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Abstract—This work summarizes the results of the first
Competition on Harvesting Raw Tables from Infographics
(ICDAR 2019 CHART-Infographics). The complex process of
automatic chart recognition is divided into multiple tasks
for the purpose of this competition, including Chart Image
Classification (Task 1), Text Detection and Recognition (Task 2),
Text Role Classification (Task 3), Axis Analysis (Task 4), Legend
Analysis (Task 5), Plot Element Detection and Classification
(Task 6.a), Data Extraction (Task 6.b), and End-to-End Data
Extraction (Task 7). We provided a large synthetic training set
and evaluated submitted systems using newly proposed metrics
on both synthetic charts and manually-annotated real charts
taken from scientific literature. A total of 8 groups registered
for the competition out of which 5 submitted results for tasks
1-5. The results show that some tasks can be performed highly
accurately on synthetic data, but all systems did not perform
as well on real world charts. The data, annotation tools, and
evaluation scripts have been publicly released for academic use.

Keywords-Chart Recognition; Document Analysis; Text
Recognition and Classification; Graphics Recognition; Perfor-
mance Evaluation.

I. INTRODUCTION

Charts are an effective data visualization tool often used to

supplement textual content. They communicate information

more efficiently and are common in the media, business

documents, and scientific publications. Some charts are

intended to convey a message in a visually pleasing manner,

while others are used to simply display raw data, resulting in

varying levels of design complexity. A considerable amount

of attention has been devoted to automatically decompose

and understand these visualizations [1, 2, 3, 4]. However,

there is a lack of benchmarks which can be used to compare

the effectiveness of the different methods proposed so far. In

this work, we describe the first edition of the Competition on

Harvesting Raw Tables from Infographics (ICDAR 2019

CHART-Infographics), which we consider a major step

in providing common benchmarks and tools for the chart

recognition community.

To provide a new common ground for evaluation, we

have proposed the usage of a large-scale synthetic dataset

generated from real world data sources for training and

Table I: Distribution of different chart types on the competi-

tion training and testing sets.

Synthetic PMC
Chart Type Train Test Test
Pie 7,001 200 107
Donut 21,202 200 0
Line 41,874 1,000 2,257
Scatter 41,703 550 532
Vertical Box 20,958 48 69
Horizontal Box 21,007 52 4
Vertical Bar (Grouped) 8,560 595

1,207
Vertical Bar (Stacked) 13,401 625
Horizontal Bar (Grouped) 8,586 650

66
Horizontal Bar (Stacked) 13,718 620
Total 198,010 4,540 4,242

testing, and a smaller dataset based on real charts from

PubMedCentral1 as described in Section II. The complex

goal of data extraction from charts has been split into multiple

tasks as described in Section III. While classification tasks are

evaluated with standard metrics, we propose new metrics for

the chart-specific tasks. The participants of the competitions

and brief descriptions of their systems are provided in

Section IV, and the corresponding result of these systems for

each task are analyzed in Section V. Finally, we provide our

concluding remarks and recommendations for future work in

Section VI. The data, annotation tools, and evaluation scripts

have been publicly released for academic use2.

II. DATA

We constructed two types of datasets for this competition.

The first one was a large-scale synthetic chart dataset, which

allowed the participants to train and test their system using

deep models. The second dataset was curated from real

charts in scientific publications from PubMedCentral. Both

are described in the following sub-sections.

A. Synthetic Chart Dataset

The Synthetic chart dataset was constructed using data

tables from the following online sources: (1) World Develop-

1https://www.ncbi.nlm.nih.gov/pmc/
2https://chartinfo.github.io/
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(a) Pie (b) Donut (c) Line (d) Scatter (e) Vertical Box

(f) Horizontal Box (g) Vertical Bar Grouped (h) Vertical Bar Stacked (i) Horizontal Bar Grouped (j) Horizontal Bar Stacked

Figure 1: The 10 types of charts used in the competition.

ment Indicators (World Bank)3, (2) Gender Statistics (World

Bank)4, (3) Government of India Open Data5, (4) Commodity

Trade Statistics (UN data)6, (5) US Census Data (for 2000

and 2010)7, (6) Price Volume Data for Stocks and ETFs8.

Multiple charts of different types (see Table I) were

created using the Matplotlib library9. All tabular data was

first cleansed and converted into a common format. From

each table, different sets of columns and randomized rows

were selected to create the charts. To emulate features of real-

world charts, we introduced variations in chart component

such as: (1) positioning of titles, legends, and legend entries;

(2) font families and sizes; (3) style including color and/or

width of lines, borders, grids, and markers; (4) bar widths

and inner/outer radii of pies; and the (5) addition of optional

elements such as error bars.

