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Spatiotemporal Thermal Field Modeling Using
Partial Differential Equations With
Time-Varying Parameters

Di Wang, Kaibo Liu~', Member, IEEE, and Xi Zhang~, Member, IEEE

Abstract— Accurate modeling of a thermal field is one of the
fundamental requirements in engineering thermal management
in numerous industries. Existing studies have shown that using
differential equations to model a thermal field delivers good per-
formance when the parameters are predetermined through phys-
ical or experimental analysis. However, due to variations of the
inner medium affected by certain latent factors, the parameters
in differential equation models may not be treated as constants
while the thermal field is estimated, and this fact poses a new
challenge to field estimation by directly solving the differential
equation models. In this study, a novel approach to thermal
field modeling is developed by considering the parameters as
functional variables that vary temporally in partial differential
equations (PDEs). This approach provides a new perspective to
model the dynamic thermal field by fully using the collected
sensor data from the thermal system. Specifically, time-varying
parameters can be constructed through a combination of basis
functions whose coefficients can be efficiently estimated through
the sensor data. A two-level iterative parameter estimation
algorithm is also tailored to obtain the parameters in the PDE
model. Both simulation and real case studies show that our
proposed approach provides satisfactory estimation performance
compared with the benchmark method that uses the constant
parameter estimation.

Note to Practitioners—The proposed method aims to model
a thermal field using PDEs with time-varying parameters. To
better implement this method in practice, three things are
noteworthy: first, the proposed method models a thermal field
by fully considering physics-specific engineering knowledge
using PDEs and the collected sensor data from thermal systems.
Second, because time-varying parameters in PDEs cannot
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be estimated directly, the proposed model represents the
time-varying parameters by a combination of B-spline basis
functions in terms of time. Estimating time-varying parameters
is converted into estimating the constant coefficients of the basis
functions. Because the derivatives of a thermal field might not
have an analytical expression, the proposed model represents the
thermal field by a combination of B-spline basis functions. Taking
the derivatives of the thermal field is converted into taking
the derivatives of the corresponding basis functions. Third, the
proposed method can not only model a thermal field but can
also be applied in other physics-specific engineering cases.
Index Terms—Sensor data, spatiotemporal thermal field,
time-varying parameters, two-level regression model.

I. INTRODUCTION

NGINEERING thermal management (ETM) plays an

important role in ensuring the stable system operation
of many industrial systems. Advanced technologies in ETM
can be found in different industries, including intelligent
refrigerated warehouses [1], thermal conductors in nuclear
plants [2], cooling equipment in supercomputer centers [3],
and so on. One of the prerequisites to effectively implement
these technologies in various industrial systems is to accurately
obtain the thermal distribution with spatial and temporal
variations. In current practice, differential equations, which are
used to describe dynamic systems, are generally employed to
acquire the underlying dynamic thermal distribution. This set
of differential equations is usually developed by experts with
a wealth of industrial experience. The associated parameters
in such equations, which represent the dynamic properties of
engineering systems, are important measures to characterize
the intrinsic mechanism. In many cases, the parameters can
be determined by experts in engineering systems or through
a large number of experiments. However, in some other
cases, the associated parameters are unknown due to a lack
of thorough understanding on complex thermal systems or
limited budgets for conducting experiments. Estimating the
associated parameters is necessary when using partial dif-
ferential equations (PDEs) to model a thermal field, but it
remains a challenging task. In addition, in some cases, due to
the variation of the thermal conductor under certain unknown
conditions, such as physical property changes of the medium
or environmental surroundings, the parameters in PDEs cannot
be treated as static ones. When modeling thermal fields in such
cases, the parameters should be considered as fundamental
variables that vary over time, which is also consistent with
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the underlying truth in engineering applications. Estimating
time-varying parameters when using PDEs to model a thermal
field poses a new challenge.

The advancement of sensor technology and network
infrastructure provides a new round of opportunity to acquire
the thermal distribution in various engineering fields. A large
number of thermal data can be collected through the multi-
ple interconnected sensors mounted on the heat-conducting
medium. These sensors are sparsely distributed to in sifu
measure the temperature and may have great potential in
thermal field estimation. To take full advantage of the acquired
sensor data, empirical methods such as advanced statistical
models are used for field estimation in various engineering
domains [4], [5]. Linear statistical models are the first to
be used to describe dynamic fields. For example, Xu and
Huang [6] applied a multivariate linear function to capture
the 2-D spatial field of nanostructures. Chen and Yang [7]
described a cardiac electrical field by using a combination
of linear kernel regression models. These models are purely
data-driven and show good capabilities for capturing the
dynamic profiles of spatial fields. However, for complex fields
such as 3-D thermal fields, these models lack substantial expla-
nations and sometimes deliver poor fitting because numerous
parameters are required simultaneously for estimation. Kriging
is another widely used method for field estimation. For exam-
ple, Inoue ef al. [8] introduced a spatiotemporal kriging model
to describe solar radiation about the direction and the speed of
cloud movement. Zhang ef al. [9] proposed a kriging model
by integrating sparse matrix algorithms and reduced rank tech-
niques to provide high-quality estimation of a 2-D field. Our
previous work integrated kriging into a Gaussian random field
framework to model the dynamic thermal field using a sensor
network [10]. However, the kriging model is computationally
intractable for a complex field with a large set of sensor data.
Hence, dynamic thermal field estimation cannot be properly
handled when only data-driven methods are developed.

