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Analytic solutions to compact binary inspirals with leading order spin-orbit
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We calculate the real-space trajectory and spin precession of a generic spinning compact binary inspiral
at any time instant using the dynamical renormalization group formalism. This method leads to closed-form
analytic solutions to the binary motion through treating radiation reaction as perturbations and resumming
the secular growth of perturbative terms. We consider the spin-orbit effects at leading order and the 2.5 PN
radiation reaction without orbit averaging or precession averaging for arbitrary individual masses and spin
magnitudes and orientations. The solutions are written in a moving reference frame, with the orbital angular
momentum and binary radial directions aligned along two of the axes. The resummed solutions show
improved accuracy compared to adiabatic solutions while also being an order of magnitude faster

computationally compared to numerical integration methods.
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I. INTRODUCTION

A worldwide network of gravitational wave (GW)
detectors is being developed to monitor the ripples in
the fabric of spacetime passing through the Earth.
This includes the ground-based laser interferometers
GEO600, LIGO and VIRGO collaborations currently in
operation, and the under construction spaced-based obser-
vatory LISA and cryogenic detector KAGRA in Japan.
The successful detection of gravitational waves from
inspiraling black holes (BH) and neutron stars (NS) by
the LIGO and VIRGO collaborations directly and spec-
tacularly confirmed one of the predictions of Einstein’s
theory of general relativity. A generic prediction of metric
theories of gravity, BH or NS coalescence is a strong
source of GWs for interferometric detectors. To success-
fully identify and analyze the gravitational wave signals, it
is necessary to construct a systematic description of the
binary black hole dynamics and waveforms during coa-
lescence. A set of expected waveforms portrayed by the
intrinsic parameters of the compact binary within the
astrophysically interesting region of the parameter space
forms a waveform template bank [I-3]. Using these
precise waveform templates, a matched filtering technique
is used to try to discover the weak GW signals buried in
the detector noise. More accurate templates will help us
extract physical information from the observed events in
order to gain further knowledge of the black hole or
neutron star properties.
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The choice of the BH coalescence model is critical
for determining the waveform. The last few orbits of the
inspiral phase through the merger and ringdown of the BH
coalescence have been simulated by numerical relativity
[4,5]. There have been developments on the analytic
understandings for merger and ringdown [6]. The slowly
orbiting long inspiral phase can be studied analytically
using post-Newtonian (PN) perturbation theory with small
velocity and weak field approximations. BH dynamics is
described by the Newtonian-like equations of motion in
the form of the acceleration of the binary constituents.
During the inspiral, the binary slowly loses energy and
angular momentum to gravitational radiation starting at
2.5PN [7,8]. Higher order corrections up to 4PN in the
conservative sector have been calculated [9-17]. Solving
for the motions is the fundamental step in obtaining the
waveforms and deriving the evolution of the theoretical
physical measurements in time, such as the GW phase
directly measured by the detectors and power loss due to
gravitational radiations.

The exact solutions to the motions can be found by
numerically integrating these nonlinearly coupled ordinary
differential equations. However, in calculations of template
banks, each point in the intrinsic parameter space repre-
senting a waveform with different initial conditions
requires a new numerical computation. The sample rate
of the corresponding waveform directly depends on the
precision and step sizes of the solutions of the motions. The
discrete nature of the computational solutions also brings
the issue of the distance between the templates in the
parameter space, which may result in the loss in signal-to-
noise ratio due to the mismatch of the template in the match
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filter of the signal data. Since the third observing runs of
LIGO and Virgo have a weekly rate of observed events, a
faster and more accurate way of computing in the signal
analysis is critical, with even larger rates expected with
future upgrades. A fully analytic waveform solution with
continuous parameters would certainly increase calculation
efficiency for template-based data analysis.

The adiabatic approximation is often used to find
the analytic solutions to the motion, including inspiral
radiation-reaction effects [18-20]. Using the PN expan-
sions of the conserved energy E and flux F, the adiabatic
waveforms are obtained by solving the energy balance
equation dE/dt = F. The balance equation leads to the
secular evolutions of the orbital angular frequency w(¢),
from which one can derive the accumulated phase of gravi-
tational waves ¢(¢) = 2 [ drw(z). An implicit assumption
in the energy balance equation is that £ does not change
much over an orbital timescale. In other words, the adiabatic
solutions are orbit averaged and thus remove some of the
orbital detail. The adiabatic approximation fails to account
for secular evolution of some of the orbital elements, which
can lead to measurable phasing effects [21]. The limitations
and ambiguities of adiabatic approximations come from
the averaging procedure to eliminate the oscillations and
keep only the secular behavior. Firstly, removing the small
oscillations of different parameters (the orbital time vs the
orbital angle, for instance) means using different averaging
schemes, which can result in different solutions. Secondly,
due to the fact that these small oscillations may not vanish at
the initial time, the exact initial conditions will in general
differ from the averaged ones placed on the approximate
solution. This initial condition ambiguity results in measur-
able orbital phase differences [22].

When considering spinning black holes, which adds six
additional degrees of freedom, the binary motions become
more complicated. The convention of the PN order count-
ing of the spin here is defined as |S| = ym?, where m is the
mass of the object and y is a dimensionless spin parameter.
For maximally rotating compact BHs, y ~ 1. The leading
contributions from spin-orbit effects enter into the motion
at 1.5PN and spin-spin at 2PN, before the leading-order
radiation-reaction force. The major effect of the presence of
the spin on the orbital evolution is that a spin component
perpendicular to the orbital angular momentum causes the
orbital plane to precess. This means the orbital plane will
change its orientation when it is not perpendicular to the
spin vector. Thus the observed waveform, depending on
the orbital orientation with respect to the detector, modu-
lates due to spin-induced orbital precession. The secular
evolutions of the spins themselves are given by the spin
precession equations [23,24]. With the spin precession
equations, it is possible to determine the angular momen-
tum transfer between orbital and spin angular momenta
and the total angular momentum loss during the inspiral
regime. One of the recent works to construct analytic

spin-precessing inspirals is through multiple scale analysis
[25,26]. This method gives orbit-averaged and precession-
averaged closed-form solutions by making a clean sepa-
ration among the orbital time, precession time, and
radiation-reaction timescales and treating the physical
parameters by averaging over the longer timescales to
solve for the shorter ones. However, any averaging pro-
cedure results in the loss of some of the orbital dynamics.

In order to find analytic solutions to the spinning
binary equations of motion and spin precession equations
without any averaging procedures, we follow the dynami-
cal renormalization group (DRG) formalism proposed by
Galley and Rothstein in [27]. The idea of the DRG method
is based on renormalization group theory and the resum-
mation of the singularities for perturbative ordinary differ-
ential equation problems [28]. The DRG method applied
to binary inspirals starts by treating some of the higher
PN order radiation-reaction terms as a perturbation to a
conservative background orbit. The secular growths of the
perturbations are then resummed to preserve the correct
power counting of the perturbations. In their work, Galley
and Rothstein calculated the resummed solution for a
nonspinning binary with leading-order radiation up to
the second-order corrections and included the PN correc-
tions to the radiation-reaction force. In this paper we
incorporate spin-orbit effects and the leading order radia-
tion reaction, using the DRG method to obtain real-time
solutions to the generic precessing compact binaries.

The organization of this paper is as follows: In Sec. Il we
introduce the PN equations of motion and spin precession
equations for compact binary inspirals. We also set up
a moving coordinate frame using the radial vector and
orbital angular momentum vector in which we present our
solutions. In Sec. III we summarize the procedures of the
DRG method and give the resulting closed-form analytic
solutions to the binary motions and spin precession. In
Sec. IV, we compare our DRG resummed solutions to the
numerical and adiabatic solutions of the same equations.
We also show a rough comparison of the calculation run
time between the numerical integration and resummed
solution substitution. We conclude in Sec. V. In the
Appendixes A and B, we present the detailed calculations
of the DRG method for orbital motions and spin precession,
respectively. In Appendix C we propose a naive trans-
formation of the moving coordinate frame to a fixed
observer frame for the purpose of waveform construction.

