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Key points18

• Variations in spatial and temporal sampling patterns over heterogeneous sites intro-19

duce variability in carbon budgets from flux towers.20

• Spatial heterogeneity is prevalent across the network and results in up to 60%21

overestimation of mean biome productivity.22

• A new method is proposed to account for contributions of sampling variations to23

carbon budget estimates at heterogeneous flux sites.24
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Abstract25

Estimating global terrestrial productivity is typically achieved by rescaling individual flux26

tower measurements, traditionally assumed to represent homogeneous areas, using gridded27

remote sensing and climate data. Using 154 locations from the FLUXNET2015 data base,28

we demonstrate that variations in spatial homogeneity and non-uniform sampling patterns29

introduce variability in carbon budget estimates that propagate to the biome scale. We30

propose a practical solution to quantify the variability of vegetation characteristics and31

uniformity of sampling patterns, and moreover, account for contributions of sampling32

variations over heterogeneous surfaces to carbon budgets from flux towers. Our proposed33

space-time-equitable budgets reduce uncertainty related to heterogeneities, allow for more34

accurate attribution of physiological variations in productivity trends and provide more35

representative grid cell averages for linking fluxes with gridded data products.36

Plain language summary37

Uniform vegetation characteristics are a core requirement for atmospheric measurements38

of carbon, water and energy fluxes using monitoring stations called flux towers. The39

variability of ecosystem properties was commonly assumed to be negligible because no40

standard approach existed to quantify it. We developed a standardized approach to quantify41

the variability of vegetation properties from satellite data, and applied it to 154 sites within42

the global network of flux towers. We show that non-uniform vegetation characteristics are43

prevalent across the network, and that sampling patterns at such sites influence carbon44

budget estimates at individual flux sites. This artefact propagates when flux tower data is45

used to extrapolate plant productivity to larger scales. We propose a practical solution46

that accounts for the sampling variability over sites with variable vegetation characteristics,47

which removes this previously unaccounted artefact from a sites annual carbon budget. Our48
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spatially representative budgets bridge a critical gap in scaling ecosystem processes from49

individual sites to the globe and allow for more accurate estimates of terrestrial carbon50

uptake.51

Keywords: heterogeneity, carbon budget, scaling, uncertainty, footprint, eddy covariance52
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1 Introduction53

Ecosystem-scale carbon sequestration rates from flux towers present our current best means54

to directly quantify carbon cycling from the ”bottom-up”. Observations from individual55

sites are contributed to local, regional and global networks that strongly enhance the56

value of single site data (Baldocchi 2008). While scientific motivation, funding and data57

processing vary at a site-level (Novick et al. 2018), these distributed observations are58

aggregated in a standardized global network collection (FluxNet). This allows researchers59

to decipher similarities and differences among individual sites and biomes, and to rescale60

local observations to regional and continental scales. Such synthesis activities, along61

with related remote sensing and modelling efforts, form an integral foundation for global62

assessments of climate change impact (e.g., IPCC Reports) which informs the general63

public on the state of climate change.64

Regional and global scale estimates of carbon cycling depend on appropriate aggregation65

of individual tower fluxes, grid-scale observations of vegetation from repeat satellite66

observations, and Earth system modeling (e.g. Ahlström et al. 2015; Bodesheim, Jung,67

Gans, Mahecha, and Reichstein 2018; Chen et al. 2017; Huang et al. 2018; Jung et al.68

2011). An essential prerequisite to justify upscaling from sites to the globe from bottom-69

up measurements requires homogeneous site-level characteristics (i.e. topography, soil70

and vegetation properties; Chen et al. 2012; Kim et al. 2006). Spatial homogeneity is71

defined as ”the measurement that is taken in the space-time domain reflects the actual72

conditions in the same or different space-time domain taken on a scale appropriate for a73

specific application” (Nappo et al. 1982); that is in a perfectly homogeneous ecosystem,74

the magnitude of fluxes would be uniform with wind direction as individual tower locations75

would provide spatially representative measurements. However, site-level characteristics76

5

©2020 American Geophysical Union. All rights reserved. 



are in practice rarely completely homogeneous (Foken and Leclerc 2004; Giannico et al.77

