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Abstract
Emission control technologies installed on power plants are a key feature of many air pollution 
regulations in the US. While such regulations are predicated on the presumed relationships 
between emissions, ambient air pollution, and human health, many of these relationships have 
never been empirically verified. The goal of this paper is to develop new statistical methods to 
quantify these relationships. We frame this problem as one of mediation analysis to evaluate the 
extent to which the effect of a particular control technology on ambient pollution is mediated 
through causal effects on power plant emissions. Since power plants emit various compounds that 
contribute to ambient pollution, we develop new methods for multiple intermediate variables that 
are measured contemporaneously, may interact with one another, and may exhibit joint mediating 
effects. Specifically, we propose new methods leveraging two related frameworks for causal 
inference in the presence of mediating variables: principal stratification and causal mediation 
analysis. We define principal effects based on multiple mediators, and also introduce a new 
decomposition of the total effect of an intervention on ambient pollution into the natural direct 
effect and natural indirect effects for all combinations of mediators. Both approaches are anchored 
to the same observed-data models, which we specify with Bayesian nonparametric techniques. We 
provide assumptions for estimating principal causal effects, then augment these with an additional 
assumption required for causal mediation analysis. The two analyses, interpreted in tandem, 
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provide the first empirical investigation of the presumed causal pathways that motivate important 
air quality regulatory policies.

Keywords
Ambient PM2.5; Bayesian nonparametrics; Gaussian copula; Multi-Pollutants; Natural indirect 
effect

1. Introduction.
Motivated by evidence of the association between ambient air pollution and human health 
outcomes, the US Environmental Protection Agency (EPA) oversees a vast program for air 
quality management designed to limit population exposure to harmful air pollution (Pope III, 
Ezzati and Dockery, 2009; Dominici, Greenstone and Sunstein, 2014). Fine particulate 
matter of diameter 2.5 micrometers or less (PM2.5) is of particular importance, with 
regulations to limit exposure to PM2.5 estimated to account for over half of the benefits and a 
substantial portion of the costs of all monetized federal regulations (Office of Management 
and Budget, 2013). A large contributor to ambient PM2.5 in the US is the power generating 
sector, in particular coal-fired power plants. These plants emit PM2.5 directly into the 
atmosphere, but are also major sources of sulfur dioxide (SO2) and nitrogen oxides (NOx) 
that, once emitted into the atmosphere, contribute to secondary formation of PM2.5 through 
chemical reaction, coagulation and other mechanisms. The amount PM2.5 formation initiated 
by emissions of SO2 and NOx depends largely on atmospheric conditions such as 
temperature (Hodan and Barnard, 2004). Power plants are also major sources of CO2 
emissions.

A variety of regulatory programs under the purview of the Clean Air Act (e.g., the Acid Rain 
Program) are designed to reduce emissions from power plants, with one goal of reducing 
population exposure to ambient PM2.5. One key strategy for achieving this reduction is the 
installation of SO2 control technologies such as flue-gas desulfurization scrubbers 
(henceforth, “scrubbers”), on power plant smokestacks to reduce SO2 emissions and, in turn 
PM2.5. Estimates of the annualized human health benefits of regulatory polices such as the 
Acid Rain Program rely heavily on presumed relationships between such control strategies, 
emissions, ambient PM2.5, and human health. While the underlying physical and chemical 
understanding of the link between power plant emissions and PM2.5 is well established, 
there remains considerable uncertainty about the effectiveness of specific strategies for 
reducing harmful pollution amid the realities of actual regulatory implementation. 
Accordingly, the EPA and other stakeholders have increasingly emphasized the need to 
provide evidence of which specific air pollution control strategies are most effective or 
efficient for reducing population exposures to PM2.5(HEI Accountability Working Group, 
2003; U.S. EPA, 2013).

The goal of this paper is to propose a statistical method to examine the causal effect of 
scrubbers installed at coal-fired power plants on the ambient concentration of ambient PM2.5 
using observed data on power plant emissions and ambient pollution. Physical and chemical 
understanding of these processes provide strong support for the expectation that scrubbers 
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reduce ambient PM2.5“through” reducing emissions of SO2, but this relationship has never 
been empirically verified using observed data in the context of regulations that may 
simultaneously impact a variety of factors. A key statistical challenge to verifying this 
relationship derives from the fact that SO2 emissions are highly correlated with emissions of 
NOx and CO2 and NOx is known to play an important role in the formation of ambient 
PM2.5, possibly through interactions with SO2. Thus, the question will be formally framed 
as one of mediation analysis: To what extent is the causal effect of a scrubber (the 
“treatment”) on ambient PM2.5 (the “outcome”) mediated through reduced emissions of 
SO2, NOx and CO2 (the “mediators”)? Recovering a statistical answer to this question amid 
the problem of multiple highly correlated and possibly interacting mediators that are 
measured contemporaneously requires new methods development and would also serve to 
bolster the promise of statistical methods in studies of air pollution that have historically 
relied on physical and chemical knowledge and not on statistical analysis.