II. LEADING ORDER SPIN-ORBIT EQUATIONS
OF MOTION AND SPIN PRECESSION EQUATIONS

The equations of motion of the compact binaries in the
center-of-mass frame, including the Newtonian order, the
leading-order spin-orbit contributions at 1.5PN in covariant
spin supplementary condition, and the Burke-Thorne term
due to the radiation-reaction force at 2.5PN, are given
by [7,29,30]
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a — ay + aso + aRR, (21)

where the terms in the post-Newtonian hierarchy are
an = — —2ﬁ, (228_)

aso :%{6;&[(;& xv)- (28 + AZ)]
—[ox (78 +3A%)] + 37 x (35 + AX)]},

M?*v  [(136M ) 8M?v (3M )
aRR:Wr . + 720" |r — 573 T—Hf .

(2.2b)

(2.2¢)

In the expressions above, r and v are the binary relative
center-of-mass separation and velocity, i =r/r and i =
dr/dt = i -v. The binary masses are denoted as m,,
the total binary mass M = m, + m,, v = m;m,/M?* and
A= (m; —m,)/M. The combinations of the individual
spins are written as

_ 5% 5

S=3S S5, Y= ,
1+ 9 X, X,

(2.3)

with X, = m,/M. The spin vectors precess due to spin-
orbit coupling following the relation of [8,29]

1 Smb

r3 (LN X Sa) (2 + Em—> s

a

S, = (2.4)
where {a,b} are the binary labels {1,2}, and Ly =
vM(r x v) is the Newtonian orbital angular momentum.
In order to obtain the analytic solutions to the inspiral
equations of motions and the spin precession equa-
tions (2.1)—~(2.4), we adopt a coordinate frame {n,A,l},
moving along with the center-of-mass and the orientation
of its motion [30-32], where I = n xv/|n x v| and A =
I xn to complete an orthonormal basis triad. In this
moving basis, the relative velocity can be expressed as
v =in+ rol, (2.5)
where o is the orbital angular frequency of the binary. The
relative acceleration a = dv/dt in the moving basis is
a=(F—ro*)n+ (ro + 2rw)A + rool,  (2.6)
where the orbital plane precession @ of the orbit is defined
as w=—-A-dl/dz.
In terms of the moving basis components, the equations
of motions (2.1) are

., M 64MPu.  16M%v N 16M%v .
F—ro* =—— r r i)
r? 154 51 S5r
0]
oy 24M?3y 8M21/.2 SM3y 3 Zi'S
re Fo = — w— o — w’ ——=S;,
573 512 5 e
(2.7b)
27 7 3A
@ =S, + =Sy + 5, (2.7¢)
r*w r r

where we decompose the spin § = S,n + S;A + S,l, and
similarly for 2. The spin precession equations (2.4) become

ds¢ "
pPa (w0 —Q,)S4, (2.8a)
ds¢
d; = —(0—Q,)S¢ + wS4, (2.8b)
ds¢
dtl = —wSY, (2.8¢)
where we denote
VMo 3my,
Q=——-,_[2+-—), 2.9
“ r < * 2ma> (29)

which is the norm of the precession vector of the ath spin.
The precession frequency @, explicitly given by (2.7¢c), is
of order O(S). At linear order in spin, the precession
equations become

d a
dSt" — (-0Q,)8", (2.10a)
ds¢
d; = —(w—Q,)8¢ + O(5?), (2.10b)
ds¢
L= O(s?). 2.10
& (5%) (2.10¢)

Thus at order O(S), the I-components of the spin vectors
are invariant, which are also the only components that
appear in the orbital equations of motion in (2.7a) and
(2.7b). In solving these two equations by the DRG method,
we then are able to treat §; and X; as time-independent
constants. Following Ref. [27], here we ignore the 1PN and
2PN conservative forces, as well as the next-to-leading
order spin-orbit effects, which is the same order in the post-
Newtonian expansion as the 2.5PN radiation-reaction
terms. Instead, we focus on the leading order radiation-
reaction effects on spinning objects. In order to obtain
gravitational wave templates, to be consistent we would
need to include at least the 1PN conservative forces.
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III. DRG SOLUTIONS TO DYNAMICS
AND SPIN PRECESSION

The background quasicircular orbit of a conserved
binary with Newtonian and leading spin-orbit effects can
be described by

M Q
— 2 (55, +3A%)),

o -
Ry Ry

(3.1)

with constant radius R and constant angular frequency Qp.
To include the radiation reaction as perturbative effects, we
write the orbital solutions as

r(t) = Rg + 6r(t) + 6rg(1),
o(t) = Qp + dw(t) + dws(t), (3.2)
|

where the first time-dependent terms 6r(¢) and dw(r) are
the perturbation due to the 2.5PN radiation reaction force
without the spin at a given time 7. The 6rg(¢) and dwg(?)
represent the perturbations due to the interaction of 1.5PN
spin effects and the 2.5PN radiation reaction. The power
counting at the initial time 7, for each perturbation is
given by

or ~ 1Ry,

5rs ~ S’U4/RB,

dw ~ % /Ry,

Swg ~ Sv3/R3, (3.3)
where we keep the spin as a placeholder expansion
parameter instead of converting to PN orders for generality.
Substituting the perturbed orbital radius and frequency into
the equations of motion (2.7a) and (2.7b), we find the
solutions to the perturbation

144 78+ 3AZ
57'3(1‘) = — (? Sl + 48AZZ> UR%Q%([ - to) + WAB [2QB(t - fo) COS (QB(I - to) + q)B)
I
—sin (Qp(t — 1y) + @p)] + A3 cos (Qp(1 — 1t5) + ), (3.4a)
24 216 Ag .
(SC()S(t) = (—?S[ + ?AZ,) DR%Q%([ — to) =+ (SS[ + 3AZ[) R—4BSIII (QB(I — to) =+ q)B)
B
A 2A5Q
— (148, + 6AY) R—fQB(t — 19) cos (Q(t — 1g) + @p) — LB cos (Qp (1 — 1y) + D), (3.4b)
B B
and also the time integration of Swg(7), 5@g(t), which is the perturbation of the orbital phase ¢(7),
12 108 A
5@3([) = <_?Sl + TAZ,) DR%Q%([ - lo)z - (1951 + 9A21)Q—;4COS (QB(I - to) + q)B)
Blip
Ap _ 2A5
- (14Sl + 6AZZ) R_4 ([ - t()) Sin (QB(t - to) + CI)B) bl R—Sln (QB(t bl t0> + (I)B), (34C)
B B
l

where @5, Ag, and A} are integration constants. {Rp, Qp, . 5 g
@y, Ap, A3} forms a set of bare parameters to be deter- Qp(t0) = Qi (7) + 65 (7. 1) + (7. 7o), (3.5b)
mined by initial conditions. While ez = Ag/Rjp is the 5 S
small orbital eccentricity of order O(v°) induced by the Dp(19) = P(7) + 85 (7. 10) + G (7. 10). (3.5¢)
radiation reaction force, the interaction between the spin s s s
and radiation reaction leads to a smaller eccentricity e3, = Ap(to) = Ag(z) + 6,(7. 1), (3.5d)

A%/Rp ~ O(Sv*). The spin-radiation eccentricity deforms
the circular orbit out of phase compared to the radiation
eccentricity, although with a fixed phase difference.

