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We calculate the real-space trajectory and spin precession of a generic spinning compact binary inspiral
at any time instant using the dynamical renormalization group formalism. This method leads to closed-form
analytic solutions to the binary motion through treating radiation reaction as perturbations and resumming
the secular growth of perturbative terms. We consider the spin-orbit effects at leading order and the 2.5 PN
radiation reaction without orbit averaging or precession averaging for arbitrary individual masses and spin
magnitudes and orientations. The solutions are written in a moving reference frame, with the orbital angular
momentum and binary radial directions aligned along two of the axes. The resummed solutions show
improved accuracy compared to adiabatic solutions while also being an order of magnitude faster
computationally compared to numerical integration methods.
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I. INTRODUCTION

A worldwide network of gravitational wave (GW)
detectors is being developed to monitor the ripples in
the fabric of spacetime passing through the Earth.
This includes the ground-based laser interferometers
GEO600, LIGO and VIRGO collaborations currently in
operation, and the under construction spaced-based obser-
vatory LISA and cryogenic detector KAGRA in Japan.
The successful detection of gravitational waves from
inspiraling black holes (BH) and neutron stars (NS) by
the LIGO and VIRGO collaborations directly and spec-
tacularly confirmed one of the predictions of Einstein’s
theory of general relativity. A generic prediction of metric
theories of gravity, BH or NS coalescence is a strong
source of GWs for interferometric detectors. To success-
fully identify and analyze the gravitational wave signals, it
is necessary to construct a systematic description of the
binary black hole dynamics and waveforms during coa-
lescence. A set of expected waveforms portrayed by the
intrinsic parameters of the compact binary within the
astrophysically interesting region of the parameter space
forms a waveform template bank [1–3]. Using these
precise waveform templates, a matched filtering technique
is used to try to discover the weak GW signals buried in
the detector noise. More accurate templates will help us
extract physical information from the observed events in
order to gain further knowledge of the black hole or
neutron star properties.

The choice of the BH coalescence model is critical
for determining the waveform. The last few orbits of the
inspiral phase through the merger and ringdown of the BH
coalescence have been simulated by numerical relativity
[4,5]. There have been developments on the analytic
understandings for merger and ringdown [6]. The slowly
orbiting long inspiral phase can be studied analytically
using post-Newtonian (PN) perturbation theory with small
velocity and weak field approximations. BH dynamics is
described by the Newtonian-like equations of motion in
the form of the acceleration of the binary constituents.
During the inspiral, the binary slowly loses energy and
angular momentum to gravitational radiation starting at
2.5PN [7,8]. Higher order corrections up to 4PN in the
conservative sector have been calculated [9–17]. Solving
for the motions is the fundamental step in obtaining the
waveforms and deriving the evolution of the theoretical
physical measurements in time, such as the GW phase
directly measured by the detectors and power loss due to
gravitational radiations.
The exact solutions to the motions can be found by

numerically integrating these nonlinearly coupled ordinary
differential equations. However, in calculations of template
banks, each point in the intrinsic parameter space repre-
senting a waveform with different initial conditions
requires a new numerical computation. The sample rate
of the corresponding waveform directly depends on the
precision and step sizes of the solutions of the motions. The
discrete nature of the computational solutions also brings
the issue of the distance between the templates in the
parameter space, which may result in the loss in signal-to-
noise ratio due to the mismatch of the template in the match
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filter of the signal data. Since the third observing runs of
LIGO and Virgo have a weekly rate of observed events, a
faster and more accurate way of computing in the signal
analysis is critical, with even larger rates expected with
future upgrades. A fully analytic waveform solution with
continuous parameters would certainly increase calculation
efficiency for template-based data analysis.
The adiabatic approximation is often used to find

the analytic solutions to the motion, including inspiral
radiation-reaction effects [18–20]. Using the PN expan-
sions of the conserved energy E and flux F , the adiabatic
waveforms are obtained by solving the energy balance
equation dE=dt ¼ F . The balance equation leads to the
secular evolutions of the orbital angular frequency ωðtÞ,
from which one can derive the accumulated phase of gravi-
tational waves ϕðtÞ ¼ 2

R
dτωðτÞ. An implicit assumption

in the energy balance equation is that E does not change
much over an orbital timescale. In other words, the adiabatic
solutions are orbit averaged and thus remove some of the
orbital detail. The adiabatic approximation fails to account
for secular evolution of some of the orbital elements, which
can lead to measurable phasing effects [21]. The limitations
and ambiguities of adiabatic approximations come from
the averaging procedure to eliminate the oscillations and
keep only the secular behavior. Firstly, removing the small
oscillations of different parameters (the orbital time vs the
orbital angle, for instance) means using different averaging
schemes, which can result in different solutions. Secondly,
due to the fact that these small oscillations may not vanish at
the initial time, the exact initial conditions will in general
differ from the averaged ones placed on the approximate
solution. This initial condition ambiguity results in measur-
able orbital phase differences [22].
When considering spinning black holes, which adds six

additional degrees of freedom, the binary motions become
more complicated. The convention of the PN order count-
ing of the spin here is defined as jSj ¼ χm2, where m is the
mass of the object and χ is a dimensionless spin parameter.
For maximally rotating compact BHs, χ ∼ 1. The leading
contributions from spin-orbit effects enter into the motion
at 1.5PN and spin-spin at 2PN, before the leading-order
radiation-reaction force. The major effect of the presence of
the spin on the orbital evolution is that a spin component
perpendicular to the orbital angular momentum causes the
orbital plane to precess. This means the orbital plane will
change its orientation when it is not perpendicular to the
spin vector. Thus the observed waveform, depending on
the orbital orientation with respect to the detector, modu-
lates due to spin-induced orbital precession. The secular
evolutions of the spins themselves are given by the spin
precession equations [23,24]. With the spin precession
equations, it is possible to determine the angular momen-
tum transfer between orbital and spin angular momenta
and the total angular momentum loss during the inspiral
regime. One of the recent works to construct analytic

spin-precessing inspirals is through multiple scale analysis
[25,26]. This method gives orbit-averaged and precession-
averaged closed-form solutions by making a clean sepa-
ration among the orbital time, precession time, and
radiation-reaction timescales and treating the physical
parameters by averaging over the longer timescales to
solve for the shorter ones. However, any averaging pro-
cedure results in the loss of some of the orbital dynamics.
In order to find analytic solutions to the spinning

binary equations of motion and spin precession equations
without any averaging procedures, we follow the dynami-
cal renormalization group (DRG) formalism proposed by
Galley and Rothstein in [27]. The idea of the DRG method
is based on renormalization group theory and the resum-
mation of the singularities for perturbative ordinary differ-
ential equation problems [28]. The DRG method applied
to binary inspirals starts by treating some of the higher
PN order radiation-reaction terms as a perturbation to a
conservative background orbit. The secular growths of the
perturbations are then resummed to preserve the correct
power counting of the perturbations. In their work, Galley
and Rothstein calculated the resummed solution for a
nonspinning binary with leading-order radiation up to
the second-order corrections and included the PN correc-
tions to the radiation-reaction force. In this paper we
incorporate spin-orbit effects and the leading order radia-
tion reaction, using the DRG method to obtain real-time
solutions to the generic precessing compact binaries.
The organization of this paper is as follows: In Sec. II we

introduce the PN equations of motion and spin precession
equations for compact binary inspirals. We also set up
a moving coordinate frame using the radial vector and
orbital angular momentum vector in which we present our
solutions. In Sec. III we summarize the procedures of the
DRG method and give the resulting closed-form analytic
solutions to the binary motions and spin precession. In
Sec. IV, we compare our DRG resummed solutions to the
numerical and adiabatic solutions of the same equations.
We also show a rough comparison of the calculation run
time between the numerical integration and resummed
solution substitution. We conclude in Sec. V. In the
Appendixes A and B, we present the detailed calculations
of the DRGmethod for orbital motions and spin precession,
respectively. In Appendix C we propose a naive trans-
formation of the moving coordinate frame to a fixed
observer frame for the purpose of waveform construction.

II. LEADING ORDER SPIN-ORBIT EQUATIONS
OFMOTIONAND SPIN PRECESSIONEQUATIONS

The equations of motion of the compact binaries in the
center-of-mass frame, including the Newtonian order, the
leading-order spin-orbit contributions at 1.5PN in covariant
spin supplementary condition, and the Burke-Thorne term
due to the radiation-reaction force at 2.5PN, are given
by [7,29,30]
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a ¼ aN þ aSO þ aRR; ð2:1Þ

where the terms in the post-Newtonian hierarchy are

aN ¼ −
M
r2

n̂; ð2:2aÞ

aSO ¼ 1

r3
f6n̂½ðn̂× vÞ · ð2SþΔΣÞ�

− ½v× ð7Sþ 3ΔΣÞ�þ 3_r½n̂× ð3SþΔΣÞ�g; ð2:2bÞ

aRR ¼ M2ν

15r4
_r

�
136M
r

þ 72v2
�
r −

8M2ν

5r3

�
3M
r

þ v2
�
v:

ð2:2cÞ

In the expressions above, r and v are the binary relative
center-of-mass separation and velocity, n̂≡ r=r and _r ¼
dr=dt ¼ n̂ · v. The binary masses are denoted as m1;2,
the total binary mass M ¼ m1 þm2, ν≡m1m2=M2 and
Δ≡ ðm1 −m2Þ=M. The combinations of the individual
spins are written as

S ¼ S1 þ S2; Σ ¼ S2

X2

−
S1

X1

; ð2:3Þ

with Xa ¼ ma=M. The spin vectors precess due to spin-
orbit coupling following the relation of [8,29]