To answer this question, we develop new methods that draw from two frameworks for 
estimating causal effects in the presence of mediating variables: (1) principal stratification 
(Frangakis and Rubin, 2002) and (2) causal mediation analysis (Robins and Greenland, 
1992). The methodological contributions of this paper come in three areas. First, we develop 
new methods to accommodate multivariate mediating variables that are measured 
contemporaneously (not sequentially), are correlated, and may interact with each to impact 
the outcome (see Figure 1. for a an illustrative directed acyclic graph). This is essential for 
evaluating scrubbers because power plants simultaneously emit multiple pollutants that may 
interact through atmospheric processes to impact ambient PM2.5. Existing methods in the 
literature for both principal stratification and mediation analysis have primarily focused on 
settings with a single mediator (e.g., Baron and Kenny (1986); Frangakis and Rubin (2002); 
VanderWeele (2009); Joffe and Greene (2009); Daniels et al. (2012)) and existing extensions 
to cases with multiple mediating variables cannot accommodate the setting of power plant 
emissions where mediators may simultaneously and jointly impact the outcome (Wang, 
Nelson and Albert, 2013; Imai and Yamamoto, 2013; VanderWeele and Vansteelandt, 2014; 
Daniel et al., 2015). Our second methodological contribution is the use of Bayesian 
nonparametric approaches to model the observed distribution of emissions and pollution 
outcomes, making use of a multivariate Gaussian copula model to link flexibly-modeled 
marginal distributions of observed outcomes to a joint distribution of potential outcomes. 
Similar strategies with a single mediator have received recent attention in the principal 
stratification literature (Bartolucci and Grilli (2011); Ma, Roy and Marcus (2011); Schwartz, 
Li and Mealli (2011); Conlon, Taylor and Elliott (2014)) and are emerging for causal 
mediation analysis (Daniels et al., 2012; Kim et al., 2016). These approaches are important 
for confronting continuous mediators and infinitely many principal strata, and are deployed 
here in a novel way to address the problem of multiple mediators while flexibly modeling 
the observed-data distributions of both mediators and outcomes. Finally, we provide a 
unification of principal stratification and causal mediation analysis. While the mathematical 
relationships between these two approaches are well understood (Mealli and Rubin, 2003; 
VanderWeele, 2011; Mattei and Mealli, 2011), there has not been, to our knowledge, a 
comprehensive deployment of both perspectives in a complementary fashion to illuminate 
the scientific underpinnings of a specific problem. Baccini, Mattei and Mealli (2015) made 
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important progress in this direction using different observed-data models to estimate 
principal effects and mediation effects in a problem with a single mediator. In contrast, the 
approach developed here uses the exact same observed-data models to ground both 
perspectives, proposes a common set of basic assumptions for estimating both principal 
effects and mediating effects, modularizes an additional assumption required to augment a 
principal stratification analysis in order to obtain estimates of natural direct and indirect 
effects, and considers settings with multiple mediating variables. Ultimately, we provide a 
new dimension of quantitative, statistical evidence for supporting air policy regulatory 
decisions.

2. Scrubber Installation and Linked Data Sources.
Title IV of the Clean Air Act established the Acid Rain Program (ARP), which required 
major emissions reductions of SO2 (and other emissions) by ten million tons relative to 1980 
levels. This reduction was achieved mostly through cutting emissions from power plants, or 
more formally, electricity-generating units (EGUs). Impacts of the ARP have been evaluated 
extensively, and the program is generally lauded as a success due to marked national 
decreases in SO2 and NOx coming at relatively low cost. Estimates of the annualized human 
health benefits of the entire ARP range from $50 billion to $100 billion (Chestnut and Mills, 
2005), but rely heavily on presumed relationships between power plant emissions, ambient 
PM2.5, and human health.

While power plants under the ARP had latitude to elect a variety of strategies to reduce 
emissions, one key strategy is the installation of a scrubber to reduce SO2 emissions. The 
precise extent to which installation of a scrubber reduces ambient PM2.5 through reducing 
SO2 emissions remains unknown, and has never been estimated empirically amid the 
realities of actual regulatory implementation where pollution controls may impact a variety 
of factors that are also related to the formation of PM2.5. Knowledge of these relationships is 
complicated by the fact that power plants emit more than just SO2, and emissions of a 
variety of pollutants likely interact in the surrounding atmosphere to form ambient PM2.5.

To provide refined evidence of the extent to which scrubbers reduce emissions and cause 
improvements to ambient air quality, we assembled a national database of ambient air 
quality measures, weather conditions, and information on power plants. Specifically, we 
assembled data on 258 coal-fired power plants from the EPA Air Markets Program Data and 
the Energy Information Administration, with information on plant characteristics, emissions 
control technologies installed (if any), and emissions of SO2, NOx, and CO2 during 2005, 
five years after promulgation of an important phase of regulations under the Acid Rain 
Program. For each power plant, we augment the data set with annual average ambient PM2.5 
concentrations in 2005 and baseline meteorologic conditions in 2004 measured at all 
monitoring stations in the EPA Air Quality System that are located within 150km. The 
150km range was chosen both to acknowledge that atmospheric processes carry power plant 
emissions across distances at least this great, but also to minimize the number of monitoring 
stations considered within range of more than one power plant. We regard any power plant 
as “treated” with scrubbers in 2005 if at least 10% of the plant’s total heat input was 
attributed to a portion of the plant equipped with a scrubber as of January 2005. Note that 
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this proportion was nearly 0% or nearly 100% for the vast majority of plants, indicating 
robustness to this 10% cutoff. Other power plant characteristics are listed in Table 1. The 
data files and programs to assemble the analysis data set are available at https://
dataverse.harvard.edu/dataverse/mmediators and https:/github.com/lit777/
MultipleMediators, respectively.

3. Causal Mediation Analysis and Principal Stratification.
3.1. Mediation Analysis with a Single Mediator.

To fix ideas, consider the single mediator case. Let Zi ∈ {0,1} indicate the presence of the 
intervention of interest, here, whether power plant i has installed scrubbers in January 2005 
(Zi = 1) and let Z = (Z1, ⋯ , Zn) be the vector of intervention indicators for power plants i 
=1, ⋯ , n. Using potential-outcomes notation (Rubin, 1974), let Mi(Z) denote the potential 
emissions that the i-th power plant would be generated under the vector of scrubber 
assignments Z, and let Yi(Z; M) denote the potential ambient PM2.5 outcome that could, in 
principle, be defined for any scrubber assignment vector Z and any vector of intermediate 
emissions values M. Throughout the paper, we adopt the stable unit treatment value 
assumption (SUTVA; Rubin 1980) which implies1) there is no “interference” in the sense 
that potential intermediate and outcome values from power plant i do not depend on 
scrubber treatments and emissions intermediates of other power plants (i.e, Mi(Z) = Mi(Zi) 
and Yi(Z; M) = Yi(Zi; Mi)) and 2) there are “no multiple versions” of scrubber treatments 
such that whenever Zi = Zi′, Mi Zi = Mi Zi′  and Y i Zi;Mi Zi = Y i Zi′,Mi Zi′ . For reasons that 

will become clear later, we augment the standard SUTVA to also assume “no multiple 
versions” of emissions intermediates which states, if Mi = Mi′, then Y i Zi;Mi = Y i Zi;Mi′

(Forastiere et al. 2016). We revisit possible violations of SUTVA in Section 8, but note here 
that the linkage of power plants to monitors within 150km provides some justification for 
this assumption.