To maintain the power countings of the perturbations, the
secularly growing terms in (3.4) are absorbed into the bare
parameters through the relations

Ry(to) = Ry(7) + 8 (v.10) + 5x(v.10).  (3.50)

where {Rg, Qg, @, Ay} are the “renormalized” parameters
depending on an arbitrary renormalization scale z. The
quantities {5”5, 5%, 55”25 , 88, ...} are counterterms, to be
determined by renormalizing the perturbation expansions.
Introducing the renormalization scale into the perturbation
solutions (3.4) by writing t —fy = (t—17) + (r — ty) and
using the counterterms to cancel all the secular (7 — f;)
terms, we find that
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r(t) = Rg(t) + (1 - %)ARO) sin @ (1) + Ay () cos (1), (3.6a)
s
o) = Qg (1) - 29’;(;)(?)’*(’) (1 - fé;é;é%) Sin Dy (1) — %&(’) s (1), (3.6b)
B 24(1) (. (198, + 9AZ)) 245(1) .
P(t) = Dr(r) + Rull) (1 - ZQRI(I)R%(t)l ) cos Oy (1) — Rull) sin @y (1), (3.6¢)

where () and () are the orbital radius and frequency

defined in the previous section, and ¢(7) is the time integral

of w(t) representing the orbital phase of the binary inspiral. The renormalized parameters are determined at arbitrary
time via the renomalization group equations, determined using the fact that the corresponding bare parameters are
independent of the choice of z. The “beta functions” of the RG equations are determined by the counterterms, leading
to the first-order equations satisfied by the renormalized parameters. We give the RG solutions in the form of invariance

in time as
64vM® 1 . 28 s S? 28873 1 2MYORR(1)'/?
- = /245 2C tan M — 2T TRV
5 t+4RR(t) "‘SMI/ZRR(l) +MRR(Z)+\/§M4/3 tan \/§+ \/§81/3
S8/3 (S'/3 — MV/SR(1)1/2)?
Ve (32/3 SMTR (1) 2 M RR(t)> — constant (3.72)
Q2 ()R (1) + Qg (1)(5S, +3A%) = M, (3.7b)
1 5/2 5(415[ + ISAZZ) 64-I/M3 1 4 28 5/2
q)R(t) =+ m R (f) — 2561/M282 5 t+ ZRR(t) ‘l—WRR (l) = Constant, (37C)
Ag(t) = constant, (3.7d)
5Ag(7S; + 3A%)) (64uM> 1 28 sp
Ax(1) — IS st A_LR4R(t) + WRR (t) | = constant, (3.7¢)

where for convenience we have defined S=(51+
21A%Y;)/4. Remember, at this order the [-component of
the spin vectors are constant. The constants in the equations
above can be further determined using the initial conditions
by solving (3.6) at a given time instant. The expressions in
(3.6) combined with (3.7) give the resummed solution
to the OPN spinning inspiral dynamics valid up to times
(t — to) of order 1/(vv3(1)Qg(1)). To improve the accuracy,
|

243(1)
Rg(1)

3v
v

$4.(1) = 2 (1) exp{i[

we need to calculate higher order perturbations in the same
formalism or include higher PN conservative corrections to
the motions.

The background solution to the conserved spin preces-
sions has a constant precession frequency. We renormalize
the precession frequency perturbed by the radiation reac-
tion using the same DRG procedure. The resummed
solutions to the spin precession equations (2.4) are

“Ai(t)ﬂRmzRR(r)} sin @5 (1)

_ [Z;‘RR(%) — (195, 4+ 9A%) RRS)’E‘% - 35“ Qp(1)*Ag(1)Rg(1)
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where v, = (2 + ;%)vz and §9 = S 4 iS¢ contains the
two precessing components of the spin vector in the
moving triad {r,A,1} coordinate system. The exponential
preserves the magnitudes of the spin vectors, which are
conserved as can easily be seen from Eq. (2.4). The
renormalized parameter S¢.(f) can be written in terms
of invariance over time and other parameters as

CSu R 5(418; + 15A%)y,

&4 p(t) = @r(t) =5 0 3m 7~ 35402

x In(M'2R}/*(1) —= 8) = constant.

(3.9)

We include the more detailed calculations and renormal-
ization procedures in the Appendixes for interested readers.

IV. NUMERICAL SOLUTION COMPARISON

To compare our analytic solutions to the orbital equa-
tions of motion and the spin precession equations, we solve
the sets of equations numerically and compare with the
DRG solution solved with the same initial conditions. We
choose to compare compact binary systems of total mass
M = 1. The initial conditions for the physical parameters
are related to the renormalized parameters through the
renormalized solutions (A10) and (B13) at #; =0. We
choose for our initial conditions

1
55,+3A%,\1/3
Ry (0) = (QRA{OV‘ 0,00 )

)
) = SR, (0)°Q4(0)° +4Rg (0)°Q (0)* (1448, +240A%,)

Ag(0
1 +2ng(;; gﬂkl(()))
r(0) = Rg(0)
0) =0
=\ ©(0) = Qx(0) @)
_ 24,(0) 198,+9A%,
$(0) = %55 (1 - 2RR(5)3QR(6>>’
where the expression for Agx(0) comes from
) 751 + 3AZ[
t) = An(t:)Q0(t: Or(t) |\ 1+ 553~
(1) r(11)Qg(t;) cos Ppg( I)< - 2RR(f,-)3QR(ti)>

64v 1
- ?RR(ti)6QR(li)6 - gVRR(ti)3QR(ti)5

X (144S[ + 240AZZ) - A%(II)QR(ZI) sin (I)R(ti)
(4.2)

and 7(0) is taken to be O for quasicircular motion.
Meanwhile, we impose a small nonvanishing O(v°)

eccentricity eg = Ag/R(t), and a spin-induced eccentric-
ity ey = A3(0)/Rz(0) at O(v*S) that runs starting from 0.

For initial spin vectors we consider the compact com-
ponents maximally rotating, meaning the dimensionless
spin parameter y ~ 1 where for each spin |S,| = y,m2,
with y..« = 1 for black holes. In Fig. 1 we compare the
resummed solutions to the orbital equations of motion with
the numerical and adiabatic solutions [33] for two different
choices of mass ratio and spins. For the left column, we
choose an equal mass binary and antialigned spin initial
configuration,

51(0)

5~ = cos 70°7t + cos 60°A + cos 140°i,
mi
S,(0)  cos70°cos50° .  cos60°cos 50° -
= A 50°.
m3 cos 140° cos 140° * T

(4.3)

The physical interpretation for the angle of 140° and 50° is
the angle between the spin vectors and the orbital angular
momentum L. (At linear order in spin, equal mass systems
satisfy the spin-orbit resonance orientations [34].) In the
right column, we choose a moderate mass ratio (m, : m, =4),
with a randomly chosen initial spin configuration,

$:1(0) _ 0.47 —0.74 +0.51, $2(0) _ 0.97 4+ 0.14—0.41.
mi m3

(4.4)

Specifically, the plots show the orbital radius r(¢) and orbital
phase ¢ () for resummed, adiabatic, and numerical solutions
to the binary equations of motion. Below each plot of the
physical solutions are the fractional errors comparing the
numerical results to resummed and adiabatic ones. From
these plots, we can see the DRG methods are more accurate
compared to the adiabatic solutions, with roughly an order of
magnitude improvement in calculating the accumulated
orbital phase over most of the inspiral.

We can see that the importance of using the DRG method
increases as we include higher-order corrections by com-
paring Fig. 1 to the results in Ref. [27]. In that paper, the
authors included the OPN (i.e., Newtonian) contribution
and the leading order radiation-reaction term. As can be
seen by looking at Fig. 1 of that paper, the DRG and
adiabatic results give the same order relative errors." When
including the 1.5PN spin contribution as we did here,

"Note that the authors of Ref. [27] show how to obtain the
result including 1PN contributions, but did not provide any
numerical results. They also did the “two-loop” contribution,
which includes O(2'%) corrections. Including these, the DRG
method shows roughly an order of magnitude improvement
compared to the adiabatic solution, as can be seen in Fig. 2 of
that paper.
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FIG. 1. Left column: Compact binary with equal component mass and antialigned initial spin vectors. Right column: Compact binary
with component mass ratio m, : m, = 4 and misaligned initial spin vectors. The initial spin configurations are given by (4.3) and (4.4),
respectively. The first and third rows are the plots for physical values: the orbital radius and phase versus time with initial data given
in (4.1), respectively. The analytical renormalization group resummed solutions are plotted in blue, the adiabatic solutions are in orange,
and the numerical solutions to the leading order spin-radiation equations of motion are in green. Below each physical plot the fractional
errors are shown, comparing the numerical solutions with analytical resummed solutions in blue and the adiabatic solutions in orange.
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FIG. 2. Left column: Compact binary with equal component mass and antialigned initial spin vectors. Right column: Compact binary
with component mass ratio m, : m, = 4 and misaligned initial spin vectors. The initial spin configurations are given by (4.3) and (4.4),
respectively. In the first two rows from top down, the resummed solutions are in blue, for the corresponding spin vectors in n-component
and A-component. The difference of the resummed results from the numerical ones is shown in red. The lower inset on the right zooms in
on the spin precession for the last 1/4 part of the inspiral. The third row shows the angle between the spin vector derived from the
resummed solutions and the numerical solutions. In the last row, the instantaneous changes of spin, orbital, and total angular momenta
are shown.
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there is an order of magnitude improvement, as shown
in Fig. 1.