_Sa ¼
1

r3
ðLN × SaÞ

�
2þ 3

2

mb

ma

�
; ð2:4Þ

where fa; bg are the binary labels f1; 2g, and LN ¼
νMðr × vÞ is the Newtonian orbital angular momentum.
In order to obtain the analytic solutions to the inspiral

equations of motions and the spin precession equa-
tions (2.1)–(2.4), we adopt a coordinate frame fn; λ; lg,
moving along with the center-of-mass and the orientation
of its motion [30–32], where l ¼ n × v=jn × vj and λ ¼
l × n to complete an orthonormal basis triad. In this
moving basis, the relative velocity can be expressed as

v ¼ _rnþ rωλ; ð2:5Þ

where ω is the orbital angular frequency of the binary. The
relative acceleration a ¼ dv=dt in the moving basis is

a ¼ ð̈r − rω2Þnþ ðr _ωþ 2_rωÞλþ rϖωl; ð2:6Þ

where the orbital plane precession ϖ of the orbit is defined
as ϖ ≡ −λ · dl=dt.
In terms of the moving basis components, the equations

of motions (2.1) are

̈r − rω2 ¼ −
M
r2

þ 64M3ν

15r4
_rþ 16M2ν

5r3
_r3 þ 16M2ν

5r
_rω2

þ ω

r2
ð5Sl þ 3ΔΣlÞ; ð2:7aÞ

r _ωþ 2_rω ¼ −
24M3ν

5r3
ω −

8M2ν

5r2
_r2ω −

8M2ν

5
ω3 −

2_r
r3

Sl;

ð2:7bÞ

ϖ ¼ 2_r
r4ω

Sλ þ
7

r3
Sn þ

3Δ
r3

Σn; ð2:7cÞ

where we decompose the spin S ¼ Snnþ Sλλþ Sll, and
similarly for Σ. The spin precession equations (2.4) become

dSan
dt

¼ ðω −ΩaÞSaλ ; ð2:8aÞ

dSaλ
dt

¼ −ðω − ΩaÞSan þϖSal ; ð2:8bÞ

dSal
dt

¼ −ϖSaλ ; ð2:8cÞ

where we denote

Ωa ≡ νMω

r

�
2þ 3

2

mb

ma

�
; ð2:9Þ

which is the norm of the precession vector of the ath spin.
The precession frequency ϖ, explicitly given by (2.7c), is
of order OðSÞ. At linear order in spin, the precession
equations become

dSan
dt

¼ ðω −ΩaÞSaλ ; ð2:10aÞ

dSaλ
dt

¼ −ðω −ΩaÞSan þOðS2Þ; ð2:10bÞ

dSal
dt

¼ OðS2Þ: ð2:10cÞ

Thus at order OðSÞ, the l-components of the spin vectors
are invariant, which are also the only components that
appear in the orbital equations of motion in (2.7a) and
(2.7b). In solving these two equations by the DRG method,
we then are able to treat Sl and Σl as time-independent
constants. Following Ref. [27], here we ignore the 1PN and
2PN conservative forces, as well as the next-to-leading
order spin-orbit effects, which is the same order in the post-
Newtonian expansion as the 2.5PN radiation-reaction
terms. Instead, we focus on the leading order radiation-
reaction effects on spinning objects. In order to obtain
gravitational wave templates, to be consistent we would
need to include at least the 1PN conservative forces.
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III. DRG SOLUTIONS TO DYNAMICS
AND SPIN PRECESSION

The background quasicircular orbit of a conserved
binary with Newtonian and leading spin-orbit effects can
be described by

Ω2
B ¼ M

R3
B
−
ΩB

R3
B
ð5Sl þ 3ΔΣlÞ; ð3:1Þ

with constant radius RB and constant angular frequencyΩB.
To include the radiation reaction as perturbative effects, we
write the orbital solutions as

rðtÞ ¼ RB þ δrðtÞ þ δrSðtÞ;
ωðtÞ ¼ ΩB þ δωðtÞ þ δωSðtÞ; ð3:2Þ

where the first time-dependent terms δrðtÞ and δωðtÞ are
the perturbation due to the 2.5PN radiation reaction force
without the spin at a given time t. The δrSðtÞ and δωSðtÞ
represent the perturbations due to the interaction of 1.5PN
spin effects and the 2.5PN radiation reaction. The power
counting at the initial time t0 for each perturbation is
given by

δr ∼ v5RB; δω ∼ v6=RB;

δrS ∼ Sv4=RB; δωS ∼ Sv5=R3
B; ð3:3Þ

where we keep the spin as a placeholder expansion
parameter instead of converting to PN orders for generality.
Substituting the perturbed orbital radius and frequency into
the equations of motion (2.7a) and (2.7b), we find the
solutions to the perturbation

δrSðtÞ ¼ −
�
144

5
Sl þ 48ΔΣl

�
νR3

BΩ5
Bðt − t0Þ þ

ð7Sl þ 3ΔΣlÞ
2ΩBR3

B
AB½2ΩBðt − t0Þ cos ðΩBðt − t0Þ þΦBÞ

− sin ðΩBðt − t0Þ þΦBÞ� þ AS
B cos ðΩBðt − t0Þ þΦBÞ; ð3:4aÞ

δωSðtÞ ¼
�
−
24

5
Sl þ

216

5
ΔΣl

�
νR2

BΩ6
Bðt − t0Þ þ ð5Sl þ 3ΔΣlÞ

AB

R4
B
sin ðΩBðt − t0Þ þΦBÞ

− ð14Sl þ 6ΔΣlÞ
AB

R4
B
ΩBðt − t0Þ cos ðΩBðt − t0Þ þΦBÞ −

2AS
BΩB

RB
cos ðΩBðt − t0Þ þΦBÞ; ð3:4bÞ

and also the time integration of δωSðtÞ, δΦSðtÞ, which is the perturbation of the orbital phase ϕðtÞ,

δΦSðtÞ ¼
�
−
12

5
Sl þ

108

5
ΔΣl

�
νR2

BΩ6
Bðt − t0Þ2 − ð19Sl þ 9ΔΣlÞ

AB

ΩBR4
B
cos ðΩBðt − t0Þ þΦBÞ

− ð14Sl þ 6ΔΣlÞ
AB

R4
B
ðt − t0Þ sin ðΩBðt − t0Þ þΦBÞ −

2AS
B

RB
sin ðΩBðt − t0Þ þΦBÞ; ð3:4cÞ

where ΦB, AB, and AS
B are integration constants. fRB;ΩB;

ΦB; AB; AS
Bg forms a set of bare parameters to be deter-

mined by initial conditions. While eB ¼ AB=RB is the
small orbital eccentricity of order Oðv5Þ induced by the
radiation reaction force, the interaction between the spin
and radiation reaction leads to a smaller eccentricity eSB ¼
AS
B=RB ∼OðSv4Þ. The spin-radiation eccentricity deforms

the circular orbit out of phase compared to the radiation
eccentricity, although with a fixed phase difference.
To maintain the power countings of the perturbations, the

secularly growing terms in (3.4) are absorbed into the bare
parameters through the relations

RBðt0Þ ¼ RRðτÞ þ δv
5

R ðτ; t0Þ þ δSRðτ; t0Þ; ð3:5aÞ

ΩBðt0Þ ¼ ΩRðτÞ þ δv
5

Ω ðτ; t0Þ þ δSΩðτ; t0Þ; ð3:5bÞ

ΦBðt0Þ ¼ ΦRðτÞ þ δv
5

Φ ðτ; t0Þ þ δSΦðτ; t0Þ; ð3:5cÞ

AS
Bðt0Þ ¼ AS

RðτÞ þ δSAðτ; t0Þ; ð3:5dÞ

where fRR;ΩR;ΦR; AS
Rg are the “renormalized” parameters

depending on an arbitrary renormalization scale τ. The
quantities fδv5R ; δSR; δv5Ω ; δSΩ;…g are counterterms, to be
determined by renormalizing the perturbation expansions.
Introducing the renormalization scale into the perturbation
solutions (3.4) by writing t − t0 ¼ ðt − τÞ þ ðτ − t0Þ and
using the counterterms to cancel all the secular ðτ − t0Þ
terms, we find that
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rðtÞ ¼ RRðtÞ þ
�
1 −

ð7Sl þ 3ΔΣlÞ
2ΩRðtÞR3

RðtÞ
�
ARðtÞ sinΦRðtÞ þ AS

RðtÞ cosΦRðtÞ; ð3:6aÞ

ωðtÞ ¼ ΩRðtÞ −
2ΩRðtÞARðtÞ

RRðtÞ
�
1 −

ð5Sl þ 3ΔΣlÞ
2ΩRðtÞR3

RðtÞ
�
sinΦRðtÞ −

2AS
RΩRðtÞ
RRðtÞ

cosΦRðtÞ; ð3:6bÞ

ϕðtÞ ¼ ΦRðtÞ þ
2ARðtÞ
RRðtÞ

�
1 −

ð19Sl þ 9ΔΣlÞ
2ΩRðtÞR3

RðtÞ
�
cosΦRðtÞ −

2AS
RðtÞ

RRðtÞ
sinΦRðtÞ; ð3:6cÞ

where rðtÞ and ωðtÞ are the orbital radius and frequency defined in the previous section, and ϕðtÞ is the time integral
of ωðtÞ representing the orbital phase of the binary inspiral. The renormalized parameters are determined at arbitrary
time via the renomalization group equations, determined using the fact that the corresponding bare parameters are
independent of the choice of τ. The “beta functions” of the RG equations are determined by the counterterms, leading
to the first-order equations satisfied by the renormalized parameters. We give the RG solutions in the form of invariance
in time as

64νM3

5
tþ 1

4
RRðtÞ4 þ

2S
5M1=2 RRðtÞ5=2 þ

S2

M
RRðtÞ þ

2S8=3ffiffiffi
3

p
M4=3

tan−1
�

1ffiffiffi
3

p þ 2M1=6RRðtÞ1=2ffiffiffi
3

p
S1=3

�

þ S8=3

3M4=3 ln

� ðS1=3 −M1=6RRðtÞ1=2Þ2
S2=3 þ S1=3M1=6RRðtÞ1=2 þM1=3RRðtÞ

�
¼ constant; ð3:7aÞ

Ω2
RðtÞR3

RðtÞ þ ΩRðtÞð5Sl þ 3ΔΣlÞ ¼ M; ð3:7bÞ

ΦRðtÞ þ
1

32M5=2ν
R5=2
R ðtÞ − 5ð41Sl þ 15ΔΣlÞ

256νM2S2

�
64νM3

5
tþ 1

4
R4
RðtÞ þ

2S
5M1=2 R

5=2
R ðtÞ

�
¼ constant; ð3:7cÞ

ARðtÞ ¼ constant; ð3:7dÞ

AS
RðtÞ −

5ARð7Sl þ 3ΔΣlÞ
64νM2S2

�
64νM3

5
tþ 1

4
R4
RðtÞ þ

2S
5M1=2 R

5=2
R ðtÞ

�
¼ constant; ð3:7eÞ

where for convenience we have defined S ≡ ð51þ
21ΔΣlÞ=4. Remember, at this order the l-component of
the spin vectors are constant. The constants in the equations
above can be further determined using the initial conditions
by solving (3.6) at a given time instant. The expressions in
(3.6) combined with (3.7) give the resummed solution
to the 0PN spinning inspiral dynamics valid up to times
ðt − t0Þ of order 1=ðνv5ðtÞΩRðtÞÞ. To improve the accuracy,

we need to calculate higher order perturbations in the same
formalism or include higher PN conservative corrections to
the motions.
The background solution to the conserved spin preces-

sions has a constant precession frequency. We renormalize
the precession frequency perturbed by the radiation reac-
tion using the same DRG procedure. The resummed
solutions to the spin precession equations (2.4) are

