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Key points

e Variations in spatial and temporal sampling patterns over heterogeneous sites intro-

duce variability in carbon budgets from flux towers.

e Spatial heterogeneity is prevalent across the network and results in up to 60%

overestimation of mean biome productivity.

e A new method is proposed to account for contributions of sampling variations to

carbon budget estimates at heterogeneous flux sites.

©2020 American Geophysical Union. All rights reserved.
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Abstract

Estimating global terrestrial productivity is typically achieved by rescaling individual flux
tower measurements, traditionally assumed to represent homogeneous areas, using gridded
remote sensing and climate data. Using 154 locations from the FLUXNET2015 data base,
we demonstrate that variations in spatial homogeneity and non-uniform sampling patterns
introduce variability in carbon budget estimates that propagate to the biome scale. We
propose a practical solution to quantify the variability of vegetation characteristics and
uniformity of sampling patterns, and moreover, account for contributions of sampling
variations over heterogeneous surfaces to carbon budgets from flux towers. Our proposed
space-time-equitable budgets reduce uncertainty related to heterogeneities, allow for more
accurate attribution of physiological variations in productivity trends and provide more

representative grid cell averages for linking fluxes with gridded data products.

Plain language summary

Uniform vegetation characteristics are a core requirement for atmospheric measurements
of carbon, water and energy fluxes using monitoring stations called flux towers. The
variability of ecosystem properties was commonly assumed to be negligible because no
standard approach existed to quantify it. We developed a standardized approach to quantify
the variability of vegetation properties from satellite data, and applied it to 154 sites within
the global network of flux towers. We show that non-uniform vegetation characteristics are
prevalent across the network, and that sampling patterns at such sites influence carbon
budget estimates at individual flux sites. This artefact propagates when flux tower data is
used to extrapolate plant productivity to larger scales. We propose a practical solution
that accounts for the sampling variability over sites with variable vegetation characteristics,

which removes this previously unaccounted artefact from a sites annual carbon budget. Our

©2020 American Geophysical Union. All rights reserved.



49

50

51

52

spatially representative budgets bridge a critical gap in scaling ecosystem processes from
individual sites to the globe and allow for more accurate estimates of terrestrial carbon

uptake:

Keywords: heterogeneity, carbon budget, scaling, uncertainty, footprint, eddy covariance
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52 1 Introduction

s¢  Hcosystem-scale carbon sequestration rates from flux towers present our current best means
55 to directly quantify carbon cycling from the ”bottom-up”. Observations from individual
s sites are contributed to local, regional and global networks that strongly enhance the
s7 value of single site data (Baldocchi 2008). While scientific motivation, funding and data
ss  processing vary at a site-level (Novick et al. 2018), these distributed observations are
s aggregated in a standardized global network collection (FluxNet). This allows researchers
60 to decipher similarities and differences among individual sites and biomes, and to rescale
61 local observations to regional and continental scales. Such synthesis activities, along
62 with related remote sensing and modelling efforts, form an integral foundation for global
63 assessments of climate change impact (e.g., IPCC Reports) which informs the general
6« public on the state of climate change.

65 Regional and global scale estimates of carbon cycling depend on appropriate aggregation
e of individual tower fluxes, grid-scale observations of vegetation from repeat satellite
67 observations, and Earth system modeling (e.g. Ahlstrom et al. 2015; Bodesheim, Jung,
s Gans, Mahecha, and Reichstein 2018; Chen et al. 2017; Huang et al. 2018; Jung et al.
e 2011). An essential prerequisite to justify upscaling from sites to the globe from bottom-
70 up measurements requires homogeneous site-level characteristics (i.e. topography, soil
71 and vegetation properties; Chen et al. 2012; Kim et al. 2006). Spatial homogeneity is
72 defined as ”the measurement that is taken in the space-time domain reflects the actual
73 conditions in the same or different space-time domain taken on a scale appropriate for a
7 specific application” (Nappo et al. 1982); that is in a perfectly homogeneous ecosystem,
75 the magnitude of fluxes would be uniform with wind direction as individual tower locations

76 ~would provide spatially representative measurements. However, site-level characteristics

©2020 American Geophysical Union. All rights reserved.