2018; Goeckede et al. 2008; Schmid and Lloyd 1999; Stoy et al. 2013), and changes in78

the size of observed fluxes may result from changes in the prevailing wind directions that79

cause systematic differences in the area that is being sampled rather than from changes in80

ecological activity (Fig. 1).81

Figure 1: Conceptual illustration outlining how sampling variations can introduce variability in

annual carbon budgets at sites with heterogeneous surface characteristics. This variability in carbon

fluxes due to the area being sampled is unaccounted for in traditional carbon budgets, which simply

aggregate observations over time. Our proposed solution accounts for wind-induced temporal and

spatial sampling variations over heterogeneous ecosystems (differing annual windroses; upper two

rows). We use variations in the Enhanced Vegetation Index (3rd row and the corresponding aerial

view; 4th row) to quantify vegetation properties.

Specifically, individual flux tower observations represent an aggregate of surface conditions82

over a dynamically varying upwind area (termed flux footprint). Yet, the traditional83

approach to constrain ecosystem carbon budgets simply aggregates observations over certain84
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periods (Aubinet, Vesala, and Papale 2012; Lee, Massman, and Law 2004), regardless85

of flux footprint variations. In particular, over heterogeneous ecosystems (Fig. 1), this86

systematically embeds variability that has not been previously accounted for (Amiro 1998;87

Griebel et al. 2016; Leclerc, Meskhidze, and Finn 2003; Nappo et al. 1982; Schmid et al.88

1999). This calls into question the accuracy of upscaling methods, as the contributions89

of such surface heterogeneities at the model grid scale are rarely quantified or attributed90

(Chen et al. 2009; Rebmann et al. 2005).91

Unfortunately, there is no standard method currently in place to rectify the magnitude92

of this interactive effect. In this paper we (i) assess the prevalence and magnitude of the93

spatial heterogeneity of vegetation characteristics within a 500 m radius of all Tier 1 sites94

from the FluxNet2015 data set; (ii) assess the sampling coverage of fluxes in space and95

time; (iii) provide a practical solution that treats the embedded spatial sampling bias by96

attributing the contributions of spatial heterogeneities to flux tower estimates. This allows97

us to (iv) assess the magnitude of the effects of spatial sampling corrections on mean biome98

productivity estimates.99

The proposed approaches to quantify surface properties and spatio-temporal sampling100

characteristics provide the first standardized methods of assessing and reporting site101

homogeneity within the flux community (Fig. 2). By removing this unaccounted variability102

through variations in spatial and temporal sampling patterns over heterogeneous sites we can103

attribute the contributions of surface heterogeneities to flux tower estimates. This enables104

us to establish more reliable impacts of changing weather patterns on ecosystem functioning105

and which will ultimately result in more accurate predictions of global productivity in106

future climates.107
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2 Materials and methods108

2.1 Heterogeneity Index109

We constrained a Heterogeneity Index (HI) based on the EVI (Enhanced Vegetation110

Index) within a 500 m radius around each flux tower from Landsat 5 (1984-2011) and111

Landsat 8 (2014) using Google Earth Engine. The 500 m radius (r) was an example, an112

illustrative compromise between sites with a potentially smaller footprint (e.g. croplands113

and grasslands) and sites with a potentially larger footprint (tall towers and forest sites),114

as the lack of site-specific information about canopy and instrument height (and how these115

varied through time) prevented us from calculating actual source areas of fluxes for each116

site year. Landsat 7 data was discarded due to the Scan Line Corrector failure and only117

years with complete coverage were considered. All scenes were masked for clouds, cloud118

shadows and snow presence. Next, for all years where Landsat data was available, we119

calculated annual summary statistics (median, percentiles) for each 30x30 m pixel within120

the 500 m radius around the flux tower location. The HI of each year was then calculated121

from the difference between the 95th and 5th percentile divided by the median of pixels in122

the 500 m radius:123

HI(r) =
EV IP95(r) − EV IP5(r)

EV IP50(r)
(1)

Lastly, we calculated the mean site HI as the arithmetic mean of all years with flux124

observations in the FLUXNET2015 data base.125

2.2 Eddy covariance data126

We used all 154 Tier 1 sites that supplied wind characteristics with their flux data from127

the FluxNet2015 data set to calculate the spatio-temporal sampling coverage (section128

2.2.1). We excluded biomes that were only represented by one site in the database (closed129
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shrublands; CSH). To ensure that disproportionally large data gaps in a given year would130

not bias the observations towards specific seasons, we removed years with less than 50%131

of the site-specific mean annual data coverage (72 site years from 64 sites), as these also132

resulted in large deviations from the mean site and mean biome NEP (Figs. S1 and133

