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Abstract—This work summarizes the results of the first
Competition on Harvesting Raw Tables from Infographics
(ICDAR 2019 CHART-Infographics). The complex process of
automatic chart recognition is divided into multiple tasks
for the purpose of this competition, including Chart Image
Classification (Task 1), Text Detection and Recognition (Task 2),
Text Role Classification (Task 3), Axis Analysis (Task 4), Legend
Analysis (Task 5), Plot Element Detection and Classification
(Task 6.a), Data Extraction (Task 6.b), and End-to-End Data
Extraction (Task 7). We provided a large synthetic training set
and evaluated submitted systems using newly proposed metrics
on both synthetic charts and manually-annotated real charts
taken from scientific literature. A total of 8 groups registered
for the competition out of which 5 submitted results for tasks
1-5. The results show that some tasks can be performed highly
accurately on synthetic data, but all systems did not perform
as well on real world charts. The data, annotation tools, and
evaluation scripts have been publicly released for academic use.

Keywords-Chart Recognition; Document Analysis; Text
Recognition and Classification; Graphics Recognition; Perfor-
mance Evaluation.

I. INTRODUCTION

Charts are an effective data visualization tool often used to
supplement textual content. They communicate information
more efficiently and are common in the media, business
documents, and scientific publications. Some charts are
intended to convey a message in a visually pleasing manner,
while others are used to simply display raw data, resulting in
varying levels of design complexity. A considerable amount
of attention has been devoted to automatically decompose
and understand these visualizations [1, 2, 3, 4]. However,
there is a lack of benchmarks which can be used to compare
the effectiveness of the different methods proposed so far. In
this work, we describe the first edition of the Competition on
Harvesting Raw Tables from Infographics (ICDAR 2019
CHART-Infographics), which we consider a major step
in providing common benchmarks and tools for the chart
recognition community.

To provide a new common ground for evaluation, we
have proposed the usage of a large-scale synthetic dataset
generated from real world data sources for training and
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Table I: Distribution of different chart types on the competi-
tion training and testing sets.

Synthetic PMC
Chart Type Train Test Test
Pie 7,001 200 107
Donut 21,202 200 0
Line 41,874 | 1,000 | 2,257
Scatter 41,703 550 532
Vertical Box 20,958 48 69
Horizontal Box 21,007 52 4
Vertical Bar (Grouped) 8,560 595 1207
Vertical Bar (Stacked) 13,401 625 ’
Horizontal Bar (Grouped) 8,586 650 66
Horizontal Bar (Stacked) 13,718 620
Total 198,010 | 4,540 | 4,242

testing, and a smaller dataset based on real charts from
PubMedCentral' as described in Section II. The complex
goal of data extraction from charts has been split into multiple
tasks as described in Section III. While classification tasks are
evaluated with standard metrics, we propose new metrics for
the chart-specific tasks. The participants of the competitions
and brief descriptions of their systems are provided in
Section IV, and the corresponding result of these systems for
each task are analyzed in Section V. Finally, we provide our
concluding remarks and recommendations for future work in
Section VI. The data, annotation tools, and evaluation scripts
have been publicly released for academic use?

II. DATA

We constructed two types of datasets for this competition.
The first one was a large-scale synthetic chart dataset, which
allowed the participants to train and test their system using
deep models. The second dataset was curated from real
charts in scientific publications from PubMedCentral. Both
are described in the following sub-sections.

A. Synthetic Chart Dataset
The Synthetic chart dataset was constructed using data
tables from the following online sources: (1) World Develop-

Uhttps://www.ncbi.nlm.nih.gov/pmc/
Zhttps://chartinfo.github.io/
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Figure 1: The 10 types of charts used in the competition.

ment Indicators (World Bank)?, (2) Gender Statistics (World
Bank)*, (3) Government of India Open Data’, (4) Commodity
Trade Statistics (UN data)®, (5) US Census Data (for 2000
and 2010)7, (6) Price Volume Data for Stocks and ETFs?.

Multiple charts of different types (see Table 1) were
created using the Matplotlib library”®. All tabular data was
first cleansed and converted into a common format. From
each table, different sets of columns and randomized rows
were selected to create the charts. To emulate features of real-
world charts, we introduced variations in chart component
such as: (1) positioning of titles, legends, and legend entries;
(2) font families and sizes; (3) style including color and/or
width of lines, borders, grids, and markers; (4) bar widths
and inner/outer radii of pies; and the (5) addition of optional
elements such as error bars.