77 are in practice rarely completely homogeneous (Foken and Leclerc 2004; Giannico et al.
7. 2018; Goeckede et al. 2008; Schmid and Lloyd 1999; Stoy et al. 2013), and changes in
79 the size of observed fluxes may result from changes in the prevailing wind directions that
g0 cause systematic differences in the area that is being sampled rather than from changes in

a1 ecological activity (Fig. 1).

homogeneous heterogeneous

Windrose

year A Weather charac-

teristics change
between years

Windrose

year B Area that is being

sampled changes
between years

Vegetation
classification Vegetation
properties vary
within ecosystem
Ecosystem
properties

Traditional aggregation of observations over heterogeneous
ecosystems introduces variations in annual budgets depending
on the parts of the ecosystem being sampled each year.

Figure 1: Conceptual illustration outlining how sampling variations can introduce variability in
annual carbon budgets at sites with heterogeneous surface characteristics. This variability in carbon
fluxes due to the area being sampled is unaccounted for in traditional carbon budgets, which simply
aggregate observations over time. Our proposed solution accounts for wind-induced temporal and
spatial sampling variations over heterogeneous ecosystems (differing annual windroses; upper two
rows). We use variations in the Enhanced Vegetation Index (3rd row and the corresponding aerial

view; 4th row) to quantify vegetation properties.

82 Specifically, individual flux tower observations represent an aggregate of surface conditions
83 over a dynamically varying upwind area (termed flux footprint). Yet, the traditional

s approach to constrain ecosystem carbon budgets simply aggregates observations over certain

©2020 American Geophysical Union. All rights reserved.
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periods (Aubinet, Vesala, and Papale 2012; Lee, Massman, and Law 2004), regardless
of flux footprint variations. In particular, over heterogeneous ecosystems (Fig. 1), this
systematically embeds variability that has not been previously accounted for (Amiro 1998;
Griebel et al. 2016; Leclerc, Meskhidze, and Finn 2003; Nappo et al. 1982; Schmid et al.
1999). This calls into question the accuracy of upscaling methods, as the contributions
of such surface heterogeneities at the model grid scale are rarely quantified or attributed
(Chen et al. 2009; Rebmann et al. 2005).

Unfortunately, there is no standard method currently in place to rectify the magnitude
of this interactive effect. In this paper we (i) assess the prevalence and magnitude of the
spatial heterogeneity of vegetation characteristics within a 500 m radius of all Tier 1 sites
from the FluxNet2015 data set; (ii) assess the sampling coverage of fluxes in space and
time; (iii) provide a practical solution that treats the embedded spatial sampling bias by
attributing the contributions of spatial heterogeneities to flux tower estimates. This allows
us to (iv) assess the magnitude of the effects of spatial sampling corrections on mean biome
productivity estimates.

The proposed approaches to quantify surface properties and spatio-temporal sampling
characteristics provide the first standardized methods of assessing and reporting site
homogeneity within the flux community (Fig. 2). By removing this unaccounted variability
through variations in spatial and temporal sampling patterns over heterogeneous sites we can
attribute the contributions of surface heterogeneities to flux tower estimates. This enables
us to establish more reliable impacts of changing weather patterns on ecosystem functioning
and which will ultimately result in more accurate predictions of global productivity in

future climates.

©2020 American Geophysical Union. All rights reserved.



s 2 | Materials and methods

wo 2.1 Heterogeneity Index

1o We constrained a Heterogeneity Index (HI) based on the EVI (Enhanced Vegetation
m  Index) within a 500 m radius around each flux tower from Landsat 5 (1984-2011) and
12 Landsat 8 (2014) using Google Earth Engine. The 500 m radius (r) was an example, an
us illustrative compromise between sites with a potentially smaller footprint (e.g. croplands
s and grasslands) and sites with a potentially larger footprint (tall towers and forest sites),
us as the lack of site-specific information about canopy and instrument height (and how these
ne varied through time) prevented us from calculating actual source areas of fluxes for each
u7 site year. Landsat 7 data was discarded due to the Scan Line Corrector failure and only
us years with complete coverage were considered. All scenes were masked for clouds, cloud
10 shadows and snow presence. Next, for all years where Landsat data was available, we
1o calculated annual summary statistics (median, percentiles) for each 30x30 m pixel within
121 the 500 m radius around the flux tower location. The HI of each year was then calculated
122 from the difference between the 95th and 5th percentile divided by the median of pixels in

123 the 500 m radius:

_ EVIP%(T) - EVIP5(T) (1)
EVIP50(7“)

HI(r)

