)

then Q; also satisfies the modified constraint (5) with a
replacement of the sign with the “>" sign.

“_r

Using the constraints from Lemmas 2 and 3, we
provide a lower bound on the optimal objective value
of (NLP) in the following proposition.

Proposition 1. A lower bound problem for (NLP) can be
formulated as an MISOCP by replacing ¥,e¢ L with
Seet Lie in (10) and replacing constraints (3)—(5) in (NLP)
with constraints (13) and (14).

We call the resulting formulation (SOCP-LB).
The formulation is an MISOCP because (13) and
(14) can be converted into second-order cone (SOC)
constraints in the standard two-norm form. For ex-
ample, (13) is equivalent to

N g (afe—';’f(e—l)) Do gt | | Vi
Li + (1 - Ez_éa) > i(fe—(l—zfi,_gaie/) “ )/ ,

2
where the left-hand side is ensured to be nonnegative,
as discussed in Online Appendix C. Meanwhile, all
the other constraints and the objective function are
linear in the decision variables. State-of-the-art soft-
ware such as GUROBI provides standard solvers for
MISOCP. For a comprehensive review of MISOCP,
please also refer to Alizadeh and Goldfarb (2001).
Because the optimal solution from (SOCP-LB) is a
feasible solution to (NLP), the optimal objective value
of (SOCP-LB) is no greater than that of (NLP).

4.2. Upper Bound
To obtain an upper bound for (NLP), we underesti-
mate > ,.c¢ Li and Q; in this subsection.

Lemma4. If L, satisfies constraints (3) and (4) in (NLP), then
Ve €{1,2,...,e}, Seee L satisfies the SOC-representable
constraint

2

(Zee% Lz’e "2‘ Zg:ec 0(1',3)2+ %ec . (15)

(Zee% Li+2~ Zg=gc aie)z

>

e

Although inequality (15) is valid for all e € {1,2, ..., ¢},
we only need to include a selection of ¢ to avoid an
excessive number of conic constraints, as discussed
in Online Appendix C. We next underestimate Q; by
dropping the fractional term in constraint (5) as follows:

e—e
Qi=>) T/\ie- (16)
e<e

We then provide the upper bound for (NLP) in
Proposition 2.

Proposition 2. The upper bound problem for (NLP) can be
formulated as an MISOCP by replacing constraints (3)—(5)
in (NLP) with constraints (15) and (16).
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We call the resulting formulation (SOCP-UB). According
to Lemma 4 and constraint (16), the optimal solution to
(NLP) is a feasible solution to (SOCP-UB). Therefore, the
optimal value of (SOCP-UB) is higher than that of (NLP).

The above-proposed lower bound (LB) and upper
bound (UB) solution approach has three merits. First,
the optimality gap between (SOCP-LB) and (SOCP-
UB) is small, given adequate fleet size m, as tested in
our case study. Second, this approach is computa-
tionally efficient. All numerical instances in our case
study can be solved in less than 10 minutes (including
parameter tuning for 7, #1;, and @;) using a personal
laptop. Third, for EV-sharing practitioners, our MISOCP
formulations are relatively straightforward to im-
plement by calling a commercial solver. By contrast,
state-of-the-art solution algorithms for the quadratic
sum-of-ratios fractional programs problem, to which
(NLP) reduces, are significantly more intricate. For
example, the recent algorithm in Jiao and Liu (2017)
involves an iterative procedure of linearization, branch-
ing, and bounding that can be elusive for tuning. Hence,
we solve (SOCP-LB) for the feasible and near-optimal
system design in our following case study.

5. Case Study and Managerial Implications
Based on the above-mentioned optimization model
and the solution approach, this section discusses how
to enhance the viability and profitability of EV sharing
inpractice. We first describe the setting of our case study
and propose a design of charger deployment. Then we
focus on answering five questions on different practical
aspects of EV sharing:

1. How does the accuracy of our solution approach
depend on fleet size and other system parameters?

2. Is there an economically efficient yet easy-to-
implement charging policy?

3. Should EV sharing rely on a public or private
charging network?

4. What are the implications of technology advance-
ments?

5. How does urban spatial structure affect EV-
sharing operations?

Finally, we validate our findings with the California
Household Travel Survey for San Diego in Online
Appendix Section D.4.

5.1. Case Study: Car2go in San Diego

Our case study adopts an urban setting of 16 zip code
zones in San Diego, California, where car2go ran an
EV-sharing program in 2011-2016; it quit the San
Diego market at the end of 2016. We identify 19,380
EV-sharing trips and 379 EVs from the data set, as
described in Section 3.1. Additional information about
the trips, charging sites, EV specifications, and cost

parameters are available in Online Appendix Sec-
tion D.1.