Afterwards, the required annotations were obtained using

functions provided by Matplotlib API including tight bound-

ing boxes for text regions, axes, legends, and data elements

(e.g. bars, lines and pies). The statistics for the training and

test data are provided in Table I. Samples from the dataset

are shown in Fig. 1, and the dataset is publicly available

at http://tc11.cvc.uab.es/datasets/CHART2019-S 1.

B. PubMedCentral Chart Dataset

In order to evaluate participant systems using real charts,

we extracted charts from the PubMedCentral Open Access

repository which contains more than 1.8 million papers. From

these we extracted a small sample of charts that we have

3www.datacatalog.worldbank.org/dataset/world-development-indicators
4www.datacatalog.worldbank.org/dataset/gender-statistics
5www.visualize.data.gov.in
6www.kaggle.com/unitednations/global-commodity-trade-statistics/data
7www.kaggle.com/muonneutrino/us-census-demographic-data/data
8www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
9www.matplotlib.org/

annotated in detail. This dataset is publicly available at http:

//tc11.cvc.uab.es/datasets/ICDAR-CHART-2019-PMC 1.

Data Sampling. We first selected journals from fields

such as epidemiology, public health, pathology and genetics

which were deemed to be more likely to contain charts. We

only considered journals with more than 500 publications

and we extracted all papers published after the year 2000.

The figures from these publications were then clustered by

visual similarity thus achieving a quicker separation between

chart and non-chart candidates. Clusters which appeared to

contain a large number of charts were selected for manual

annotation of each image. We finally sampled 4, 242 single

panel figures containing different chart types as described in

Table I. The entire set of charts was used for evaluation of

Task 1. Two disjoint sub-samples were fully annotated for

evaluation of Task 2 and Tasks 3 to 5.

Data Annotation. We developed tools to annotate images

based on the requirements of the different competition tasks

(see Figure 2). First, the figures extracted from scientific

papers were annotated with multiple labels including single

vs multi panel, figure type (chart vs non-charts classes), and

selected single panel chart images were further annotated by

chart type and orientation (horizontal or vertical). While our

tools support panel-wise annotation for multi-panel figures,

we focused on single panel images for this competition.

The next step was the annotation of text regions including

their location, role and transcription. We used the Tesseract

OCR [5] to transcribe most of the selected text regions.We

manually corrected any OCR errors, and we used LATEXstrings

to represent special symbols on the text regions. After text,

we annotated legends whenever these were present on the

charts. Then, for axes we annotated their types (categorical vs

numerical), bounding box of the first quadrant, the locations

of the ticks on each axis, titles and labels of each axis, as

well as any links between ticks and corresponding tick labels.
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(a) Image Selection (b) Annotation Options

(c) Text Annotation (d) Legend Annotation

(e) Axis Annotation (f) Data Annotation

Figure 2: Tools developed for annotation of chart images.

Viewing in digital version is strongly recommended.

Figure 3: Pipeline of tasks for data extraction from chart

images. Upstream tasks feed in their output as the input of

downstream tasks.

Finally, based on the type of the chart, we developed different

tools to annotate their main data elements such as bars, lines,

boxes and scatter marks. Our tools are open source and are

available after the competition at https://github.com/kdavila/

ChartInfo annotation tools.

III. TASKS AND METRICS

The overall task of data extraction from the chart image can

be broken into a pipeline of smaller tasks (Figure 3), which

we describe here along with the metrics used to evaluate the

submitted systems. For each task, the ideal outputs of the

previous tasks were provided to the submitted systems so

that we can analyze each task independently of errors made

in previous tasks.

The originally proposed tasks include 1) chart classi-

fication, 2) text detection and recognition, 3) text role

classification, 4) axis analysis, 5) legend analysis, 6) Data

Extraction, and 7) End-to-end Data Extraction. Of these 7

tasks, we received submissions only for Tasks 1-5, so we omit

lengthy descriptions of Tasks 6 and 7. The data annotations

for these tasks are distributed with the rest of the dataset.

A. Task 1. Chart Classification

In this task, chart images are classified into horizontal
bar, vertical bar, horizontal box, vertical box, line, scatter,

pie, and donut. Note that pie and donut charts are only used

in Task 1. The metric is the average per-class F-measure.

We compute the precision and recall for each class, take

the harmonic mean to produce class F-measures, and then

average these values to produce the final score.

B. Task 2. Text Detection and Recognition

We asked participants to perform text detection and

recognition at the logical element level, e.g. multi-line and

multi-word titles or axis tick labels were detected as a single

element. Participants systems were provided with the chart

image and the correct chart class.