124 Lastly, we calculated the mean site HI as the arithmetic mean of all years with flux

125 observations in the FLUXNET?2015 data base.

s 2.2 Eddy covariance data

127 We used all 154 Tier 1 sites that supplied wind characteristics with their flux data from
s the FluxNet2015 data set to calculate the spatio-temporal sampling coverage (section

129 2.2.1). We excluded biomes that were only represented by one site in the database (closed

©2020 American Geophysical Union. All rights reserved.
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shrublands; CSH). To ensure that disproportionally large data gaps in a given year would
not bias the observations towards specific seasons, we removed years with less than 50%
of the site-specific mean annual data coverage (72 site years from 64 sites), as these also
resulted in large deviations from the mean site and mean biome NEP (Figs. S1 and
S2). From the remaining 1071 site years we calculated the mean traditional and space-
time-equitable carbon budgets per site (section 2.2.3), and grouped the 154 sites into 10
biomes following the IGBP classification that was provided with the data. It should be
mentioned that our data filtering yielded more conservative results, i.e. smaller differences
between traditional and space-time-equitable budgets. Further, it should be noted that
we are not attempting to generate a true site budget when using only observational data,
as these are biased towards daytime observations (see section 4.3.1). We only provide
estimates from non-gap-filled data to get a number that allows us to assess the magnitude
of impact of the way we constrain carbon budgets (that is by comparing budgets based
on simple sums of observations with the space-time-equitable approach that treats the
spatio-temporal sampling bias), as these are based on exactly the same underlying data
for all methods (Griebel et al. 2016; Horst et al. 2019). We provide an evolution of our

accounting approaches (SI section 2) in the Supplementary Information.

2.2.1 Spatio-temporal sampling coverage

The annual spatio-temporal sampling coverage (SC) is calculated from all direct observations

in a given year (Fig. S3 and SI section 1) by:

1. attributing the relative contribution of observations in a matrix with wind sectors as

columns (spatial bins), and time intervals as rows (temporal bins; Fig. S3a,b);

2. summing across each column/row to isolate the spatial from the temporal sampling

variability (Fig. S3c,d);

©2020 American Geophysical Union. All rights reserved.



154 3. arranging row/column means (in ascending order) and plotting the cumulative sums

155 of observed against evenly distributed relative contributions (Fig. S3e,f).

156 4. Individual spatial /temporal SC is then defined as the divergence from the 1:1 line

157 (ratio of areas under curves; Fig. S3e,f); and
158 5. the composite spatio-temporal SC is derived as the mean from the temporal and
159 spatial components.

160 Lastly, we calculated the mean spatio-temporal SC for each site as the arithmetic mean
161 of the all years with flux observations in the FLUXNET2015 data base. The SC ranges
162 from 0% (unilateral sampling in space and time, i.e. all observations derived from one
13 wind sector and one time interval) to 100% (i.e. fully balanced sampling in space and
164 time with equal contribution from each wind sector and time interval; Fig. S3e,f). Note
165 that arranging row/column means in ascending order puts more weight on bins with low
166 coverage. However, this is necessary to remove the variation of sampling coverage due to
17 the location of the sectors with low coverage (Fig. S4). While this puts more weight on
168 bins with lower than expected coverage and creates a worst-case scenario for the sampling
160 coverage, an ascending arrangement presents an objective and practical indication that a
170 sampling bias exists when calculating carbon budgets at heterogeneous sites with a low

171 temporal or spatial sampling coverage (Fig. S5).

12 2.2.2 Traditional carbon budgets

173 Traditional budgets assume homogeneous surface characteristics (Aubinet et al. 2012; Lee
s et al. 2004) and observations are aggregated over certain periods regardless of flux footprint
175 variations due to changes in prevailing winds (Fig. 1). For each FluxNet site we used all

76 available observational data that passed the ustar-filter (NEE_-VUT_REF conditional to

10

©2020 American Geophysical Union. All rights reserved.
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that NEE_VUT _REF_QC=0), as well as gap-filled data (NEE_VUT_REF conditional to
NEE_VUT_REF_QC=3) to calculate traditional annual budgets (®) by aggregation of each

flux observation (F¢) in a given year (i):

