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Abstract

Wiberg bond index and natural bond orbital analyses were used to examine the effect of strain on trigger bonds for a series of
organic-cage molecules. In substituted cage hydrocarbons, weakening of the interior C—C bonds and strengthening of exte-
rior C—X bonds are explained in terms of the contributions of the carbon 2s and 2p atomic orbitals to the bonds. The interior
C-C, rather than C-NO,, bonds are expected to break to initiate explosive decomposition in nitro-substituted tetrahedranes,
prismanes, and cubanes. Activation of C—C bonds in cage molecules increases with nitro substitution, but persubstituted cages
are not necessarily the most activated. For example, heptanitrocubane is predicted to be more sensitive than octanitrocubane,
consistent with experimental studies. In contrast, for a series of hypothetical nitroester substituted prismanes, the strengthening
of the exterior C-ONO, bond weakens the O-NO, bond more than the interior C—C bonds. In CL-20 and TEX, cage strain
as determined by WBI analysis in the fused five- and six-membered rings is less significant than for the cage hydrocarbon. In
these known energetic materials, the N-NO, trigger bonds are activated by the orientation of the nitro groups.

Keywords Density functional theory - Energetic materials - Wiberg bond indices - Cage compounds - Natural bond orbitals

1 Introduction

Understanding the molecular features that lead to explosive
decomposition is important for improving the performance
of energetic materials (EMs) while lowering their potential
environmental impact [1-3]. Explosophores, such as nitro
or azide groups, are substituents which facilitate explosive
decomposition by incorporating bonds readily broken under
conditions of impact, shock, friction, or other stimulative
events [4]. Within EMs, the trigger bond is defined as the
linkage that breaks to initiate the explosion [5]. These bonds
are typically associated with an explosophore and are weak-
ened, or activated, toward cleavage. For example, in nitro-
based EMs, a C-NO, is often the trigger bond. In organic
cage compounds, energetic properties are additionally
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influenced by strained bonds that lead to high heats of for-
mation and compact structures [6].

Examples of known organic-cage EMs include hexaaza-
isowurtzitane-based CL-20 and the structurally related
explosive TEX (Fig. 1). The primary application of CL-20,
proposed in 1979 and synthesized for the first time at the
China Lake weapons development facility, is as a military
propellant because it produces less visible smoke as it burns.
Cage hydrocarbons have been considered as potential EMs
due to the energy stored in their highly strained bonds. Tet-
rahedrane, with the highest strain energy (571.9 kJ/mol
[71), has never been synthesized. Prismane, or Ladenburg
benzene, is explosively unstable (strain energy =606.9 kJ/
mol [7]) and computational studies show its nitro deriva-
tives would have large positive heats of formation [8, 9].
Cubane is also a known molecule for which nitro derivatives
heptanitrocubane (HNC) and octanitrocubane (ONC) have
been synthesized as potential EMs with exceptional energy
density [10, 11].

Various groups have used computational methods to
examine the energetic properties of substituted tetrahedranes
[12-15], prismanes [8, 12, 14, 16, 17], cubanes [18-26],
hexaazaisowurtzitane-like derivatives [25, 27—40], and other
strained EMs [41—49]. These studies have used a variety of
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methods including bond dissociation energies (BDEs), atoms-
in-molecules models, electrostatic potentials, distributed
multipole analysis, and other computational methods in both
the gas and condensed phases to examine bonding in EMs.

WBI, 3 (EM) — WBI gz (reference)
WBI s (reference)

%AWBI 5 = x 100 (1)

Wiberg bond index (WBI) analysis [50] is an alternate
tool used by various groups to identify trigger bonds in EMs
[51-57]. WBISs are a convenient measure of electron density
between two atoms in a bond and have an advantage over BDEs
in that they measure the bond strength of the intact bond and do
not require open-shell calculations of molecular fragments. As
a means to determine the effect of the chemical environment
on potential trigger bonds, relative percent changes in WBIs
(%AWBISs, Eq. 1) are calculated for target molecules and com-
pared to bonds in reference molecules with the same bond type,
hybridization, and explosophore for a relative scale of the bond
strength. Trigger bonds are assigned for individual molecules
based on the value of %2AWBI. Negative %AWBIs indicate a
bond with lower electron density, and higher susceptibility to
breaking, than a reference bond. Conversely, positive %AWBIs
points to bonds strengthened versus the reference bond.