One particular challenge in estimating trip demand
is dealing with missing data. There are primarily two
causes of the missing-data issue in our trip records:
(1) the observed records were censored by vehicle avail-
ability and energy level because the demand was lost
when there was no vehicle nearby with a sufficient en-
ergy level, and (2) occasionally, no information was re-
ceived because of unstable application programming
interface connections to the website. Therefore, we
develop a convex optimization model and a tailored
algorithm to recover the average demand based on
the framework of tensor completion (e.g., Goldfarb
and Qin 2014). The detailed procedure of demand es-
timation is provided in Online Appendix Section D.2.

In addition, we divide a day into five periods with
different demand profiles, as described in Section 3.1.
Hence, throughout the case study, we solve the multi-
period problem (provided in Online Appendix B) using
our proposed solution approach developed in Section 4.

5.2. Proposed Design and Operations

We solve the LB problem (SOCP-LB) to obtain the
desired locations of charging sites, the associated
number of chargers, and the EV flows of transit and
repositioning trips at each energy level. By Proposition 1,
the LB solution is a feasible solution to the original
problem (NLP). Moreover, the LB solution is rea-
sonably accurate: the LB profit from (SOCP-LB) is
$1.62 x 10°, whereas the UB profit from (SOCP-UB) is
$1.69 x 10°, implying a 4.19% optimality gap.

Our result suggests that the operator can serve 95.3%
of the total demand by using only three charging sites with
proactive repositioning activities. Figure 4 shows that
our proposed design consists of three charging sites in
zones 1, 7, and 14. The selected sites are either in or
next to the zones with high demand flow volume
(including both inflows and outflows). By having 40
chargers in zone 1, which is downtown San Diego, the
operator can use the high traffic by customer trips to
bring EVs to chargers. Zones 7 and 14 are both rec-
ommended to have 16 chargers such that these char-
gers are easily accessible from nearby zones in the west
and east, respectively.

5.3. Fleet Size and Bound Performance
The effectiveness of the proposed design and oper-
ations motivates us to examine several paths to im-
prove EV-sharing-service operations in practice. First
of all, we need to test the accuracy of the proposed
solution approach for wide ranges of parameter values.
As shown previously, with 379 EVs in the car2go
example, our proposed solution approach incurs an
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Figure 4. (Color online) Charging Sites and Daily Demand Flow Volume of Each Zone in San Diego
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optimality gap of 4.19%. To further investigate the
sensitivity of the bound performance with respect to
fleet size, we vary fleet size and solve for both the
LB and UB profits using (SOCP-LB) and (SOCP-UB)
formulations. Figure 5 indicates that the optimality
gap becomes reasonably small—Iless than 8% once the
fleet size becomes at least 70% of the baseline level.
Figure 5 also suggests that car2go may have oversized its
EV fleet. A fleet size of 300, which is only 79.2% of the
baseline size of car2go’s fleet, is sufficient to generate
more than 98.0% of the baseline LB profit (or 93.6% of
the baseline UB profit). Both the LB and UB profits
increase little if further adding EVs. The optimality
gap widens when the fleet size drops below 70% of the
baseline level, making it more difficult to infer the
profitability. However, given the trip demand vol-
ume from the data, those scenarios are unrealistic
because the fleet sizes deviate too much from the
actual baseline level. We thus proceed to investigate
other factors that affect car2go’s performance. For all
the numerical instances evaluated in Sections 5.4-5.7,
the optimality gaps between the LB and UB profits are
less than 5%, suggesting that the gap is insensitive to
the variation of the other parameter values within the
considered ranges. For example, the average opti-
mality gaps are 3.7% for perturbing charging power,
4.2% for repositioning efficiency, 3.9% for battery
capacity, and 4.5% for charger availability. We believe
that this suboptimality is insignificant and does not
mask our managerial insights.

5.4. Proactive vs. Threshold-Activated
Charging-up-to Policies

We next show that car2go could have improved its

charging operations. We examine the charging operations

in the proposed solution by checking the energy levels
of EVs. Figure 6(a) shows the energy-level distribution
of EVs entering charging sites—that is, Ycs Aic aggre-
gated over all periods and then normalized into pro-
portions with respect to each energy level ¢ (here we
evenly discretize the battery capacity into 15 energy
levels with the charging-up-tolevele = 15). The figure
indicates that it is optimal to proactively charge EV's from
varying energy levels. Such a proactive charging policy
differs from car2go’s practice of a threshold-activated
charging policy—that is, charging EVs simply when
their energy levels drop below the 20% threshold (recall
Figure 3).