Detected bounding boxes were compared to ground truth

bounding boxes and considered a match if the intersection

over union (IOU) exceeded a threshold (0.5). Many-to-one

and one-to-many matches were resolved by choosing the

pairs with highest overlaps and counting the other boxes as

false negatives or false positives. Matched pairs are scored

by IOU for detection as well as max(1 − NCER, 0) for

recognition, where, NCER is the normalized character error

rate measured as the edit distance between ground truth string

and predicted string normalized with respect to ground truth

string length.

Per image, the detection scores are averaged by maximum

of number of ground truth boxes or number of predicted

boxes, and recognition scores are averaged by number of

ground truth boxes. Finally, the harmonic mean of the

detection and recognition scores averaged across the entire

test data set is presented as the evaluation metric for Task 2.

C. Task 3. Text Role Classification

For this task, text bounding boxes and transcripts were

provided as input for all logical elements, and the participant

systems were expected to classify each text element according

to its semantic role in the chart. The classes are: chart title,

axis title, tick label, legend title, and legend label. Like Task

1, we use the average per-class F-measure.

D. Task 4. Axis Analysis

For axis analysis, systems associate tick labels with pixel

coordinates. Accurately understanding the axes allows chart

data point geometries (bar heights, scatter points, boxes, etc.)

to be translated from pixel coordinates to semantic values.

The input for Task 4 is the same as Task 3 (note that which

text elements are tick labels are not given), and the output

is, for both the x-axis and y-axis, a list of text elements (tick

labels), each paired with an (x, y) point representing where

the tick occurs in the image.
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The metric for this task is a weighted F-measure, where

predicted tick marks receive a partial true positive score
between 0 and 1 based on location accuracy. If a non-tick

text element is predicted as a tick, then it receives a score

of 0. We define two distance thresholds, a = 1.0% and

b = 2.0% of the image diagonal, and score predictions that

are a distance d from the GT tick location by

s(d, a, b) =

⎧⎪⎨
⎪⎩

1, for d ≤ a
b−d
b−a , for a ≤ d ≤ b

0, for d ≥ b

⎫⎪⎬
⎪⎭

(1)

Recall is computed as the sum of the scores divided by

the number of GT ticks, and precision is the sum of scores

divided by the number of predicted ticks.

E. Task 5. Legend Analysis

For legend analysis, we wish to pair the textual labels in

the legend with the graphical marker in the legend. We take

a similar formulation as Task 4, and require that systems

produce a list of text elements that are paired with bounding

boxes, where the bounding box (BB) surrounds the legend

marker. As in Task 4, the input includes all text elements,

not just those related to the legend. We score this tasks using

a weighted F-measure, similar to Task 4, where true positive

predictions must have the text element, but the partial true

positive score is determined by BB IoU.

F. Task 6. Data Extraction

Given that charts are intended to visually convey numerical

data, one main goal of chart understanding is to extract the

original data (e.g. a CSV) used to create the chart. Though

we received no submissions for this task, we provide a brief

descriptions. We broke this task into 2 sub-tasks: 6a) Plot

Element Detection and Classification and 6b) Data Extraction.

Both sub-tasks received as input the ideal outputs of Tasks

1-5. For Task 6a, the goal was to segment the image into

the atomic elements that represent data such as bars, points,

lines, and boxes. For Task 6b, the goal was to produce named

sequences of (x, y) pairs that were used to create bar, scatter

and line plots, and the summary statistics for box plots.

G. Task 7. End-to-End Data Extraction

We had originally designed a task equivalent to task 6b,

except that the only input was the chart image. However,

received no submissions for this task. This corresponds to

the real-world scenario where no GT data is given apriori.

IV. PARTICIPANTS

1) ABC image processing algorithm: Chen Chen, Cui Chao,

Jin Song, Yang ManYe, Guo Meng from ABC Fintech. Task
1: ResNet-101 [6] based neural network with multi-label

classification was adapted for charts. Task 2: Connected

component analysis and Faster-RCNN [7] network with

suitably modified anchor boxes was used for detection.

Attention-based modules were used to handle text in multiple

orientations and complex layouts for recognition. Task 3: Gra-

dient boosting decision tree trained on 20 features composed

from aspect ratio, position, number of horizontally/vertically

aligned textboxes, whether text is numeric, direction of text,

relative position between text and axis/legend was used. Task
4: Axis detection was done using color and line segment

detection. Ticks were detected using gradient changes along

axes. Task 5: Multi-instance segmentation model based on

ResNet [6] and FPN [8] was used to segment legend markers.