S2). From the remaining 1071 site years we calculated the mean traditional and space-134

time-equitable carbon budgets per site (section 2.2.3), and grouped the 154 sites into 10135

biomes following the IGBP classification that was provided with the data. It should be136

mentioned that our data filtering yielded more conservative results, i.e. smaller differences137

between traditional and space-time-equitable budgets. Further, it should be noted that138

we are not attempting to generate a true site budget when using only observational data,139

as these are biased towards daytime observations (see section 4.3.1). We only provide140

estimates from non-gap-filled data to get a number that allows us to assess the magnitude141

of impact of the way we constrain carbon budgets (that is by comparing budgets based142

on simple sums of observations with the space-time-equitable approach that treats the143

spatio-temporal sampling bias), as these are based on exactly the same underlying data144

for all methods (Griebel et al. 2016; Horst et al. 2019). We provide an evolution of our145

accounting approaches (SI section 2) in the Supplementary Information.146

2.2.1 Spatio-temporal sampling coverage147

The annual spatio-temporal sampling coverage (SC) is calculated from all direct observations148

in a given year (Fig. S3 and SI section 1) by:149

1. attributing the relative contribution of observations in a matrix with wind sectors as150

columns (spatial bins), and time intervals as rows (temporal bins; Fig. S3a,b);151

2. summing across each column/row to isolate the spatial from the temporal sampling152

variability (Fig. S3c,d);153
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3. arranging row/column means (in ascending order) and plotting the cumulative sums154

of observed against evenly distributed relative contributions (Fig. S3e,f).155

4. Individual spatial/temporal SC is then defined as the divergence from the 1:1 line156

(ratio of areas under curves; Fig. S3e,f); and157

5. the composite spatio-temporal SC is derived as the mean from the temporal and158

spatial components.159

Lastly, we calculated the mean spatio-temporal SC for each site as the arithmetic mean160

of the all years with flux observations in the FLUXNET2015 data base. The SC ranges161

from 0% (unilateral sampling in space and time, i.e. all observations derived from one162

wind sector and one time interval) to 100% (i.e. fully balanced sampling in space and163

time with equal contribution from each wind sector and time interval; Fig. S3e,f). Note164

that arranging row/column means in ascending order puts more weight on bins with low165

coverage. However, this is necessary to remove the variation of sampling coverage due to166

the location of the sectors with low coverage (Fig. S4). While this puts more weight on167

bins with lower than expected coverage and creates a worst-case scenario for the sampling168

coverage, an ascending arrangement presents an objective and practical indication that a169

sampling bias exists when calculating carbon budgets at heterogeneous sites with a low170

temporal or spatial sampling coverage (Fig. S5).171

2.2.2 Traditional carbon budgets172

Traditional budgets assume homogeneous surface characteristics (Aubinet et al. 2012; Lee173

et al. 2004) and observations are aggregated over certain periods regardless of flux footprint174

variations due to changes in prevailing winds (Fig. 1). For each FluxNet site we used all175

available observational data that passed the ustar-filter (NEE VUT REF conditional to176
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that NEE VUT REF QC=0), as well as gap-filled data (NEE VUT REF conditional to177

NEE VUT REF QC=3) to calculate traditional annual budgets (Φ) by aggregation of each178

flux observation (Fc) in a given year (i):179

Φ(i) =
k∑

i=1

Fc(i) (2)

2.2.3 Space-Time-equitable carbon budgets180

Building on the original approach that attributes spatial sampling variations to carbon181

budgets based on average wind patterns by Griebel et al. 2016 (SI section 2.1.1 and Figs.182

S6, S7), we developed space-time-equitable carbon budgets to equally attribute spatial183

and temporal sampling variations from an uneven spatio-temporal sampling coverage184

(SI section 2.1.3). Space-time-equitable budgets attribute equally in space (i.e., each185

wind sector contributes an equal amount to the annual budget; see also space-equitable186

budgets in SI section 2.1.2) as well as in time (i.e., the mean flux in each wind sector187

was comprised of equal time slots to ensure an equal diurnal representation in each wind188

sector). Space-time-equitable budgets are calculated in three steps:189

1. attributing the mean carbon flux (Fc(i, j, h)) in a matrix with wind sectors (j) as190

columns (k spatial bins), and time intervals (h) as rows (m temporal bins) during191

each year (i)192

2. calculating the mean space-time-equitable carbon flux (φ) by calculating row means193

followed by the column mean of the matrix:194

φ(i) =

m∑
h=1

k∑
j=1

Fc(i, j, h) ∗ 1

k m
(3)