In this study, WBI analysis is applied to several classes
of organic cage compounds to determine the effect of strain
on the composition and assignment of trigger bonds. These
results are supplemented with natural bond orbital (NBO)
analysis [58, 59] to examine how changes in hybridization
affect bond strength. Trends for nitro-substituted tetrahedrane,
prismane, and cubane cage hydrocarbons show that high strain
shifts the trigger bond from the nitro group to the cage itself,
consistent with results from other computational methods for
bond analysis. In the less-strained cages of known EMs CL-20
and TEX, the strength of the N-NO, trigger bonds is influ-
enced by axial or equatorial positioning of the nitro group.

2 Computational methods
Geometries of organic-cage compounds were optimized

using Gaussian 09 [60] and the hybrid functional M06-2X
with the TZVP [61] and def2-TZVPP [62] basis sets. The
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DFT(MO06-2x)/TZVP level performed well for geometry opti-
mizations of a test set of EMs relative to a selection of basis
sets and functionals [51]. Geometries and WBIs in the larger
def2-TZVPP basis set are similar to those obtained at the
TZVP level, which are reported in the Supporting Informa-
tion. The augmentation of the TZVP basis set with diffuse
functions was found to produce spurious results for WBIs
[53]. These functions can be omitted with no significant
difference in the optimized geometries versus the standard
TZVP basis set. Structures were characterized as minima
on the potential energy surface through vibrational analysis.
WBIs and NBO bond compositions were calculated using
NBO 3.1 [63] from the optimized structures. WBIs were
compared to reference molecules to determine the %AWBIs
by Eq. (1). Generally, reference molecules are selected to
have a similar chemical environment to the bond of inter-
est. References selected for 1-3 were ethane or the unsub-
stituted cage molecules (C(sp3)—C(sp3)), nitrocyclohexane
(C(sp*)-NO,), and cyclohexyl nitrate (C(sp*)-ONO, and
O(sp*)-NO,). Cyclohexyl groups were used instead of methyl
to partially preserve the effects of extended C—C bonding at
the carbon center. For CL-20 and TEX, N,N-dimethylnitro-
amine (DMNA) was the reference for the N(sp? )-NO, bonds.
Note that the selection of reference molecule will affect the
estimate of the activation of the trigger bond, but the overall
trends in relative bond strength will be the same.

3 Results and discussion
3.1 Tetrahedranes, prismanes, and cubanes

The DFT(MO06-2X)/def2-TZVPP optimized structures are in
good agreement with previous computational studies (i.e.,
[12—14]) and calculations at the DFT(M06-2X)/TZVP level
(see Supporting Information). WBI and NBO analyses were
performed from the DFT(M06-2X)/def2-TZVPP optimized
geometries of a series of tetrahedrane 1, prismane 2, and
cubane 3 derivatives to determine the effect of increased
nitro substitution on bond strength. The bonds of the hydro-
carbon cages are strained by their restrictive interior C—-C—C
angles which deviate from the ideal 109.47° sp? angle. The
AOs of an ideal sp® center contribute equally to a bond
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(contributions for s-type =25%, total p-type =75%) and the
sum of the contributions for an atom must add to 100%,
such that an increase in the contribution of an AO to one
bond must reduce its contributions to other bonds. Small
cage angles require an increase the contribution of p-type
AOs to accommodate the small interior C—C bonds. This
effect shifts a larger 2s contribution to the exterior C-X
bonds. Additionally, the inability of the hybrid orbitals of
the cage atoms to overlap effectively decreases the inter-
atom electron density to result in weakened interior C-C
bonds due to the curvature in the bond paths [64].