Inspired by data-driven methods, some researchers have
attempted to model dynamic fields by using differential
equations. For example, Wang and Zhang [11] simulated
a thermodynamic process in a cubic granary using the
differential equation of heat transmission. Yin ef al. proposed a
multi-variable fractional-order extremum seeking control strat-
egy to obtain the optimal design of lighting systems based on
differential equations [12]. In addition, optimal algorithms are
proposed to solve differential equations. For example, the finite
element method has been used extensively to obtain numerical
solutions to differential equations [13]. Other algorithms
including the Bayesian inference [14], adaptive hierarchical
sparse grid collocation algorithm [15], multivariate extremum
seeking control method with Newton algorithm [16] have also
been developed to solve differential equations in recent years.
These approaches are applied by assuming the associated
parameters in the differential equations are known. However,
in some engineering cases, the parameters in differential
equations are unknown because of a lack of expert knowledge
or limited budgets for conducting experiments.

To solve this problem, researchers have attempted to esti-
mate parameters in differential equations when modeling

dynamic systems through analyzing the observed data. Tra-
ditional differential evolution approaches borrowed a stan-
dard nonlinear regression method to estimate parameters
in differential equations [17], [18]. To improve parame-
ter estimation performance, Ho and Chan [19] developed
hybrid Taguchi-differential evolution method to provide robust
optimal solutions. Kaschek and Timmer [20] proposed a
variational approach to improve the accuracy of parameter
estimation. These methods essentially require solving the
differential equations repeatedly using numerical approaches,
leading to a heavy computational burden. To resolve this
problem, Hall and Ma [21] proposed a fast one-step parameter
cascade method for the parameter estimation of differential
equations, which provides a tradeoff between the model accu-
racy and the computational cost. Meanwhile, Sun ef al. [22]
proposed a penalized maximum likelihood framework that can
improve the accuracy and computational efficiency of para-
meter estimates. To guarantee parameter robustness, smooth-
ing approaches were borrowed for parameter estimation in
ordinary differential equation (ODE) models [23]. Liang
and Wu [24] proposed the local smoothing approach and a
pseudoleast squares regression to estimate parameters. The
two-step approach is another strategy for estimating the para-
meters in ODE models [25]. Chang et al. [26] applied a
two-step parameter estimation method for ODE models. The
method estimates the dynamic process and its derivatives using
observations in the first step and then uses least squares to
estimate parameters in ODE models in the second step. These
methods can estimate the parameters of differential equations
with simple structures but have difficulty dealing with complex
dynamic systems with multiple variables, such as parameter
estimation in PDEs.

Fundamental studies in field modeling with PDEs
through estimated parameters can be found in the last
decade [27], [28]. To improve parameter estimation in PDEs,
which is one of the most important tasks in field modeling,
Xun ef al. [29] estimated constant parameters in PDEs
by using a parameter cascading method. Guo et al. [30]
introduced a residual-based recursive parameter estimation
algorithm. Asiri and Laleg-Kirati [31] proposed the modu-
lating function-based method to estimate parameters in 1-D
spatiotemporal-dependent PDEs. The methods of [29]-[31]
assume parameters of PDE models as constants, that is, para-
meters will not change over time once they are estimated from
the observed data. Such estimated parameters are analogous to
those predetermined parameters through expertise and cannot
reflect the truth while physical properties change in the system.

For field modeling using differential equations with
time-varying parameters, Hong and Lian [32] proposed
two-step estimators using quadratic regression functional
theory to model an ODE with time-varying parameters.
Cao et al. [33] proposed a nonlinear least squares method
for ODEs, where penalized splines are used to model the
functional parameters. Torkamani and Butcher [34] adopted
the extended Kalman—Bucy filter to model an ODE with
time-varying parameters. However, in most of the engineering
practices, multiple variables coexist in the thermal systems,
and traditional ODE models that only consider the single
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variable and few parameters are incapable of capturing the
dynamics. Hence, it is desirable to develop a solvable method
to deal with the dynamic thermal field with multiple variables
using time-varying parameters.

In conclusion, existing approaches for thermal field model-
ing have gaps in the following: first, most existing methods
model a thermal field by data-driven models using sensor
data. However, for complex thermal systems, pure data-driven
methods cannot achieve an accurate result. Second, some
approaches are adopted to model a thermal field by ODEs
with estimated time-varying parameters. These methods can
estimate time-varying parameters of thermal systems with
simple structures but have difficulty handling complex spa-
tiotemporal thermal systems with multiple variables. Third,
some researchers use differential equations to model a ther-
mal field by assuming that the associated parameters in the
differential equations are known or propose optimal algorithms
to estimate parameters in differential equations by assuming
the associated parameters as constants. However, in some
engineering cases, where the associated parameters may not
be treated as constants, these models fail to model a thermal
field. Therefore, modeling a thermal field still faces several
challenges as follows: first, physical mechanism of the ther-
mal conductivity should be considered to model an accurate
thermal field. Second, a thermal field generally has complex
spatiotemporal correlated structures, and such spatiotemporal
correlation must be considered in the modeling of the thermal
field. Third, when modeling a thermal field using a PDE,
the parameters in the PDE should be considered as funda-
mental variables that vary over time due to the variation of
the thermal conductor. Estimating time-varying parameters in
PDEs remains a challenging task.

To fill in the research gap and address the challenges
for the thermal field modeling, in this article, we develop a
thermal field modeling method using PDEs with time-varying
parameters. Specifically, to resolve the parameter estimation
problem, we treat the time-varying parameters as functional
variables and use a combination of B-spline basis functions
to characterize them. To parameterize the PDE model using
observed sensor data, we borrow a combination of B-spline
functions to characterize the thermal process. To accurately
obtain the underlying thermal field, a two-level regression
method is proposed to estimate coefficients of time-varying
parameters and the thermal process by simultaneously consid-
ering the time-varying parameter model fitting and the PDE
model fitting.