Afterwards, the required annotations were obtained using
functions provided by Matplotlib API including tight bound-
ing boxes for text regions, axes, legends, and data elements
(e.g. bars, lines and pies). The statistics for the training and
test data are provided in Table I. Samples from the dataset
are shown in Fig. 1, and the dataset is publicly available
at http://tc11.cvc.uab.es/datasets/ CHART2019-S_1.

B. PubMedCentral Chart Dataset

In order to evaluate participant systems using real charts,
we extracted charts from the PubMedCentral Open Access
repository which contains more than 1.8 million papers. From
these we extracted a small sample of charts that we have

3www.datacatalog. worldbank.org/dataset/world-development-indicators
4www.datacatalog.worldbank.org/dataset/gender-statistics
Swww.visualize.data.gov.in
Swww.kaggle.com/unitednations/global-commodity-trade- statistics/data
Twww.kaggle.com/muonneutrino/us-census-demographic-data/data

8
9

www.matplotlib.org/

www.kaggle.com/borismarjanovic/price- volume-data-for-all-us-stocks-etfs
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annotated in detail. This dataset is publicly available at http:
//tc11.cvc.uab.es/datasets/ICDAR-CHART-2019-PMC_1.

Data Sampling. We first selected journals from fields
such as epidemiology, public health, pathology and genetics
which were deemed to be more likely to contain charts. We
only considered journals with more than 500 publications
and we extracted all papers published after the year 2000.
The figures from these publications were then clustered by
visual similarity thus achieving a quicker separation between
chart and non-chart candidates. Clusters which appeared to
contain a large number of charts were selected for manual
annotation of each image. We finally sampled 4, 242 single
panel figures containing different chart types as described in
Table I. The entire set of charts was used for evaluation of
Task 1. Two disjoint sub-samples were fully annotated for
evaluation of Task 2 and Tasks 3 to 5.

Data Annotation. We developed tools to annotate images
based on the requirements of the different competition tasks
(see Figure 2). First, the figures extracted from scientific
papers were annotated with multiple labels including single
vs multi panel, figure type (chart vs non-charts classes), and
selected single panel chart images were further annotated by
chart type and orientation (horizontal or vertical). While our
tools support panel-wise annotation for multi-panel figures,
we focused on single panel images for this competition.
The next step was the annotation of text regions including
their location, role and transcription. We used the Tesseract
OCR [5] to transcribe most of the selected text regions.We
manually corrected any OCR errors, and we used ETEXstrings
to represent special symbols on the text regions. After text,
we annotated legends whenever these were present on the
charts. Then, for axes we annotated their types (categorical vs
numerical), bounding box of the first quadrant, the locations
of the ticks on each axis, titles and labels of each axis, as
well as any links between ticks and corresponding tick labels.
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Figure 2: Tools developed for annotation of chart images.
Viewing in digital version is strongly recommended.
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Figure 3: Pipeline of tasks for data extraction from chart
images. Upstream tasks feed in their output as the input of
downstream tasks.

Finally, based on the type of the chart, we developed different
tools to annotate their main data elements such as bars, lines,
boxes and scatter marks. Our tools are open source and are
available after the competition at https://github.com/kdavila/
ChartInfo_annotation_tools.

III. TASKS AND METRICS

The overall task of data extraction from the chart image can
be broken into a pipeline of smaller tasks (Figure 3), which
we describe here along with the metrics used to evaluate the
submitted systems. For each task, the ideal outputs of the
previous tasks were provided to the submitted systems so
that we can analyze each task independently of errors made
in previous tasks.

The originally proposed tasks include 1) chart classi-
fication, 2) text detection and recognition, 3) text role
classification, 4) axis analysis, 5) legend analysis, 6) Data
Extraction, and 7) End-to-end Data Extraction. Of these 7
tasks, we received submissions only for Tasks 1-5, so we omit
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lengthy descriptions of Tasks 6 and 7. The data annotations
for these tasks are distributed with the rest of the dataset.

A. Task 1. Chart Classification

In this task, chart images are classified into horizontal
bar, vertical bar, horizontal box, vertical box, line, scatter,
pie, and donut. Note that pie and donut charts are only used
in Task 1. The metric is the average per-class F-measure.
We compute the precision and recall for each class, take
the harmonic mean to produce class F-measures, and then
average these values to produce the final score.

B. Task 2. Text Detection and Recognition

We asked participants to perform text detection and
recognition at the logical element level, e.g. multi-line and
multi-word titles or axis tick labels were detected as a single
element. Participants systems were provided with the chart
image and the correct chart class.