SaþðtÞ ¼ Sa
þRðtÞ exp

�
i
�
2AS

RðtÞ
RRðtÞ

−
3νa
ν

AS
RðtÞΩRðtÞ2RRðtÞ

�
sinΦRðtÞ

− i

�
2ARðtÞ
RRðtÞ

− ð19Sl þ 9ΔΣlÞ
ARðtÞ

RRðtÞ4ΩRðtÞ
−
3νa
ν

ΩRðtÞ2ARðtÞRRðtÞ

þ νa
ν

�
29

2
Sl þ

9

2
ΔΣl

�
ARðtÞΩRðtÞ
RRðtÞ2

�
cosΦRðtÞ

�
; ð3:8Þ
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where νa ≡ ð2þ 3mb
2ma

Þν2 and Saþ ≡ San þ iSaλ contains the
two precessing components of the spin vector in the
moving triad fn; λ; lg coordinate system. The exponential
preserves the magnitudes of the spin vectors, which are
conserved as can easily be seen from Eq. (2.4). The
renormalized parameter Sa

þRðtÞ can be written in terms
of invariance over time and other parameters as

i lnSa
þRðtÞ −ΦRðtÞ −

5νaR
3=2
R ðtÞ

96M3=2ν2
−
5ð41Sl þ 15ΔΣlÞνa

384M2ν2

× lnðM1=2R3=2
R ðtÞ − SÞ ¼ constant: ð3:9Þ

We include the more detailed calculations and renormal-
ization procedures in the Appendixes for interested readers.

IV. NUMERICAL SOLUTION COMPARISON

To compare our analytic solutions to the orbital equa-
tions of motion and the spin precession equations, we solve
the sets of equations numerically and compare with the
DRG solution solved with the same initial conditions. We
choose to compare compact binary systems of total mass
M ¼ 1. The initial conditions for the physical parameters
are related to the renormalized parameters through the
renormalized solutions (A10) and (B13) at ti ¼ 0. We
choose for our initial conditions

ΩRð0Þ ¼ 10−2=M

RRð0Þ ¼
	

M
ΩRð0Þ2 −

5Slþ3ΔΣl
ΩRð0Þ



1=3

ΦRð0Þ ¼ 0

AS
Rð0Þ ¼ 0

ARð0Þ ¼
64ν
5
RRð0Þ6ΩRð0Þ5þν

5
RRð0Þ3ΩRð0Þ4ð144Slþ240ΔΣlÞ	

1þ 7Slþ3ΔΣl
2RRð0Þ3ΩRð0Þ




9>>>>>>>>>=
>>>>>>>>>;

⇒

8>>>>><
>>>>>:

rð0Þ ¼ RRð0Þ
_rð0Þ ¼ 0

ωð0Þ ¼ ΩRð0Þ
ϕð0Þ ¼ 2ARð0Þ

RRð0Þ
	
1 − 19Slþ9ΔΣl

2RRð0Þ3ΩRð0Þ


;

ð4:1Þ

where the expression for ARð0Þ comes from

_rðtiÞ ¼ ARðtiÞΩRðtiÞ cosΦRðtiÞ
�
1þ 7Sl þ 3ΔΣl

2RRðtiÞ3ΩRðtiÞ
�

−
64ν

5
RRðtiÞ6ΩRðtiÞ6 −

1

5
νRRðtiÞ3ΩRðtiÞ5

× ð144Sl þ 240ΔΣlÞ − AS
RðtiÞΩRðtiÞ sinΦRðtiÞ

ð4:2Þ

and _rð0Þ is taken to be 0 for quasicircular motion.
Meanwhile, we impose a small nonvanishing Oðv5Þ

eccentricity eR ¼ AR=RRðtÞ, and a spin-induced eccentric-
ity eSR ¼ AS

Rð0Þ=RRð0Þ at Oðv4SÞ that runs starting from 0.
For initial spin vectors we consider the compact com-

ponents maximally rotating, meaning the dimensionless
spin parameter χ ∼ 1 where for each spin jSaj ¼ χam2

a,
with χmax ¼ 1 for black holes. In Fig. 1 we compare the
resummed solutions to the orbital equations of motion with
the numerical and adiabatic solutions [33] for two different
choices of mass ratio and spins. For the left column, we
choose an equal mass binary and antialigned spin initial
configuration,

S1ð0Þ
m2

1

¼ cos 70°n̂þ cos 60°λ̂þ cos 140°l̂;

S2ð0Þ
m2

2

¼ cos 70° cos 50°
cos 140°

n̂þ cos 60° cos 50°
cos 140°

λ̂þ cos 50°l̂:

ð4:3Þ

The physical interpretation for the angle of 140° and 50° is
the angle between the spin vectors and the orbital angular
momentum L. (At linear order in spin, equal mass systems
satisfy the spin-orbit resonance orientations [34].) In the
right column,we choose amoderatemass ratio (m1∶m2¼4),
with a randomly chosen initial spin configuration,

S1ð0Þ
m2

1

¼ 0.4n̂− 0.7λ̂þ 0.5l̂;
S2ð0Þ
m2

2

¼ 0.9n̂þ 0.1λ̂− 0.4l̂:

ð4:4Þ

Specifically, the plots show the orbital radius rðtÞ and orbital
phaseϕðtÞ for resummed, adiabatic, and numerical solutions
to the binary equations of motion. Below each plot of the
physical solutions are the fractional errors comparing the
numerical results to resummed and adiabatic ones. From
these plots, we can see the DRG methods are more accurate
compared to the adiabatic solutions,with roughly an order of
magnitude improvement in calculating the accumulated
orbital phase over most of the inspiral.
We can see that the importance of using the DRGmethod

increases as we include higher-order corrections by com-
paring Fig. 1 to the results in Ref. [27]. In that paper, the
authors included the 0PN (i.e., Newtonian) contribution
and the leading order radiation-reaction term. As can be
seen by looking at Fig. 1 of that paper, the DRG and
adiabatic results give the same order relative errors.1 When
including the 1.5PN spin contribution as we did here,

1Note that the authors of Ref. [27] show how to obtain the
result including 1PN contributions, but did not provide any
numerical results. They also did the “two-loop” contribution,
which includes Oðv10Þ corrections. Including these, the DRG
method shows roughly an order of magnitude improvement
compared to the adiabatic solution, as can be seen in Fig. 2 of
that paper.
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FIG. 1. Left column: Compact binary with equal component mass and antialigned initial spin vectors. Right column: Compact binary
with component mass ratio m1∶m2 ¼ 4 and misaligned initial spin vectors. The initial spin configurations are given by (4.3) and (4.4),
respectively. The first and third rows are the plots for physical values: the orbital radius and phase versus time with initial data given
in (4.1), respectively. The analytical renormalization group resummed solutions are plotted in blue, the adiabatic solutions are in orange,
and the numerical solutions to the leading order spin-radiation equations of motion are in green. Below each physical plot the fractional
errors are shown, comparing the numerical solutions with analytical resummed solutions in blue and the adiabatic solutions in orange.
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FIG. 2. Left column: Compact binary with equal component mass and antialigned initial spin vectors. Right column: Compact binary
with component mass ratio m1∶m2 ¼ 4 and misaligned initial spin vectors. The initial spin configurations are given by (4.3) and (4.4),
respectively. In the first two rows from top down, the resummed solutions are in blue, for the corresponding spin vectors in n-component
and λ-component. The difference of the resummed results from the numerical ones is shown in red. The lower inset on the right zooms in
on the spin precession for the last 1=4 part of the inspiral. The third row shows the angle between the spin vector derived from the
resummed solutions and the numerical solutions. In the last row, the instantaneous changes of spin, orbital, and total angular momenta
are shown.
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there is an order of magnitude improvement, as shown
in Fig. 1.
We compare the resummed solutions of the spin pre-

cession equations with the numerical solutions to (2.10) in
Fig. 2. The two columns have the same choices for mass
ratio and spin configurations as in Fig. 1. In the top two
panels, we plot the resummed solutions to the n and
λ-components, respectively, for the total spin vector (in
blue) and the difference between the resummed and
numerical solution (in red). We also include an inset plot
of the spin precession for the last quarter of the inspiral to
illustrate the phase difference. That the error accumulated
from the resummed results of the spin precession becomes
significant is the consequence of the post-Newtonian
method breaking down for large velocities during the
later portion of the inspiral. We expect better accuracy
when spin-spin effects and higher PN order terms are
incorporated. In the third panel, we plot the angle between
the spin vector results from the resummed and numerical
solutions.
With the inclusion of radiation reaction, the total angular

momentum changes direction and magnitude. In the bottom
row of Fig. 2, we show the angular momenta changing
throughout the inspiral. The equal mass binary shown in the
left panel has a fixed total spin magnitude due to the
symmetric form in (2.4). Both binaries exhibit a rapid loss
of orbital and total angular momenta at the end of the
inspiral in sync with the drop of the orbital radius in Fig 1.
In Fig. 3 we give a rough comparison of the computa-

tional runtime improvement of the DRG methods. The
numerical solution for the equations of motion and spin
precession was calculated in Cþþ implementing the
ODEINT library [35]. We adopt the Dormand-Prince

algorithm at fifth order with adaptive step sizes and control
the tolerance error to be consistent with the theoretical
resummed solution errors. Figure 3 shows the runtime of
the numerical and DRG methods solving the same sets of
initial conditions, changing the binary mass ratio count
times in each run. In order to try to have a meaningful
comparison, we manipulate the average steps taken per run
for the DRG methods to have similar output lengths (i.e.,
number of time steps for the solution) with the numerical
integration. For example, in a total of 50 runs, the numerical
integration takes 10 seconds and averages 11235 steps per
run, while the DRG method takes about 1 second and
averages 11 436 steps per run. As can be seen, the DRG
method is an order of magnitude faster than the numerical
solution.