Compared with existing methods, the proposed method
addresses the challenges of thermal field modeling by esti-
mating time-varying parameters in PDEs in the following
aspects. First, compared with purely data-driven methods,
our proposed method leverages the physical mechanism of
thermal conductivity by using a PDE model to achieve an
accurate thermal field. Second, our method can model complex
thermal systems and capture spatiotemporal correlation of the
thermal systems by using a PDE with estimated time-varying
parameters. Third, our method can estimate time-varying
parameters in PDEs using sensor data for thermal field
modeling.

The rest of this article is organized as follows. Section II
introduces the PDE models for field modeling and the main
approach for parameter estimation, including the modeling
of time-varying parameters, the modeling of the dynamic
process, and the associated parameter estimation method. Both
simulation and real case studies are discussed in Section III
to validate our proposed method. Section IV provides the
discussion and conclusion.

II. RESEARCH METHODOLOGY

Given that 3-D spatiotemporal fields are commonly used
in engineering domains, without loss of generality, we take
a general 3-D spatiotemporal thermal field as an example
to introduce our method in this section. We consider a 3-D
spatiotemporal thermal field u(x), in which x = {f, x, y, z}T
denotes a vector of independent variables in terms of ¢ in the
time domain and x, y, and z in the space domain. We assume
that the 3-D spatiotemporal field can be represented by a PDE
model with time-varying parameters as follows:

, ou(x) ou(x) 0% u(x)
e e

o2 ux)

TR ,...,@(r))zo (1)

where @ (t) = {6;(f)}i=1.L is a vector of time-varying parame-
ters of the PDE model. We obtain the observed data of u(x)
from sensor networks embedded in the thermal conducting
medium, and the observed data of u(x) are denoted as ¢, that
is, ¢i = u(x;) + €, where ¢;,i = 1,...,n are correspond-
ing measurement errors. We aim to estimate the unknown
time-varying parameters of the PDE model in (1) from the
observed data {(¢;,x;),i =1,...,n}.

Two assumptions are made prior to the introduction of the
proposed method.

Assumption I: The modeled thermal field varies smoothly
over space and time and is continuously differentiable.

Assumption 2: The parameters of the PDE model vary
smoothly with time and are continuously differentiable.

Fig. 1 illustrates the framework of the research methodol-
ogy. First, because the parameters of PDE models vary over
time, they cannot be estimated directly. To solve this problem,
we represent the time-varying parameters by a combination
of basis functions in terms of time. Estimating time-varying
parameters is converted into estimating the coefficients of the
basis functions. Second, the derivatives of the thermal field
in PDEs might not have an analytical expression because the
thermal field is a nonlinear multidimensional dynamic process,
and thus we model the dynamic process by a combination
of basis functions in terms of space and time. Taking the
derivatives of the process is converted into taking the deriv-
atives of the corresponding basis functions. Compared with
directly handling the derivatives of the process, obtaining the
derivatives of basis functions is more convenient, which has
an analytical expression. Then, according to the structure of
the established model, we tailor a two-level regression method
to estimate the coefficients of the time-varying parameters and
the dynamic process. Finally, we can obtain the time-varying
parameters and underlying thermal field.
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I

Estimated time-varying parameters
and thermal field

Fig. 1. Framework of the research methodology.

It is noted that the basis functions in our proposed method
should satisfy the following requirements. First, the basis
functions are smooth and continuously differentiable. Second,
the derivatives of the basis functions have analytical expres-
sions. In the proposed method, we select B-spline functions
as the basis functions. Any other basis functions that satisfy
the requirements are also applicable.

Following this idea, Section II-A introduces the modeling of
the time-varying parameters @ (¢), and Section II-B introduces
the modeling of the dynamic process u(x). In Section II-C,
we propose a two-level regression model by considering
the time-varying parameter model fitting and PDE model
fitting simultaneously to accurately model the thermal field. In
Section II-D, we introduce the parameter estimation Algorithm
to the PDE models.

A. Modeling of Time-Varying Parameters

Any continuous function can be expressed as a combina-
tion of spline basis functions. We represent the time-varying
parameters in the PDE model ®(f) = {6i(f)}i=1,.... through
a combination of B-spline basis functions in terms of time as
follows:

M;
0ty =D YimOP1m =¥ OB, @

my=1

where Wi (1) = (Pr1(0), -, Crm (©), ..., Yo, ()T is a
vector of the basis functions for the /th parameter, 8; =
B, - Prm @), ..., ﬁ;,M,)T is a vector of basis coefficients
for the [th parameter, and M; is the number of the basis
functions for the /th parameter. Each ¥(r),/ = 1,...,L,
satisfies

I, T; <t < Ty
Fian® = {O orherwise ' )
t—T;
Y, tH)=———""MN i, pi—1 ()
(i, 1) Tism1— Ty (i1, p—1)
Tijrp — 1
+ "G +1,p-1)(®) 4)
n;-]-pf _ T‘”+1 (i+1,p—1)

where i; denotes the index of knots for the /th parameter, T;,
is the location of the knot i;, and p; denotes the order of

basis functions for the /th parameter. We denote [; to be the
number of knots for the /th parameter, and then we obtain [; =
M; — p; + 1. We express the vector of the basis functions for
the time-varying parameters ‘¥;(f) from ¥y, ) (7), with i; =
1,..., I;. Without loss of generality, identical basis functions
are selected for the time-varying parameters, that is, ¥;(t) =
Y(t), forl =1,..., L. To simplify the notation, we represent
the basis coefficients as 8, where 8 = {81, B2,..., BL}-