2.2.3 Space-Time-equitable carbon budgets

Building on the original approach that attributes spatial sampling variations to carbon
budgets based on average wind patterns by Griebel et al. 2016 (SI section 2.1.1 and Figs.
S6, S7), we developed space-time-equitable carbon budgets to equally attribute spatial
and temporal sampling variations from an uneven spatio-temporal sampling coverage
(SI section 2.1.3). Space-time-equitable budgets attribute equally in space (i.e., each
wind sector contributes an equal amount to the annual budget; see also space-equitable
budgets in SI section 2.1.2) as well as in time (i.e., the mean flux in each wind sector
was comprised of equal time slots to ensure an equal diurnal representation in each wind

sector). Space-time-equitable budgets are calculated in three steps:

1. attributing the mean carbon flux (F.(i,j, h)) in a matrix with wind sectors (j) as
columns (k spatial bins), and time intervals (h) as rows (m temporal bins) during

each year (7)

2. calculating the mean space-time-equitable carbon flux (¢) by calculating row means

followed by the column mean of the matrix:

m k
60) =S S Tl gih) x (3)

h=1 j=1

3. multiplying the mean carbon flux in each year with the total number of observations

in that year:

11
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This ensures comparability between traditional budgets that were based on the sum of all

observations and space-time-equitable budgets.

2.3 Statistical approach

Significant relationships between the mean annual HI and the absolute difference between
traditional and space-time-adjusted budgets were tested using a linear model for all
site-years and site means that passed the quality control, using observational as well as
gap-filled data (Figs. S8-S10). We performed a two-way ANOVA and a Tukey test to
assess significant differences in estimates of mean biome NEP between traditional and
space-time-equitable budgets, as well as their interaction. The underlying assumptions were
assessed using qqplot and residual plots. Data for traditional budgets were log-transformed
and space-time-equitable budgets were square-root transformed to correct for non-normal

data distributions. Residual plots confirmed constant variance.

3 Results

3.1 Quantifying spatial heterogeneity of vegetation and sampling cover-

age around flux towers

We identified variability of vegetation characteristics at the majority of flux sites, as
indicated by a mean Heterogeneity Index (HI) of 0.58 (P5=0.29 and P;5=0.67; Fig. 2a).
Variations in vegetation characteristics were present in all biomes (Fig. 2a), with a larger
HT at sites in Europe and at high latitudes compared to sites in the central US and
the southern hemisphere. Evergreen broadleaf forests and Savanna’s tended to be more
homogeneous, whereas wetlands, grasslands, open shrublands and mixed forests were

characterized by a higher HI. Further, a mean spatio-temporal sampling coverage (SC) of

12
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70.6% indicated variations in the uniformity of the spatial as well as the diurnal sampling
pattern at most sites (Py5=65.5% and P;5=76.8%; Fig. 2b), which have the potential to
introduce variations in annual budget estimates depending on the parts of the ecosystem
being sampled at heterogeneous sites. To date, flux footprint variations over heterogeneous
ecosystems due to changes in prevailing winds (Fig. 1) have not been accounted for
when generating annual budgets with the only existing and universally applied traditional
budgeting approach. Thus, we propose a practical solution to reduce the embedded spatial
and temporal sampling biases by attributing the contributions of spatial heterogeneities to

flux tower budgets (Figs. S6, S7).

13
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28 e way we budget matters for biome productivity estimates

20 Across all sites, the relationship between the mean annual HI and the absolute difference

230 @raditional and space-time-equitable budgets was significant, even when using gap-

231 filled (P<0.05; Fig. S8). While the relationship for observational data is still affected

e imbalanced diurnal sampling pattern Chu, Baldocchi, John, Wolf, and Reichstein
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2017 and confounded by generally small budgets in the identified heterogeneous biomes;
Figs. S8, S9), a positive relationship persists when using gap-filled data (which despite
not accounting for spatial sampling variations does remove the diurnal sampling bias; Figs.
S8, S10). These non-negligible differences between traditional and space-time-equitable
budgets demonstrate that the size of fluxes was not uniform with wind direction at the
majority of sites (Fig. 2), and highlights that a significant share of a sites annual budget
is determined by how often each part of the ecosystem has been sampled in a given year
(Figs. 1, 2). These site-level effects are then transferred to mean biome NEP estimates,
which differ significantly between traditional and space-time-adjusted budgets (P<0.001
using observed and P<0.05 using gap-filled data; Fig. 3).