We compare the resummed solutions of the spin pre-
cession equations with the numerical solutions to (2.10) in
Fig. 2. The two columns have the same choices for mass
ratio and spin configurations as in Fig. 1. In the top two
panels, we plot the resummed solutions to the n and
A-components, respectively, for the total spin vector (in
blue) and the difference between the resummed and
numerical solution (in red). We also include an inset plot
of the spin precession for the last quarter of the inspiral to
illustrate the phase difference. That the error accumulated
from the resummed results of the spin precession becomes
significant is the consequence of the post-Newtonian
method breaking down for large velocities during the
later portion of the inspiral. We expect better accuracy
when spin-spin effects and higher PN order terms are
incorporated. In the third panel, we plot the angle between
the spin vector results from the resummed and numerical
solutions.

With the inclusion of radiation reaction, the total angular
momentum changes direction and magnitude. In the bottom
row of Fig. 2, we show the angular momenta changing
throughout the inspiral. The equal mass binary shown in the
left panel has a fixed total spin magnitude due to the
symmetric form in (2.4). Both binaries exhibit a rapid loss
of orbital and total angular momenta at the end of the
inspiral in sync with the drop of the orbital radius in Fig 1.

In Fig. 3 we give a rough comparison of the computa-
tional runtime improvement of the DRG methods. The
numerical solution for the equations of motion and spin
precession was calculated in C ++ implementing the
ODEINT library [35]. We adopt the Dormand-Prince

T T —
°
Average steps taken ® 335
100 - i ® 11331 i
i ® Numerical o 11528 ]
50 - = DRG 11323 B
L L J
11306
° 14,47
— 114
& 1ok 11279 11427 ]
£ [ \ 11428 1
S 11285
= 5
E) 11429
Y li;l'g’)l
10638
1L 11436
05- 1
11I474 l L L L 1 L 1 L L Ll
10 50 100 500 1000
Count
FIG. 3. C 4+ runtime comparison between numerical integra-

tion and DRG resummed substitution. The count in the x axis
stands for the total choices of initial conditions in a particular run,
and green numbers below the plot points are the average steps
taken per run. The blue dots show the total computation time for
the numerical integration solutions and the orange squares show
the time for the DRG resummed results substitutions.

algorithm at fifth order with adaptive step sizes and control
the tolerance error to be consistent with the theoretical
resummed solution errors. Figure 3 shows the runtime of
the numerical and DRG methods solving the same sets of
initial conditions, changing the binary mass ratio count
times in each run. In order to try to have a meaningful
comparison, we manipulate the average steps taken per run
for the DRG methods to have similar output lengths (i.e.,
number of time steps for the solution) with the numerical
integration. For example, in a total of 50 runs, the numerical
integration takes 10 seconds and averages 11235 steps per
run, while the DRG method takes about 1 second and
averages 11436 steps per run. As can be seen, the DRG
method is an order of magnitude faster than the numerical
solution.

V. CONCLUSION

Using the dynamical renormalization group formalism,
we have solved the spinning binary dynamics including
the 2.5PN radiation reaction and the leading order spin-
orbit effects throughout the inspiral. The solution is
obtained by the resummation of the secularly growing
perturbations to the physical parameters including orbital
radius, angular frequency, orbital phase, and spin pre-
cession phases. We solved the resummed solutions to the
equations of motion and spin precession equations in a
moving triad frame at any time instant. Renormalized
parameters defined to describe the resummed solutions
are determined using the renormalization group equations
and can be written in terms of conserved identities.

The solutions are applicable to arbitrary initial con-
figurations and do not dependent on any specific spin
orientations. The comparison of numerical solutions and
our analytic solutions shows greater accuracy than the
adiabatic solutions and a sizable improvement in com-
putation time compared to the numerical solutions. The
use of the DRG method is more important for spinning
BHs than for the nonspinning case. However, there are
further improvements that can be made. The spin com-
ponent comparison is not ideal, as shown in Fig. 2 with
increasing phase differences. When initial spins are
relatively large compared to orbital angular momentum,
the discrepancy grows very fast in the early part of the
inspiral. This is due to the beginning of the breakdown of
the PN expansion. We hope to fix this issue and enhance
the accuracy by the inclusion of spin-spin effects and
higher-order PN terms into the formulation in future
works [36].
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APPENDIX A: ORBITAL EQUATIONS OF
MOTION RESUMMATION SOLUTIONS

We start by investigating the quasicircular background
orbit solution of the conservative spinning binary. In this
case, the radius and the orbital angular frequency are con-
stants apart from small nonsecular perturbations induced by
the presence of spins. The constant radius Ry and orbital
frequency Qp satisfy

M Q
——2(58,+3A%) + O($?)

-
Ry R}

(A1)

at linear order in spin. Setting the spins to 0, the relation
between R and Qp reduces to the usual Newtonian circular
motion equation. To solve for Qp with a given Ry, we can
either solve the quadratic equation above or substitute for
Qp iteratively. The analytic solutions to the dynamics of
quasicircular conservative spinning binary systems have
been studied [32,37].

1. Perturbations of quasicircular orbits

Next we describe the deviation of the quasicircular
background orbit as a result of the leading order radiation
reaction and linear spin-orbit effects by isolating the
perturbative corrections r(f) = Rp + 6r(t) + 6rg(t) and
(1) = Qp + dw(t) + dwg(t). The first time-dependent
terms 6r(¢) and Sw(r) are the perturbation that arise due
to the 2.5PN radiation-reaction force without the spin at a
given time ¢, which are given by [27]

64
51"([) = —?UR696 (f - lo) + AB sin (QB(I - t()) + (DB)
(A2a)
96 2QpA
s(1) —?VRS QL(t = to) — 2B in (Qp (1 — 1) + @),

(A2b)

with bare parameters {Rg, Qg , Ag, @z}, and 6r ~ v Ry,
dw ~ 1°/Ry at the initial time #,. On the other hand, the
terms due to the interaction of 1.5PN spin effects and the
2.5PN radiation reaction start with the power counting of

r¢ ~Sv*/Rp and Swg ~ Sv/R3. Expanding the equa-
tions of motion (2.7a) and (2.7b) to O(Sv°) gives

S¥Fs(t) — 2RpQpéwyg(t) — 3Q%5rs(1) = szg ) (58, +3A%),
(A3a)

Rpbws(1) + 2Qp6i (1)
e (%’ 5i(t) + (88Sl + Zsﬁ Azl)nggg) (A3b)

with 6r(t) and dw(t) being the values given in (A2a) and
(A2b). Integrating (A3b) with respect to time, solving for
owg, and substituting back into (A3a) gives the differential
equation for drg,

Sts(1) + Q36rg(1)

144
= <5 S, + 48A%; |uRIQL (1 — 1)

QA
— (145, + 6A%) —2-F
B

sin (Qp(t — 1) +@p).  (A4)

The differential equation has a solution of the form
144
érs(t) (TSI +48A2>1/R3QS (t— to)

(75, + 3A%,)
2Q4R3,

+ ®p) — sin(Qp(t — 19) + Pp)]
+ A% COS(QB<t — to) + CDB),

Ap[2Qp(t — tg) cos(Qp(1 — 1)

(ASa)

where A% ~ Sv*/Rjp is a bare parameter in the general
solution to the homogeneous equation of (A4), to be
determined by initial conditions. While ez = Ag/Rjp is
the small orbital eccentricity of order O(27) induced by the
radiation-reaction force, the interaction between the spin
and radiation reaction leads to a smaller eccentricity
ey = Ay/Rp ~ O(Sv*). The spin-radiation eccentricity
deforms the circular orbit out of phase relative to the
radiation eccentricity, with a fixed phase difference.