B. Modeling of the Dynamic Process

Most PDE models in engineering domains have no analyti-
cal solutions since the derivatives of the dynamic process u(x)
might not have an analytical expression. Thus, we model the
dynamic process u(x) in (1) by a combination of B-spline
basis functions. We choose B-splines as basis functions for
the PDEs because B-splines are nonzero only in short subin-
tervals, which achieve computational efficiency and numerical
stability. In addition, the derivatives of B-spline functions have
analytical expressions. #(x) can be represented as follows:

K
u(x) = Z O (X)ar = (I)T(x)os

k=1
where ®T(x) = (@(x), D2(x),..., Px(x))7 denotes a
vector of basis functions for the dynamic process, &« =
(a1, a2,..., a,a;)T denotes a vector of basis coefficients for the
dynamic process, and K is the total number of basis functions.
For a multivariate dynamic process, we employ a tensor
product of B-spline basis functions to form the multivariate
basis functions, in which the basis functions can be obtained
using the similar approach in (3) and (4). We provide a detailed
elaboration on the tensor product of B-splines in Appendix A.

)

C. Two-Level Regression Model

We represent u(x) and @ (f) by the combinations of B-spline
basis functions obtained in (2) and (5), respectively. Then,
the PDE model can be expressed as

aaT T
®), 207,
ot ox

g(x,mr(x)ﬂ[, J';‘P(r)?ﬁ):(]'

6)

To simplify the notation, we denote Gfx, o (%),
a0 (x)/ote, 00T (x)/6xa, ...; ¥(1), B} by G{D(X), a; B}

We propose a two-level regression model to estimate the
basis coefficients of the time-varying parameters and the
dynamic process by considering the time-varying parameter
model fitting and PDE model fitting simultaneously. In the
first level of optimization, we estimate the basis coefficients
o for the dynamic process with the fixed § by minimizing
the regression function 7 («|B) with the roughness penalty as
follows:

T(@|B) = D {¢i — O (xi)ee} + 4 f G{O(x), a; B dx
i=1
)

where 1 is the penalty parameter. A common practice is
to estimate the basis coefficients o for the dynamic process
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Set B, =B forv=10
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¥

Minimize J{e|#) to obtain @ () using the
Gauss—Newton algorithm

l Update

Given @ (), minimize J() to obtain 8,41 JESRUON
: sequence
using the least squares method
v=v+l1l

B' =By " = &(Byi1)

Flowchart of the two-level iterative parameter estimation algorithm.

Fig. 2.

by penalized splines, which performs a penalty to achieve
smoothness of the estimated function. We model a roughness
penalty as [ G{®(x), &; B}2dx for a fixed B, which integrates
the PDE model into (7). The roughness penalty regularizes
the fitting of the dynamic process and shows the accuracy
of the fitting to the PDE model; specifically, a small value
indicates an accurate fitting of the spline approximation to the
PDE model. The integration in (7) can be approximated by
numerical integration methods [33].

Then, we propose a second level of optimization to estimate
the coefficients of the time-varying parameters . We represent
the estimate of « for the fixed 8 as &(B), which is a function
of B. Given that the estimator &(f) has been regularized, we
minimize the residual sum of squares 7(f) to estimate

T(B) =D (¢ — o' (x)a(p)}>.

i=1

®)

D. Parameter Estimation Algorithm

1) Estimating Parameters in PDE Models: We develop
a two-level iterative algorithm to estimate parameters in
PDE models, in which we minimize the objective functions
I(x|p) and J (B) iteratively until convergence to a solution is
achieved (Fig. 2). Initially, we set 8 as 8. In the vy, iteration,
we minimize 7 («|B) to obtain & using the Gauss—Newton
algorithm that updates e iteratively until convergence

82T 1ot
Oy =01 — (# |uw_1) (%ldw_l)
&)

where w denotes the iteration index for the estimation of «,
and (07 (|B)/dat|e, ,) and (8*I(x|B)/dcda’ |, ,) denote
the first-order and second-order derivatives of 7 (a|8) in terms
of a given a,,_1, respectively.

After &(pB) is obtained, we can linearize &(B) given g, and
then replace the criterion of (8) as follows:

J(B) = Z I(Cf — o' (x)a(B,) + aa—(?m,ﬁu)
i—1

2
39:3] (10)

in which the first-order derivative of &(g8) in terms of g can
be analytically expressed as follows:

0aB) _ _[*T@p), 17 [PT@B),
B I oadal |°‘“‘”] XI oadpT |°‘(‘3)]'

an

Given that @(8) is obtained by minimizing 7 (e|B), we have
d1(x|B)/0alg(py = 0. By taking the derivative in terms of
on the left side of 67 (x|B)/det|g(g) = O and assuming that
0*I(a|B)/0acdaT |4 g) is nonsingular, we obtain the analytical
expression of the first-order derivative of &(8) in (11). The
nonsingularity of 827 (a|B)/deda’ |55 can be guaranteed
when the number of observed data is larger than the dimension
of a. After inserting (11) into (10), we minimize 7 (f) by the
least squares method to update the estimate of 8 as 8, ;. The
estimator 8* is achieved until the difference between g, | and
B, is negligible.

In the special case of linear PDEs, parameters can not only
be estimated by the aforementioned iterative method but can
also be estimated by an analytical method in the following.
The expression of linear PDE models is linear for «, that is,

T T
G (x, L R 703 ﬁ)
T 0 (x) 0D(x) _ B
- g ((D(X), af ] ax J"'!\Ij(r):! ﬁ)a _0 (]2)
where g{@(x), o@(x)/ot, 0@ (x)/ox, ...; ¥(1), B}

denotes a function of the basis functions and their
derivatives. To simplify the notation, we represent
gl®(x), 00 (x)/0t, 00(x)/ox, ... ¥(), B} by  glx: B}
In linear PDEs, &(Bf) can be solved as an analytical
expression. By substituting into (2), (5), and (12), Z(«|f) in
(7) can be written as

T(@|B) = >_{¢i — ® (xi)a)?
i=1

+4 / a’g(x; B)g’ (x; B)adx.