Detected bounding boxes were compared to ground truth
bounding boxes and considered a match if the intersection
over union (IOU) exceeded a threshold (0.5). Many-to-one
and one-to-many matches were resolved by choosing the
pairs with highest overlaps and counting the other boxes as
false negatives or false positives. Matched pairs are scored
by IOU for detection as well as max(1 — NCER,0) for
recognition, where, NCER is the normalized character error
rate measured as the edit distance between ground truth string
and predicted string normalized with respect to ground truth
string length.

Per image, the detection scores are averaged by maximum
of number of ground truth boxes or number of predicted
boxes, and recognition scores are averaged by number of
ground truth boxes. Finally, the harmonic mean of the
detection and recognition scores averaged across the entire
test data set is presented as the evaluation metric for Task 2.

C. Task 3. Text Role Classification

For this task, text bounding boxes and transcripts were
provided as input for all logical elements, and the participant
systems were expected to classify each text element according
to its semantic role in the chart. The classes are: chart title,
axis title, tick label, legend title, and legend label. Like Task
1, we use the average per-class F-measure.

D. Task 4. Axis Analysis

For axis analysis, systems associate tick labels with pixel
coordinates. Accurately understanding the axes allows chart
data point geometries (bar heights, scatter points, boxes, etc.)
to be translated from pixel coordinates to semantic values.
The input for Task 4 is the same as Task 3 (note that which
text elements are tick labels are not given), and the output
is, for both the x-axis and y-axis, a list of text elements (tick
labels), each paired with an (z,y) point representing where
the tick occurs in the image.
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The metric for this task is a weighted F-measure, where
predicted tick marks receive a partial true positive score
between 0 and 1 based on location accuracy. If a non-tick
text element is predicted as a tick, then it receives a score
of 0. We define two distance thresholds, ¢ = 1.0% and
b = 2.0% of the image diagonal, and score predictions that
are a distance d from the GT tick location by

1, ford<a
s(d,a,b) =¢ =4 fora<d<b (D)
0, for d > b

Recall is computed as the sum of the scores divided by
the number of GT ticks, and precision is the sum of scores
divided by the number of predicted ticks.

E. Task 5. Legend Analysis

For legend analysis, we wish to pair the textual labels in
the legend with the graphical marker in the legend. We take
a similar formulation as Task 4, and require that systems
produce a list of text elements that are paired with bounding
boxes, where the bounding box (BB) surrounds the legend
marker. As in Task 4, the input includes all text elements,
not just those related to the legend. We score this tasks using
a weighted F-measure, similar to Task 4, where true positive
predictions must have the text element, but the partial true
positive score is determined by BB IoU.

F. Task 6. Data Extraction

Given that charts are intended to visually convey numerical
data, one main goal of chart understanding is to extract the
original data (e.g. a CSV) used to create the chart. Though
we received no submissions for this task, we provide a brief
descriptions. We broke this task into 2 sub-tasks: 6a) Plot

Element Detection and Classification and 6b) Data Extraction.

Both sub-tasks received as input the ideal outputs of Tasks
1-5. For Task 6a, the goal was to segment the image into
the atomic elements that represent data such as bars, points,
lines, and boxes. For Task 6b, the goal was to produce named
sequences of (x,y) pairs that were used to create bar, scatter
and line plots, and the summary statistics for box plots.

G. Task 7. End-to-End Data Extraction

We had originally designed a task equivalent to task 6b,
except that the only input was the chart image. However,
received no submissions for this task. This corresponds to
the real-world scenario where no GT data is given apriori.

IV. PARTICIPANTS

1) ABC image processing algorithm: Chen Chen, Cui Chao,
Jin Song, Yang ManYe, Guo Meng from ABC Fintech. Task
1: ResNet-101 [6] based neural network with multi-label
classification was adapted for charts. Task 2: Connected
component analysis and Faster-RCNN [7] network with

suitably modified anchor boxes was used for detection.
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Attention-based modules were used to handle text in multiple
orientations and complex layouts for recognition. Task 3: Gra-
dient boosting decision tree trained on 20 features composed
from aspect ratio, position, number of horizontally/vertically
aligned textboxes, whether text is numeric, direction of text,
relative position between text and axis/legend was used. Task
4: Axis detection was done using color and line segment
detection. Ticks were detected using gradient changes along
axes. Task 5: Multi-instance segmentation model based on
ResNet [6] and FPN [8] was used to segment legend markers.
Rules based on aspect ratio, area and length of bounding box
sides were used to eliminate markers which were matched to
text boxes based on proximity. Additional custom synthetic
data was generated to augment the provided data.