As a result, the angular frequency perturbation Swg(¢)
and its time integration 6®g() are given by

216

24
50)5(f) = <_?Sl ?A21> I/R2 Qé (t — to)

(SS[ + 3A21) sin (QB([ - lo) + (I)B)

A
— (148, + 6A2,)R—fQB(t— ™

B

x cos (Qp(t —1y) + Pp)

2430,
B

12 108

éq)s(t) = <—5S1 5AZ>URBS-26(I—I())

cos (Qp(t —1g) + Pp), (A5b)

Ap
— (198, + 9AY)) ——cos (Qg(1 — 1)) + D)

QuR%

A
— (148, + 6A%) —2 (1 - 1,)
RB
X sin (QB(t - t()) + (I)B)
243

— B in (Qp(t — 1) + Pp).
Rp

(ASc)
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The perturbation 6®@(¢), of order O(Sv*) to the angle ¢(1),
is the analog of the orbital phase in planar motion of non-
spinning systems. Though it is no longer a physical angle
now that the orbital plane precesses due to the spins; it is a
combination of the Euler angles, defined in a later section,
essential to the time evolution of the moving frame of
reference.

We split the perturbation terms into the nonsecular terms
that remain small permanently, and the secular ones that
grow with time. As time progresses, the secular terms
gradually become dominant and break down the PN power
counting; therefore they need to be resummed.

2. Renormalization

The full set of bare solutions to the orbit motion
including linear spin-orbit terms and 2.5PN Burke-
Thorne terms is given by

r(t) = Ry + 6r(t) + 6rg(1), (A6a)
(1) = Qp + dw(t) + dws(t), (A6b)
P(t) = Op + 6D(1) + 6Pg(1), (A6¢)

with the corresponding perturbations in (A2) and (A5). We
renormalize these terms by removing the #;, dependence
with the introduction of counterterms for the bare param-
eters. The O(v7) terms were renormalized in Ref. [27].
Thanks to the newly added O(Sv*) perturbations, the bare
parameters have to include higher order counterterms,
which means

Ry(t9) = Re(z) + 8% (.10) + 8} (v.19).  (ATa)
Qp(1g) = Qg(7) + 85 (7. 10) + 83 (z.19). (A7)
@p(19) = Dp(7) + 4 (7. 1) + 83(7. 10) (ATc)

Aj(ty) = Ag(7) + 83 (z. 10)- (A7d)

In terms of the renormalized initial parameters and the
renormalization scale 1 — 1y = (1 — 7) + (7 — ty), the spin-
orbit result becomes

64v .
r(t) = RR +6§ —?R%Q%(I - T) +AR Sin (QR(I— T) + (DR)

144 144
- <? S[ + 48A21> DR%Q%(I - T) - <— Sl + 48A21> I/R?QQ%(T - to)

5

(78, + 3A%))
2QxR}

— sin (Qg (1 — 7) + p)]

+ A3 cos (Qp(t — 1) + Pg) + &3 cos (Q(1 — 7) + Dp),

96 2QRA
o(f) = Qp + 85 +?”R§Q;(t—f) - R{; R

216

24

5 5

AR[2Qg (1 — 7) cos (Qp(t — 7) + D) + 2Qx(7 — 1) cos (Qr (1 — 7) + Dp)

(A8a)

sin (Qg (1 —7) + Dp)

216
5

24
+ (— =S+ 5 AZ,) VRZQS (1 — 1) + (— =S += AZ,) VRZQ0 (1 — 1)

Ag . A
+ (58, + 3A%,) =X sin (Qg (1 — 7) + ®g) — (14, + 6A%)) R—ijR(z —7) cos (Qp(t — 7) + Dp)
R

R}y

A
— (14, + 6A%) R—fQR(r — 1o) cos (Qg(t — 7) + Dp)
R

2450

255Q
TR cos (Qp (1 — 1) 4 D) — —A"K cos (Qp(1 — 7) + Dp).

R Rp

(A8b)
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48y 2A
d(t) = Pr+ 85+ (1 —7)Qp + (t — 7)58, + (T — 19) 85 + R5Q7( 7)? +—RRcos (Qg(t—17) + Dg)
R

12 108 24 216
(5 S[—TAZ>IJRR96([—T) + <—?Sl+?AZl UR%Q%(I—T)(T—[O)

12 108 A
+ ——S,—l——AZl IJR%Q%(T—I())Z — (19S1+9A21)—R4COS (QR(t—T) +q)R>
5 5 QRR:

Ap Ap
- (1451 + 6AZ[) R_4 (t - T) Sln (QR(t - T) + (I)R) (1451 + 6AZZ)R—4 (T - [0) Sin (QR(Z - T) + (I)R)
R R

245 255 .
— —=sin (Qp(1 — 7) + ) — —=2sin (Qg(t — 7) + Dp). (A8c)
Rg Rg

By observation we can write down the counterterms that cancel the (7 — #,) terms completely as

144
5%(1', [0) = <? S[ + 48A21> I/R3 QS (T - lo) (A9a)
24 21

55(7, to) = ( 5 Sl — ?6AZI> Z/R2 Qé (T — to) (Agb)

12 108
5%('[, to) = (—?SI ?AZJ R%Q%(T - to)z, (A9C)

s Ap
5A(T, to) = —(751 + 3AZZ) R—% (T —_ to) (Agd)
R

Choosing the arbitrary renormalization scale to be 7 = 1, the equations of motion are now described by the renormalized
quantities {Rg, Qg, @i, Ag, Ay} as

(78, + 3A%) . s
1) = Rp(t 1 ———————— |AR(t D (1) + Ap(t Di(1), Al10
() = Ra(0) + (1= S () sin @4(0) + 43(0) 05 () (A102)
2Qp(1)AR(? 58+ 3A% 2A3 Qg (1
(1) = Qg(1) - #(1)Ar(1) (1 _BSi+ 3 l)> sin @ (1) —RiR()cos Dr(1), (A10Db)
Rg(1) 2Qp(1)Ry (1) Rg(1)
2A(1) (19S5, 4+ 9A%) 2A%(1) .
1) = Dg(t 1- Dy (1 0] A10
) = @) + 50 (1= A ) cosvgo) - SE DL sina o). (A10c)
The explicit secular terms have been removed thanks to the dﬁ _ _ @ RS 6 (1) Qb (z) — % S, + 48AY
choice of 7, and the #,-dependencies have been absorbed into dr 5 R ! !
the counterterms. The runnings of {Rg,Qg, g, A, A%} < VR (2)Q3 (1), (Alla)
and their dependence on the initial conditions are then
determined by th lizati tions. dQr 96v 24 216
etermined by the renormalization group equations A2k _ POV ps S (0)QL(r) = 5, = 2 AT, ) uR% (1)Q5(7),
dr 5 5 5
3. Renormalization group solutions (Al1b)
Exploiting the fact that the bare quantities {Rp(7y), dd,
Qp(ty), @p(ty), A3(to)} are independent of the arbitrary a Qp(1). (Allc)
scale 7, we can write down the renormalization group S
equations for the renormalized quantities {Rz (1), Qz(?), dAg = (78, + 3AZ,)Af, (Al1d)
(1), A}(1)} as dr R
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The right-hand sides of the RG equations, which are called beta functions, include more iterative time-derivative terms that
are of higher orders starting from O(v'!) and O(S?). The RG solutions to Qg, ® and Ay in terms of Ry and the initial

conditions are

1
2

+O(8?), (Al2a)

M M <551 + 3AZ,)

Re(t) [ RR()\ R:(1)