We denote ¢ = ({1,¢2,---,¢n)T, and @ as the K x n
basis matrix with the ith column ®(x;). The K x K penalty
matrix is represented by (B) = [ g(x; ,B)gr(x; Bdx. ()
is calculated by the numerical integration method, which we
introduce in Appendix B in detail. Z(«|B) is a quadratic
function of «, and we express Z(«|f) as the matrix notation
as follows:

I@p) = —0Ta) (¢ — ®Ta) + " Q(B)a.  (13)
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Fig. 3.
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(©) (d)

Numerical solution to the PDE model with time-varying parameters in the simulation case. (a) 2-D view (¢ = 0.02). (b) 2-D view (g = 0.05).

(c) Examples of temporal profiles in a space domain (¢ = 0.02). (d) Examples of spatial profiles in a time domain (¢ = 0.02).

By minimizing (13), the estimate of e¢ can be obtained as a
close form for the fixed g

&(B) = (0@ +12(8)) ' @¢. (14)

Then, by substituting &(8) into J(B) in (8), J(B) can be
written as the matrix notation

J@B) =t —eT{ee” +ie@))'ec|3. (15

We minimize the criterion (15) to obtain an estimate of f§
as B*. The estimated basis coefficients of u(x), a*, can be
obtained by substituting g* into (14).

2) Selection of Penalfy Parameter: The estimated basis
coefficients of time-varying parameters f* and the dynamic
process o can be obtained given any value of the penalty
parameter A. In other words, both the estimated basis coef-
ficients for time-varying parameters and the dynamic process
can be considered as functions of A and are denoted as *(1)
and a*(A). As our goal is to estimate time-varying parameters
in the PDE model and make the solution of the PDE close
to the truth, we consider the time-varying parameter model
fitting and PDE model fitting simultaneously and minimize
the following criterion to obtain an optimal A:

00) =D (& — o (x)a* (1))
i=1

+GHD(x), a*(2); B*(A))-

The first part in O(4), which measures the accuracy of the
estimated dynamic process, tends to choose a small penalty
parameter value. The second part in O(4), which assesses the
estimated PDE modeling errors, tends to choose a large penalty
parameter value. We consider these two parts when selecting
an optimal penalty parameter value, thereby making the best
tradeoff between the time-varying parameter model fitting and
the PDE model fitting. We use cross validation to choose the
penalty parameter.

(16)

III. CASE STUDY
A. Simulation Study

We used the PDE model with time-varying parameters in
(17) to simulate the data. The PDE model is called a 1-D
linear reaction convection—diffusion equation

dul(t,z d%u(t,z dul(t,z
( )_9](” (2 ) (t,2)
ot oz oz

—62(t) —03(u(t,z) = 0.

a7

TABLE I

COEFFICIENT VALUES OF THE PDE MODEL
IN THE SIMULATION CASE

Coefficient Value
e 04303 04807 05263 05762 0.5899
B2 0.0988 0.0968 0.1082 0.1049 0.1077
B3 0.1127 0.0975 00980 0.0780 0.0923

We described the time-varying parameters in (17) by B-spline
basis functions as follows:

M
01) =D Vim(®)Bim =¥ OBy, 1=1,2,3.

m=1

We considered B-spline basis functions 8;,/ = 1,2,3 with
M; = 5, which is sufficient in most of engineering practices.
Then, the coefficients of the B-spline basis functions g8;,/ =
1,2,and 3 were set randomly (Table I). The PDE model
was numerically solved using the finite difference method by
setting the boundary conditions as u(f,0) = 0 and u(t, 40) =
0 and the initial values as u(0,z) = {1 + 0.1(20 — 2)?)} in
the time domain ¢ € [0, 20] and the space domain z < [0, 40].
The meshgrid has a grid size of 0.005 in the time domain and
0.01 in the space domain. Fig. 3 shows the numerical solution
of the PDE model with time-varying parameters. We obtained
a 20 x40 meshgrid-based simulation data in the spatiotemporal
domain [0, 20] x [0, 40]. To validate the effectiveness of our
proposed method for parameter estimation of the PDE model
given the observed data, we conducted simulations in which
the observed data were simulated by adding Gaussian white
noises with standard deviation (SD) ¢ = 0.01, 0.02, and
0.05, which are independent and identically distributed in the
spatiotemporal domain, to the numerical solution of the PDE
model at each time and space unit.

The order of basis functions is determined from two aspects:
first, because the proposed method needs to take the derivatives
of the basis functions, the order of basis functions should be
larger than the order of derivatives. Second, fivefold cross
validation is used to determine the order of basis functions
in the proposed method. The PDE model in (17) indicated
that the second partial derivatives in terms of f and z were
continuously differentiable, respectively. Therefore, the order
of basis functions should be larger than 2, and we chose the
order of basis functions as three in the time and space domain,
respectively, by using fivefold cross validation. We used a
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TABLE II
SIMULATION RESULTS OF ESTIMATED COEFFICIENTS .8*
Noise o =0.01 o =0.02 o =0.05

Mean Bias SD RMSE | Mean Bias SD RMSE | Mean Bias SD RMSE

values (x1073%) (x10™%) (x1073) | values (x1073) (x10~%) (x1073) | values (x10~3%) (x10~%) (x10~3)