NBO analysis was used to calculate the AO contribu-
tions to localized two-center bonds in the cage molecules
(Table 1). The effectiveness of the overlap to the interatomic
electron density was estimated by %AWBISs. In 1, the cage
with the tightest interior bond angles (£C-C-C =60°),
there is an 80% 2p contribution to the C—C bonds, which
are 5.96% weaker than ethane. The rectangular face bonds of
2 experience less strain (%AWBI=—5.12%) due to their 90°
bond angles and have AO contributions more similar to sp°.
However, the bonds of the triangular faces are more strained
than in 1 (%AWBI=-6.12%) due to the shift of 2s character
to the bonds of the rectangular faces. Bond strain is fur-
ther reduced in 3 where contributions from C approach sp®
hybridization, but the 90° angles prevent effective overlap
resulting in a weaker bond than ethane (% AWBI=—4.84%).
The high contributions of 2p to the C—C bonds of 1-3
increase the proportion of 2s to their exterior C-H bonds, but
the admixture decreases as the cages are less strained. The
effective overlap and lower contribution from the C 2s lead
to stronger exterior C-H and C-NO, bonds along the series
(1<2<3, Tables 1 and 2) albeit with lengthening bond dis-
tances [i.e., 1, (1.424 A)<2, (1.432 A) <3, (1.466 A)] due
to the increase in the admixture of C 2p. The weakening of
the C-NO, bonds is in agreement with the trends in lower
BDE for the series of nitro-substituted prismanes [8].

Weak C-NO, bonds introduced through the nitro explos-
ophore are important to the energetic capacity of aromatic
EMs. However, in monosubstituted cage molecules these
bonds are stronger than the typical C(sp*)-NO, bond due
to the 2s contribution to the exterior C—X bonds. Compared
to CyNO,, the C-NO, bond is 7.61% stronger in 1;, 8.12%
stronger in 2;, and 2.83% stronger in 3. [Note that trends in
the tetrahedranes are anomalous due to significant changes

in the cage structure with substitution.] Additional nitro sub-
stitutions weaken the C-NO, bonds versus the monosubsti-
tuted cages with the largest effect observed in the smaller,
more strained cages due to greater contributions of the C 2s
to the bond (Fig. 2a). The overall carbon contribution to the
C-NO, increases with the C 2s character and correlates with
weakening of the bond (Fig. 2b). Trendlines differ for each
cage molecule due to the differences in the hybridization at
the vertex atoms. However, the bonds are stronger than the
CyNO, reference, even at high substitution. In comparison,
bonds to nitro groups in several known EMs (TNT, RDX,
and HMX) are weaker than their reference bonds in a previ-
ous study [51].

%AWBI analysis shows that nitro substitution has a more
significant effect on the interior cage C—C bonds, especially
for the highly strained tetrahedranes (Fig. 3). Even when
the parent and mononitro cage hydrocarbons are used as
references for the C—C and C-NO, bonds, the C—C bonds
are generally more activated than C—-NO,. The C-NO, bond
is weakened by a maximum of —6.70% in 1,534, —5.72%
in 2,345 and —1.36% in ONC versus the monosubsti-
tuted parent. Activation of the C—C bonds versus the parent
(Table 2) exceeds that of C-NO, in all cases), with the single
exception of 2 53 456 [PAWBI=-5.37% (C-NO, versus
2)); —5.10% (C-C versus 2)] where C-NO, cleavage could
compete with that of the C—C bond. The more favorable acti-
vation of C—C bonds in nitro-substituted 1-3 is consistent
with initial cleavage of these bonds in the previous theoreti-
cal calculations and the isomerization of ONC and HNC to
annulenes in molecular dynamics simulations [24, 65, 66].
This conclusion does not imply that the nitro groups do not
contribute to explosive decomposition, but that they are not
predicted to necessarily initiate decomposition. In contrast,
an examination of the bond critical points in the series of
nitro-substituted tetrahedranes concluded that the weakening
of the C-NO, bonds with increased substitution was greater
than the C—C bond [13].