The natural direct effect (Pearl, 2001) is defined by NDE = E[Yi(1; Mi(0))−Yi(0; Mi(0))], 
representing the effect of the intervention obtained when setting the mediator to its ‘natural’ 
value Mi(0); i.e., its realization in the absence of the intervention. The natural indirect effect 
is defined as NIE = E[Yi(1; Mi(1)) − Yi(1; Mi(0))], representing the effect of holding the 
intervention status fixed at Z = 1 but changing the value of the mediator from M (0) to M 
(1). The total causal effect of the intervention on the outcome can then be defined as TE = 
NDE + NIE = E[Yi(1; Mi(1)) − Yi(0; Mi(0))]. Similar controlled effects could also be 
defined to represent causal effects at specific values of M (Pearl, 2001; Robins and 
Greenland, 1992).

Implicit in the definition of these effects is the conceptualization of hypothetical 
interventions that could independently manipulate values of both Z and M to, for example, 
“block” the effect on the mediator. Thus, it is important to note that potential outcomes of 
the form Y i Zi;Mi Zi′  are purely hypothetical for Zi ≠ Zi′, and can never be observed for any 

observational unit. Such unobservable potential outcomes have been referred to as a priori 
counterfactuals (Robins and Greenland, 1992; Rubin, 2004). We revisit conceptualization of 
a priori counterfactuals in the context of the power plant study in Section 4.1, but note here 
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the distinction between a priori counterfactuals and potential outcomes of the form Yi(Zi; 
Mi(Zi)) that are observable and actually observed for some units.

3.2. Principal Stratification.

A distinct but related framework for defining causal effects in the presence of intermediate 
variables is principal stratification (Frangakis and Rubin, 2002). Continuing with the single-
mediator case, principal stratification considers only a single intervention and relies on 
definition of two causal effects: the effect of Zi on Mi, defined as Mi(1)−Mi(0), and the 
effect of Zi on Yi, defined as Yi(1; Mi(1)) − Yi (0; Mi(0)). The objective is to estimate 
principal effects, which are average causal effects of Zi on Yi within principal strata of the 
population defined by (Mi(0), Mi(1)).

With principal stratification, dissociative effects are defined to quantify the extent to which 
the intervention causally affects outcomes when the intervention does not causally affect the 
mediator, for example, E[Yi(1; Mi(1))−Yi(0; Mi(0)) | Mi(1) = Mi(0)]. Dissociative effects are 
similar to direct effects in a mediation analysis in that they represent causal effects of an 
intervention on the outcome among the subpopulation where there is no causal effect on the 
mediator, but they refer only to the specific subpopulation with M(1) = M(0). VanderWeele 
(2008) and Mealli and Mattei (2012) show that dissociative effects represent a quantity that 
is only one contributor to the NDE, with the amount of contribution tied to the size of the 
subpopulation with M(1) = M(0).

Associative effects are defined to quantify the causal effect of the intervention on the 
outcome among those for which the intervention does causally affect the mediator, for 
example, E[Yi(1; Mi(1)) − Yi(0; Mi(0)) | Mi(1) < Mi(0)]. An associative effect that is large in 
magnitude relative to the dissociative effect indicates that the causal effect of the 
intervention on the outcome is greater among those for which the mediator is causally 
affected, compared to those for which the mediator is not affected. This could be interpreted 
as suggestive of a causal pathway whereby the intervention impacts the outcome through 
changing the mediator, but note that associate effects are generally a combination of the 
NDE and NIE for a defined sub-population.

Dissociative effects that are similar in magnitude to associative effects indicate that the 
intervention effect on the outcome is similar among observations that do and do not exhibit 
causal effects on the mediator, which could be interpreted as suggestive of other causal 
pathways through which Zi affects Yi.

A primary distinction between principal stratification and causal mediation analysis is that 
principal effects only pertain to population subgroups comprised of observations with 
particular values of (Mi(0), Mi(1)), whereas natural direct and indirect effects are defined for 
the whole population (as discussed in detail in Mealli and Mattei (2012)). Importantly, note 
that the a priori counterfactuals of the form Y i Zi,Mi Zi′  for Zi ≠ Zi′ do not appear in the 

definition of principal effects, which rely only on the definition of observable potential 
outcomes Yi(Zi, Mi(Zi)). Thus, there is no conception in principal stratification of a 
hypothetical intervention acting on Mi independently from Zi, and there is no definition of a 
causal effect of Zi on Yi that is mediated through Mi. From a modeling perspective, principal 
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effects can be estimated when an outcome model is specified conditional on both potential 
mediators (intermediate outcomes), Mi(0) and Mi(1) while causal mediation analysis has 
tended to rely on an outcome model that depends on the observed mediator. The differences 
in modeling strategies that are typically employed in principal stratification and causal 
mediation analysis complicate comparisons, as results of such analyses have typically been 
driven in part by different modeling assumptions. In Section 5, we will propose a new set of 
assumptions to build a common observed-data model for principal stratification and causal 
mediation analysis.

3.3. Existing Considerations for Multiple Mediators.

Extensions of the causal mediation ideas outlined in Section 3.1 to settings of multiple 
mediating variables are emerging. For contemporaneously observed mediators, 
straightforward extensions of the Baron and Kenny (1986) regression-based structural 
equation model approach (MacKinnon, 2008) have been proposed. For each of K 
contemporaneous mediators (M1, M2, ⋯ , MK), a series of regression models is used to 
estimate mediator-specific NIEs in a manner that implies additivity of indirect effects:

JNIE = ∑
k = 1

K
NIEk and TE = NDE + JNIE,

(3.1)