3. multiplying the mean carbon flux in each year with the total number of observations195

in that year:196

Φ(i) = Ω(i) ∗ n(i) (4)
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This ensures comparability between traditional budgets that were based on the sum of all197

observations and space-time-equitable budgets.198

2.3 Statistical approach199

Significant relationships between the mean annual HI and the absolute difference between200

traditional and space-time-adjusted budgets were tested using a linear model for all201

site-years and site means that passed the quality control, using observational as well as202

gap-filled data (Figs. S8-S10). We performed a two-way ANOVA and a Tukey test to203

assess significant differences in estimates of mean biome NEP between traditional and204

space-time-equitable budgets, as well as their interaction. The underlying assumptions were205

assessed using qqplot and residual plots. Data for traditional budgets were log-transformed206

and space-time-equitable budgets were square-root transformed to correct for non-normal207

data distributions. Residual plots confirmed constant variance.208

3 Results209

3.1 Quantifying spatial heterogeneity of vegetation and sampling cover-210

age around flux towers211

We identified variability of vegetation characteristics at the majority of flux sites, as212

indicated by a mean Heterogeneity Index (HI) of 0.58 (P25=0.29 and P75=0.67; Fig. 2a).213

Variations in vegetation characteristics were present in all biomes (Fig. 2a), with a larger214

HI at sites in Europe and at high latitudes compared to sites in the central US and215

the southern hemisphere. Evergreen broadleaf forests and Savanna’s tended to be more216

homogeneous, whereas wetlands, grasslands, open shrublands and mixed forests were217

characterized by a higher HI. Further, a mean spatio-temporal sampling coverage (SC) of218

12

©2020 American Geophysical Union. All rights reserved. 



70.6% indicated variations in the uniformity of the spatial as well as the diurnal sampling219

pattern at most sites (P25=65.5% and P75=76.8%; Fig. 2b), which have the potential to220

introduce variations in annual budget estimates depending on the parts of the ecosystem221

being sampled at heterogeneous sites. To date, flux footprint variations over heterogeneous222

ecosystems due to changes in prevailing winds (Fig. 1) have not been accounted for223

when generating annual budgets with the only existing and universally applied traditional224

budgeting approach. Thus, we propose a practical solution to reduce the embedded spatial225

and temporal sampling biases by attributing the contributions of spatial heterogeneities to226

flux tower budgets (Figs. S6, S7).227
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Figure 2: Spatial distribution of Tier 1 sites that contributed data to the FluxNet2015 dataset

(154 sites, Table S1). Color represents a) the site heterogeneity as indicated by the mean annual

Heterogeneity Index (HI), and b) the spatio-temporal sampling coverage (SC) across all observation

years that were contributed to the FluxNet dataset. Larger values indicate larger site heterogeneity

or more uniform sampling coverage.

3.2 The way we budget matters for biome productivity estimates228

Across all sites, the relationship between the mean annual HI and the absolute difference229

between traditional and space-time-equitable budgets was significant, even when using gap-230

filled data(P<0.05; Fig. S8). While the relationship for observational data is still affected231

by the imbalanced diurnal sampling pattern Chu, Baldocchi, John, Wolf, and Reichstein232
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2017 and confounded by generally small budgets in the identified heterogeneous biomes;233

Figs. S8, S9), a positive relationship persists when using gap-filled data (which despite234

not accounting for spatial sampling variations does remove the diurnal sampling bias; Figs.235

S8, S10). These non-negligible differences between traditional and space-time-equitable236

budgets demonstrate that the size of fluxes was not uniform with wind direction at the237

majority of sites (Fig. 2), and highlights that a significant share of a sites annual budget238

is determined by how often each part of the ecosystem has been sampled in a given year239