V. CONCLUSION

Using the dynamical renormalization group formalism,
we have solved the spinning binary dynamics including
the 2.5PN radiation reaction and the leading order spin-
orbit effects throughout the inspiral. The solution is
obtained by the resummation of the secularly growing
perturbations to the physical parameters including orbital
radius, angular frequency, orbital phase, and spin pre-
cession phases. We solved the resummed solutions to the
equations of motion and spin precession equations in a
moving triad frame at any time instant. Renormalized
parameters defined to describe the resummed solutions
are determined using the renormalization group equations
and can be written in terms of conserved identities.
The solutions are applicable to arbitrary initial con-

figurations and do not dependent on any specific spin
orientations. The comparison of numerical solutions and
our analytic solutions shows greater accuracy than the
adiabatic solutions and a sizable improvement in com-
putation time compared to the numerical solutions. The
use of the DRG method is more important for spinning
BHs than for the nonspinning case. However, there are
further improvements that can be made. The spin com-
ponent comparison is not ideal, as shown in Fig. 2 with
increasing phase differences. When initial spins are
relatively large compared to orbital angular momentum,
the discrepancy grows very fast in the early part of the
inspiral. This is due to the beginning of the breakdown of
the PN expansion. We hope to fix this issue and enhance
the accuracy by the inclusion of spin-spin effects and
higher-order PN terms into the formulation in future
works [36].
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FIG. 3. Cþþ runtime comparison between numerical integra-
tion and DRG resummed substitution. The count in the x axis
stands for the total choices of initial conditions in a particular run,
and green numbers below the plot points are the average steps
taken per run. The blue dots show the total computation time for
the numerical integration solutions and the orange squares show
the time for the DRG resummed results substitutions.
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APPENDIX A: ORBITAL EQUATIONS OF
MOTION RESUMMATION SOLUTIONS

We start by investigating the quasicircular background
orbit solution of the conservative spinning binary. In this
case, the radius and the orbital angular frequency are con-
stants apart from small nonsecular perturbations induced by
the presence of spins. The constant radius RB and orbital
frequency ΩB satisfy

Ω2
B ¼ M

R3
B
−
ΩB

R3
B
ð5Sl þ 3ΔΣlÞ þOðS2Þ ðA1Þ

at linear order in spin. Setting the spins to 0, the relation
betweenRB andΩB reduces to the usual Newtonian circular
motion equation. To solve for ΩB with a given RB, we can
either solve the quadratic equation above or substitute for
ΩB iteratively. The analytic solutions to the dynamics of
quasicircular conservative spinning binary systems have
been studied [32,37].

1. Perturbations of quasicircular orbits

Next we describe the deviation of the quasicircular
background orbit as a result of the leading order radiation
reaction and linear spin-orbit effects by isolating the
perturbative corrections rðtÞ ¼ RB þ δrðtÞ þ δrSðtÞ and
ωðtÞ ¼ ΩB þ δωðtÞ þ δωSðtÞ. The first time-dependent
terms δrðtÞ and δωðtÞ are the perturbation that arise due
to the 2.5PN radiation-reaction force without the spin at a
given time t, which are given by [27]

δrðtÞ ¼ −
64ν

5
R6
BΩ6

Bðt − t0Þ þ AB sin ðΩBðt − t0Þ þΦBÞ;
ðA2aÞ

δωðtÞ ¼ 96ν

5
R5
BΩ7

Bðt− t0Þ−
2ΩBAB

RB
sin ðΩBðt− t0Þ þΦBÞ;

ðA2bÞ

with bare parameters fRB;ΩB; AB;ΦBg, and δr ∼ v5RB;
δω ∼ v6=RB at the initial time t0. On the other hand, the
terms due to the interaction of 1.5PN spin effects and the
2.5PN radiation reaction start with the power counting of
δrS ∼ Sv4=RB and δωS ∼ Sv5=R3

B. Expanding the equa-
tions of motion (2.7a) and (2.7b) to OðSv6Þ gives

δr̈SðtÞ− 2RBΩBδωSðtÞ− 3Ω2
BδrSðtÞ ¼

δωðtÞ
R2
B

ð5Sl þ 3ΔΣlÞ;

ðA3aÞ

RBδ _ωSðtÞ þ 2ΩBδ_rSðtÞ

¼ −
�
2Sl
R3
B
δ_rðtÞ þ

�
88Sl þ

264

5
ΔΣl

�
νR3

BΩ6
B

�
; ðA3bÞ

with δrðtÞ and δωðtÞ being the values given in (A2a) and
(A2b). Integrating (A3b) with respect to time, solving for
δωS, and substituting back into (A3a) gives the differential
equation for δrS,

δ̈rSðtÞ þ Ω2
BδrSðtÞ

¼ −
�
144

5
Sl þ 48ΔΣl

�
νR3

BΩ7
Bðt − t0Þ

− ð14Sl þ 6ΔΣlÞ
ΩBAB

R3
B

sin ðΩBðt − t0Þ þΦBÞ: ðA4Þ

The differential equation has a solution of the form

δrSðtÞ ¼ −
�
144

5
Sl þ 48ΔΣl

�
νR3

BΩ5
Bðt − t0Þ

þ ð7Sl þ 3ΔΣlÞ
2ΩBR3

B
AB½2ΩBðt − t0Þ cosðΩBðt − t0Þ

þΦBÞ − sinðΩBðt − t0Þ þΦBÞ�
þ AS

B cosðΩBðt − t0Þ þΦBÞ; ðA5aÞ
where AS

B ∼ Sv4=RB is a bare parameter in the general
solution to the homogeneous equation of (A4), to be
determined by initial conditions. While eB ¼ AB=RB is
the small orbital eccentricity of orderOðv5Þ induced by the
radiation-reaction force, the interaction between the spin
and radiation reaction leads to a smaller eccentricity
eSB ¼ AS

B=RB ∼OðSv4Þ. The spin-radiation eccentricity
deforms the circular orbit out of phase relative to the
radiation eccentricity, with a fixed phase difference.
As a result, the angular frequency perturbation δωSðtÞ

and its time integration δΦSðtÞ are given by

δωSðtÞ ¼
�
−
24

5
Sl þ

216

5
ΔΣl

�
νR2

BΩ6
Bðt − t0Þ

þ ð5Sl þ 3ΔΣlÞ
AB

R4
B
sin ðΩBðt − t0Þ þΦBÞ

− ð14Sl þ 6ΔΣlÞ
AB

R4
B
ΩBðt − t0Þ

× cos ðΩBðt − t0Þ þΦBÞ

−
2AS

BΩB

RB
cos ðΩBðt − t0Þ þΦBÞ; ðA5bÞ

δΦSðtÞ ¼
�
−
12

5
Sl þ

108

5
ΔΣl

�
νR2

BΩ6
Bðt − t0Þ2

− ð19Sl þ 9ΔΣlÞ
AB

ΩBR4
B
cos ðΩBðt − t0Þ þΦBÞ

− ð14Sl þ 6ΔΣlÞ
AB

R4
B
ðt − t0Þ

× sin ðΩBðt − t0Þ þΦBÞ

−
2AS

B

RB
sin ðΩBðt − t0Þ þΦBÞ: ðA5cÞ
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The perturbation δΦSðtÞ, of order OðSv4Þ to the angle ϕðtÞ,
is the analog of the orbital phase in planar motion of non-
spinning systems. Though it is no longer a physical angle
now that the orbital plane precesses due to the spins; it is a
combination of the Euler angles, defined in a later section,
essential to the time evolution of the moving frame of
reference.
We split the perturbation terms into the nonsecular terms

that remain small permanently, and the secular ones that
grow with time. As time progresses, the secular terms
gradually become dominant and break down the PN power
counting; therefore they need to be resummed.

2. Renormalization

The full set of bare solutions to the orbit motion
including linear spin-orbit terms and 2.5PN Burke-
Thorne terms is given by

rðtÞ ¼ RB þ δrðtÞ þ δrSðtÞ; ðA6aÞ
ωðtÞ ¼ ΩB þ δωðtÞ þ δωSðtÞ; ðA6bÞ
ϕðtÞ ¼ ΦB þ δΦðtÞ þ δΦSðtÞ; ðA6cÞ

with the corresponding perturbations in (A2) and (A5). We
renormalize these terms by removing the t0 dependence
with the introduction of counterterms for the bare param-
eters. The Oðv5Þ terms were renormalized in Ref. [27].
Thanks to the newly added OðSv4Þ perturbations, the bare
parameters have to include higher order counterterms,
which means