where JNIE is used to denote the joint natural indirect effect due to changes in all K 
mediators, and NIEk = E[Yi(1; Mk,i(1)) − Yi(1; Mk,i(0))] represents the natural indirect 
effect of the k-th mediator. These approaches assume that each Mk,i mediates the treatment 
effect independently of the other mediators, without interactions among mediators (i.e., the 
mediators are causally independent or parallel). Figure 1.a without dashed lines illustrates 
this case. Wang, Nelson and Albert (2013) propose an alternative modeling approach under 
the setting of causally independent mediators. If the mediators interact with each other in 
terms of their impact on the outcome, then additivity of indirect effects as in the above 
cannot hold; and estimation of multivariate mediated effects can then be further complicated 
by correlations among the mediators. Dependence among mediators has been considered 
when Mk are observed sequentially (i.e., sequential mediators; Figure 1.b), as in Imai and 
Yamamoto (2013). Albert and Nelson (2011), and Daniel et al. (2015) propose approaches 
for either sequentially dependent mediators or mediators that do not affect nor interact with 
each other. These approaches offer a decomposition of the JNIE in the case of sequential 
dependence, and assume additivity of natural indirect effects otherwise. VanderWeele and 
Vansteelandt (2014) discuss an approach to decompose the JNIE further when the mediators 
simultaneously affect each other; however, their approach does not evaluate the impact of 
each individual mediator (see Section 4.3). Taguri, Featherstone and Cheng (2015) propose 
an approach for contemporaneous, non-ordered mediators, but rely on an assumption that the 
mediators are conditionally independent given observed covariates, which does not fully 
represent the possibility of contemporaneous interactions among the mediators, as may be 
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the case with multiple emissions (in particular SO2 and NOx) and the formation of ambient 
PM2.5. Section 6 examines the possibility of contemporaneous interactions among (possibly 
correlated) mediators in the context of the scrubber study.

In summary, existing methods for multiple mediators rely on either assumed causal 
independence of (parallel) mediators and additivity of indirect effects, sequential 
dependence of mediators, or on restrictive assumptions of conditional independence among 
mediators. VanderWeele and Vansteelandt (2014) point out that if there are interactions 
between the effects of (nonsequential) multiple mediators on the outcome, the joint indirect 
effect may not be the sum of all three indirect effects. They note that, in principle, an 
analysis could proceed with an outcome model including interactions MjMk for all {j, k} 
combinations combined with models for (E(Mj, Mk)). However, this approach would lead to 
issues of model compatibility between the models for Mj and Mk and that for the product 
MjMk. The lack of satisfactory methods for more general settings of multiple 
contemporaneously-measured mediators motivates the methods developed herein, where we 
offer a new decomposition of the joint natural indirect effect into individual indirect effects 
that may not affect the outcome additively.

4. New Methods for Causal Mediation Analysis and Principal Stratification 
with Multiple Contemporaneous Mediators.
4.1. Notation for Multiple Mediating Variables.

Suppressing the i subscript indexing power plants, let {Mk(z); k = 1, … , K} denote the 
potential emissions of K pollutants that would occur if a power plant were to have scrubber 
status Z = z, for z = 0, 1. While much of our development is general for any K, we focus on 
the case K = 3 so that Mk(z), k = 1, 2, 3 denotes the potential emissions of SO2, NOx, and 
CO2, respectively. The causal effect of the scrubber on emission k can then be defined as a 
comparison between Mk(1) and Mk(0). Let M(z1, z2, z3) ≡ {M1(z1), M2(z2), M3(z3)} denote 
potential emissions under a set of three scrubber statuses {z1, z2, z3}.

We similarly define potential PM2.5 outcomes, but extend the notation to define potential 
concentrations under different values of scrubber status, Z, and different possible values of 
emissions, M(z1, z2, z3). Thus, in full generality, each power plant has a set of 2K+1 = 16 
potential outcomes for PM2.5, Y (z; M(z1, z2, z3)), which denote potential values of PM2.5 
that would be observed under intervention Z = z with pollutant emissions set at values under 
interventions z1, z2, z3. Definition of all 16 potential PM2.5 concentrations is required for 
definition of natural direct and indirect effects and entails a priori counterfactuals. For 
example, Y (1; M(0, 0, 1)) would represent the potential ambient PM2.5 concentration near a 
plant under the hypothetical scenario where the plant installs a scrubber (z = 1), but where 
emissions of SO2 and NOx are set to what they would be without the scrubber (z1 = z2 = 0) 
and emissions of CO2 are set to what they would be with the scrubber (z3 = 1). This may be 
conceptualized as a setting where a power plant installs a scrubber, but offsets the cost of the 
technology by burning coal with a higher sulfur content and discontinuing use of a different 
NOx control, thus “blocking” the intervention and maintaining SO2 and NOx emissions at 
levels that would have occurred without the SO2 technology. Principal stratification will only 
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rely on potential outcomes with z = z1 = z2 = z3 that are observable from the data, such as 
M(1, 1, 1) and Y (1; M(1, 1, 1)) observed for any power plant that installs a scrubber. 
Finally, let X denote a vector of baseline covariates measured at the power plant or the 
surrounding area.

4.2. Observable Outcomes: Principal Causal Effects for Multiple Mediators.

Extending principal stratification to settings where the intermediate variable is multivariate 
is conceptually straightforward. Principal stratification defines a principal stratum for every 
combination of the joint vector (M(0, 0, 0), M(1, 1, 1)), and principal causal effects are 
defined as comparisons between Y (0; M(0, 0, 0)) and Y (1; M(1, 1, 1)) within principal 
strata.

For any subset 𝒦 ⊆ 1, 2, 3 , let |M(1, 1, 1) −M(0, 0, 0)|𝒦 denote the element-wise absolute 

differences between emissions of the subset of pollutants in 𝒦, e.g., 
|M(1, 1, 1) −M(0, 0, 0) |𝒦 = 1, 3 = M1(1) −M1(0) , M3(1) −M3(0) . Definitions of quantities 

such as average associative and dissociative effects can proceed following Zigler, Dominici 
and Wang (2012) by defining:

EDE𝒦 = E Y(1;M(1, 1, 1)) − Y(0;M(0, 0, 0)) | | (M(1, 1, 1) −M(0, 0, 0)) |𝒦 < C𝒦
D ,

EDE𝒦 = E Y(1;M(1, 1, 1)) − Y(0;M(0, 0, 0)) | | (M(1, 1, 1) −M(0, 0, 0)) |𝒦 < C𝒦
A ,

where C𝒦
A  denotes a vector of thresholds beyond which a change in each emission in 𝒦 is 

considered meaningful, C𝒦
D  is a vector of thresholds be low which changes in these 

emissions are considered not meaningful, and > and < represent element-wise comparisons. 
Note that the dissociate effect is now defined on principal strata where potential changes (or 
differences) in the intermediate variables are less than some vector of thresholds 
|(M(1, 1, 1) −M(0, 0, 0)) |𝒦 < C𝒦

D  instead of principal stratum with strict equality 

|(M(1, 1, 1) −M(0, 0, 0)) |𝒦 = 0, 0, 0 𝒦 to accommodate continuous intermediate values. For 

example, 𝒦 = 1, 3  would be used to define the associative (dissociative) effect in the 

subpopulation exhibiting an effect on SO2 and CO2 in excess of C𝒦
A  (below C𝒦

D ), without 

regard to the effect on NOx. For the data analysis in Section 7, we divide the EAE defined 
above into two parts: EAE𝒦

+  will denote the average associative effects among power plants 

where all emissions in 𝒦 are causally increased in excess of C𝒦
A , while EAE𝒦

−  will denote 

the average associative effect in power plants where all emissions in 𝒦 were causally 

reduced in excess of C𝒦
A . Note that these summary quantities only consider a subset of 

principal strata that may be of interest. For example, analogous average principal effects 
could be calculated among strata where some emissions are decreased and others are 
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increased. We avoid burdensome notation for such summaries, but will revisit estimates in 
additional principal strata in the context of the data analysis in Section 7.