2) ANU-Team: Hanif Rasyidi from Australian National
University, Research School of Electrical, Energy and Mate-
rials Engineering. Task I: Neural network with ResNet-50
[6] architecture, pretrained on ImageNet [9], with a dense
layer regularized using Dropout was used.

3) A-team: Joao Pinheiro from Universidad Catolica San
Pablo, Peru and Jorge Poco from Fundac¢ao Getulio Vargas,
Brazil. Task 1: Neural network with VGGNet architecture
[10], pretrained on ImageNet [9] was used. Task 2: PixelLink
text detection system [11], pretrained on ICDAR 2015
scene text dataset [12], was finetuned with the training data
provided. For text recognition, Tesseract OCR [5] was used.
Task 3: SVM trained on geometric features extracted from
text bounding boxes was used [13]. Task 4: Using tick label
text boxes, tick points were located based on proximity of
text to a ‘skeleton’ constructed from the input image. Task 5:
The original image was binarized and connected components
are extracted and filtered by size. A component was matched
to a legend label based on proximity as the legend marker.
For PMC data, additional training data [13, 14] was used
along with a fraction of synthetic data for Tasks 1-2.

4) Boomerang: Rima Hazra, Atharva Vyas from Indian
Institute of Technology Kharagpur, India. 7ask 1: A neural
network with 5 convolutional layers with ReLU activation (2
x 32 depth with stride 5, 2 x 64 depth with stride 5 and 1
x 128 depth with stride 5) followed by a dense layer (1024
neurons) with Dropout regularization was used.

5) IITB-Team: Utkarsh Gupta, Soumen Chakraborthi from
Indian Institute of Technology Bombay, India. Task 3: Multi-
class classification was performed using an SVM with one
vs one classification strategy for text role classification. From
each input bounding box, 14 features are extracted derived
from aspect ratio, coordinates, position with respect to center
of image, overlaps with other boxes and position relative to
a container bounding box.

V. COMPETITION RESULTS

In the following sub-sections we analyze the performance
of the submitted systems on the tasks.
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Table II: Results for Task 1 (average F-measure)

Team Synthetic | PMC
ABC 99.81 | 88.29
A-Team 94.82 | 77.52
ANU-Team 89.78 | 35.96
Boomerang 9.59 | 12.06

Table III: Results for Task 2

Confusion Matrix
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Figure 4: Task 1 Confusion Matrices for the top 2 performing
systems on PMC.

A. Chart Classification Results

We received the most submissions for Task 1, with 4
participants submitting results for both the Synthetic and
PMC dataset. In general, accurate results were obtained on
the synthetic data, with nearly perfect accuracy obtained by
the ResNet classifier employed by ABC. The main source of
confusion for ABC and A-team were classifying bar charts
as either stacked or grouped.

For the PMC dataset, ABC still performed best, but
all teams had much higher error rates compared to the
Synthetic dataset. The confusion matrices (Fig. 4) for the
2 best performing methods look similar. In particular, both
horizontal and vertical box plots were often misclassified as
line or scatter plots, and line plots were difficult to distinguish
from scatter plots. This may be because some scatter plots
in PMC do have lines (e.g. a best fitting line), but the lines
themselves do not represent the raw data. For ABC, horizontal
bar, vertical bar, and pie charts were classified with near
perfect accuracy.

It seems the key to obtain high performance on PMC was

to use additional data beyond the Synthetic training data.

For ABC, this additional data was created by applying many
data augmentation transformations to the synthetic images,
which helped the classifier be more robust. For A-team, the
model was pre-trained on ImageNet [9] and fine-tuned on

some synthetic data and 2 external chart datasets [13, 14].

ANU-Team only pre-trained on ImageNet and fine-tuned on
the provided Synthetic dataset, so the resulting classifier was
less robust to the real-world charts.

B. Text Detection and Recognition Results

Only two teams submitted results for Task 2, text detection
and recognition, as it is presented in Table III. Both teams

Synthetic
Team 10U OCR | F-measure
ABC 69.92 | 94.97 80.54
A-Team | 70.96 | 78.97 74.75
PMC
A-Team | 48.48 [ 58.81 [ 53.15

submitted results for the Synthetic test set and only A-team
submitted results for the PMC test set. We notice that both
approaches achieve similar performance in terms of text
detection as shown by their very similar scores in IOU.
However, in terms of text recognition we can see that team
ABC achieves a considerably much higher score which leads
to an overall higher F-measure score. While only one team
submitted results for this task on the PMC dataset, we can
see that their numbers are considerably lower for this dataset.
We found this dataset in general to be more challenging for
text detection since images are not always available in an
appropriate resolution, and the text regions are sometimes
hard to read even for human annotators. Many text regions
in this dataset also contain a considerable number of special
symbols such as Greek letters, superscripts, and subscripts.
It is worth noting that while A-team used the same OCR
engine (Tesseract OCR) that was employed to speed up
the annotation process, we found that this engine failed to
recognize a large number of strings that had to be manually
typed in during the ground truth generation process.