In the tetrahedrane series, the first nitro group weak-
ens the adjacent C—C bond by 11.5% versus 1. The nitro
groups in 1, , twist to distort the cage in C, symmetry, which
weakens two bonds to the -CH fragment by 19.3% versus
cyclohexane (Table 2). 1, , ; flattens into a kite-like structure
with C—C bonds on opposite edges of the cage lengthening
to over 1.63 A (Table 2). The bonds in 1,34 are slightly

Table 1 Contributions of carbon atomic orbitals to the NBOs of cage hydrocarbons calculated at the DFT(M06-2X)/def2-TZVPP level

C-H Ctri_ctri qu_C sq

dC-H)(A) WBI  %C  %s %p d(C-C)(A) WBI  %s %p d(C-C)(A)  WBI  %s %p
1 1.068 0905 634 400 600  1.467 0984 199  80.0

1.078 0916 62.1 334 666 1511 0982 197 80.1  1.548 0992 269  73.0
3 1.085 0924 612 303  69.7 1.560 0.995 232 767
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Table2 Assignment of trigger Isomer Triggerbond  d(C-C) (A) WBI  %AWBEF  %AWBI’®  AE+ZPE®

bonds for nitro-substituted 1-3

from WBI analysis calculated at 1 1 C1-C2 1.487 0.902 —11.45 _8132

the DFT(M06-2X)/def2-TZVPP 12 Cl-C3 1.568 0822 —1926  —1640

fevel 123 cl-c2 1.631 0754 —2596  —23.34
1234 cl-c2 1.683 0728 —2855  —26.03

2 1 c1-C2 1512 0927 —897 _5.58
12 c1-C2 1513 0928 —11.53  —824 533
14 c1-C2 1513 0928  —8.86 _547 4.02
1,5 c1-C2 1513 0929 —88l 542 0.00
123 c1-C2 1.508 0930 —8.67 ~5.28 8.54
124 c1-C2 1515 0909 —1074  —7.42 3.17
12,6 c1-C2 1,519 0910 —10.61  —7.29 0.00
12,34 c1-C2 1,517 0922 —9.48 —6.11 3.11
1245 c1-C2 1.509 0919 —9.72 ~637 3.60
1246 c1-C2 1,516 0912 —1050  —7.17 0.00
123,45 C4-C6 1511 0921 —9.54 —6.18
1,2,3.4,5,6 c1-C2 1.508 0932 -850 ~5.10
3 1 c1-C2 1.559 0959 —5.79 _3.61

12 c1-C2 1.542 0955 —625 ~4.08 2.79
13 c1-C2 1.555 0965 —5.28 ~3.08 1.17
17 c1-C2 1.554 0967 —5.09 ~2.388 0.00
123 c1-C2 1.547 0949 —681 —4.65 3.44
134 C3-C4 1.543 0955 —623 ~4.05 1.32
13,6 C3-C4 1.562 0959 —5.88 ~3.70 0.00
12,34 c1-C2 1.546 0952 —657 —4.40 7.79
1235 c1-C2 1552 0946 —7.42 ~527 3.87
123, c1-C2 1.546 0948 —687 —471 5.45
1238 c1-C2 1.549 0948 —6.88 —472 2.51
1,3,5,7 C1-C5 1.545 0955 —6.21 ~4.03 1.79
1,3,6.8 c1-C2 1.561 0959 —585 ~3.67 0.00
12345 C1-C5 1.547 0948  —6.94 —478 3.10
12,3,5,7 c1-C2 1.551 0947  —7.06 ~4.90 037
1,2,3,6,8 C2-C6 1.549 0947 —698 —482 0.00
1,2,3.4,5,6 C1-C5 1550 0947 —7.01 —485 3.11
1,2,3.4,5,7 c1-C2 1550 0947 —7.05 ~4.90 0.75
1,2,3,5.7.8 C1-C5 1,550 0946 —7.12 ~4.96 0.00
1234567  Cl-C2 1.551 0943  —7.40 ~525
12345678 CI-C2 1.553 0944 —732 ~5.16

4%AWRBI calculated versus cyclohexane

5% AWBI calculated versus the parent cage hydrocarbon

“Relative energies corrected for zero-point energy contributions (AE+ZPE) are given when multiple sub-

stitutional isomers are possible

longer and weakened by 28.6% relative to 1. For prismanes
and cubanes, the position of the substitutions influences the
stability of the isomers and which C—C bonds are most acti-
vated (Table 2). Isomers with the most spacing between nitro
groups tend to be the lowest energy structures (i.e., 2; s and
21265 317 and 3, 3 4 ¢). Nitro groups on adjacent positions
activates the C—C bond due to steric interactions in addi-
tion to inductive effects (2,46 and 3y, 35). Surprisingly,