In addition to estimating average dissociative and associative effects for different 𝒦 as 
defined above, interest may lie in entire surfaces of, for example, how the causal effect on 
PM2.5 varies as a function of the causal effect on each emission (“causal effect 
predictiveness” surface (Gilbert and Hudgens, 2008)).

4.3. Observable and a priori Counterfactual Outcomes: Natural Direct and Indirect Effects 
for Multiple Mediators.

Extending definitions of natural direct and indirect effects to the multiple mediator setting is 
somewhat more complicated. The natural direct effect is defined as NDE = E[Y (1; M(0, ⋯ , 
0))−Y (0; M(0 ⋯ , 0))], representing the causal effect of Z on Y is “direct” in the sense that 
it is not attributable to changes in any of the K emissions. The joint natural indirect effect of 
all K mediators, JNIE12⋯K, is derived by subtracting the natural direct effect from the total 
effect, JNIE12⋯K = TE−NDE = E[Y (1; M(1, 1, ⋯ , 1))−Y (1; M(0, 0, ⋯ , 0))].

In addition to JNIE12⋯K, we introduce a decomposition into the natural indirect effects 
attributable to changes in different combinations of the K mediators. Maintaining focus on 
the case where K = 3, the JNIE123 can be decomposed into emission-specific indirect effects 
and the joint indirect effects of all possible pairs of emissions. See Figure 5 in the Web 
Appendix for a graphical representation.

We define the mediator-specific NIE for the k-th emission as a comparison between the 
potential PM2.5 outcome under scrubbers and the analogous outcome with the value of the k-
th emission fixed to the natural potential value that would be observed without scrubbers. 
Specifically, for emissions of SO2, NOx, and CO2 define:

NIE1 = E[Y(1;M(1, 1, 1)) − Y(1;M(0, 1, 1))],
NIE2 = E[Y(1;M(1, 1, 1)) − Y(1;M(1, 0, 1))],
NIE3 = E[Y(1;M(1, 1, 1)) − Y(1;M(1, 1, 0))] .

(4.1)

In a similar fashion we can define the joint natural indirect effect attributable to subsets of 
mediators j and k for j ≠ k as differences between the observable potential PM2 5 outcomes 
under scrubbers and the analogous a priori counterfactual with values of pollutants j and k 
set to their natural values that would be observed without scrubbers. For example, JNIE12 
defines the joint natural indirect effects of mediators 1 (SO2) and 2 (NOx) as

JNIE12 = E[Y(1;M(1, 1, 1)) − Y(1;M(0, 0, 1))] .

Values of JNIEjk for other pairs of mediators can be defined analogously, and all such pairs 
correspond to the second row in Figure 5 in the Web Appendix. Note that the joint natural 
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indirect effect of each pair of mediators is not equal to the sum of corresponding mediator-
specific NIEs unless there is no overlap between mediator-specific NIEs (additivity). For 
example, we can represent the relationship between JNIE12 and the mediator-specific effects 
NIE1 and NIE2 as

NIE1 + NIE2 − JNIE12 = E[Y(1;M(1, 1, 1)) − Y(1;M(0, 1, 1)) − Y(1;M(1, 0, 1)) + Y(1;M(0, 0, 1))] .

Thus, if this quantity is not equal to 0, we argue that additivity of mediator-specific NIEs 
does not hold. Note that the above decomposition of JNIE123 differs from VanderWeele and 
Vansteelandt (2014), which considers the portion of the JNIE123 mediated through M1, then 
sequentially considers the additional contribution of each mediator in the presence of the 
others. This presumed ordering of mediators precludes estimation of the effect through 
different pairs of mediators such as JNIE23 or JNIE13, the availability of which is a benefit 
of our proposed decomposition. Our decomposition also differs from Daniel et al. (2015) 
who only allow interacting overlap between mediator-specific NIEs when one mediator 
causally affects another.

Note that alternative definitions of NIE could use contrasts of the form: 
NIE1* = E[Y(0;M(1, 1, 1)) − Y(0;M(0, 1, 1))]. Such a strategy is also considered in Daniel et al. 

(2015), but defining NIEk* in this way would rely entirely on a priori counterfactuals, 

whereas a benefit of using the definitions in (4.1) is that each definition uses the observable 
potential outcome Y (1; M(1, 1, 1)), comparing against only one a priori counterfactual (e.g., 
Y (1; M(0, 1, 1))).

5. Flexible Bayesian Models Assumptions and Estimation.
Under the assumptions developed in this section, Bayesian inference for the causal effects 
defined in Section 4 follows from specifying models for the joint distribution of all potential 
mediators (conditional on covariates) and the outcome model conditional on all potential 
mediators and covariates, and prior distributions for unknown parameters. Posterior 
distributions cannot be computed directly from observed data because potential outcomes 
are never jointly observed in both the presence and absence of a scrubber and a priori 
counterfactuals are never observed. Our estimation strategy consists of three steps. First, we 
specify nonparametric models for the observed data. The marginal distribution of each 
observed mediator (i.e.,M(0, 0, 0) = {M1(0), M2(0), M3(0)} observed for power plants that 
did not install scrubbers and M(1, 1, 1), = {M1(1), M2(1), M3(1)} observed for those that 
did) is specified separately and then linked into a coherent joint distribution using a 
Gaussian copula model (Nelsen, 1999). The models for the potential outcomes Y (1; M(1, 1, 
1)) and Y (0; M(0, 0, 0)) are specified conditional on covariates and all potential mediators 
(M(1, 1, 1) and M(0, 0, 0)) that are never observed simultaneously. Thus, the conditional 
outcome models are estimated via the data augmentation for unobserved potential mediators. 
Second, we introduce two assumptions for estimating the TE and the associative and 
dissociative effects. Third, we employ an additional assumption to equate the distributions of 
a priori counterfactuals to those of the observed potential outcomes under intervention Z = 1 
to allow estimation of the natural direct and indirect effects. We also provide optional 
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modeling assumptions to sharpen posterior inference for the power plant evaluation. 
Throughout, we estimate the distribution of the covariates, FX(x), using the empirical 
distribution.