Despite its optimality, the proactive charging policy
may be challenging for practitioners to implement.
The threshold-activated charging policy, by contrast,
is more implementable given its “single-parameter”
simplicity. Therefore, we are interested in whether
the EV-sharing service provider can keep employ-
ing a threshold-activated charging policy yet earn a

Figure 5. (Color online) LB and UB Profits in Fleet Size
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higher profit simply by adjusting the charging acti-
vation threshold.

Interestingly, Figure 6(b) shows that the profit is
remarkably sensitive to the threshold, peaking at 40%
level. In other words, the operator may recover as
much as 98.1% of the optimal profit with the proactive
charging policy by raising the charging activation
threshold from 20% to 40% (with the charging infra-
structure reoptimized). In fact, both the 40% threshold-
activated charging policy and the proactive charging
policy outperform the 20% threshold-activated charg-
ing policy because of two effects: (1) both policies boost
the overall energy level of the fleet, and consequently,
both policies increase the trip demands’ fill rate, which
is driven by the customer EV picking behavior, and
(2) both policies improve the efficiency of reposi-
tioning operations as well as charger utilization; this
is because either too low or too high a charging acti-
vation threshold incurs excessive repositioning trips
for charging at suboptimal locations. Additional dis-
cussions on these effects are available in Online Ap-
pendix Section D.3. Proactive charging still generates
a slightly higher profit than 40% threshold-activated
charging because the former saves the repositioning
cost by flexibly charging some EVs near a charging
site before they hit the 40% threshold at farther lo-
cations. In sum, the EV-sharing-service provider may
reap a near-optimal profit with a simple threshold-activated
charging policy by carefully choosing the threshold level.

5.5. Private vs. Public Chargers: Location

and Availability
Clearly, building private charging sites incurs a heavy
up-front investment. If the EV-sharing operator shoul-
ders this cost, the charging sites should be economically

deployed at optimal locations, as our proposed layout
design shows. In reality, however, car2go relied on
public chargers to power its EV fleet. The Department of
Energy had promised to install 1,000 Blink chargers in
San Diego through ECOtality. Unfortunately, ECO-
tality went bankrupt in 2013. Only about 400 chargers
have been installed until recently. We find 386 public
chargers, with their location information obtained
from the U.S. Department of Energy (2017).

We thus investigate to what extent using public
chargers at nonoptimized locations affects operating
profits. A key challenge in using public chargers is
that their availability is not guaranteed. This is be-
cause public chargers also face charging demands
from other EV users. By contrast, the operator can
enjoy 100% availability with private chargers. To il-
lustrate the impact of charger availability on the
trade-off between using public and private chargers,
we consider two cases: (1) when using the public
charging network, the operator has access to r% of the
386 public chargers at given locations, where r% is the
average charger availability, and (2) when using a
private charging network, the firm is able to optimize
the allocation of an equivalent 386 X r% number of
chargers. In each case, we solve a modified version of
(SOCP-LB) that ignores the fixed and variable charger
investment costs and maximizes the operating profit.
Figure 7 shows the operating profits at different levels
of charger availability 7% for both cases.

Figure 7 indicates that charger availability is crucial to
the operating profits when collaborating with a public
charging network. In particular, when the availability
of the public charging network (e.g., ECOtality or
Blink) is too low (< 25%), the associated operating
profit is much lower than that from using private

Figure 6. (Color online) Comparison Between the Proactive Charging Policy and Threshold-Activated Charging Policies
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Note. (a) Energy level distribution of EV flows (aggregated over all periods) entering charging sites under the proactive charging policy;
(b) profits with different charging activation thresholds (dotted line) and the optimal profit with proactive charging (dashed line).
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chargers because of the suboptimality of the charger
locations. In that case, car2go should set up its own
charging network (while also taking charger invest-
ment costs into account). If the public charging net-
work increases the availability for car2go, the gap be-
tween the two operating profits narrows and eventually
becomes insignificant. Therefore, this profit gap indicates
the value of optimizing charger locations. With sufficient
availability of public chargers, car2go should then
rely on public chargers and focus on effectively reposi-
tioning EVs to charge at the right locations.

5.6. Technological Advancements

EV-sharing operators are witnessing rapid advance-
ments in EV technologies: First, the charging tech-
nology is maturing. The rated level 2 charging power
islikely to increase to more than 19 kW, which is about
six times the current 3.3 kW for car2go’s Smart Electric
Drive (Yilmaz and Krein 2013). Second, research and
development in the energy density of the lithium-ion
battery are making continuous progress, pointing to
an EV future with a longer per-charge range (Blomgren
2017). Third, integrating autonomous vehicle tech-
nologies into the EV business is another intriguing
prospect (Fehrenbacher 2016). Unmanned operations
of EV repositioning and charging are expected to be
significantly cheaper than using human labor.