@ Springer

2, , 3 in which the nitro groups are most crowded is the least
activated trinitroprismane due to the depletion of electron
density in the triangular face. Highly substituted 2,3 45
(PNP) and hexanitroprismane (HNP) are also less activated
than would be expected from the steric repulsions between
their nitro groups. Penta- and hexasubstituted cubanes have
similar C-C %AWBIs and are less activated (~—7.0%) than
prismanes with similar number of nitro groups due to the
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Fig. 3 DFT(M06-2X)/def2-TZVPP bond distances (1&) and relative WBI bond strengths (%AWBI) versus nitrocyclohexane for C(sp3)—NO2
bonds in selected nitro-substituted 1-3
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lower cage strain. These trends are consistent with previous
studies of the effect of substitution on the electrostatic poten-
tial and electron density of cage molecules [20].

In the fully substituted cage molecules, the trend
in the C—C bond strength follows the strain of the cage
(1>2>3). However, for 2 and 3, the persubstituted deriva-
tive is not predicted to have the most sensitive C—C bond.
Both PNP and HNC are slightly more sensitive than HNP
or ONC. In PNP, the C1-C3 trigger bond is weakened by
the redistribution of the C1 AOs to increase its 2s contri-
bution to the C;—C rectangular face bond. For HNC, the
absence of a nitro group allows repulsions between the
groups bonded opposite the CH-CNO, weaken the bond.
This result contrasts with other studies that suggest that
ONC is more activated [20] and may point the possibility
that HNC would be a more sensitive EM.

3.2 Prismane nitroesters

A series of nitroester prismane compounds proposed by
Chi and Li [17] were optimized for comparison to their
nitro analogues Most low energy conformations orient
the —-NO, groups toward the —~CH vertices. Substitutions
on opposite corners of rectangular faces have their nitro
groups oriented coplanar. The increased C 2s character of
the exterior C-ONO, bonds strengthens these bonds relative
to the reference CyONO, molecule by 9-17% (Table 3).
The ester O concentrates its 2s AO to match the strength-
ened C—ONO, bond which depletes the 2s contributions to
the O-NO, bond, which is weakened by 8-17%. As a result,
the increase in the C 2s contribution to the C-ONO, bond
correlates with an weakening of the O-NO, bond (Fig. 4a)
These results are consistent with previous studies show-
ing a lower BDE for the O-NO, bond [17]. Comparison of

the %AWBI to reported Hs, estimates [17] of the impact
sensitivity indicates that the %AWBI for the O(sp3)—NO2
bond correlate with the predicted sensitivity of the material
(Fig. 4b). The C—C bonds are also weakened with increased
nitroester substitution, but, unlike the nitro derivatives,
the O-NO, bonds are generally weaker and are assigned
as the trigger bonds for this class of molecules (Fig. 5).
However, nitroester substitutions on adjacent carbons of the
triangular faces can significantly activate the C—C bonds
(%AWBI=10-13%) and exceed those of the nitro deriva-
tives due to the depletion of electron density by the strong
C-ONO, bonds. As a result, cleavage of these bonds could
compete with O-NO, bond breakage. These highly substi-
tuted nitroester prismanes are predicted to be highly unsta-
ble if they could be synthesized.

3.3 CL-20 and TEX

The hexaazaisowurzitane cage of CL-20 cage is less strained
than 1-3 due to the puckering of its 5-, 6-, and 7-membered
rings to bond angles closer to the sp® ideal. CL-20 consists
of two C—C bonded imidazolidine rings fused to a boat pip-
erazine (Pip) base. N(spS)—NO2 bonds are found at each
nitrogen of the heterocage molecule. Multiple conformations
are available due to the axial or equatorial positioning of
the nitro groups with respect to the Pip ring and the seven-
membered 1,3,5-triazepane (Tri) rings. Various previous
computational studies have established the N-NO, bond as
key to explosive decomposition in this class of EM [35-37].
The eight conformations of CL-20 from Kholod et al. [29]
corresponding to structures found in the four crystalline
polymorphs (a and y(II), f(IV), e(II), {(I)) were optimized
at the DFT(M06-2X/TZVP) level. Conformation IV is the
most stable conformation in the gas phase (Table 4).