(Figs. 1, 2). These site-level effects are then transferred to mean biome NEP estimates,240

which differ significantly between traditional and space-time-adjusted budgets (P<0.001241

using observed and P<0.05 using gap-filled data; Fig. 3).242

Even for traditionally constrained carbon budgets, there is considerable variation243

in traditionally calculated mean annual NEP among sites in each biome represented in244

the FluxNet2015 data set, irrespective of whether space-time-equitable NEP was based245

on observational (P<0.001; Fig. 3) or on gap-filled data (P<0.05; Fig. S11). On average,246

across all FluxNet2015 sites, mean biome NEP for space-time-equitable budgets differed247

from traditional budgets by -10.4% using gap-filled data (ranging from + 12.6% at Savanna’s248

to -35.1% at wetlands; Table S2), highlighting the non-negligible variation of NEP when249

constraining budgets as simple sums. This difference is evident despite a low mean data250

coverage (34% of high quality data per site; Fig. S12) and despite gap-filling procedures251

assuming homogeneous site characteristics (they have 100% temporal sampling coverage,252

but are not stratified by wind direction and thus do not consider spatial sampling variations253

over heterogeneous ecosystems). The difference between the traditional and the space-time-254

equitable budgeting approach to derive the mean annual biome NEP increases significantly255

when using only observational data (-49.6%, ranging from -36% at mixed forests to -62%256

at grasslands; Fig. 3, Table S2), which results from the disproportional diurnal data257
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coverage at individual sites and the proportional re-weighting of nighttime data in the258

space-time-equitable budgets that introduces variability in the temporal sampling coverage259

(Fig. S3).260

Figure 3: Variability of mean annual net ecosystem productivity (NEP; gCm−2yr−1) estimates

depending on the method that was used to constrain the mean carbon sequestration rates for each

site in each biome. Traditional budgets represent the unweighted sum of all observations in a

year using only directly measured (traditional observed) and gap-filled data (traditional gap-filled).

Space-time-equitable budgets (using observational data only) weighted all direct observations

towards a spatially equal contribution of each wind sector and an equitable temporal representation.

Note that the data used to constrain the mean annual NEP for each site included all site-years that

passed the minimum data coverage requirement, and that individual years were averaged to a site

mean prior to grouping by biome. Whisker length indicates the inter-site variability as the upper

and lower range of the 95% confidence interval, the line represents the median annual NEP for each

biome, and the biome order reflects the mean biome Heterogeneity Index (HI; increasing towards

the right). Numbers indicate the total number of sites in each biome: WSA=woody savannah,

EBF=evergreen broadleaf forest, SAV=savannah, DBF=deciduous broadleaf forest, ENF=evergreen

needleleaf forest, GRA=grassland, MF=mixed forest, OSH=open shrublands, WET=wetland.
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4 Discussion261

4.1 A practical solution to treat the embedded spatial sampling bias262

Traditional annual carbon budgets comprise a simple sum of gap-filled tower observations263

over a year, assuming perfectly homogeneous conditions in space and time (Aubinet et al.264

2012; Lee et al. 2004). They are typically based on gap-filled data, yet existing gap-filling265

procedures assume homogeneous site characteristics as they are not stratified by wind266

direction, and thus do not consider flux footprint variations over heterogeneous ecosystems.267

Further, with an average data coverage of 34% for high quality data (Fig. S12), the number268

of modeled data far outweighs the number of observations in a given year at most sites,269

which is particularly prevalent in very cold environments (Horst et al. 2019). However, all270

sites to some degree (Aubinet et al. 2012; Baldocchi 2003), and some sites to a very large271

degree, experience diurnal variations in the prevailing wind directions, e.g. sites affected by272

land-sea breezes or by mountain-valley winds (Goulden, Munger, Fan, Daube, and Wofsy273

1996; Hiller, Zeeman, and Eugster 2008; Zardi and Whiteman 2013).274

Earth system models typically operate at a larger scale than flux tower footprints (∼3000275

km2 vs. 1-10 km2; Jung, Reichstein, and Bondeau 2009), but they assume that flux tower276

observations are representative of the mean biophysical and climatological properties of277

the grid cells they are located in. Space-time-equitable budgets provide a more uniform278

spatial average of the ecosystems flux characteristics than traditional budgets, through279

rectifying variations in the sampled upwind area. Furthermore, the equal attribution of280

temporal bins within each sector ensures that the mean flux of each wind sector is based281

on a time-uniform contribution of data (Fig. S6). Thus, space-time-equitable budgets are282

expected to improve the spatial representativeness of an ecosystem’s carbon budget, as283

each wind sector contributes the same proportion to an annual budget irrespective of how284
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often it has been sampled in any given year (Fig. S6). Such spatially robust productivity285

estimates allow for more accurate examination of interannual variations and long-term286

trends of flux tower data, while also being more appropriate for linking fluxes with gridded287

climate and remote sensing data.288

4.2 Systematic attribution of surface heterogeneities to carbon budgets289

We identified variability of vegetation characteristics at the majority of flux sites (mean290