5.1. Models for the Observed Data.

We specify Dirichlet process mixtures for the marginal distribution of each mediator 
(Müller, Erkanli and West, 1996). For each intervention z = 0, 1, k = 1, 2, 3 and baseline 
covariates X = x, the conditional distribution of the k-th observed mediator is specified as

Mk, i |Zi = z,Xi = xi N βk0, i
z + xi

⊤βk1
z , τk, i

z ,  Mk, i ≥ 0; i = 1,⋯, nz
βk0, i
z , τk, i

z Fk
z,

Fk
z DP λk

z,ℱk
z ,

where {i = 1, 2, … , nz} denotes the observations with Z = z and k indicates the k-th 
mediator. We bound the mediator from below (0) using a truncated normal kernel (within the 
interval [0, ∞)). βk0, i

z  and τk, i
z  denote the intercept and precision parameters for the k-th 

emission at the i-th power plant that received intervention z. Here, DP denotes the Dirichlet 
process with two parameters, a mass parameter (λk

z) and a base measure (ℱk
z). To not overly 

complicate the model we only ‘mixed’ over the intercept and precision parameters in the 
conditional distributions, βk0, i

z  and τk, i
z . The base distribution ℱk

z is taken to be the normal-

Gamma distribution, N μk
z, Sk

z G ak
z, bk

z . Details including hyper prior specification are given 

in Section A of the Web Appendix.

The marginal distributions of each mediator under each z = 0, 1 are linked to model the joint 
distribution of [M1, M2, M3|Z = z, X = x] with Gaussian copula models of the form:

FM(z, z, z) mz, z, z = Φ3 Φ1
−1 FM1(z)

m1 ,Φ1
−1 FM2(z)

m2 ,Φ1
−1 FM3(z)

m3 ,

where mz,z,z are values of potential mediators under intervention Z = z and Φk is the k-
variate standard normal CDF. Note that we elect to model the marginal distribution of each 
univariate random variable separately, and then combine with the Gaussian copula model, 
rather than directly model the joint distributions of [M1, M2, M3|Z = z, X = x]. Thus, we 
allow full flexibility using DP mixtures of (truncated) normals for the marginal distributions 
(the fit of which can be checked empirically) and use the Gaussian copula to link them to 
construct the joint distribution of potential mediators. The Gaussian copula model implies 
some (correlation) structure to the joint distribution of all observable potential outcomes, 
without implying any specific causal structure. Flexibility of this structure derives from the 
fact that each marginal distribution is modeled as nonparametric with infinite dimensional 
parameter spaces. The strategy is designed to coalesce with the modeling strategy in Section 
5.2. Note that other potential alternatives to link the fixed marginal distributions such as 
mixtures of marginals (e.g. H x1, x2 = pF x1 + (1 − p)G x2  or H x1, x2 = F x1 G x2  do not 
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specify the full joint distribution distribution of (x, y) (Nelsen, 1999)) and our method does 
not limit the number of the mediators in general. While the joint distribution of all potential 
mediators (M(0, 0, 0) and M(1, 1, 1)) is also modeled via the same Gaussian copula model, 
this entails modeling unobserved potential mediators and will be discussed as a part of the 
assumptions in Section 5.2

To model the distributions of the potential outcomes for each z = 0, 1 conditional on all 
potential mediators and covariates, we use a locally weighted mixture of normal regression 
models (Müller, Erkanli and West, 1996) that is induced by specifying a DP mixture of 
normals for the joint distribution of the outcome, all mediators and covariates. For each 
intervention z = 0, 1, potential values of all (counterfactual) mediators and baseline 
covariates X = x, the conditional distribution of the observed outcome yi is specified

f (yi |mi(0, 0, 0),mi(1, 1, 1), xi, Zi = z

= ∑
l = 1

∞
ωl
zN yi,mi(0, 0, 0),mi(1, 1, 1), xi |μl

z,Σl
z

where ωl
z = γl

z/ ∑ j = 1
∞ γ j

zN mi(0, 0, 0),mi(1, 1, 1), xi |μ j, \1
z ,Σ j, (\1, \1)

z  and μ j, \1
z  denotes all 

elements of mean parameters μ j
z except for Yi. Similarly, Σ j, (\1, \1)

z  denotes a submatrix of 

covariance matrix Σ j
z formed by deleting the the first row and the first column. The weight 

involves the parameter γ j
z where γ j

z = γ j
′, z∏h < j 1 − γh

′, z  and γ j
′, z Beta 1, αz . This flexible 

conditional model specification is a necessary feature in our case since we allow the 
outcome model to capture nonlinear and/or interaction effects of the mediators. Note again 
that this outcome model is conditional on all potential mediators {M(0, 0, 0), M(1, 1, 1)} 
which cannot be observed at the same time. We use a similar approach to that used in 
Schwartz, Li and Mealli (2011) to model the observed outcome distribution conditional on 
partly missing potential intermediate variables by constructing complete intermediate data. 
Here, we impute unobserved potential mediators for each unit with a data-augmentation 
approach based on the joint distribution of all potential mediators specified above. Details 
about hyper prior specification and posterior computation are given in the Web Appendix.