Table 3 Trigger bonds for Isomer  Position d(C-O)(A) WBI %AWBI d(O-N)(A) WBI %AWBI AE+ZPE*
nitroester-substituted 2E C_ONO O-NO
calculated at the DFT(M06-2X)/ 2 2
def2-TZVPP level 1 cl 1.376 0.959 9.60% 1.415 0.865 —17.95
12 Cl 1.368 0980 12.01%  1.429 0.839 —1072 1.84
1.4 Cl 1.369 0976 11.52%  1.425 0.846 —9.98 1.45
L5 Cl 1374 0.965 10.27%  1.420 0.856 —8.87 0.00
1,23 Cl 1.361 0.997 13.94%  1.439 0.819 -12.80 2.69
12,4 C1 1.361 0.996 13.83%  1.438 0.822 -1250 0.69
1,26 C1 1.366 0984 12.42% 1431 0.834 —1125 0.00
1,234 Cl 1.355 1012 15.63%  1.450 0.802 —1462 125
1,2,4,5 Cl 1.360 1.002  14.50%  1.445 0.810 —13.84 091
1,2,4,6 Cl 1.360 1.000 14.24%  1.442 0.815 —1322  0.00
12345 C2 1.353 1.017 1626%  1.456 0.789 —15.98
12,3456 Cl 1.353 1.018 1637%  1.458 0.786 —16.33

*Relative energies corrected for zero-point energy contributions (AE+ZPE) are given when multiple sub-

stitutional isomers are possible
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Fig.4 a Correlation of the percentage of C 2s contribution to the
C-ONO, bonds of 2E with the O-NO, strength as measured by the
%AWBI calculated relative to the O(sp*)-NO, bond of cyclohexyl

Fig.5 DFT(M06-2X)/def2-

TZVPP bond distances (/0%) and 1 -4390
relative WBI bond strengths 1280 %
(%AWBI) versus cyclohexyl
nitroester for O(sp3)—N O, bonds
in selected prismane nitroesters

¢

WBI analysis shows that the most activated
N-NO, bonds are 10-11% weaker than the N,N-dimeth-
ylnitramine (DMNA) reference compound, but the dif-
ferences between the conformations are small (Table 4).
Nitro groups in the equatorial positions tend to be more
activated (%AWBI=8.5-12.0%) than the axial positions
(% AWBI=4.0-7.5%) due to the increased steric interac-
tions in the former. These results are consistent with sen-
sitivity trends predicted by vibrational frequency analysis
at the MBPT(2) level [37]. Bond activation correlates with
the %s contribution of the ring nitrogen of the N-NO, bond
(Fig. 6) with the trends for the triazepane nitro groups
different than for the piperazines due to the ring strain in
the six- and seven-membered rings. For I'Va, the equato-
rial N-NO, on the triazepane ring is weaker than on the

Impact Sensitivity (h50)
-5.0% . . :

10 20 30 40 50 60
g0 | (D)
A
9.0% A
= A
% 11.0% i -
& A
-13.0% | A
-150% I A
A

-17.0% *

nitrate. b Comparison of %AWBI for the O(sp*)-NO, bond to the
estimated impact sensitivity (/5,) as determined in reference [17]

2E1,2,4,5

1.456
-15.98%

2E1.2.3,4.5

2E1.2.3.4.5.6

piperazine consistent with relative BDEs calculated at
the DFT(B3LYP)/cc-pVTZ//DFT(B3LYP)/6-31 g* level
(37.6 versus 41.1 kcal/mol) [28]. Comparison of the pre-
dicted most activated bonds does not correlate with the
experimental trend in sensitivity (e >y >a> 3, {). The differ-
ences in bond strength are small between the conformations
suggesting a significant contribution from intermolecular
interactions within the polymorphs.