M2 (551 + 3A21)
R (1) 2Ry (1)

Qp(1) = l
@plt) = plt) + sz [R(0) ~ R 0]+ 2SO 1) g

SSPMALS +ISAZ) [ (1 (0 OMVOR(e) P\ 1 2MY R ()
128\/§UM10/3 31/3 \/§ 81/3

V3
582/3(418, + 15A%,)) (83 — MVORR(1;)'/%)?
n
768uM /3 8?3 + SYSMVORR(1;)1/% + M'V3Rg(1;)
SU3 — MVSR.(1)1/2)2
—ln< 273 (13 1/6 f(z) )13 )} (A12b)
S*3 - S'BMVORR ()2 + M'PRy(1)

ARE) = AJ(1) + (75, + 30 [Re(1) = Ry(0)]

2/3 1/6 N1/2 1/6 1/2
| 5ARS(78) + 3A%) [tan_,<1 <1+2M Re(t;) >>_tan_]<i<l+2M R (1) ))}

321/3uM'0/3 % S1/3 V3 S1/3

5ARSYA (7S, + 36%) [ (83 = M'/ORg(1;)'1?)?
1921/M10/3 82/3 +Sl/3M1/6RR(ti)1/2+M1/3RR(ti>

(81/3 _ M1/6RR(1‘)1/2)2
ln<S2/3+81/3M1/6RR(t)1/2+M1/3RR(t) , (Al2c)

where S = (518, + 21A%,) /4 is a constant combination of the initial spins, defined for convenience. Substituting into the

radial RG equation, we find

dRy 64vM>  16uM>/?
—_— == 518; +21A%)), Al3
dr SRy s (315 +21A2,) (A13)
or, rearranging,
R)? 64uM>

Integrating both sides gives the exact but implicit relation,

64uM> 1 28 S?
- (t—t;) = 1 (Rr(t)* — Rp(1:)*) + s)712 (Rr(1)>/% = Rg(1,)%%) + M(RR(I) — Rg(1;))
3/3 1/6 1/2 1/6 \1/2
L2 T (L (4 MY Re(1) et (1§ 2 Re(r)
NYCE V3 Si/3 V3 Si3
38/3 (81/3 _ M]/GRR(I)I/Z)Z
YRR GE + SYBMVORR(1)'/? + M'PRg (1)
- ln< (ST = MIR (1) )" >] (A15)
82/3 +51/3M1/6RR<ti)1/2 +M]/3RR(ti) :
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The parameter Ay is unchanged when the spin is added,
and from [27] we learned that A; has a 0f-function at
the order we are working, i.e., Ag is a constant, given by
initial conditions, proportional to the initial eccentricity
er(0) = Ag(0)/Rg(0) ~ O(v).

|

Using the relation above for Ry (), we can further sim-
plify the expressions of ®g(7) and A}(7) in terms of Rg(t)
and time ¢, eliminating the logarithm and the arctangent
terms. Written as an invariant in time, the renormalized
quantities with the leading order spin-orbit effect are

64vM® 1 . 28 s S? 2858/3 1 2M'ORg(1)'/?
- —— /2 4= 2 _tan™! 7 ARV)
5 g Re(" + 5 Re (07 + 57 Relr) + s tan <\/§+ NE >
88/3 (81/3 _ M1/6RR<t)1/2)2
T (52/3 T SPM R (1) + M RR(t)> — constant (Al62)
Q2 (1)R3 (1) + Qg (1)(5S, + 3AY,;) = constant = M, (A16b)
1 5/2 5(4151 + ]SAEI) 64I/M3 1 4 28 5/2
Dp(1) + 3001572, R (1) - PSS st ZRR(t) + Ve R}/ “(#) | = constant, (Al6c)
5AR(7S, +3A%,) (64uM® 1 28
S R l l 4 5/2 o
Ap(1) — OIS < s ! + ZRR(t) + WRR (t)) = constant. (Al6d)

Note that one constraint appears in the RG equations of
Rg(1), (A11), which indicates the range of effectiveness of
the DRG method,

64vM>/2S
9/2
SRy

64vM3
5R3

64vM>/?
5R)?

dRg
dr

+ O(S5?%)

= (M'2RY* = S). (A17)

If S = (51S;+21A%,;)/4 is positive, Rg(t), which is the
dominant part of the binary center-of-mass separation r(¢),
decreases until Rg(t) = S**M~'/3. Given a limitation on
the smallest value of Rg(¢) and combining with (A15), it is
possible to determine an approximate end time of the
inspiral phase described by the post-Newtonian equations
of motion (2.1). This could provide useful information to
numerical simulations as well.

APPENDIX B: SPIN PRECESSION EQUATIONS

In this section, we aim to obtain the analytic solutions for
the spin precession equations at linear order in spin (2.10)
by applying DRG methods, with the quasicircular solutions
to the equations of motion from the previous section. For a
conservative binary system moving in nearly circular
motion, solving equations in the form of

dse ds¢
- (Q-Q,)84, A =—-(Q-Q,)s
dl ( a) A dl ( a) n
. vMQ 3my,
th Q,= 242 Bl
W a R < Jr2ma> (B1)

is fairly straightforward for constant radius R and orbital
frequency Q. The solutions are §j; = Sjf sin ((Q - €,) x

084021-

|
(t—1) + @) and S7 = Sjcos((Q—Q,)(r—19) + ),
where S“" is determined by the initial spin vectors.

With the inclusion of the radiation reaction force and the
resulting time dependence of r(7) and w(t), the spin vectors
precess in a way entangled with the orbit motion. Defining
S¢ =S85 + iS¢, the precession equations (2.10) can be
combined and written as

dse (1)

dr

—i(o(t) = Q(1)) S5 (1)

A simple integration with respect to time leads to

(B2)

t

illn S<.(1) — In S (19)] = / drlo(r) - Q,(1)].  (B3)
)

To solve for the integral on the right-hand side, we

denote v, = (2 +32),% and recall that M ~Q}R} +

Qp(58; + 3A%)), such that Q, in (2.9) at leading order

in spin becomes

v Q ow Qpdr
Q. (1) = 2 (QER3 + Qz(5S, + 3A%))) | =8 4 — =B
(1) =22 (@3} + 0u(s5 + 303 [+ 7 - T8
lagipa (995 _9%s\ 4 o2 (B4)
v BUB\Qp Ry ’

with the 2.5PN radiation perturbation {6r, w} from (A2),
and the leading-order spin-orbit perturbation {6rg, Swg}
from (AS).

As a check of self-consistency, notice that we have the
choice of substituting M either as a function of the physical
values {r(z), ()} using the results from (A6), or the bare
parameters {Rp,Qz}, which give the same result after
summing up the perturbation expansions.
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Substituting the corresponding perturbations back into (B4), we obtain the explicit time dependence of the precession
norm €,

Q2 936
Q. (1) = ”7 QLR + (58, + 3A%)) R—g + 32uR; Q% (1 — 1) + (184S, + ?Az,> VRQO8 (1 — 1)

S 139 .\ Az
- SABQBRB s (QB(t - to) + q)B) - Sl + 2 AZ R2 Sll‘l (QB(t - to) + (DB)
A<} S A3
(2]Sl —+ 9A2]) R (l - to) COoS (QB(Z - to) =+ q)B) 3ABQBRB COS (QB(Z — to) =+ CI)B) . (BS)
B

Combined with the expression for §w(#) in terms of the time-independent bare parameters, we can perform the integration in
(B3) to write down

ilnS4 (1) = InS4 (1)) = (QB ——Q3R2 ——(SS, + 3A2,)§i> (t—to)

4 1
+ (%P QL — ( S, —?Az )m%;sz% — 160,R}Q) — (925, +?AZI> VaREQ >(t— to)?