RBðt0Þ ¼ RRðτÞ þ δv
5

R ðτ; t0Þ þ δSRðτ; t0Þ; ðA7aÞ

ΩBðt0Þ ¼ ΩRðτÞ þ δv
5

Ω ðτ; t0Þ þ δSΩðτ; t0Þ; ðA7bÞ

ΦBðt0Þ ¼ ΦRðτÞ þ δv
5

Φ ðτ; t0Þ þ δSΦðτ; t0Þ; ðA7cÞ

AS
Bðt0Þ ¼ AS

RðτÞ þ δSAðτ; t0Þ: ðA7dÞ

In terms of the renormalized initial parameters and the
renormalization scale t − t0 ¼ ðt − τÞ þ ðτ − t0Þ, the spin-
orbit result becomes

rðtÞ ¼ RR þ δSR −
64ν

5
R6
RΩ6

Rðt − τÞ þ AR sin ðΩRðt − τÞ þΦRÞ

−
�
144

5
Sl þ 48ΔΣl

�
νR3

RΩ5
Rðt − τÞ −

�
144

5
Sl þ 48ΔΣl

�
νR3

RΩ5
Rðτ − t0Þ

þ ð7Sl þ 3ΔΣlÞ
2ΩRR3

R
AR½2ΩRðt − τÞ cos ðΩRðt − τÞ þΦRÞ þ 2ΩRðτ − t0Þ cos ðΩRðt − τÞ þΦRÞ

− sin ðΩRðt − τÞ þΦRÞ�
þ AS

R cos ðΩRðt − τÞ þΦRÞ þ δSA cos ðΩRðt − τÞ þΦRÞ; ðA8aÞ

ωðtÞ ¼ ΩR þ δSΩ þ 96ν

5
R5
RΩ7

Rðt − τÞ − 2ΩRAR

RR
sin ðΩRðt − τÞ þΦRÞ

þ
�
−
24

5
Sl þ

216

5
ΔΣl

�
νR2

RΩ6
Rðt − τÞ þ

�
−
24

5
Sl þ

216

5
ΔΣl

�
νR2

RΩ6
Rðτ − t0Þ

þ ð5Sl þ 3ΔΣlÞ
AR

R4
R
sin ðΩRðt − τÞ þΦRÞ − ð14Sl þ 6ΔΣlÞ

AR

R4
R
ΩRðt − τÞ cos ðΩRðt − τÞ þΦRÞ

− ð14Sl þ 6ΔΣlÞ
AR

R4
R
ΩRðτ − t0Þ cos ðΩRðt − τÞ þΦRÞ

−
2AS

RΩR

RR
cos ðΩRðt − τÞ þΦRÞ −

2δSAΩR

RR
cos ðΩRðt − τÞ þΦRÞ; ðA8bÞ
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ϕðtÞ ¼ ΦR þ δSΦ þ ðt − τÞΩR þ ðt − τÞδSΩ þ ðτ − t0ÞδSΩ þ 48ν

5
R5
RΩ7

Rðt − τÞ2 þ 2AR

RR
cos ðΩRðt − τÞ þΦRÞ

−
�
12

5
Sl −

108

5
ΔΣl

�
νR2

RΩ6
Rðt − τÞ2 þ

�
−
24

5
Sl þ

216

5
ΔΣl

�
νR2

RΩ6
Rðt − τÞðτ − t0Þ

þ
�
−
12

5
Sl þ

108

5
ΔΣl

�
νR2

RΩ6
Rðτ − t0Þ2 − ð19Sl þ 9ΔΣlÞ

AR

ΩRR4
R
cos ðΩRðt − τÞ þΦRÞ

− ð14Sl þ 6ΔΣlÞ
AR

R4
R
ðt − τÞ sin ðΩRðt − τÞ þΦRÞ − ð14Sl þ 6ΔΣlÞ

AR

R4
R
ðτ − t0Þ sin ðΩRðt − τÞ þΦRÞ

−
2AS

R

RR
sin ðΩRðt − τÞ þΦRÞ −

2δSA
RR

sin ðΩRðt − τÞ þΦRÞ: ðA8cÞ

By observation we can write down the counterterms that cancel the ðτ − t0Þ terms completely as

δSRðτ; t0Þ ¼
�
144

5
Sl þ 48ΔΣl

�
νR3

RΩ5
Rðτ − t0Þ; ðA9aÞ

δSΩðτ; t0Þ ¼
�
24

5
Sl −

216

5
ΔΣl

�
νR2

RΩ6
Rðτ − t0Þ; ðA9bÞ

δSΦðτ; t0Þ ¼
�
−
12

5
Sl þ

108

5
ΔΣl

�
νR2

RΩ6
Rðτ − t0Þ2; ðA9cÞ

δSAðτ; t0Þ ¼ −ð7Sl þ 3ΔΣlÞ
AR

R3
R
ðτ − t0Þ: ðA9dÞ

Choosing the arbitrary renormalization scale to be τ ¼ t0, the equations of motion are now described by the renormalized
quantities fRR;ΩR;ΦR; AR; AS

Rg as

rðtÞ ¼ RRðtÞ þ
�
1 −

ð7Sl þ 3ΔΣlÞ
2ΩRðtÞR3

RðtÞ
�
ARðtÞ sinΦRðtÞ þ AS

RðtÞ cosΦRðtÞ; ðA10aÞ

ωðtÞ ¼ ΩRðtÞ −
2ΩRðtÞARðtÞ

RRðtÞ
�
1 −

ð5Sl þ 3ΔΣlÞ
2ΩRðtÞR3

RðtÞ
�
sinΦRðtÞ −

2AS
RΩRðtÞ
RRðtÞ

cosΦRðtÞ; ðA10bÞ

ϕðtÞ ¼ ΦRðtÞ þ
2ARðtÞ
RRðtÞ

�
1 −

ð19Sl þ 9ΔΣlÞ
2ΩRðtÞR3

RðtÞ
�
cosΦRðtÞ −

2AS
RðtÞ

RRðtÞ
sinΦRðtÞ: ðA10cÞ

The explicit secular terms have been removed thanks to the
choice of τ, and the t0-dependencies have been absorbed into
the counterterms. The runnings of fRR;ΩR;ΦR; AR; AS

Rg
and their dependence on the initial conditions are then
determined by the renormalization group equations.

3. Renormalization group solutions

Exploiting the fact that the bare quantities fRBðt0Þ;
ΩBðt0Þ;ΦBðt0Þ; AS

Bðt0Þg are independent of the arbitrary
scale τ, we can write down the renormalization group
equations for the renormalized quantities fRRðtÞ;ΩRðtÞ;
ΦRðtÞ; AS

RðtÞg as

dRR

dτ
¼ −

64ν

5
R6
RðτÞΩ6

RðτÞ −
�
144

5
Sl þ 48ΔΣl

�
× νR3

RðτÞΩ5
RðτÞ; ðA11aÞ

dΩR

dτ
¼ 96ν

5
R5
RðτÞΩ7

RðτÞ−
�
24

5
Sl −

216

5
ΔΣl

�
νR2

RðτÞΩ6
RðτÞ;

ðA11bÞ
dΦR

dτ
¼ ΩRðτÞ; ðA11cÞ

dAS
R

dτ
¼ ð7Sl þ 3ΔΣlÞ

AR

R3
R
: ðA11dÞ
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The right-hand sides of the RG equations, which are called beta functions, include more iterative time-derivative terms that
are of higher orders starting from Oðv11Þ and OðS2Þ. The RG solutions to ΩR, ΦR and AS

R in terms of RR and the initial
conditions are

ΩRðtÞ ¼
"
M1=2

R3=2
R ðtÞ

−
�
5Sl þ 3ΔΣl

2R3
RðtÞ

�#
¼

"
M

R3
RðtÞ

−

ffiffiffiffiffiffiffiffiffiffiffi
M

R3
RðtÞ

s �
5Sl þ 3ΔΣl

R3
RðtÞ

�#1
2

þOðS2Þ; ðA12aÞ

ΦRðtÞ ¼ ΦRðtiÞ þ
1

32M5=2ν
½R5=2

R ðtiÞ − R5=2
R ðtÞ� þ 5ð41Sl þ 15ΔΣlÞ

256M3ν
½RRðtiÞ − RRðtÞ�

þ 5S2=3ð41Sl þ 15ΔΣlÞ
128

ffiffiffi
3

p
νM10=3

�
tan−1

�
1ffiffiffi
3

p
�
1þ 2M1=6RRðtiÞ1=2

S1=3

��
− tan−1

�
1ffiffiffi
3

p
�
1þ 2M1=6RRðtÞ1=2

S1=3

���

þ 5S2=3ð41Sl þ 15ΔΣlÞ
768νM10=3

�
ln

� ðS1=3 −M1=6RRðtiÞ1=2Þ2
S2=3 þ S1=3M1=6RRðtiÞ1=2 þM1=3RRðtiÞ

�

− ln

� ðS1=3 −M1=6RRðtÞ1=2Þ2
S2=3 þ S1=3M1=6RRðtÞ1=2 þM1=3RRðtÞ

��
; ðA12bÞ

AS
RðtÞ ¼ AS

RðtiÞ þ
5AR

64νM3
ð7Sl þ 3ΔΣlÞ½RRðtiÞ − RRðtÞ�

þ 5ARS2=3ð7Sl þ 3ΔΣlÞ
32

ffiffiffi
3

p
νM10=3

�
tan−1

�
1ffiffiffi
3

p
�
1þ 2M1=6RRðtiÞ1=2

S1=3

��
− tan−1

�
1ffiffiffi
3

p
�
1þ 2M1=6RRðtÞ1=2

S1=3

���

þ 5ARS2=3ð7Sl þ 3ΔΣlÞ
192νM10=3

�
ln

� ðS1=3 −M1=6RRðtiÞ1=2Þ2
S2=3 þ S1=3M1=6RRðtiÞ1=2 þM1=3RRðtiÞ

�

− ln

� ðS1=3 −M1=6RRðtÞ1=2Þ2
S2=3 þ S1=3M1=6RRðtÞ1=2 þM1=3RRðtÞ

��
; ðA12cÞ

where S ≡ ð51Sl þ 21ΔΣlÞ=4 is a constant combination of the initial spins, defined for convenience. Substituting into the
radial RG equation, we find

dRR

dτ
¼ −

64νM3

5R3
R

þ 16νM5=2

5R9=2
R

ð51Sl þ 21ΔΣlÞ; ðA13Þ

or, rearranging,

R9=2
R

R3=2 −M−1=2S
dRR ¼ −

64νM3

5
dτ: ðA14Þ

Integrating both sides gives the exact but implicit relation,

−
64νM3

5
ðt − tiÞ ¼

1

4
ðRRðtÞ4 − RRðtiÞ4Þ þ

2S
5M1=2 ðRRðtÞ5=2 − RRðtiÞ5=2Þ þ

S2

M
ðRRðtÞ − RRðtiÞÞ

þ 2S8=3ffiffiffi
3

p
M4=3

�
tan−1

�
1ffiffiffi
3

p
�
1þ 2M1=6RRðtÞ1=2

S1=3

��
− tan−1

�
1ffiffiffi
3

p
�
1þ 2M1=6RRðtiÞ1=2

S1=3

���

þ S8=3

3M4=3

�
ln

� ðS1=3 −M1=6RRðtÞ1=2Þ2
S2=3 þ S1=3M1=6RRðtÞ1=2 þM1=3RRðtÞ

�

− ln

� ðS1=3 −M1=6RRðtiÞ1=2Þ2
S2=3 þ S1=3M1=6RRðtiÞ1=2 þM1=3RRðtiÞ

��
: ðA15Þ
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The parameter AR is unchanged when the spin is added,
and from [27] we learned that AR has a 0 β-function at
the order we are working, i.e., AR is a constant, given by
initial conditions, proportional to the initial eccentricity
eRð0Þ ¼ ARð0Þ=RRð0Þ ∼Oðv5Þ.