04302 -0.1720  0.3485 01755 | 04302 -0.1784 0.7181 0.1932 | 04301 -0.2343 2.0001 0.3080

04723 -8.4000 2.4007 8.4034 | 04722 -8.A4707 5.5533 8.4888 | 0.4717 -8.9481 15.7032 9.0847

By | 04870 -392406 94882  39.2521 | 04868 -39.5093 23.0013  39.5761 | 0.4853 -40.9386 63.4289  41.4265

05772 1.0071 4.3784 1.0981 | 05771 09445 8.6876 1.2830 | 05767 05316  23.8192 24394

05926  2.6427 07832 26439 | 05926 2.6466 15852  2.6513 | 05925 26172 44917 26554

0.0992 0.3915 0.6339 03966 | 0.0992 0.3827 1.3286 0.4051 | 0.0992  0.3359 3.2887 0.4700

0.1036  6.7696 1.3912 6.7710 | 0.1035  6.7469 27046 6.7523 | 0.1033  6.5507 6.4271 6.5821

B3 | 00931 -15.1182  0.3263 15.1183 | 0.0931 -15.1184  0.6706 15.1185 | 0.0931 -15.1242  1.6096 15.1251

00922 -12.7024  0.3946 12.7025 | 0.0922 -12.6971  0.7889 12.6973 | 0.0923 -12.6424  1.6920 12.6435

0.1087  0.9984 0.4170 09993 | 0.1087 1.0001 0.8456 1.0036 | 0.1087  1.0165 2.1555 1.0391

01127 -0.0094 0048 00106 |0.1127 -0.0085 0.1042 00135 |0.1127 -0.0039 0.2621  0.0265

0.0973  -0.1627 0.1080 0.1631 | 0.0973 -0.1613 0.2298 0.1630 | 0.0973  -0.1527 0.5547 0.1624

B3 | 00988 0.8706 0.1093 0.8707 | 0.0988  0.8725 0.2382 0.8728 | 0.0988  0.8808 0.6233 0.8830

00781 00816 00691 00819 |0.0781 00819  0.1396 00831 | 00781 0.0837 03219  0.0896

0.0921 -0.1357 0.0296 0.1358 | 0.0921 -0.1361 0.0493 0.1362 | 0.0921 -0.1354 0.1221 0.1360
013 O(41), we selected A* = 0.1125 as the appropriate penalty
0425 | parameter. Then, we estimated the time-varying parameters
in the PDE model of (17) using the proposed method and
0.12 implemented it with 1000 replicates. The simulation results
of the estimated coefficients g* are summarized in Table II,

Z 0115 . . .

including the mean values, bias, SD, and root-mean-squared
0.114 errors (RMSEs) of the estimated coefficients when the SD of
the data noises ¢ was 0.01, 0.02, and 0.05. Here, the bias
0.105 represents the difference between the estimated coefficient
o1 | | values and the true coefficient values. The SD quantifies
01 0.15 \ 02 0.25 the amount of dispersion for the estimated coefficients. The
RMSE is a measure of accuracy that represents the square
Fig. 4. Selection of the penalty parameter. root of the quadratic mean of the differences between the

tensor product of basis functions in the time and space domains
to form the basis functions for u(f, z) with four and ten equally
spaced knots in the time and space domains, respectively.

To validate the performance of our proposed parameter
estimation method, we used the SD of the discrepancy between
the true and estimated values as the criterion in assessing the
accuracy of our proposed method, that is,

N N a
Zle 2 i (@@, zi) — u(tj, z))?
NN,

STD =

ZT:] fi] Gz(ﬁ(fj, Zk)s ,3*)

18
N (18)

+

where N; and N, are the numbers of grid points in the time and
space domains, respectively; and ¢; and z; are the grid points
with j =1,...,N; and k =1, ..., N;. The first term in STD
assesses the accuracy of the estimated dynamic process i (f, 7),
and the second term assesses the estimated PDE modeling
errors G(i(t, 7); B*), where G(ii(t, z); B*) = (di(t, z)/ot) —
‘Pi(f)ﬂ’{‘(azﬁ(h 2)/02%) W] (1)B3 (i (t, 2)/02)
wIt)BLi(r,z) and i(t, z) = ©T (1, z)*.

We initially addressed the selection of the penalty parame-
ter A. Fig. 4 shows the curve of (1) using the cross validation
given a series of A values. Considering the minimization of

estimated values and true values of the coefficients. As shown
in Table II, our proposed method obtains the coefficients with
small bias, SD, and RMSE values, indicating that the esti-
mated coefficients from our proposed method are acceptable.
In addition, the mean values of STDs of our proposed method
stay in low levels, which are equal to 0.0234 (when ¢ = 0.01),
0.0311 (when ¢ = 0.02), and 0.0598 (when ¢ = 0.05). Hence,
the results of the estimated coefficients indicate our proposed
method performs well for both the time-varying parameters
and the PDE model.

To further validate the effectiveness of our method, we com-
pared the performance of our method with that of another
alternative method [29], in which the parameters of the PDE
model were considered to be constants. As shown in Fig. 5,
our proposed method exhibits superior performance in terms of
STDs by treating the parameters time-varying. The alternative
method assumes the constant parameters in the PDE model to
simplify the modeling of parameter estimation, thus failing to
obtain good fitting results.

We obtained the field using the PDE model with estimated
time-varying parameters and calculated the root mean square
errors between the estimated field values and the true values,
which are 0.0147, 0.0148, and 0.0151 for the noise with
o = 0.01, 0.02, and 0.05, respectively. The small values of
the root mean square errors show that our proposed method
can model the field accurately using a PDE with time-varying
parameters.
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Fig. 5. Boxplots of STDs using the proposed method (Model 1) and constant parameter estimation method (Model 2) from 1000 data sets.
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Fig. 6. Observations of the thermodynamic model in a national granary. (a) Anatomic view of the granary with the locations of the sensors (note that the

cloud represents the grain temperature field, and black dots represent the sensor locations). (b) Grain temperature profiles at various locations.