ZAB AB 31/u

B BQB

13 9 ApQ
—Za( 25, +ZAY
y<2 ) 1) 2

B) [cos (Qp(t—1y) + Dp) — cos Dy]

Ag ApQ
((14Sl+6A21) ~Ya018,+9Ax,) 28 B)

R4QB 12 R%
x [Qp(t—tg) sin(Qp (1 — ty) + Pp) + cos (Qp(1 — 1)) + Dp) — cos Dp]
243 3y, . .
(RB Z AgQ%RB) [sin (Qp(t —ty) + Pp) — sinDp). (B6)

The constant terms sin @ and cos @5 can be absorbed by redefining the initial condition i In §¢ (#,), or via a bare parameter
iln&?
+B>

Ay 3w 13. 9 ApQp
— U2 ALR S, +ZAZ @
iy 1 o= (5145 am) S cne

24
ilnS% (1) = ilnS%, + (R B (58, +3A%) 2
B

A AzQ
_ <(14S, +6A%)) b~ (218, + 9A2,)”7“ = B) cos Dy
B=“B B
245 3
( - 5 A§Q§RB> sin ®j. (B7)
B

The logarithm of the spin components then becomes

Q2
iln () = ilnS%, + (QB ~Yagagz _a(ss, 1 3A%) R—B) (t— 1)
14 12 B

48v (12 108
5 5

468
5, 108 AZZ> VREQS — 160, RS — (9251 T Az,> uaR4BQ§> (t=1,)?

3, 9 9 AzQ
5 a2 ARy + 22 (2 S,+2AZ) RBB> cos (Qp(1 — 1y) + @p)

Ap
8 (198, + 9A%)) —
B R;Qp
AB I/a ABQ%
14S 6AZ — —— (2185, + 9AX
1+ 1) R: y( 1+ 1) R

)(r ~ 1) sin(@p (1 — 1) + ®p)

“ASQ2 RB) sin (Qp(1 —ty) + Pp). (B8)
v
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Given the spin vector expansions in terms of the bare InS%;5(1y) = InS%,(7) + 68 (2. 1o). (B9)

parameters {RB,QB,d)B,AB,Ag,SiB}, the next step is to

renormalize the spin components by replacing the bare

parameters by the renormalized ones plus counterterms,  The renormalization treatment is performed for the

and splitting # — to = (t — 7) + ( — #) with a choice of an  patural logarithm of the spin components. As a result,

arbitrary renormalization scale 7. 84, = 84 ge’ns. The exponential implies that it is the

phase of the precession that is renormalized. Dividing

the bare parameters into the renormalized parts and the
To begin, the bare parameter In S is related to the  counterterms and introducing the renormalization scale z,

renormalized value In 89 through Eq. (B8) then becomes

1. Spin renormalization

i[In S9.(£) — (NS + 5 )]

: QX 2Qp8, Q36
= (QR + 8-t (Q3R% + 3Q%R%5g + 2Q3Rpdg) — (SS, +3A%)) (RR + RR 2 _ R)) [(t=17) + (7= 19)]
14 R R R
48 12 108 468

x[(t =72 +2(t =) (z = 1o) + (r = 1o)’]

3u, 29 9 ARQ
> a2 ARy + 22 (75,+§A2,) RR
R

2A A
+ [ =E - (198, +9A%) 4R cos (Qx(r — 1) + Dp)
Rp RyQp

Ag U, ARQ2
_ ((14S,+6AZ,)R—£—7(2151+9AZ,) RR

) (1= 1) + (e — 10)] sin(Qe(t — 7) + D)

R
24% 2683 3 3
( 4204 ARy ~ Ya Q2RR) sin (Qp (1 — 7) + ). (B10)
Rr  Rg
The counterterms are the combined results in [27] and (A9),
64
r(r.10) = 2~ REQR(T — 1) + 5}(r. 1),
961/
Sa(z,1y) = 5 — RRQ%(7 = 1) + 55 (7, 1),

48y

S (7, 19) = —Qp(t —19) + — 5

RS 97 (T - to) + 5%(7, to).
After some algebra, (B10) can be simplified to

illn S (1) — (InS4 5 + 84 )]
Q2
<QR — —Q3RR - _(SSI + 3AZZ)

R

Va 3o Va Q2
(I—T)+ QR——QRRR——(5S1+3AZZ)— (T—lo)
v v Rp

48 108 468
+ < I/RS 97 (? Sl — —AZ[) I/R%Qg —_ 161JaRZQQ19€ —_ (92S1 + ?AZ,> UaR%Q§3> [(l —_ 1)2 — (T - t0)2]

5 5
29 9 )ARQR

Ap 3v
—TCQ2ARR S, +=A%
RIQ, v AR+ (2 138 ) TR

24
+ (—R — (195, + 9AY))

x ) cos (@p(t - 7) + @)

A AR
- ((145,+6A2,)—§—”—“(215,+9A2,) ROk
Ry v R

z ) (t —7)sin(Qg (1 — 7) + Dp)

2A% 3y, ,
(R b A%QIZQRR) Sin (QR(t—T) +(I)R) (Bll)
R

Notice that the terms proportional to (¢ — 7) (7 — #,) are completely canceled, which was emphasized in [27] as an important
check of self-consistency. Here the cancellation is due to exactly the same set of substitutions we could use to replace M to
obtain (B4), where the two different choices led to the same expansion result.
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To cancel the remaining secular pieces that are proportional to the powers of (7 — #;), the counterterm &y, ¢ is fixed to be
i a

92
élnS(T to) <QR —_ —93 R2 - (SSI + 3A21) ) (T —_ [0)

R
48v 12 108
CRQL - (=5, ——AX

+ < 5 (5 S[ 5 1|V

468
) Rz 96 - 161/ RZQQ?? - <92S1 + TAZ[) I/HR;EQ%> (T - lo)z (B]Z)
Choosing the arbitrary scale 7 to equal z, the renormalized solution to In §%(¢) becomes

245 3
iln S () = iln S, — (R ”“ASQZRR> sin @
R
24 Ap 3
+<—R—(1951+9A2,) R
R

29 9 ApQp
“QZA R S AX Dy, B13
Ry Ok 2 (50 30m) S oo @i
or more explicitly in terms of the exponential
243 3
§4(1) =S4y exp{i(R— Ya ASSYRR) sin @y
R
2Ag Ap 29 9 ARQ
- 195, + 9AX Q3ARR — S+ A
l<RR (198, + 1) ?eQR 5 RARRR +— (2 1+ 1) 5

3z/a

cos Dy o (B14)

2 R

The renormalized quantities as functions of time have runnings obtained from the RG flow in Sec. A 3, with only the
remaining spin component bare parameter S¢; to be done in the next section

2. Spin component renormalization group solution
The running of the renormalized parameter S¢, can be determined using (B12), which leads to
d . o
ol InS44(7) = <

3 Qf
o ——Q 3R ——(ss, +3A%,) =k

R
aQy v, 3.dQ; 2 dRy Q2 (2 dQy
—R_ZQIR2 ZR) _Ta(55, 4+ 3A%
+|:dT v <QR & Ry dT> ; (O8i+38%) 2

1 dRg (= 10)
R QR dr RR dr ’ 0
96 216 936

+ {?”RS Q- (5 Si——5- A% )yR%Qg - 32u,RLQ% — (1845, +?AZ,) uaRéﬂgg} (t —tp).