Seeing the trends, we next examine how these
technological advancements will impact EV-sharing-
service operations. To this end, we perturb the values
of charging power u, the battery energy capacity (or,
equivalently, the highest energy level) ¢, and the cost
efficiency of vehicle repositioning 1. Figure 8 shows
the profit and total number of chargers in need in
response to the parameter variations. We find that
these technological factors throw impacts in differ-
ent ways:

* Increasing the charging power significantly shortens
the expected charging time and subsequently reduces
the number of chargers needed. However, the profit
increases only marginally because the main cost com-
ponents such as the repositioning cost and site invest-
ment remain insignificantly affected.

¢ Increasing the battery capacity and the EV range
increases the profit because doing so not only reduces
the number of charging sites in need but also makes
charging sites accessible at remote zones with lower
fixed costs. With a longer range, repositioning trips
for charging become less frequent and more flexible.
Therefore, the repositioning cost also drops. By contrast,
the impact on the number of chargers needed is indirect
and insignificant. This is because the minimum charger
quantity is determined by the total rate of electricity
injection into the fleet. Given the charging power, this

Figure 7. (Color online) Operating Profits of Using Public
and Private Chargers
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injection rate depends on the total energy usage by
transit and repositioning trips.

* Reducing the per-unit repositioning cost directly
drives down the repositioning cost. Moreover, it al-
lows building charging sites at less expensive loca-
tions without a significant increase in repositioning
cost, although the repositioning trips become longer.

We summarize these observations into a twofold
prescription: when chargers are limited in the early
stage, the EV-sharing operator should first consider
enhancing the charging power to alleviate its heavy
dependence on charging infrastructure. When char-
gers become increasingly available, the operator should
consider expanding battery capacity and reducing the
repositioning cost to enhance its profitability.

5.7. Urban Spatial Structure

We finally examine EV-sharing operations under
more generic urban settings. As cities grow, they fill
space naturally from the bottom up and/or by design
from the top down, driven by a myriad of socioeco-
nomic factors (Batty 2013). Consequently, cities differ
in their centrality of spatial structures: Some cities are
monocentric, where most of the activities are con-
centrated in the central business district, resulting in
the outward ebb and inward flow of trips throughout
a day. Other cities are more distributed and poly-
centric, resulting in trips with widespread origins and
destinations (Louf and Barthelemy 2013).

To expand EV sharing in cities around the globe, we
are interested in how EV-sharing-service operations
are affected by urban spatial structure, particularly in
terms of the centrality of the trip pattern. To for-
malize the notion of centrality, we adopt the defini-
tion of “start-to-complete networks” from the study
by Bimpikis et al. (2019, p. 752) (which investigates a
ride-sharing platform’s pricing and compensation
policies). Let matrix A¢ represent the trip pattern of a
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Figure 8. (Color online) Impacts of Charging Power, Battery Capacity, and Repositioning Cost Efficiency on (a) the Profit and
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city with 7 zones. For a trip originating from zone i,
the element u in A®is the probab1hty that this trip will
end at zone ] Moreover, A¢ is parameterized by
&e0,1]:

A® = (1- AP +EAS,

where
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That is, A¢ is a convex combination of AP and A€,
where AP represents the fully decentralized scenario
in which all destinations are equally likely for a one-
way trip from any origin, and A represents the fully
centralized scenario where zone 1, as the central
district, is the only destination for all trips from other
zones, and all trips from zone 1 are equally likely to
end at any other zone. Hence, £ captures urban spatial
centrality: as & increases from 0 to 1, the trip pattern
becomes more centralized around zone 1.

We use A¢ to generate numerical instances with
different degrees of centrality. Let df be the rate of
customer trip demands originating from zone i in
period k. We keep d* the same as in our baseline  setting
but split d* to each zone j according to dk] = dka 9 . Then
we solve (SOCP-LB) for six different Values of cen-
trality ¢ ranging from 0 to 1.
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Our results suggest that the EV-sharing operator may
earn more profits as the urban centrality £ increases. As
Figure 9 shows, this profit increase is mainly attrib-
utable to the declining charging infrastructure cost
and the declining repositioning cost. A higher degree
of centrality, such as & =1, as Figure 10(b) shows,
would allow consolidating charging operations at the
central district. Consequently, EV charging requires
fewer charging sites and fewer chargers. The repo-
sitioning trips for charging are also shortened because
the charging locations overlap more with customer trip
origins and destinations. Conversely, alower degree of
centrality, such as £ = 0, as Figure 10(a) shows, would
entail building multiple charging sites at distributed
locations with more chargers yet still incurring extra
repositioning trips for charging at locations that are off
customer trip routes.