5.2. Assumptions for Estimation of Causal Effects.

To estimate causal effects based on the model for the observed data specified in Section 5.1, 
we formulate assumptions relating observed quantities to both observable outcomes and a 
priori counterfactuals. Denote the conditional distribution [Y (z; M(z1, z2, z3)) | M(0, 0, 0) = 
m0,0,0, M(1, 1, 1) = m1,1,1, X = x] with fz,M(z1, z2, z3)(y | m0,0,0, m1,1,1, x) where mz1,z2,z3 is 
a vector of hypothetical values of the mediators under the interventions z1, z2, z3. The 
conditional distribution [M(z1, z2, z3)| X = x] is denoted by fM(z1,z2,z3)(mz1,z2,z3|x). Other 
conditional distributions are defined analogously, and we henceforth omit conditioning on 
covariates X = x to simplify notation.
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5.2.1. Assumptions for principal causal effects.—We begin with an ignorability 
assumption stating that, conditional on covariates, “assignment” to scrubbers is unrelated to 
the observable potential outcomes:

Assumption 1. (Ignorable treatment assignment)

Y(z;M(z, z, z)),M(0, 0, 0),M(1, 1, 1) ╨ Z |X = x,

for z = 0, 1. This assumption permits estimation of the distributions of potential outcomes 
under intervention Z = z with observed data on ambient PM2.5 and emissions under the same 
intervention.

We adopt a Gaussian copula model to link the distributions of (M1(z), M2(z), M3(z)) for z = 
0, 1 into a single joint distribution of observable potential outcomes.

Assumption 2. The joint distribution of all potential mediators conditional on covariates 
follows a Gaussian copula model (Nelsen, 1999):

FM(0, 0, 0),M(1, 1, 1) m0, 0, 0,m1, 1, 1 = Φ6 Φ1
−1 FM1(0)

m1 ,Φ1
−1 FM2(0)

m2 ,Φ1
−1 FM3(0)

m3 ,

Φ1
−1 FM1(1)

m1 ,Φ1
−1 FM2(1)

m2 ,Φ1
−1 FM3(1)

m3

where Φ6 is the multivariate normal CDF with mean 0 and a correlation matrix R.

Assumption 2 implies a joint distribution of all observable potential mediators in a manner 
consistent with the models for [M1, M2, M3|Z = z, X = x] described in Section 5.1. However, 
this entire joint distribution of potential mediators under both interventions is not fully 
identified from the data since potential mediators under different interventions are never 
jointly observed. Specifically, entries of the correlation matrix R corresponding to, for 
example, the correlation between Mj(0) and Mk(1), are not identifiable in the sense that no 
amount of data can estimate unique values for these parameters. Nonetheless, proper prior 
distributions for these parameters can still permit inference from proper posterior 
distributions. Such parameters are sometimes referred to as “partially identifiable” in the 
sense that increasing amounts of data may lead the supports of posterior distributions to 
converge to sets of values that are smaller than those specified in the prior distribution 
(Gustafson, 2010; Mealli and Pacini, 2013). This can arise due to restrictions on the joint 
distribution implied by the models for the marginal distributions (e.g., the positive-
definiteness restriction on R may exclude some possible values for its entries). We discuss 
two prior specifications for the partially-identified parameters in R, noting that further 
details of partial identifiability in the principal stratification context appear in Schwartz, Li 
and Mealli (2011).

5.2.2. Assumptions for Mediation Effects.—Towards estimation of natural direct 
and indirect effects, we augment the assumptions of Section 5.2.1 with one relating 
observable outcomes to a priori counterfactual outcomes.
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Assumption 3. For intervention Z = 1, the conditional distribution of the potential outcome 
given values of all potential mediators (and covariates) is the same regardless of whether the 
mediator values were induced by Z = 1 or Z = 0.

This assumption implies that the a priori counterfactual Y (1; M(0, 0, 0)) and the observable 
potential outcomes Y (1; M(1, 1, 1)) have the same conditional distribution,

f 1,M(0, 0, 0)(y|M(0, 0, 0) = m,M(1, 1, 1), x)
= f 1,M(1, 1, 1)(y|M(0, 0, 0),M(1, 1, 1) = m, x) .

This assumption also applies to any two mediators in the absence of the intervention. For 
instance, the a priori counterfactual of PM2.5, Y (1; M(0, 1, 0)), and Y (1; M(1, 1, 1)) have 
the same conditional distribution regardless of whether corresponding emissions values 
arose under a scrubber (Z = 1) or absent a scrubber (Z = 0),

f 1,M(0, 1, 0)(y|M(0, 1, 0) = m,M(1, 0, 1), x)
= f 1,M(1, 1, 1)(y|M(0, 0, 0),M(1, 1, 1) = m, x) .

The key point is that the distribution of PM2.5 under a given (unobservable) combination of 
mediators (m) only depends on the values of the mediators and not the intervention that led 
to those mediators. Asserting this assumption in this case relies in part on what is known 
about the underlying chemistry relating SO2, NOx, and CO2 emissions to PM2.5. Note that 
such an assumption may be more difficult to justify in, say, a clinical study where 
assumptions about a priori counterfactuals might pertain to choices of study participants.

The above assumption can be cast as two homogeneity assumptions of the form proposed in 
Forastiere, Mealli and VanderWeele (2016). For example, one implication of Assumption 3 
is that the a priori counterfactual Y (1; M(0, 0, 0)) is homogeneous across all principal strata 
with M(0, 0, 0) = m, regardless of the value of M(1, 1, 1). Viewing Assumption 3 in terms of 
the implied homogeneity across principal strata aids interpretation and justification in the 
context of the power plant example. Homogeneity across strata implies that the potential 
ambient air quality value in the area surrounding a power plant is related to (possibly 
counterfactual) emission levels only, and not to the power plant characteristics that govern 
effectiveness of scrubbers for reducing emissions (i.e., the power plant characteristics that 
determine the exact principal stratum membership). This underscores the importance of 
including covariates in X that capture characteristics of the monitoring locations (e.g., 
temperature and barometric pressure). Appendix D provides details of the relationship 
between Assumption 3 and assumptions of homogeneity across principal strata. While 
Assumption 3 implies homogeneity assumptions, the converse is not true in the case of 
multiple mediators due to the connection of Assumption 3 to a priori counterfactuals defined 
to have mediator values induced by different interventions (e.g., Y (1; M(0, 1, 0)). We 
discuss a sensitivity analysis to this assumption in Web Appendix J.

5.2.3. Optional Modeling Assumptions to Sharpen Posterior Inference.—With 
the above model specification, the partial identifiability of the model parameters in R 
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warrants careful attention. Proper but noninformative prior distributions for these parameters 
could be specified marginally for these parameters as Unif(−1, 1), or equivalently, as 
conditionally uniform on intervals satisfying positive definiteness restrictions for the 
correlation matrix. In either case, posterior inference may exhibit large uncertainty.