Substitution of four imidazolidine N-NO, groups with
O for the EM TEX decreases the steric interaction of nitro
groups (Table 4) and the activation of the trigger bonds
relative to CL-20 by 2-3%. The exo-exo conformation is
3.32 kcal/mol more stable than the exo-endo. The N-NO,
bonds are less activated than CL-20, consistent with the
lower sensitivity of TEX. Generally, substitutions of the
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Table 4 Trigger bonds for C_l—20 Conformer Location of trigger bond ~ d(N-N) (IOA) WBI %AWBI AE+ZPE?
and TEX (For atom numbering,
see Fig. g)f and relative energies | Ny=N, Pip eq 1416 0941  —10.65  4.26(2.30)
corrected for zero-point energy . _
contributions (AE+ZPE) I a N, TTI eq 1.425 0.934 11.27 2.18 (1.13)
calculated at the DFT(M06-2X)/ b Nj Pip eq 1.418 0.931 —11.60 3.46 (1.27)
def2-TZVPP level c Ny Pip eq 1.423 0.931 —11.61 3.06 (1.27)
I a N,=N, Tri eq 1.422 0.935 —11.24 1.28 (1.69)
b Ny Pip eq 1.417 0.932 —11.47 1.66 (1.67)
v a N,=N, Tri eq 1.426 0.929 —-11.72 0.00 (0.00)
b N, Tri eq 1.427 0.929 —11.81 0.71 (6.15)
TEX a N5=Ng Pip eq 1.408 0.962 —8.60 0.00
II b Ny Pip eq 1.414 0.953 -9.52 3.32
#Parenthetical AE + ZPE values (DFT(B3LYP)/6-31+G**) are from ref [29]
® 1.421 1.423 1409 1416 ® 1.420
-10.80%  -11.28% -9.47% -10.65% -10.70%
® - 1418 ®

1.422
-11.24%

1.405
-9.67%

1.380 1.380 °© 1.379

llla 544%  594% |llb -537%
1.408
-8.60%

TEXa

-10.47% -11.60%

TEXb

Fig.6 DFT(MO06-2X)/def2-TZVPP bond distances (1&) and relative WBI bond strengths (%AWBI) versus DMNA for N-NO, bonds in conform-

ers of CL-20 and TEX. Trigger bond assignments are in bold font

N-NO, groups with oxygen centers lead to the less sensi-
tive materials [34].

4 Conclusions

Trigger bonds were assigned to organic-cage energetic mate-
rials by comparing the bond strengths to analogous bonds in
reference molecules. Generally, trigger bonds are assumed
to be the bond most susceptible to breaking under stress to
initiate explosive decomposition. These bonds have lower
electron densities as measured by the Wiberg bond index.

@ Springer

For substituted cage hydrocarbons, strain focuses the C 2p
contribution to the interior C—C cage bonds while increas-
ing the C 2s contribution to the exterior C-X bond. As a
result, the exterior C-NO, bonds are stronger than in nitro-
substituted aromatics and the interior C—C bonds are weak-
ened. Therefore, the latter are assigned as the trigger bonds
for tetrahedrane, prismane, and cubane classes of potential
energetic materials. Only in the case of the pentasubsti-
tuted prismane could C-NO, cleavage be expected to act
as the trigger bond. In nitroester substituted prismanes, the
strengthening of the C—ONO, exterior bonds due to strain
weakens the O-NO, bond to a greater extent than the C-C
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bonds, although both bond types are predicted to be acti-
vated in highly substituted derivatives. In CL-20 and TEX,
the cage strain is not as significant as the hydrocarbons such
that the exterior N-NO, bonds are assigned as the trigger
bonds. The activation of these bonds is dependent upon their
orientation in the fused five- and six-membered rings of the
molecule. These results provide additional support for the
use of Wiberg bond index analysis to predict the molecu-
lar properties of energetic materials which will assist in the
development of future novel materials.

5 Supporting information

Selected structural information for DFT(M06-2X)/TZVP-
optimized geometries. Cartesian coordinates of DFT(MO06-
2X)/TZVP-optimized geometries.
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