Even for traditionally constrained carbon budgets, there is considerable variation
in traditionally calculated mean annual NEP among sites in each biome represented in
the FluxNet2015 data set, irrespective of whether space-time-equitable NEP was based
on observational (P<0.001; Fig. 3) or on gap-filled data (P<0.05; Fig. S11). On average,
across all FluxNet2015 sites, mean biome NEP for space-time-equitable budgets differed
from traditional budgets by -10.4% using gap-filled data (ranging from + 12.6% at Savanna’s
to -35.1% at wetlands; Table S2), highlighting the non-negligible variation of NEP when
constraining budgets as simple sums. This difference is evident despite a low mean data
coverage (34% of high quality data per site; Fig. S12) and despite gap-filling procedures
assuming homogeneous site characteristics (they have 100% temporal sampling coverage,
but are not stratified by wind direction and thus do not consider spatial sampling variations
over heterogeneous ecosystems). The difference between the traditional and the space-time-
equitable budgeting approach to derive the mean annual biome NEP increases significantly
when using only observational data (-49.6%, ranging from -36% at mixed forests to -62%

at grasslands; Fig. 3, Table S2), which results from the disproportional diurnal data

15
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28 coverage at individual sites and the proportional re-weighting of nighttime data in the
250 _space-time-equitable budgets that introduces variability in the temporal sampling coverage

x0 (Fig. S3).

E Traditional observed E Traditional gap-filled - Space-Time-equitable
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n=6 n=11 n=7 n=18 n=37 n=26 n=7 n=18 n=9 n=15
HI=0.28 HI=0.31 HI=0.37 HI=0.45 HI=0.53 HI=0.54 HI=0.58 HI=0.74 HI=0.81 HI=1.1
-500 T T T T T T T T

WSA EBF SAV DBF ENF GRA MF CRO OSH WET
Biomes

Figure 3: Variability of mean annual net ecosystem productivity (NEP; gCm~2yr—!) estimates
depending on the method that was used to constrain the mean carbon sequestration rates for each
site in each biome. Traditional budgets represent the unweighted sum of all observations in a
year using only directly measured (traditional observed) and gap-filled data (traditional gap-filled).
Space-time-equitable budgets (using observational data only) weighted all direct observations
towards a spatially equal contribution of each wind sector and an equitable temporal representation.
Note that the data used to constrain the mean annual NEP for each site included all site-years that
passed the minimum data coverage requirement, and that individual years were averaged to a site
mean prior to grouping by biome. Whisker length indicates the inter-site variability as the upper
and lower range of the 95% confidence interval, the line represents the median annual NEP for each
biome, and the biome order reflects the mean biome Heterogeneity Index (HI; increasing towards
the right). Numbers indicate the total number of sites in each biome: WSA=woody savannah,
EBF=evergreen broadleaf forest, SAV=savannah, DBF=deciduous broadleaf forest, ENF=evergreen

needleleaf forest, GRA=grassland, MF=mixed forest, OSH=open shrublands, WET=wetland.
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.« 4  Discussion

%2 4.1 A practical solution to treat the embedded spatial sampling bias

%3 Traditional annual carbon budgets comprise a simple sum of gap-filled tower observations
264 over a year, assuming perfectly homogeneous conditions in space and time (Aubinet et al.
265 2012; Lee et al. 2004). They are typically based on gap-filled data, yet existing gap-filling
266 procedures assume homogeneous site characteristics as they are not stratified by wind
267 direction, and thus do not consider flux footprint variations over heterogeneous ecosystems.
28  Further, with an average data coverage of 34% for high quality data (Fig. S12), the number
60 of modeled data far outweighs the number of observations in a given year at most sites,
270 which is particularly prevalent in very cold environments (Horst et al. 2019). However, all
11 sites to some degree (Aubinet et al. 2012; Baldocchi 2003), and some sites to a very large
272 degree, experience diurnal variations in the prevailing wind directions, e.g. sites affected by
213 land-sea breezes or by mountain-valley winds (Goulden, Munger, Fan, Daube, and Wofsy
212 1996; Hiller, Zeeman, and Eugster 2008; Zardi and Whiteman 2013).