B. Real Case Study

We also tested our proposed method by estimating the
time-varying parameters of a thermodynamic model in gra-
naries. We considered the thermodynamic process of grain
in a national granary in the middle of China. Fig. 6 shows
an anatomic view of the granary and examples of grain
temperature profiles at various locations. We can observe that
grain temperature varies across both space and time. The
PDE model of the thermodynamic process in the granary
can be expressed as a 3-D unsteady heat transfer function as
follows:

au(rJ x! y! Z)
ot o

az“(ri x! y! Z)

d%u(t,x,y,2)
O, (1) ox2 —

ay?

o%u(t, x ¥,2)
6 t 3 3 3
+ Z( ) azz

+6,(1)

(19)

where u(t, x, y, z) denotes the grain temperature in the granary
at location (x,y,z) and time f; x, y, z, and t denote the
indexes of the 3-D space domain and the time domain,
respectively; and the parameters 8, (f), 6,(f), and &,(t) denote
the physical properties of the grain stored in the granary, which
are usually unknown. Given that the physical properties of
the grain are affected by many factors, such as grain tem-
perature and humidity, &, (f), 6,(t), and 8,(f) vary with time.

We estimated the time-varying parameters 6, (f), 0y (t), and
0.(r) using the grain temperature sensing data we collected at
least every 7 days from the grain temperature sensor networks,
and the data were gathered from January 31 in one year to
January 30 in the next year. There are 240 evenly spaced
temperature sensors distributed in a cubic granary with 46 m
in length, 26 m in width, and 6 m in height. The sensors
are placed every 5 m in the x- and y-directions and every
1.8 m in the z-direction. We obtained 15600 samples of
10 x 6 x 4 meshgrid-based sensing data. As shown in Fig. 6,
the observations of grain temperature are spatiotemporally
correlated in a 3-D field, which increases the difficulty of
solving a multidimensional thermodynamic model. We can
also observe in Fig. 6 that noise occurs in the grain temperature
field owing to uncertain factors that increase the difficulty of
the parameter estimation for the thermodynamic model.

For the B-spline basis functions in modeling the
thermodynamic model, we chose the order of basis functions
as three in the x-, y-, and z-directions of the space domain
and the time domain f, respectively, by using fivefold cross
validation. We used a tensor product of 1-D basis functions
in the x-, y-, and z-directions of the space domain and the
time domain ¢ to form the basis functions for u(f, x, y, z).
We selected the basis functions with five, seven, and four
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Fig. 8. Examples of the estimated 3-D grain temperature field. (a) and (b) Coordinates (5.5, 5.5, 2.1) and (5.5, 10.5, 3.9), respectively.
TABLE TII two locations obtained by our proposed method and the
REAL CASE RESULTS OF ESTIMATED COEFFICIENTS B* benchmark method. We can see in Fig. 8 that our proposed
Coctficient Estimated value (x10-2) method captures the profiles of the grain temperature field
EH 09750 02561 06062 -0.1176 0.3720 -0.0156 more accurately than the benchmark method. Given that the
B3 1.9658 0.0311 00469 02469 -0.0029  0.2050 : : :
8 17370 10035 17062 11438 12568 12751 physical properties of stored grains are affected by many latent

equally spaced knots in the respective x-, y-, and z-directions
of the space domain and five evenly spaced knots in the time
domain ¢ by using fivefold cross validation. The procedure
of modeling the basis functions for u(t, x,y,z) is the same
as u(f, z) in the simulation case. Due to the limited space of
this article, the details are omitted here.

We applied the proposed method to estimate the
time-varying parameters in the thermodynamic model. We
summarized the estimated coefficients of the time-varying
parameters in the PDE model in Table III and presented
the estimated time-varying parameters of the thermodynamic
model in Fig. 7. We can see that the parameters vary slowly
over time and present with various patterns, which is coinci-
dent with the physical properties of the stored grains, that is,
the physical properties of grains vary slowly during storage
and have various thermal transmission effects in different
directions of the granary. To show the superiority of the
estimated time-varying parameters of the PDE model, we bor-
rowed the method with constant parameters in the thermody-
namic model (STD = 0.6939) as a benchmark. The STD of
the proposed method is 0.6483, which shows the better perfor-
mance of our proposed method than the benchmark method.
Fig. 8 shows the profiles of the grain temperature field at

factors, the parameters of the thermodynamic model may vary
at each time epoch. Our method achieves good performance
by applying the spline functions to successfully characterize
the time-varying parameters of the thermodynamic model.

IV. DiscussioN AND CONCLUSION

Parameters in PDE models are important measures to
characterize the intrinsic changes of thermal fields. Given
that the intrinsic changes in thermal fields vary in terms of
time with the extrinsic factors, constant parameters cannot
characterize the intrinsic changes of thermal fields accurately.
Thus, a PDE model should be used with time-varying para-
meters to characterize the dynamics of thermal fields. In
most cases, the parameters in PDEs are unknown and cause
difficulty when modeling thermal fields. Therefore, estimating
the time-varying parameters in PDE models is necessary for
thermal fields.