C. Text Role Classification Results

Three teams submitted results for Task 3 as shown in
Table IV. It is important to notice that the class legend
title was present in only a few images in the PMC test set
and was not present in the Synthetic dataset. Therefore, we
decided to omit it from the Averaged per-class F-measure.
We also omitted two more roles (Value Label and Other)
that were present on the PMC dataset but not present in
the Synthetic data set. The final numbers provided are the
average F-measure for Chart Title, Axis Title, Legend Label
and Tick Label. Both A-team and ABC team produced nearly
perfect scores for the Synthetic dataset, but we can see that
the score for the PMC submissions left room for considerable
improvement. Common confusion in this dataset were related
to text regions from different classes being misclassified as
legend labels due to their similarity in layout organization.

D. Axis Analysis Results

Only two teams submitted results for Task 4 as shown
in Table IV. A-Team achieved a near perfect weighted f-
measure score on the Synthetic dataset, while ABC team
also achieved a very high score. All ticks in the Synthetic
dataset followed a single location pattern were each tick
was directly associated with a label. However, for the PMC
dataset there is a much larger variety in terms of ticks styles
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Table IV: Results for Tasks 3, 4 and 5

Synthetic

Task 3 Task 4 Task 5
Average Weighted Weighted

Team
F-measure | F-measure | F-measure
ABC 100.00 96.49 78.14
A-Team 99.95 99.76 87.13
IITB-Team 60.25 - -

PMC

A-Team 84.38 77.33 -
IITB-Team 35.58 - -

and locations. For example, many charts include minor ticks
that are only used as a visual aid but are not linked to any
tick label. In this category, we also find ticks whose main
purpose is to separate chart regions and are usually located
in-between tick labels. Such ticks were explicitly annotated
on the PMC dataset, but since these were not present on the
Synthetic dataset, the submission by A-team did not consider
them. We decided to modify our ground truth to produce
annotations that followed the only pattern available on the
synthetic data, and finally we evaluated A-team submission
based on this modified version of the ground truth.

E. Legend Analysis Results
We received 2 submissions (ABC and A-team) for Task 5

on the Synthetic dataset and the results are shown in Table I'V.
In this case, A-team (87.13%) outperformed ABC (78.14%).

Given that legend analysis involved identifying which text
elements are legend labels and finding the corresponding

marker bounding boxes (BBs), there are 2 sources of errors.

However, as evidenced by the near perfect performance of
both methods on Task 3, neither system made any errors
in identifying legend labels. Therefore, the difference in
performance is entirely due to localization of the marker
bounding boxes. While ABC had a higher percentage of
predicted BBs with IoU > 0.95 (13.7% vs 1.3%), they also
had a much higher percentage of BBs that had 0.0 IoU
(17.9% vs 3.5%). In general, ABC had a wide variety of BB
quality, while most of the A-team BBs were good. For ABC,
44.7% of BBs had IoU > 0.80, while 78.7% of A-team’s
BBs met this criteria.

F. Tasks 6 and 7 Results

Unfortunately, none of the participant teams were able to
produce results for these tasks for any of the test sets. This
may indicate that the overall chart parsing task is challenging.

VI. CONCLUSION

In this competition, we have provided a new benchmark for
the chart recognition community. From the different results
on our tasks and the usage of both real and synthetic data we
have learned that current systems are able to handle synthetic
data from a single source very well, but real charts are much
more challenging. In particular, we consider that two teams
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(ABC and A-team) achieved a tie for the Synthetic dataset,
with each performing best on 2 tasks, and performing roughly
equally on Task 3. A-team is the winner for the PMC dataset,
outperforming one other system on Task 3 and being the
only submission for Tasks 2 and 4.

In the future, we would like to consider different options
to increase the variety of the synthetic data to reflect more
of the challenges found in real charts. We also plan to
construct larger manually annotated datasets of real charts.
The proposed overall Tasks 6 and 7 were challenging as
shown by the lack of participation on these tasks. However,
we hope that the release of fully annotated data and evaluation
scripts for these will help to produce systems which can
handle these tasks in the future.
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