(B15)

It seems to be formally divergent and has the dependence on the cutoff 7,. However, replacing the derivatives of Rz and
Qr by their RG equations (Alla) and (Allb), we encounter the nontrivial cancellation and obtain a finite § function

d . v, MQg
EllnSiR(r):QR—f Ry (B16)
Notice the similarity in form between the RG equation and (B2), the precession equation we start with
o ca .
+

In order to find a solution to the RG equation of the spin component, we can write the relation between the 7 derivative of
iIn 8%y and the derivative with respect to the renormalized parameter Ry as

d . a dRR -1 d
EllnS+R( ) (d’[) d llnS ( )
conditions

(B17)
Using the renormalization group equations (Al1la) and (B16), we obtain a solution to S

z(7) in terms of Rk (7) and initial
. g Sy, 3
0 S (1) = iIn S (1) + (P(r) = Pi(1)) + g (R (1) = R (1)
5(418; 4+ 15A%))
384M212

In(M'2RY (1) = S) — In(MV2RY(1;) - S)] (B18)
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The expressions are not unique in terms of ®(7) and Ry (¢) due to several RG invariants between them. The invariance over
time with spin components can be found from the S% () solution, which is given by

SURYP() 5418, 4 15A%))y,

iInS% (1) — Dg(2) SV

Putting all the pieces together, the resummed solution of S¢ () is given by

MR (1) - S’
S9(1) = 89 (1) x r i
(1) = S () <M1/2R§g2<t>_ :

[2A5(1) 3w,
—H(RR(I) v

3y,

(29 9
Q1P AR()R (1) + 2 (7 S+ —Azl)

v 2

5i(418,+15A%))vg
) xexp{—i[@R(r)—%(n)H

A DR Re(0)) sin (0

A2 In(M'/2R3/? (1) — 8) = constant. (B19)
Sva(RY (1) = R (1))
96M3/212
[24g(1) Ag(t)
i |:RR(t) - (198 +98%) 00 s
%} cos @ (1) } (B20)

with {Rg(1). (1), @g(1). Ar(1). A}(1). S%x (1)} given by (A12), (A15) and (BIS).

The quantity S% ;(#;) depends on the initial conditions of dynamics and spin vectors. For instance, taking the initial input
Sa(t;) and S¢(t;), while getting Ag(1;), Rg(t;), Qr(#;) and @g(¢;) from numerically solving the initial conditions r(¢;), 7(¢;),
w(t;) and ¢(t;) from the dynamics, we can determine the value of S%4(#;) through

2Ax(t;)
Rg(1;)

8% (1) = (831 + iS2(1) exp{i[

— (195, + 9A%))

AR(ti) 31/(1
Ry(1)Qx(1;) v

Qi (1;)Ag(1;)Rg(1;)

+ %‘ (%S; -l-?AZ[) M) cos ¢R(ti>]

2
~ i<2A§(z,.) N

R%(1;)

Re(t) v F

One immediate validation of the formulation is that the
length of the spin vector should be a constant. Thus

1S4.(1)] = 4/ (S9)* 4 (S¢)? should be a constant, since S¢
does not change with time. From (B20) and (B21) we can
see that the length is preserved, [S9(f)| = |S9z(%;)| =
O + (5207 as long as (MV2RY (1) - §) 0,

the same constraint we encounter for the solutions of the
orbit equations of motion.

APPENDIX C: THE MOVING TRIAD
EVOLUTION

In the text, the resummed analytic expressions for the
orbital equations of motion and spin precession we
obtained are written in terms of the moving triad vectors
{n,A,1}. To transform the complete results into a fixed
frame, we follow the solutions to the evolution equations
for the moving triad in [30,37] for the 1.5PN order
conservative dynamics and build the moving triad evolution
for the radiative dynamics on quasicircular orbits.

We start by briefly summarizing the conservative moving
triad evolution solution that relies fundamentally on the
conservation of the total angular momentum J. An ortho-
normal inertial frame {x, y, z} is then introduced with J/J

A (ti)Q%?(ti)RR(ti)> sin q)R(ti)}'

(B21)

[
as the fixed direction z. Three Euler angles a(7), 1(z), ®(¢)
are defined to specify the moving triad within the fixed
frame as shown in Fig. 4. The azimuth « and the inclination
1 are the standard spherical coordinates of the Newtonian

x

FIG. 4. Definitions of the Euler angle {a, 1, ®} with respect to
the moving triad {n, 4,1}, the auxiliary moving frame {x;, y,, 1},
and the fixed lab frame {x,y, z}.
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angular momentum direction /. The angle ® is defined to
be the angle between n and x;, where

zx1

X = y=1xx, (C1)

|z x|’

forming the instantaneous orbital plane and with I to
complete an auxiliary orthonormal basis {x;, y;,1}.

In terms of the Euler angles, the relation between the
moving triad {n(r),A(t),1(r)} and the fixed Cartesian
frame {x,y, z} can be written as

n = (—cos®sina — sin® cosicos a)x

+ (cos D cosa — sin® coszsina)y + sin @ sin iz,

(C2a)

A = (sin® sina — cos D cos 1 cos @)x
+ (—=sin®cosa —cosDcosisina)y + cos Psin iz,

(C2b)

I =sinicosax + sinisinay + cosiz.  (C2c)

The evolution solutions to the Euler angles up to linear
order in spin are given by the components of the total

+ L (0A+ J,(0)1 as

\/Ja+ T3

sing =+———,  ¢l®=
J

angular momentum J = J, ()i

O+ a=¢,
(C3)

where ¢ is the orbital phase, for which the resummed
solution is given by (A10c) for the radiative binary orbits.
|

1
LSO = —l/R292 <@S}l —l—mS%)n
2 mp my

I
+ [—DRZQZ <@ S!+ ﬂs%)
2 nmy my

Finally, expressed in terms of some initial basis
{ngy, 49,1y} with corresponding Euler angles {ag, 19, @y},
the moving triad {n(¢),A(z),1(z)} is given by

e~ =) gy (sinze’ — sinyei®) e~ 1, + O(S?)

V2

m =
(C4)

1=1,+ (sm 1671 —sin ye~i%)eomy + c.c

&

+O(5?), (C5)

where m = 7( n + iA) is a complex null vector.

The crucial point of this moving triad solution is the
conservation of the total angular momentum and the ability
to write out its components in the moving triad for all time,
not the physical meaning to J. In order to apply the triad
solutions to a radiative motion where J can change, we find
such a quantity that satisfies the requirements by observing
the calculation of dJ/dr for a conservative quasicircular
orbit. It is conventional to decompose J = L + S, where S
is the total spin specified by the choices of spin variables
following [29], and L is the sum of the nonspinning
Newtonian Ly and the leading order spin-orbit contribution
Lgg, given by

T (O RN
)

Written in terms of the moving triad components and taking
the orbit radius and frequency as constants R and € for the
quasicircular approximation, the spin-orbit momentum
becomes

(Co)

vM [ (m, my
—4+2])s! — 4282
R <<m1+ )Sl—'—<mz+ )SA>A
”M<( +2>sl <ﬁ+2>s,2>]l.
ny

(C7)

For a conservative system without radiation, the time derivative to the sum J = Ly + Lgo + S| + S, should vanish up to
the Newtonian and leading spin order. By carrying out the detail calculation, we find that

. 1 .
LSO = |:§UR292 (Z—Ts,ll + ﬂ
1 2
el (st ) -7 (
vMQ 3m, 3m1
- 742
{52 o e

. MQ 3
b= (s T)st+ (3450 ) s
ny mz

)2 s (2
( +z>si + <@+2>S%)]A,

”MQ 24 22ty (2422,
2m ny 2m2
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Thus the sum is

. . . M /1 1

In+Lsot+S=-20 (200,82 4+ 27208 ) n + (24 20) 2,82 + (2+22) Q8L )A| ~O(0?).  (C8)
R 2 my 2 mg my nmy

which corresponds to 1PN terms to be fixed by including higher order orbital angular momenta. Notice that the time

derivative of the spins in Lso is completely canceled by S and LN at Newtonian order. Therefore we propose that for a
radiative quasicircular binary, the following quantity is conserved,

J= z;{iu"m“’ ()2 (028 (1) :(Ag) <Z” + 2) Se(0A+ Bun’"f H(0)2e0(0)2S(1) - :(](‘)4) (Zl’ + 2> s;z(;)} 1}

+ > wMr(020(0) + Y 5°(r). (C9)
ab a,b

Compared with the conservative expressions, we replace the constant orbital radius and frequency by the initial orbital
radius and frequency. The conservative spin components are changed into the time-dependent resummed radiative spin
component results. The time derivative of this quantity 7 is ~O(v*S) but we are able to avoid the loss of total angular
momentum due to nonspinning radiation at O(v°). Using the substitution with 7 instead of J into the moving frame
solutions (C2)—(C5), we can generate a three-dimensional plot of the orbital radius evolution and animations of binary

inspiral with spin orientation at every instant.
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