25 Earth system models typically operate at a larger scale than flux tower footprints (~3000
o km? vs. 1-10 km?; Jung, Reichstein, and Bondeau 2009), but they assume that flux tower
277 observations are representative of the mean biophysical and climatological properties of
278 the grid cells they are located in. Space-time-equitable budgets provide a more uniform
a79  spatial average of the ecosystems flux characteristics than traditional budgets, through
280 rectifying variations in the sampled upwind area. Furthermore, the equal attribution of
281 temporal bins within each sector ensures that the mean flux of each wind sector is based
22 on a time-uniform contribution of data (Fig. S6). Thus, space-time-equitable budgets are
283 expected to improve the spatial representativeness of an ecosystem’s carbon budget, as

284 each wind sector contributes the same proportion to an annual budget irrespective of how

17
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often it has been sampled in any given year (Fig. S6). Such spatially robust productivity
estimates allow for more accurate examination of interannual variations and long-term
trends of flux tower data, while also being more appropriate for linking fluxes with gridded

climate and remote sensing data.

4.2 Systematic attribution of surface heterogeneities to carbon budgets

We identified variability of vegetation characteristics at the majority of flux sites (mean
HI=0.58; Fig. 2), providing evidence that spatial homogeneity of site characteristics does
not hold true for many flux tower locations. A perfectly homogeneous ecosystem would have
a HI of zero. Likewise, a synchronous change of all pixels throughout the ecosystem over a
year (e.g. deciduous forests) results in similar mean annual values of the individual pixels
and ultimately an HI of zero. The index only increases with increasing difference between
the upper and lower percentiles of pixel values in respect to the median value across all
pixels. That is, in a heterogeneous ecosystem (e.g. mixed forests), individual pixel values
might change at different rates throughout the year, resulting in spatial gradients across
individual mean pixels and a non-zero HI. The HI might be extended by incorporating
variations in topography and soil properties, and ideally each site would use a footprint
model to constrain the exact spatial extent. Yet, our HI provides the first standardized
measure for the flux community to report site heterogeneity along with carbon budgets.
Further, the HI might not be zero, but the spatio-temporal sampling coverage might
be uniform (100%). Then, the balanced sampling pattern would fully account for the
heterogeneous surface characteristics, and space-time equitable budgets would be identical
to traditional budgets. However, no site was fully homogeneous and no site had a mean
spatio-temporal sampling coverage above 85% (Fig. 2), suggesting that carbon budget

estimates are commonly affected by sampling variations at most sites to a small degree,

18
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and at some sites to a large degree.

Spatial heterogeneity and its effect on CO5 budgets have been the subject of very few
targeted studies (Griebel et al. 2016; Leclerc et al. 2003; Nappo et al. 1982; Schmid et al.
1999). To our knowledge, ours is the first study to quantify the effect of spatio-temporal
sampling variations over heterogeneous ecosystems on annual COs sequestration estimates
at flux tower sites. Further, our findings indicate that heterogeneity-induced uncertainty
from individual tower observations affects mean biome productivity estimates on orders up
to 35% (gap-filled data; Table S2) and 62% (observational data; Fig. 3, Table S2). Thus,
if left untreated, even sophisticated upscaling of flux tower observations via remote sensing
and Earth system modelling are degraded through superimposing spatio-temporal sampling
patterns over actual biophysical variability at the measurement sites, thus contributing to
uncertainties in global carbon budget estimates (Ahlstrom et al. 2015; Moncrieff, Malhi,
and Leuning 1996; Schimel et al. 2001). As a solution we suggested alternative constraints
for calculating ecosystem carbon budgets by systematically attributing the contributions of
surface heterogeneities and variations in the spatio-temporal sampling coverage to annual

carbon budgets.

4.3 Limitations and trade-offs

4.3.1 Using observational vs. gap-filled data

Over the past decades, significant progress has been made by the flux community to
establish rigorous quality control assessments that test for the fulfillment of theoretical
requirements and sensor and deployment related issues (Foken and Wichura 1996; Lee
et al. 2004), providing a variety of tools to flag, correct and gap-fill affected data (Metzger
et.al. 2017; Wutzler et al. 2018). Keeping data comparable for synthesizing observations

between sites requires stringent quality control, which in the case of the FluxNet2015 data
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set retained on average 34% of observations in a yearly file (1300 site years; Fig. S12).
This, by implication, means that the majority of flux data at most sites has been gap-filled,
which ebscures the very effect we aimed to investigate in this study (Fig. S11). While
focusing on observational data precluded us from generating a true site budget due to a
skewed temporal coverage towards daytime data at most sites (Fig. S3), it still allowed us
an unbiased assessment on the magnitude of the impact of the way we constrain a site’s
annual budget, since the resulting traditional and space-time-equitable budgets were based
on exactly the same underlying data.