HI=0.58; Fig. 2), providing evidence that spatial homogeneity of site characteristics does291

not hold true for many flux tower locations. A perfectly homogeneous ecosystem would have292

a HI of zero. Likewise, a synchronous change of all pixels throughout the ecosystem over a293

year (e.g. deciduous forests) results in similar mean annual values of the individual pixels294

and ultimately an HI of zero. The index only increases with increasing difference between295

the upper and lower percentiles of pixel values in respect to the median value across all296

pixels. That is, in a heterogeneous ecosystem (e.g. mixed forests), individual pixel values297

might change at different rates throughout the year, resulting in spatial gradients across298

individual mean pixels and a non-zero HI. The HI might be extended by incorporating299

variations in topography and soil properties, and ideally each site would use a footprint300

model to constrain the exact spatial extent. Yet, our HI provides the first standardized301

measure for the flux community to report site heterogeneity along with carbon budgets.302

Further, the HI might not be zero, but the spatio-temporal sampling coverage might303

be uniform (100%). Then, the balanced sampling pattern would fully account for the304

heterogeneous surface characteristics, and space-time equitable budgets would be identical305

to traditional budgets. However, no site was fully homogeneous and no site had a mean306

spatio-temporal sampling coverage above 85% (Fig. 2), suggesting that carbon budget307

estimates are commonly affected by sampling variations at most sites to a small degree,308
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and at some sites to a large degree.309

Spatial heterogeneity and its effect on CO2 budgets have been the subject of very few310

targeted studies (Griebel et al. 2016; Leclerc et al. 2003; Nappo et al. 1982; Schmid et al.311

1999). To our knowledge, ours is the first study to quantify the effect of spatio-temporal312

sampling variations over heterogeneous ecosystems on annual CO2 sequestration estimates313

at flux tower sites. Further, our findings indicate that heterogeneity-induced uncertainty314

from individual tower observations affects mean biome productivity estimates on orders up315

to 35% (gap-filled data; Table S2) and 62% (observational data; Fig. 3, Table S2). Thus,316

if left untreated, even sophisticated upscaling of flux tower observations via remote sensing317

and Earth system modelling are degraded through superimposing spatio-temporal sampling318

patterns over actual biophysical variability at the measurement sites, thus contributing to319

uncertainties in global carbon budget estimates (Ahlström et al. 2015; Moncrieff, Malhi,320

and Leuning 1996; Schimel et al. 2001). As a solution we suggested alternative constraints321

for calculating ecosystem carbon budgets by systematically attributing the contributions of322

surface heterogeneities and variations in the spatio-temporal sampling coverage to annual323

carbon budgets.324

4.3 Limitations and trade-offs325

4.3.1 Using observational vs. gap-filled data326

Over the past decades, significant progress has been made by the flux community to327

establish rigorous quality control assessments that test for the fulfillment of theoretical328

requirements and sensor and deployment related issues (Foken and Wichura 1996; Lee329

et al. 2004), providing a variety of tools to flag, correct and gap-fill affected data (Metzger330

et al. 2017; Wutzler et al. 2018). Keeping data comparable for synthesizing observations331

between sites requires stringent quality control, which in the case of the FluxNet2015 data332
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set retained on average 34% of observations in a yearly file (1300 site years; Fig. S12).333

This, by implication, means that the majority of flux data at most sites has been gap-filled,334

which obscures the very effect we aimed to investigate in this study (Fig. S11). While335

focusing on observational data precluded us from generating a true site budget due to a336

skewed temporal coverage towards daytime data at most sites (Fig. S3), it still allowed us337

an unbiased assessment on the magnitude of the impact of the way we constrain a site’s338

annual budget, since the resulting traditional and space-time-equitable budgets were based339

on exactly the same underlying data.340

Presenting the sampling coverage and carbon budgets using a full year of data was341

a trade-off to ensure sufficient data coverage in each bin. Though monthly aggregation342

periods might be robust to small data gaps and more suitable for sophisticated upscaling343

and benchmarking of Earth system models (the difference between monthly and annual344

space-time-equitable budgets was insignificant for observational and gap-filled data; Fig.345