In this article, we propose a thermal field modeling
method using PDEs with time-varying parameters. Because
time-varying parameters in the PDE are unknown, we first
estimate the time-varying parameters in the PDE, and then
model the thermal field using the PDE with the estimated
time-varying parameters. To resolve the parameter estimation
problem, we treat the time-varying parameters as functional
variables and use a combination of B-spline basis functions in
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terms of time to characterize them. Because the thermal field
is a nonlinear multidimensional dynamic process, the deriv-
atives of the dynamic process might not have an analytical
expression. We model the dynamic process by a combination
of B-spline basis functions. Thus, taking the derivatives of the
thermal field is converted into taking the derivatives of the cor-
responding B-spline basis functions, which generates an ana-
lytical expression. A two-level regression method is developed
to estimate the coefficients of the time-varying parameters and
the dynamic process by considering the time-varying parame-
ter model fitting and the PDE model fitting simultaneously.
Then, we obtain the time-varying parameters and underlying
thermal field. Simulation and real case studies are conducted
to validate our proposed method, and the results show that our
proposed method provides satisfactory performance.

In the future, we intend to investigate a parameter calibration
method for PDE models by combining physical mechanisms
and statistical analysis of thermal systems.

APPENDIX A
TENSOR PRODUCT OF BASIS FUNCTIONS

In the simulation case, two independent variables are used,
namely, a space variable z and a time variable . In the space
domain, we employ a combination of basis functions in terms
of z as follows:

1, Zi <z <Zin
D, 1(2) = : :
iz,1(@) {O, otherwise
z2—Z;
@i, p, (2) = ﬁq’iz,pz—l(z)
z z z
Zfz+Pz —Z
———Di41,p,-12)
Ziyp. — Zin1 b

where p, denotes the order of basis functions in terms of
space, i; denotes the index of knots in terms of space, and
Z;. denotes the location of the knot i;. We denote M; to be
the number of basis functions in terms of space, and then we
obtain M, = I + p; — 1, in which I; is the number of knots
in the space domain. To simplify the notation, we express the
basis functions in the space domain ®@; . (z),i; = 1,...,1;
as O, (z) = {®;1(2), ..., Py m,(2), ..., Py M. (2)}, in which
D, (1), Z;;, < z < Zj,41 is a piecewise function for all
m; = 1,..., M;. Similarly, in the time domain, we obtain
@ (t) = {@e,1(0), ..., Pt (1), .., Dt p, (1)}, Where M; is
the number of basis functions in terms of . The tensor product
of the basis functions for u(z, r) is expressed as follows:

My M
ut,2)= D D Omym;Pmym.(1,2) =@ a  (20)
mi=1m;=1
in which
Oy m, (1, 2) = Op,m, ()P, m, (2),
(m; = ],...,M;,mz = ]'J""!MZ)

where ® denotes a vector of basis functions for u(f, z), and
« denotes a vector of basis coefficients for u(t, z).

APPENDIX B
CALCULATION OF PENALTY MATRIX 2(8)

©(p) is a K x K penalty matrix, in which (k, j)th element
is calculated by f g (x; ,B)g}" (x; B)dx. In our simulation and
real cases, $2(B) is the summation of matrix integrals; it is
introduced in Appendix B-A and Appendix B-B.

A. Q(B) in Simulation Case

2(B)
= / [ g(t,z, g’ (t,z, B)dtdz
Z

//,ST‘P O ()B e azq)rdrd
= —5 ———dtdz
o0 o®T
T T
W ()T (1) By ———dtd
+ [ [Breoviap, S a:

+ / f BI¥:(1)¥! (1)B; @ @7 dtdz

/f S 2@ oo” aqvaﬁcbf dtdz
B B0 (0B 2 o7 oz o2
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o® aoT
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B. (B) in Real Case

Q(B)
= /g(r,x,y,z,ﬁ)gT(f,I,y,z,ﬁ)dx

220 9207
= ﬁ] ‘Pl(t)‘Pl(t) Bis7 ax2 ox2 — 5 dx
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where x = {f,x, y, z}.

C. Numerical Integration for ()

$2(B) usually does not have an analytical expression and

needs to be evaluated using the numerical method. 2(8) is

composed of integrations of basis functions with the same

structures, which are calculated using the same rule. We

use the composite Simpson’s rule repeatedly to calculate the

integrals [29]. For a univariate function @(x), the composite

Simpson’s rule approximates the integral as

b

f p(x)dx =~ ¢

a 3

D/2
p(x0) +4 )" p(x2a-1)
d=1

D/2-1

+2 D" o(x2)+e(xp)
d=1

c D
= 3 Z wie(Xq)
d=0

where C = (b — a)/D, x4 = a + dC, with
d =0,1,...,D, denote quadrature knots, and (woq, w1, w2
...,wwp_2,wp_1,wp) = (1,4,2,4,...,2,4,2,1) denotes
the weight of the quadrature knots, in which D is an even
integer.

We take the calculation of the penalty matrix
I (0®/0t)(0®T /ot)dtdz in the simulation case as
an example. We denote D + 1 as the number of quadrature
knots in the time domain, (fo,...,fp,) as the vector
of knots, and w; = (w10, w1,1,...,w1,p,) as the
vector of weights. Similarly, D + 1, (Zo,...,Zp,), and
wy = (w20, w2,1,..., w2 p,) are the number of quadrature
knots, knot vector, and weight vector in the space domain,
respectively. The (h, j)th element of the penalty matrix
I (0®/0t)(0®T /ot)dtdz is as follows:

0 a
f/alb;,(r,zjgfbj(t,z)dtdz
zJt

c\* 2 2 P 8
= (E) Z Z w1 4, w?.,dgaq)h(rm , ng)a‘l’j(fd. 2 2dy)

d1=0d,=0

(23)

where D1 and D, need to be reasonably large to ensure
the accuracy of the numerical integration approximation,
i.e., D1Dy = 10K, in which K is the number of basis
functions used in (5).
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