Presenting the sampling coverage and carbon budgets using a full year of data was
a trade-off to ensure sufficient data coverage in each bin. Though monthly aggregation
periods might be robust to small data gaps and more suitable for sophisticated upscaling
and benchmarking of Earth system models (the difference between monthly and annual
space-time-equitable budgets was insignificant for observational and gap-filled data; Fig.
S13), they remain problematic with longer data gaps in excess of a month, which is not
uncommon for remote sites and unavoidable following instrument failures. Still, this
trade-off resulted in uneven data coverage in spatial and temporal bins for space-time-
equitable budgets, and ultimately in non-uniform uncertainties associated with each bin
that depend on the individual spatio-temporal sampling coverage at each site. Further, we
need to acknowledge that our treatment of biases resulting from upscaling heterogeneity-
induced errors follows a simple tile-approach (Mengelkamp et al. 2006), by considering
spatio-temporal proportions through aggregation. In remote sensing and Earth system
modeling applications, more sophisticated approaches to utilize flux observations include e.g.
ensemble Kalman filtering (Fox et al. 2009). These approaches establish a precision-criterion
for individual flux observations that can help attenuate some of the effects reported here.

Yet, unless assimilation is performed in a fully spatio-temporally explicit frame of reference
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(Metzger 2018), operational approaches are still subject to similar heterogeneity-induced

biases as reported here.

4.3.2 Overcoming the scale-mismatch between the flux and remote sensing

domains

While our suggested approaches improve the accuracy of upscaling flux tower carbon
budgets to model grid cells, we are still unable to overcome the scale-mismatch between
flux tower observations and Earth system models grid cells (Jung et al. 2009). For instance,
the tower may not be centered in the respective grid cell used for scaling, or the tower
footprint may have been intentionally constrained to only sample a certain land cover type
and thus does not sample all portions of a heterogeneous grid cell. Development of general
solutions to transform traditional flux observations to spatially representative estimates
at modeling grid scale is ongoing (e.g. Metzger 2018; Xu, Metzger, and Desai 2018) and
often require sophisticated data sources and processing. Further, space-time-equitable
budgets remain spatially constrained by the footprint extent of the tower, that is, they
still are unable to provide a true grid-scale average as is used for remote sensing and Earth
system modeling. Nonetheless, they provide a more realistic picture of the average grid
cell properties surrounding the flux tower. Furthermore, using only observational data
indicates a consistent overestimation of ecosystem productivity due to the combination
of equal diurnal contributions with the attribution of heterogeneous site characteristics.
However, the unilateral direction of consistent overestimation of mean biome NEP became
bi-directional when using gap-filled data (which has a uniform temporal sampling coverage),
thus leaving an equal spatial attribution as the only difference to traditional budgets.
The remaining difference of up to 62% of mean annual NEP estimates between space-

time-equivalent and traditional budgets highlights the importance of quantifying and
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attributing the spatial heterogeneity of surface properties for flux tower budgets, and
promises substantial increases in the accuracy of terrestrial productivity estimates when
incorporating spatio-temporal carbon budgets into sophisticated gap-filling and scaling
approaches.

In this study we made a first attempt to propose a standardized index to assess and
report the heterogeneity of vegetation characteristics of flux sites using remotely sensed
satellite images, and to quantify the spatio-temporal sampling variation using readily
available flux tower data. Our findings demonstrate that estimated NEP of flux tower
sites can be severely compromised when using traditional budgeting and data assimilation
approaches, and highlights the urgent need to update the network-wide standard procedures
for gap-filling missing data and for computing carbon budgets. While our study focused on
providing evidence that surface heterogeneities significantly affect carbon budgets at the
site-and the biome scale, follow-up assessments are required that thoroughly disentangle
the effects and uncertainties associated with the spatial and temporal binning size on
adjusted carbon budgets. However, our approach to account for spatial heterogeneities
when computing carbon budgets bridges a critical gap in scaling ecosystem processes from
individual sites to the globe that holds considerable promise in allowing for a more accurate

attribution of climate change mitigation by terrestrial carbon uptake.

Supporting Information (SI)

Detailed methods, including calculation of the spatio-temporal sampling coverage (section

1), the evolution of scaling approaches (section 2) and Figs. S1-S13, Tables S1-S2.
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