S13), they remain problematic with longer data gaps in excess of a month, which is not346

uncommon for remote sites and unavoidable following instrument failures. Still, this347

trade-off resulted in uneven data coverage in spatial and temporal bins for space-time-348

equitable budgets, and ultimately in non-uniform uncertainties associated with each bin349

that depend on the individual spatio-temporal sampling coverage at each site. Further, we350

need to acknowledge that our treatment of biases resulting from upscaling heterogeneity-351

induced errors follows a simple tile-approach (Mengelkamp et al. 2006), by considering352

spatio-temporal proportions through aggregation. In remote sensing and Earth system353

modeling applications, more sophisticated approaches to utilize flux observations include e.g.354

ensemble Kalman filtering (Fox et al. 2009). These approaches establish a precision-criterion355

for individual flux observations that can help attenuate some of the effects reported here.356

Yet, unless assimilation is performed in a fully spatio-temporally explicit frame of reference357
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(Metzger 2018), operational approaches are still subject to similar heterogeneity-induced358

biases as reported here.359

4.3.2 Overcoming the scale-mismatch between the flux and remote sensing360

domains361

While our suggested approaches improve the accuracy of upscaling flux tower carbon362

budgets to model grid cells, we are still unable to overcome the scale-mismatch between363

flux tower observations and Earth system models grid cells (Jung et al. 2009). For instance,364

the tower may not be centered in the respective grid cell used for scaling, or the tower365

footprint may have been intentionally constrained to only sample a certain land cover type366

and thus does not sample all portions of a heterogeneous grid cell. Development of general367

solutions to transform traditional flux observations to spatially representative estimates368

at modeling grid scale is ongoing (e.g. Metzger 2018; Xu, Metzger, and Desai 2018) and369

often require sophisticated data sources and processing. Further, space-time-equitable370

budgets remain spatially constrained by the footprint extent of the tower, that is, they371

still are unable to provide a true grid-scale average as is used for remote sensing and Earth372

system modeling. Nonetheless, they provide a more realistic picture of the average grid373

cell properties surrounding the flux tower. Furthermore, using only observational data374

indicates a consistent overestimation of ecosystem productivity due to the combination375

of equal diurnal contributions with the attribution of heterogeneous site characteristics.376

However, the unilateral direction of consistent overestimation of mean biome NEP became377

bi-directional when using gap-filled data (which has a uniform temporal sampling coverage),378

thus leaving an equal spatial attribution as the only difference to traditional budgets.379

The remaining difference of up to 62% of mean annual NEP estimates between space-380

time-equivalent and traditional budgets highlights the importance of quantifying and381
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attributing the spatial heterogeneity of surface properties for flux tower budgets, and382

promises substantial increases in the accuracy of terrestrial productivity estimates when383

incorporating spatio-temporal carbon budgets into sophisticated gap-filling and scaling384

approaches.385

In this study we made a first attempt to propose a standardized index to assess and386

report the heterogeneity of vegetation characteristics of flux sites using remotely sensed387

satellite images, and to quantify the spatio-temporal sampling variation using readily388

available flux tower data. Our findings demonstrate that estimated NEP of flux tower389

sites can be severely compromised when using traditional budgeting and data assimilation390

approaches, and highlights the urgent need to update the network-wide standard procedures391

for gap-filling missing data and for computing carbon budgets. While our study focused on392

providing evidence that surface heterogeneities significantly affect carbon budgets at the393

site and the biome scale, follow-up assessments are required that thoroughly disentangle394

the effects and uncertainties associated with the spatial and temporal binning size on395

adjusted carbon budgets. However, our approach to account for spatial heterogeneities396

when computing carbon budgets bridges a critical gap in scaling ecosystem processes from397

individual sites to the globe that holds considerable promise in allowing for a more accurate398

attribution of climate change mitigation by terrestrial carbon uptake.399

Supporting Information (SI)400

Detailed methods, including calculation of the spatio-temporal sampling coverage (section401

1), the evolution of scaling approaches (section 2) and Figs. S1-S13, Tables S1-S2.402
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