Using the relation above for RRðtÞ, we can further sim-
plify the expressions of ΦRðtÞ and AS

RðtÞ in terms of RRðtÞ
and time t, eliminating the logarithm and the arctangent
terms. Written as an invariant in time, the renormalized
quantities with the leading order spin-orbit effect are

64νM3

5
tþ 1

4
RRðtÞ4 þ

2S
5M1=2 RRðtÞ5=2 þ

S2

M
RRðtÞ þ

2S8=3ffiffiffi
3

p
M4=3

tan−1
�

1ffiffiffi
3

p þ 2M1=6RRðtÞ1=2ffiffiffi
3

p
S1=3

�

þ S8=3

3M4=3 ln

� ðS1=3 −M1=6RRðtÞ1=2Þ2
S2=3 þ S1=3M1=6RRðtÞ1=2 þM1=3RRðtÞ

�
¼ constant; ðA16aÞ

Ω2
RðtÞR3

RðtÞ þ ΩRðtÞð5Sl þ 3ΔΣlÞ ¼ constant ¼ M; ðA16bÞ

ΦRðtÞ þ
1

32M5=2ν
R5=2
R ðtÞ − 5ð41Sl þ 15ΔΣlÞ

256νM2S2

�
64νM3

5
tþ 1

4
R4
RðtÞ þ

2S
5M1=2 R

5=2
R ðtÞ

�
¼ constant; ðA16cÞ

AS
RðtÞ −

5ARð7Sl þ 3ΔΣlÞ
64νM2S2

�
64νM3

5
tþ 1

4
R4
RðtÞ þ

2S
5M1=2 R

5=2
R ðtÞ

�
¼ constant: ðA16dÞ

Note that one constraint appears in the RG equations of
RRðtÞ, (A11), which indicates the range of effectiveness of
the DRG method,

dRR

dτ
¼ −

64νM3

5R3
R

þ 64νM5=2S

5R9=2
R

þOðS2Þ

¼ −
64νM5=2

5R9=2
R

ðM1=2R3=2
R − SÞ: ðA17Þ

If S ¼ ð51Sl þ 21ΔΣlÞ=4 is positive, RRðtÞ, which is the
dominant part of the binary center-of-mass separation rðtÞ,
decreases until RRðtÞ ¼ S2=3M−1=3. Given a limitation on
the smallest value of RRðtÞ and combining with (A15), it is
possible to determine an approximate end time of the
inspiral phase described by the post-Newtonian equations
of motion (2.1). This could provide useful information to
numerical simulations as well.

APPENDIX B: SPIN PRECESSION EQUATIONS

In this section, we aim to obtain the analytic solutions for
the spin precession equations at linear order in spin (2.10)
by applying DRGmethods, with the quasicircular solutions
to the equations of motion from the previous section. For a
conservative binary system moving in nearly circular
motion, solving equations in the form of

dSan
dt

¼ ðΩ −ΩaÞSaλ ;
dSaλ
dt

¼ −ðΩ −ΩaÞSan;

with Ωa ¼
νMΩ
R

�
2þ 3

2

mb

ma

�
ðB1Þ

is fairly straightforward for constant radius R and orbital
frequency Ω. The solutions are San ¼ Sak sin ððΩ −ΩaÞ×

ðt − t0Þ þΦÞ and Saλ ¼ Sak cos ððΩ −ΩaÞðt − t0Þ þΦÞ,
where Sak is determined by the initial spin vectors.
With the inclusion of the radiation reaction force and the

resulting time dependence of rðtÞ and ωðtÞ, the spin vectors
precess in a way entangled with the orbit motion. Defining
Saþ ≡ San þ iSaλ , the precession equations (2.10) can be
combined and written as

dSaþðtÞ
dt

¼ −iðωðtÞ −ΩaðtÞÞSaþðtÞ: ðB2Þ

A simple integration with respect to time leads to

i½ln SaþðtÞ − ln Saþðt0Þ� ¼
Z

t

t0

dτ½ωðtÞ − ΩaðtÞ�: ðB3Þ

To solve for the integral on the right-hand side, we
denote νa ≡ ð2þ 3mb

2ma
Þν2 and recall that M ∼Ω2

BR
3
B þ

ΩBð5Sl þ 3ΔΣlÞ, such that Ωa in (2.9) at leading order
in spin becomes

ΩaðtÞ ¼
νa
ν
ðΩ2

BR
3
B þΩBð5Sl þ 3ΔΣlÞÞ

�
ΩB

RB
þ δω

RB
−
ΩBδr
R2
B

�

þ νa
ν
Ω3

BR
2
B

�
δωS

ΩB
−
δrS
RB

�
þOðS2Þ; ðB4Þ

with the 2.5PN radiation perturbation fδr; δωg from (A2),
and the leading-order spin-orbit perturbation fδrS; δωSg
from (A5).
As a check of self-consistency, notice that we have the

choice of substitutingM either as a function of the physical
values frðtÞ;ωðtÞg using the results from (A6), or the bare
parameters fRB;ΩBg, which give the same result after
summing up the perturbation expansions.
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Substituting the corresponding perturbations back into (B4), we obtain the explicit time dependence of the precession
norm Ωa,

ΩaðtÞ ¼
νa
ν

�
Ω3

BR
2
B þ ð5Sl þ 3ΔΣlÞ

Ω2
B

RB
þ 32νR7

BΩ9
Bðt − t0Þ þ

�
184Sl þ

936

5
ΔΣl

�
νR4

BΩ8
Bðt − t0Þ

− 3ABΩ3
BRB sin ðΩBðt − t0Þ þΦBÞ −

�
13

2
Sl þ

9

2
ΔΣl

�
ABΩ2

B

R2
B

sin ðΩBðt − t0Þ þΦBÞ

− ð21Sl þ 9ΔΣlÞ
ABΩ3

B

R2
B

ðt − t0Þ cos ðΩBðt − t0Þ þΦBÞ − 3AS
BΩ3

BRB cos ðΩBðt − t0Þ þΦBÞ
�
: ðB5Þ

Combined with the expression for δωðtÞ in terms of the time-independent bare parameters, we can perform the integration in
(B3) to write down

i½lnSaþðtÞ− lnSaþðt0Þ� ¼
�
ΩB −

νa
ν
Ω3

BR
2
B −

νa
ν
ð5Sl þ 3ΔΣlÞ

Ω2
B

RB

�
ðt− t0Þ

þ
�
48ν

5
R5
BΩ7

B −
�
12

5
Sl −

108

5
ΔΣl

�
νR2

BΩ6
B − 16νaR7

BΩ9
B −

�
92Sl þ

468

5
ΔΣl

�
νaR4

BΩ8
B

�
ðt− t0Þ2

þ
�
2AB

RB
− ð5Sl þ 3ΔΣlÞ

AB

R4
BΩB

−
3νa
ν

Ω2
BABRB

−
νa
ν

�
13

2
Sl þ

9

2
ΔΣl

�
ABΩB

R2
B

�
½cos ðΩBðt− t0Þ þΦBÞ− cosΦB�

−
�
ð14Sl þ 6ΔΣlÞ

AB

R4
BΩB

−
νa
ν
ð21Sl þ 9ΔΣlÞ

ABΩB

R2
B

�
× ½ΩBðt− t0Þ sinðΩBðt− t0Þ þΦBÞ þ cos ðΩBðt− t0Þ þΦBÞ− cosΦB�

−
�
2AS

B

RB
−
3νa
ν

AS
BΩ2

BRB

�
½sin ðΩBðt− t0Þ þΦBÞ− sinΦB�: ðB6Þ

The constant terms sinΦB and cosΦB can be absorbed by redefining the initial condition i ln Saþðt0Þ, or via a bare parameter
i lnSa

þB,

i ln Saþðt0Þ → i lnSa
þB þ

�
2AB

RB
− ð5Sl þ 3ΔΣlÞ

AB

R4
BΩB

−
3νa
ν

Ω2
BABRB −

νa
ν

�
13

2
Sl þ

9

2
ΔΣl

�
ABΩB

R2
B

�
cosΦB

−
�
ð14Sl þ 6ΔΣlÞ

AB

R4
BΩB

− ð21Sl þ 9ΔΣlÞ
νa
ν

ABΩB

R2
B

�
cosΦB

−
�
2AS

B

RB
−
3νa
ν

AS
BΩ2

BRB

�
sinΦB: ðB7Þ

The logarithm of the spin components then becomes

i ln SaþðtÞ ¼ i lnSa
þB þ

�
ΩB −

νa
ν
Ω3

BR
2
B −

νa
ν
ð5Sl þ 3ΔΣlÞ

Ω2
B

RB

�
ðt − t0Þ

þ
�
48ν

5
R5
BΩ7

B −
�
12

5
Sl −

108

5
ΔΣl

�
νR2

BΩ6
B − 16νaR7

BΩ9
B −

�
92Sl þ

468

5
ΔΣl

�
νaR4

BΩ8
B

�
ðt − t0Þ2

þ
�
2AB

RB
− ð19Sl þ 9ΔΣlÞ

AB

R4
BΩB

−
3νa
ν

Ω2
BABRB þ νa

ν

�
29

2
Sl þ

9

2
ΔΣl

�
ABΩB

R2
B

�
cos ðΩBðt − t0Þ þΦBÞ

−
�
ð14Sl þ 6ΔΣlÞ

AB

R4
B
−
νa
ν
ð21Sl þ 9ΔΣlÞ

ABΩ2
B

R2
B

�
ðt − t0Þ sinðΩBðt − t0Þ þΦBÞ

−
�
2AS

B

RB
−
3νa
ν

AS
BΩ2

BRB

�
sin ðΩBðt − t0Þ þΦBÞ: ðB8Þ
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Given the spin vector expansions in terms of the bare
parameters fRB;ΩB;ΦB; AB; AS

B;S
a
þBg, the next step is to

renormalize the spin components by replacing the bare
parameters by the renormalized ones plus counterterms,
and splitting t − t0 ¼ ðt − τÞ þ ðτ − t0Þ with a choice of an
arbitrary renormalization scale τ.