The positive correlation between profitability and
urban centrality highlights the importance of charging

Figure 9. (Color online) Profit and Cost Components in
Demand Pattern Measured by Centrality &
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Figure 10. (Color online) Layouts of Charging Sites Under Different Demand Patterns Measured by Centrality &

(a)

=
v
" Mig 83 aels |
32.801 &
A e 1116 A charging site
_‘mmi‘- A v 213, Zone
Lo 8
T 32.751 14 A Flow
- ) 13 ¢
v - ® 100
o7 ‘ = @5 @ 200
6 Sag Diego 2 . 300
32.70 Q@ uas o song : @ 40
Vamenant Cl s
ook " — ¢ o ot 209 o
-117.25  -117.20 -117.45  -117.10 -117.05

Lon

Note. (a) 83 chargers on 4 sites for centrality & = 0; (b) 73 chargers on 1

operations management. Consider, for comparison, a
hypothetical vehicle-sharing system that involves no
battery charging but otherwise resembles the system
in our numerical setting. The relationship between
centrality and the vehicle repositioning cost (only for
rebalancing supply/demand) would become less ob-
vious, as the black dash-dotted line in Figure 9 illus-
trates. As another comparison, for the ride-sharing
system considered in Bimpikis et al. (2019) with no
charging operations, the ride-sharing platform’s profit is
found to be even decreasing in centrality &. In their
stylized setting, the demand rates d* are assumed to
be identical. As a result, centrality causes supply/
demand imbalances of the ride-sharing network.
The platform has to use prices that are off the profit-
maximizing level as an instrument to mitigate the
imbalances. By contrast, our d¥ from real data varies
across locations and periods. Hence, the relationship
between centrality and the expenditure on rebalancing
supply/demand is less significant. Overall, our numerical
results complement the discussion about trip pattern’s
impact on vehicle sharing in the literature—for EV
sharing, the savings in charging operations and in-
vestment may dominate the expenditure on reba-
lancing supply/demand as urban centrality increases.

6. Conclusion

This paper is motivated by a sheer gap: a smart city
future where shared and electrified mobility prevails
versus a reality where it may actually fail. To bridge
this gap, we propose models, analytics, and insights
for deploying a charging network and operating an
EV-sharing system. In particular, we explicitly model
a customer’s endogenous usage of EVs at heteroge-
neous energy levels and the charging process under
a charging-up-to policy. To deal with intractability
in the resulting nonlinear optimization problem, we
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site for centrality & = 1.

develop both computationally efficient lower and
upper bound problems as MISOCPs. We conduct a
series of computational experiments using a set of real
operational data.

Our case study on car2go’s operations in San Diego
leads to several findings. First, contrary to the practice
of ECOtality, EV-sharing infrastructure planners should
concentrate limited charging resources at selected opti-
mal locations. If the EV-sharing operator collaborates
with a public charging network, it is crucial to ensure
charger availability to the EV-sharing fleet. Second,
contrary to charging EVs only from energy levels of
about 20%, car2go should either proactively charge
EVs from varying energy levels or adjust the threshold
to 40%. Either policy change can enhance the EV
utilization rate, improve the repositioning efficiency,
and subsequently significantly boost the profit. The
operator should also carefully tailor its fleet size.
Third, if technology permits, higher charging power
can alleviate the dependence on scarce charging re-
sources, whereas larger battery capacity or unmanned
repositioning can improve profitability. Finally, the
study on urban spatial structure again highlights the
importance of charging planning and operations to
EV sharing.

To further enhance the viability of shared and
electrified mobility, several research challenges are
worth confronting. For example, the infrastructure
planning decisions are made up front in our setting.
However, EV sharing is a fast-evolving business. It
will be desirable to develop adaptive decision-making
schemes for multistage infrastructure planning jointly
with charging and repositioning operations. In addi-
tion, the prevalence of shared and electrified mobility
will mean both burden and asset to the future urban
electrical grid. Those grid implications also await fur-
ther explorations. Finally, a dynamic yet implementable
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charging policy (e.g., with time-varying charge-up-to
levels) may also be investigated.
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Endnote

"For more details, see https: //www.smartnation.sg/ for Smart Nation
Singapore, https://amsterdamsmartcity.com/ for Amsterdam Smart
City, and https: //www.columbus.gov/smartcolumbus/ projects/ for
Smart City Columbus (all accessed December 1, 2017).
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