Rules based on aspect ratio, area and length of bounding box

sides were used to eliminate markers which were matched to

text boxes based on proximity. Additional custom synthetic

data was generated to augment the provided data.

2) ANU-Team: Hanif Rasyidi from Australian National

University, Research School of Electrical, Energy and Mate-

rials Engineering. Task 1: Neural network with ResNet-50

[6] architecture, pretrained on ImageNet [9], with a dense

layer regularized using Dropout was used.

3) A-team: Joao Pinheiro from Universidad Catolica San

Pablo, Peru and Jorge Poco from Fundaçāo Getulio Vargas,

Brazil. Task 1: Neural network with VGGNet architecture

[10], pretrained on ImageNet [9] was used. Task 2: PixelLink

text detection system [11], pretrained on ICDAR 2015

scene text dataset [12], was finetuned with the training data

provided. For text recognition, Tesseract OCR [5] was used.

Task 3: SVM trained on geometric features extracted from

text bounding boxes was used [13]. Task 4: Using tick label

text boxes, tick points were located based on proximity of

text to a ‘skeleton’ constructed from the input image. Task 5:
The original image was binarized and connected components

are extracted and filtered by size. A component was matched

to a legend label based on proximity as the legend marker.

For PMC data, additional training data [13, 14] was used

along with a fraction of synthetic data for Tasks 1-2.

4) Boomerang: Rima Hazra, Atharva Vyas from Indian

Institute of Technology Kharagpur, India. Task 1: A neural

network with 5 convolutional layers with ReLU activation (2

× 32 depth with stride 5, 2 × 64 depth with stride 5 and 1

× 128 depth with stride 5) followed by a dense layer (1024

neurons) with Dropout regularization was used.

5) IITB-Team: Utkarsh Gupta, Soumen Chakraborthi from

Indian Institute of Technology Bombay, India. Task 3: Multi-

class classification was performed using an SVM with one

vs one classification strategy for text role classification. From

each input bounding box, 14 features are extracted derived

from aspect ratio, coordinates, position with respect to center

of image, overlaps with other boxes and position relative to

a container bounding box.

V. COMPETITION RESULTS

In the following sub-sections we analyze the performance

of the submitted systems on the tasks.
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Table II: Results for Task 1 (average F-measure)

Team Synthetic PMC
ABC 99.81 88.29
A-Team 94.82 77.52
ANU-Team 89.78 35.96
Boomerang 9.59 12.06

(a) ABC (b) A-team

Figure 4: Task 1 Confusion Matrices for the top 2 performing

systems on PMC.

A. Chart Classification Results

We received the most submissions for Task 1, with 4

participants submitting results for both the Synthetic and

PMC dataset. In general, accurate results were obtained on

the synthetic data, with nearly perfect accuracy obtained by

the ResNet classifier employed by ABC. The main source of

confusion for ABC and A-team were classifying bar charts

as either stacked or grouped.

For the PMC dataset, ABC still performed best, but

all teams had much higher error rates compared to the

Synthetic dataset. The confusion matrices (Fig. 4) for the

2 best performing methods look similar. In particular, both

horizontal and vertical box plots were often misclassified as

line or scatter plots, and line plots were difficult to distinguish

from scatter plots. This may be because some scatter plots

in PMC do have lines (e.g. a best fitting line), but the lines

themselves do not represent the raw data. For ABC, horizontal

bar, vertical bar, and pie charts were classified with near

perfect accuracy.

It seems the key to obtain high performance on PMC was

to use additional data beyond the Synthetic training data.

For ABC, this additional data was created by applying many

data augmentation transformations to the synthetic images,

which helped the classifier be more robust. For A-team, the

model was pre-trained on ImageNet [9] and fine-tuned on

some synthetic data and 2 external chart datasets [13, 14].

ANU-Team only pre-trained on ImageNet and fine-tuned on

the provided Synthetic dataset, so the resulting classifier was

less robust to the real-world charts.

B. Text Detection and Recognition Results

Only two teams submitted results for Task 2, text detection

and recognition, as it is presented in Table III. Both teams

Table III: Results for Task 2

Synthetic
Team IOU OCR F-measure
ABC 69.92 94.97 80.54
A-Team 70.96 78.97 74.75

PMC
A-Team 48.48 58.81 53.15

submitted results for the Synthetic test set and only A-team

submitted results for the PMC test set. We notice that both

approaches achieve similar performance in terms of text

detection as shown by their very similar scores in IOU.

However, in terms of text recognition we can see that team

ABC achieves a considerably much higher score which leads

to an overall higher F-measure score. While only one team

submitted results for this task on the PMC dataset, we can

see that their numbers are considerably lower for this dataset.