1. Spin renormalization

To begin, the bare parameter lnSa
þB is related to the

renormalized value lnSa
þR through

lnSa
þBðt0Þ ¼ lnSa

þRðτÞ þ δaln Sðτ; t0Þ: ðB9Þ

The renormalization treatment is performed for the
natural logarithm of the spin components. As a result,
Sa
þB ¼ Sa

þRe
δaln S . The exponential implies that it is the

phase of the precession that is renormalized. Dividing
the bare parameters into the renormalized parts and the
counterterms and introducing the renormalization scale τ,
Eq. (B8) then becomes

i½ln SaþðtÞ − ðlnSa
þR þ δaln SÞ�

¼
�
ΩR þ δΩ −

νa
ν
ðΩ3

RR
2
R þ 3Ω2

RR
2
RδΩ þ 2Ω3

RRRδRÞ −
νa
ν
ð5Sl þ 3ΔΣlÞ

�
Ω2

R

RR
þ 2ΩRδΩ

RR
−
Ω2

RδR
R2
R

��
½ðt − τÞ þ ðτ − t0Þ�

þ
�
48ν

5
R5
RΩ7

R −
�
12

5
Sl −

108

5
ΔΣl

�
νR2

RΩ6
R − 16νaR7

RΩ9
R −

�
92Sl þ

468

5
ΔΣl

�
νaR4

RΩ8
R

�
× ½ðt − τÞ2 þ 2ðt − τÞðτ − t0Þ þ ðτ − t0Þ2�

þ
�
2AR

RR
− ð19Sl þ 9ΔΣlÞ

AR

R4
RΩR

−
3νa
ν

Ω2
RARRR þ νa

ν

�
29

2
Sl þ

9

2
ΔΣl

�
ARΩR

R2
R

�
cos ðΩRðt − τÞ þΦRÞ

−
�
ð14Sl þ 6ΔΣlÞ

AR

R4
R
−
νa
ν
ð21Sl þ 9ΔΣlÞ

ARΩ2
R

R2
R

�
½ðt − τÞ þ ðτ − t0Þ� sinðΩRðt − τÞ þΦRÞ

−
�
2AS

R

RR
þ 2δSA

RR
−
3νa
ν

AS
RΩ2

RRR −
3νa
ν

δSAΩ2
RRR

�
sin ðΩRðt − τÞ þΦRÞ: ðB10Þ

The counterterms are the combined results in [27] and (A9),

δRðτ; t0Þ ¼
64ν

5
R6
RΩ6

Rðτ − t0Þ þ δSRðτ; t0Þ;

δΩðτ; t0Þ ¼ −
96ν

5
R5
RΩ7

Rðτ − t0Þ þ δSΩðτ; t0Þ;

δΦðτ; t0Þ ¼ −ΩRðτ − t0Þ þ
48ν

5
R5
RΩ7

Rðτ − t0Þ2 þ δSΦðτ; t0Þ:

After some algebra, (B10) can be simplified to

i½ln SaþðtÞ − ðlnSa
þR þ δaln SÞ�

¼
�
ΩR −

νa
ν
Ω3

RR
2
R −

νa
ν
ð5Sl þ 3ΔΣlÞ

Ω2
R

RR

�
ðt − τÞ þ

�
ΩR −

νa
ν
Ω3

RR
2
R −

νa
ν
ð5Sl þ 3ΔΣlÞ

Ω2
R

RR

�
ðτ − t0Þ

þ
�
48ν

5
R5
RΩ7

R −
�
12

5
Sl −

108

5
ΔΣl

�
νR2

RΩ6
R − 16νaR7

RΩ9
R −

�
92Sl þ

468

5
ΔΣl

�
νaR4

RΩ8
R

�
½ðt − τÞ2 − ðτ − t0Þ2�

þ
�
2AR

RR
− ð19Sl þ 9ΔΣlÞ

AR

R4
RΩR

−
3νa
ν

Ω2
RARRR þ νa

ν

�
29

2
Sl þ

9

2
ΔΣl

�
ARΩR

R2
R

�
cos ðΩRðt − τÞ þΦRÞ

−
�
ð14Sl þ 6ΔΣlÞ

AR

R4
R
−
νa
ν
ð21Sl þ 9ΔΣlÞ

ARΩ2
R

R2
R

�
ðt − τÞ sinðΩRðt − τÞ þΦRÞ

−
�
2AS

R

RR
−
3νa
ν

AS
RΩ2

RRR

�
sin ðΩRðt − τÞ þΦRÞ: ðB11Þ

Notice that the terms proportional to ðt − τÞðτ − t0Þ are completely canceled, which was emphasized in [27] as an important
check of self-consistency. Here the cancellation is due to exactly the same set of substitutions we could use to replaceM to
obtain (B4), where the two different choices led to the same expansion result.
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To cancel the remaining secular pieces that are proportional to the powers of ðτ − t0Þ, the counterterm δaln S is fixed to be

iδaln Sðτ; t0Þ ¼ −
�
ΩR −

νa
ν
Ω3

RR
2
R −

νa
ν
ð5Sl þ 3ΔΣlÞ

Ω2
R

RR

�
ðτ − t0Þ

þ
�
48ν

5
R5
RΩ7

R −
�
12

5
Sl −

108

5
ΔΣl

�
νR2

RΩ6
R − 16νaR7

RΩ9
R −

�
92Sl þ

468

5
ΔΣl

�
νaR4

RΩ8
R

�
ðτ − t0Þ2: ðB12Þ

Choosing the arbitrary scale τ to equal t, the renormalized solution to lnSaþðtÞ becomes

i ln SaþðtÞ ¼ i lnSa
þR −

�
2AS

R

RR
−
3νa
ν

AS
RΩ2

RRR

�
sinΦR

þ
�
2AR

RR
− ð19Sl þ 9ΔΣlÞ

AR

R4
RΩR

−
3νa
ν

Ω2
RARRR þ νa

ν

�
29

2
Sl þ

9

2
ΔΣl

�
ARΩR

R2
R

�
cosΦR; ðB13Þ

or more explicitly in terms of the exponential,

SaþðtÞ ¼ Sa
þR exp

�
i

�
2AS

R

RR
−
3νa
ν

AS
RΩ2

RRR

�
sinΦR

− i

�
2AR

RR
− ð19Sl þ 9ΔΣlÞ

AR

R4
RΩR

−
3νa
ν

Ω2
RARRR þ νa

ν

�
29

2
Sl þ

9

2
ΔΣl

�
ARΩR

R2
R

�
cosΦR

�
: ðB14Þ

The renormalized quantities as functions of time have runnings obtained from the RG flow in Sec. A 3, with only the
remaining spin component bare parameter Sa

þR to be done in the next section.

2. Spin component renormalization group solution

The running of the renormalized parameter Sa
þR can be determined using (B12), which leads to

d
dτ

i lnSa
þRðτÞ ¼

�
ΩR −

νa
ν
Ω3

RR
2
R −

νa
ν
ð5Sl þ 3ΔΣlÞ

Ω2
R

RR

�

þ
�
dΩR

dτ
−
νa
ν
Ω3

RR
2
R

�
3

ΩR

dΩR

dτ
þ 2

RR

dRR

dτ

�
−
νa
ν
ð5Sl þ 3ΔΣlÞ

Ω2
R

RR

�
2

ΩR

dΩR

dτ
−

1

RR

dRR

dτ

��
ðτ − t0Þ

þ
�
96ν

5
R5
BΩ7

B −
�
24

5
Sl −

216

5
ΔΣl

�
νR2

BΩ6
B − 32νaR7

BΩ9
B −

�
184Sl þ

936

5
ΔΣl

�
νaR4

BΩ8
B

�
ðτ − t0Þ:

ðB15Þ
It seems to be formally divergent and has the dependence on the cutoff t0. However, replacing the derivatives of RR and
ΩR by their RG equations (A11a) and (A11b), we encounter the nontrivial cancellation and obtain a finite β function,

d
dτ

i lnSa
þRðτÞ ¼ ΩR −

νa
ν

MΩR

RR
: ðB16Þ

Notice the similarity in form between the RG equation and (B2), the precession equation we start with.
In order to find a solution to the RG equation of the spin component, we can write the relation between the τ derivative of

i lnSa
þR and the derivative with respect to the renormalized parameter RR as

d
dRR

i lnSa
þRðτÞ ¼

�
dRR

dτ

�
−1 d

dτ
i lnSa

þRðτÞ: ðB17Þ

Using the renormalization group equations (A11a) and (B16), we obtain a solution to Sa
þRðτÞ in terms of RRðτÞ and initial

conditions

i lnSa
þRðtÞ ¼ i lnSa

þRðtiÞ þ ðΦRðtÞ −ΦRðtiÞÞ þ
5νa

96M3=2ν2
½R3=2

R ðtÞ − R3=2
R ðtiÞ�

þ 5ð41Sl þ 15ΔΣlÞνa
384M2ν2

½lnðM1=2R3=2
R ðtÞ − SÞ − lnðM1=2R3=2

R ðtiÞ − SÞ�: ðB18Þ
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The expressions are not unique in terms ofΦRðtÞ and RRðtÞ due to several RG invariants between them. The invariance over
time with spin components can be found from the Sa

þRðτÞ solution, which is given by

i lnSa
þRðtÞ −ΦRðtÞ −

5νaR
3=2
R ðtÞ

96M3=2ν2
−
5ð41Sl þ 15ΔΣlÞνa

384M2ν2
lnðM1=2R3=2

R ðtÞ − SÞ ¼ constant: ðB19Þ

Putting all the pieces together, the resummed solution of SaþðtÞ is given by

SaþðtÞ ¼ Sa
þRðtiÞ ×

�
M1=2R3=2

R ðtiÞ − S

M1=2R3=2
R ðtÞ − S

�5ið41Slþ15ΔΣlÞνa
ð384M2ν2Þ × exp

�
−i
�
ðΦRðtÞ −ΦRðtiÞÞ þ

5νaðR3=2
R ðtÞ − R3=2

R ðtiÞÞ
96M3=2ν2

�

þ i

�
2AS

RðtÞ
RRðtÞ

−
3νa
ν

AS
RðtÞΩRðtÞ2RRðtÞ

�
sinΦRðtÞ − i

�
2ARðtÞ
RRðtÞ

− ð19Sl þ 9ΔΣlÞ
ARðtÞ

RRðtÞ4ΩRðtÞ

−
3νa
ν

ΩRðtÞ2ARðtÞRRðtÞ þ
νa
ν

�
29

2
Sl þ

9

2
ΔΣl

�
ARðtÞΩRðtÞ
RRðtÞ2

�
cosΦRðtÞ

�
; ðB20Þ

with fRRðtÞ;ΩRðtÞ;ΦRðtÞ; ARðtÞ; AS
RðtÞ;Sa

þRðtÞg given by (A12), (A15) and (B18).
The quantity Sa

þRðtiÞ depends on the initial conditions of dynamics and spin vectors. For instance, taking the initial input
SanðtiÞ and SaλðtiÞ, while getting ARðtiÞ, RRðtiÞ,ΩRðtiÞ andΦRðtiÞ from numerically solving the initial conditions rðtiÞ, _rðtiÞ,
ωðtiÞ and ϕðtiÞ from the dynamics, we can determine the value of Sa

þRðtiÞ through

Sa
þRðtiÞ ¼ ðSanðtiÞ þ iSaλðtiÞÞ exp

�
i

�
2ARðtiÞ
RRðtiÞ

− ð19Sl þ 9ΔΣlÞ
ARðtiÞ

R4
RðtiÞΩRðtiÞ

−
3νa
ν

Ω2
RðtiÞARðtiÞRRðtiÞ

þ νa
ν

�
29

2
Sl þ

9

2
ΔΣl

�
ARðtiÞΩRðtiÞ

R2
RðtiÞ

Þ cosΦRðtiÞ
�

− i

�
2AS

RðtiÞ
RRðtiÞ

−
3νa
ν

AS
RðtiÞΩ2

RðtiÞRRðtiÞ
�
sinΦRðtiÞ

�
: ðB21Þ

One immediate validation of the formulation is that the
length of the spin vector should be a constant. Thus

jSaþðtÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSanÞ2 þ ðSaλÞ2

q
should be a constant, since Sal

does not change with time. From (B20) and (B21) we can

see that the length is preserved, jSaþðtÞj ¼ jSaþRðtiÞj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSanðtiÞÞ2 þ ðSaλðtiÞÞ2

q
as long as ðM1=2R3=2

R ðtÞ−SÞ> 0,

the same constraint we encounter for the solutions of the
orbit equations of motion.

APPENDIX C: THE MOVING TRIAD
EVOLUTION

In the text, the resummed analytic expressions for the
orbital equations of motion and spin precession we
obtained are written in terms of the moving triad vectors
fn; λ; lg. To transform the complete results into a fixed
frame, we follow the solutions to the evolution equations
for the moving triad in [30,37] for the 1.5PN order
conservative dynamics and build the moving triad evolution
for the radiative dynamics on quasicircular orbits.
We start by briefly summarizing the conservative moving

triad evolution solution that relies fundamentally on the
conservation of the total angular momentum J. An ortho-
normal inertial frame fx; y; zg is then introduced with J=J

as the fixed direction z. Three Euler angles αðtÞ; ιðtÞ;ΦðtÞ
are defined to specify the moving triad within the fixed
frame as shown in Fig. 4. The azimuth α and the inclination
ι are the standard spherical coordinates of the Newtonian

FIG. 4. Definitions of the Euler angle fα; ι;Φg with respect to
the moving triad fn; λ; lg, the auxiliary moving frame fxl; yl; lg,
and the fixed lab frame fx; y; zg.
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angular momentum direction l. The angle Φ is defined to
be the angle between n and xl, where

xl ¼
z × l
jz × lj ; yl ¼ l × xl; ðC1Þ

forming the instantaneous orbital plane and with l to
complete an auxiliary orthonormal basis fxl; yl; lg.
In terms of the Euler angles, the relation between the

moving triad fnðtÞ; λðtÞ; lðtÞg and the fixed Cartesian
frame fx; y; zg can be written as

n ¼ ð− cosΦ sin α − sinΦ cos ι cos αÞx
þ ðcosΦ cos α − sinΦ cos ι sin αÞyþ sinΦ sin ιz;

ðC2aÞ

λ ¼ ðsinΦ sin α − cosΦ cos ι cos αÞx
þ ð− sinΦ cos α − cosΦ cos ι sin αÞyþ cosΦ sin ιz;

ðC2bÞ

l ¼ sin ι cos αxþ sin ι sin αyþ cos ιz: ðC2cÞ

The evolution solutions to the Euler angles up to linear
order in spin are given by the components of the total
angular momentum J ¼ JnðtÞn̂þ JλðtÞλ̂þ JlðtÞl̂ as

Φþ α ¼ ϕ; sin ι ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2n þ J2λ

q
J

; eiα ¼ Jλ − iJn
J

eiϕ;

ðC3Þ

where ϕ is the orbital phase, for which the resummed
solution is given by (A10c) for the radiative binary orbits.

Finally, expressed in terms of some initial basis
fn0; λ0; l0g with corresponding Euler angles fα0; ι0;Φ0g,
the moving triad fnðtÞ; λðtÞ; lðtÞg is given by

m¼ e−iðϕ−ϕ0Þm0 þ
iffiffiffi
2

p ðsin ιeiα − sin ι0eiα0Þe−iϕl0 þOðS2Þ

ðC4Þ

l ¼ l0 þ
�

iffiffiffi
2

p ðsin ιe−iα − sin ι0e−iα0Þeiϕ0m0 þ c:c
�

þOðS2Þ; ðC5Þ
where m≡ 1ffiffi

2
p ðnþ iλÞ is a complex null vector.

The crucial point of this moving triad solution is the
conservation of the total angular momentum and the ability
to write out its components in the moving triad for all time,
not the physical meaning to J. In order to apply the triad
solutions to a radiative motion where J can change, we find
such a quantity that satisfies the requirements by observing
the calculation of dJ=dt for a conservative quasicircular
orbit. It is conventional to decompose J ¼ Lþ S, where S
is the total spin specified by the choices of spin variables
following [29], and L is the sum of the nonspinning
NewtonianLN and the leading order spin-orbit contribution
LSO, given by

LSO ¼ ν

�
M
r
n ×

�
n ×

�
3Sþ δm

m
Δ
��

−
1

2
v

×

�
v ×

�
Sþ δm

m
Δ
���

: ðC6Þ

Written in terms of the moving triad components and taking
the orbit radius and frequency as constants R and Ω for the
quasicircular approximation, the spin-orbit momentum
becomes

LSO ¼ 1

2
νR2Ω2

�
m2

m1

S1n þ
m1

m2

S2n

�
n −

νM
R

��
m2

m1

þ 2

�
S1λ þ

�
m1

m2

þ 2

�
S2λ

�
λ

þ
�
1

2
νR2Ω2

�
m2

m1

S1l þ
m1

m2

S2l

�
−
νM
R

��
m2

m1

þ 2

�
S1l þ

�
m1

m2

þ 2

�
S2l

��
l: ðC7Þ

For a conservative system without radiation, the time derivative to the sum J ¼ LN þ LSO þ S1 þ S2 should vanish up to
the Newtonian and leading spin order. By carrying out the detail calculation, we find that

_LSO ¼
�
1

2
νR2Ω2

�
m2

m1

_S1n þ
m1

m2

_S2n

�
þ νMΩ

R

��
m2

m1

þ 2

�
S1λ þ

�
m1

m2

þ 2

�
S2λ

��
n

þ
�
1

2
νR2Ω3

�
m2

m1

S1n þ
m1

m2

S2n

�
−
νM
R

��
m2

m1

þ 2

�
_S1λ þ

�
m1

m2

þ 2

�
_S2λ

��
λ;

_S ¼ −
νMΩ
R

��
2þ 3m2

2m1

�
S1λ þ

�
2þ 3m1

2m2

�
S2λ

�
nþ νMΩ

R

��
2þ 3m2

2m1

�
S1n þ

�
2þ 3m1

2m2

�
S2n

�
λ;

_LN ¼ −
νMΩ
R

��
4þ 3m2

m1

�
S1n þ

�
4þ 3m1

m2

�
S2n

�
λ:
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Thus the sum is

_LN þ _LSO þ _S ¼ −
νM
R

��
1

2

m1

m2

Ω2S2λ þ
1

2

m2

m1

Ω1S1λ

�
nþ

��
2þm1

m2

�
Ω2S2n þ

�
2þm2

m1

�
Ω1S1n

�
λ

�
∼Oðv2Þ; ðC8Þ

which corresponds to 1PN terms to be fixed by including higher order orbital angular momenta. Notice that the time
derivative of the spins in _LSO is completely canceled by _S and _LN at Newtonian order. Therefore we propose that for a
radiative quasicircular binary, the following quantity is conserved,

J ¼
X
a;b

�
1

2
ν
mb

ma
rð0Þ2ωð0Þ2SanðtÞn −

νM
rð0Þ

�
mb

ma
þ 2

�
SaλðtÞλþ

�
1

2
ν
mb

ma
rð0Þ2ωð0Þ2Sal ðtÞ −

νM
rð0Þ

�
mb

ma
þ 2

�
Sal ðtÞ

�
l

�

þ
X
a;b

νMrð0Þ2ωð0Þlþ
X
a;b

SaðtÞ: ðC9Þ

Compared with the conservative expressions, we replace the constant orbital radius and frequency by the initial orbital
radius and frequency. The conservative spin components are changed into the time-dependent resummed radiative spin
component results. The time derivative of this quantity J is ∼Oðv4SÞ but we are able to avoid the loss of total angular
momentum due to nonspinning radiation at Oðv5Þ. Using the substitution with J instead of J into the moving frame
solutions (C2)–(C5), we can generate a three-dimensional plot of the orbital radius evolution and animations of binary
inspiral with spin orientation at every instant.
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