We found this dataset in general to be more challenging for

text detection since images are not always available in an

appropriate resolution, and the text regions are sometimes

hard to read even for human annotators. Many text regions

in this dataset also contain a considerable number of special

symbols such as Greek letters, superscripts, and subscripts.

It is worth noting that while A-team used the same OCR

engine (Tesseract OCR) that was employed to speed up

the annotation process, we found that this engine failed to

recognize a large number of strings that had to be manually

typed in during the ground truth generation process.

C. Text Role Classification Results

Three teams submitted results for Task 3 as shown in

Table IV. It is important to notice that the class legend
title was present in only a few images in the PMC test set

and was not present in the Synthetic dataset. Therefore, we

decided to omit it from the Averaged per-class F-measure.

We also omitted two more roles (Value Label and Other)

that were present on the PMC dataset but not present in

the Synthetic data set. The final numbers provided are the

average F-measure for Chart Title, Axis Title, Legend Label
and Tick Label. Both A-team and ABC team produced nearly

perfect scores for the Synthetic dataset, but we can see that

the score for the PMC submissions left room for considerable

improvement. Common confusion in this dataset were related

to text regions from different classes being misclassified as

legend labels due to their similarity in layout organization.

D. Axis Analysis Results

Only two teams submitted results for Task 4 as shown

in Table IV. A-Team achieved a near perfect weighted f-

measure score on the Synthetic dataset, while ABC team

also achieved a very high score. All ticks in the Synthetic

dataset followed a single location pattern were each tick

was directly associated with a label. However, for the PMC

dataset there is a much larger variety in terms of ticks styles
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Table IV: Results for Tasks 3, 4 and 5

Synthetic
Task 3 Task 4 Task 5

Team
Average

F-measure
Weighted
F-measure

Weighted
F-measure

ABC 100.00 96.49 78.14
A-Team 99.95 99.76 87.13
IITB-Team 60.25 - -

PMC
A-Team 84.38 77.33 -
IITB-Team 35.58 - -

and locations. For example, many charts include minor ticks

that are only used as a visual aid but are not linked to any

tick label. In this category, we also find ticks whose main

purpose is to separate chart regions and are usually located

in-between tick labels. Such ticks were explicitly annotated

on the PMC dataset, but since these were not present on the

Synthetic dataset, the submission by A-team did not consider

them. We decided to modify our ground truth to produce

annotations that followed the only pattern available on the

synthetic data, and finally we evaluated A-team submission

based on this modified version of the ground truth.

E. Legend Analysis Results

We received 2 submissions (ABC and A-team) for Task 5

on the Synthetic dataset and the results are shown in Table IV.

In this case, A-team (87.13%) outperformed ABC (78.14%).

Given that legend analysis involved identifying which text

elements are legend labels and finding the corresponding

marker bounding boxes (BBs), there are 2 sources of errors.

However, as evidenced by the near perfect performance of

both methods on Task 3, neither system made any errors

in identifying legend labels. Therefore, the difference in

performance is entirely due to localization of the marker

bounding boxes. While ABC had a higher percentage of

predicted BBs with IoU > 0.95 (13.7% vs 1.3%), they also

had a much higher percentage of BBs that had 0.0 IoU

(17.9% vs 3.5%). In general, ABC had a wide variety of BB

quality, while most of the A-team BBs were good. For ABC,

44.7% of BBs had IoU > 0.80, while 78.7% of A-team’s

BBs met this criteria.

F. Tasks 6 and 7 Results

Unfortunately, none of the participant teams were able to

produce results for these tasks for any of the test sets. This

may indicate that the overall chart parsing task is challenging.

VI. CONCLUSION

In this competition, we have provided a new benchmark for

the chart recognition community. From the different results

on our tasks and the usage of both real and synthetic data we

have learned that current systems are able to handle synthetic

data from a single source very well, but real charts are much

more challenging. In particular, we consider that two teams

(ABC and A-team) achieved a tie for the Synthetic dataset,

with each performing best on 2 tasks, and performing roughly

equally on Task 3. A-team is the winner for the PMC dataset,

outperforming one other system on Task 3 and being the

only submission for Tasks 2 and 4.

In the future, we would like to consider different options

to increase the variety of the synthetic data to reflect more

of the challenges found in real charts. We also plan to

construct larger manually annotated datasets of real charts.

The proposed overall Tasks 6 and 7 were challenging as

shown by the lack of participation on these tasks. However,

we hope that the release of fully annotated data and evaluation

scripts for these will help to produce systems which can

handle these tasks in the future.
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