We consider in detail an alternative prior specification similar to that in Zigler, Dominici and 
Wang (2012) to sharpen posterior inference. Specifically, the correlations between mediators 
under different interventions are specified as follows:

Cor M j(0),Mk(1) =
Cor M j(0),Mk(0) + Cor M j(1),Mk(1)

2 × ρ,  for  j, k = 1, 2, 3

with ρ a sensitivity parameter. This strategy implies that (a) the correlation between the same 
mediator (j = k) under opposite interventions is ρ, and (b) the correlation between different 
mediators (j ≠ k) under opposite interventions is an attenuated version of the correlation 
observed separately under each intervention. Section B of the Web Appendix provides a 
correlation matrix implied by this assumption in the case of 2 mediators. We assume a single 
ρ and specify a uniform prior distribution, ρ ~ Unif(0, 1), but a different parameter could be 
specified for each mediator.

As an additional assumption to sharpen posterior inference, we assume that the correlations 
between emissions (mediators) are all positive. Support for this assumption comes from 
observed-data estimates of these conditional correlations that are all positive.

In summary, assumptions 1–2 are sufficient to estimate the principal causal effects, and 
pertain only to observable potential outcomes. Adding assumption 3 relating observed 
quantities to a priori counterfactuals permits estimation of direct and indirect effects for 
mediation analysis. The optional assumptions here in Section 5.2.3 are designed to sharpen 
posterior inference in the power plant analysis.

5.2.4. Posterior Inference.—A Markov chain Monte Carlo (MCMC) algorithm is used 
to sample from this posterior distribution and estimate causal effects using the following 
steps: (1) sampling parameters from each marginal distribution for potential mediators and 
conditional distribution for potential outcomes defined in Section 5.1; (2) sampling 
parameters from the correlation matrix R of the Gaussian copula; (3) sampling via data 
augmentation a priori counterfactual mediators from the joint distribution;(4) computing 
causal effects based on all potential mediators and outcomes including imputed a priori 
outcomes and mediators; (5) iterate Steps 1–4. The specifics of estimation (conditional on 
our specific model formulation) are based on the existing literature on Bayesian estimation 
of causal effects (and principal causal effects in particular), for example, in Mattei and 
Mealli (2011); Zigler, Dominici and Wang (2012); Daniels et al. (2012).

The Web Appendix contains details of the MCMC procedure (Section F), prior specification 
for all other model hyper-parameters (Section A), and the procedure for computing the 
principal causal effects and the mediation effects from the posterior distributions of model 
parameters (Section C).
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6. Numerical Study.
We examine the performance of the proposed model under combinations of the following 
two data generating scenarios: (1) correlations among the mediators (Case 1: uncorrelated 
mediators vs. Case 2: correlated mediators) and (2) interaction terms between the mediators 
in the outcome model (Case A: interaction term between M1 and M2 vs. Case B: interaction 
terms between M1 and M2, and between M2 and M3). Data sets of size n = 500 are simulated 
for each of the four cases (1/A, 1/B, 2/A, 2/B), each with three continuous confounders. In 
all cases, the three mediators are generated based on a multivariate normal distribution. See 
the Web Appendix (Section G) for the exact data generating mechanism.

We compare our method for estimating mediation effects to a regression-based 
model(MacKinnon, 2008):

M1 = α01 + α11Z + X⊤α1 + ϵ1
M2 = α02 + α12Z + X⊤α2 + ϵ2
M3 = α03 + α13Z + X⊤α3 + ϵ3
Y = β0 + β1Z + β2M1 + β3M2 + β4M3 + X⊤β + ϵY

where ϵ1, ϵ 2, ϵ 3, and ϵ Y are all independently distributed as N(0, σ).

Table 2 summarizes the results based on 400 replications for each of the four scenarios. It 
shows that our proposed model (BNP) performs well in terms of bias and MSE for all cases. 
Note that the true effects change when the mediators are correlated in the presence of 
interaction term(s) in the outcome model. Thus, with any interaction effects of the 
mediators, it is desirable to capture the correlation structure of the mediators, which our 
method does by flexibly modeling the joint distribution of all potential mediators. Also, the 
flexible Bayesian nonparametric model can capture both complex relationships/interactions 
among the mediators and non-additive and nonlinear forms of mediators and/or confounders 
in the outcome model. In each scenario, interaction terms in the outcome model introduce 
non-additivity in the joint natural indirect effect (e.g., JNIE ≠ NIE1 + NIE2 + NIE3) and the 
traditional regression model has larger biases (and larger MSEs) for mediation effects.

7. Analysis of Power Plant Scrubbers in the Acid Rain Program.
Here we estimate causal effects of having scrubbers installed in January 2005 (Z) on annual 
average emissions of SO2, NOx, and CO2 in 2005 (M1, M2, M3) and on the 2005 annual 
average ambient PM2.5 concentration within 150km of a power plant (Y). Before reporting 
results, note that basic checks of the fit of marginal nonparametric models appear in Web 
Appendix I, indicating fit that is clearly superior to simple parametric models.

A simple comparison of means indicates that the 150km area around power plants with 
scrubbers installed (Z = 1) had average ambient PM2.5 that was lower, on average, than the 
areas surrounding power plants without scrubbers (12.4 vs. 13.7 μg/m3). Similarly, the 
power plants with scrubbers also emitted less SO2, more NOx, and more CO2 than the plants 
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without scrubbers. Table 1 lists the covariates in X to adjust for confounding and presents 
summary statistics for scrubber and non-scrubber power plants.

We present an analysis with the proposed method using the constrained prior specification in 
Section 5.2.3. Analysis using uniform prior distributions on all elements of the correlation 
matrix appears in the Web Appendix. All reported estimates are listed as posterior means 
(95% posterior intervals). The analysis estimates that having scrubbers installed causes SO2 
emissions to be −1.17 (−1.86, 1.55) × 1000 tons lower, on average, than they would be 
without the scrubber. The analogous causal effects for NOx and CO2 emissions were 0.04 
(0.00, 0.07) × 1000 tons and 0.001 (−0.00, 0.004) million tons, respectively, indicating that 
scrubbers did not significantly affect these emissions, on average. The total effect (TE) of 
having scrubbers installed on ambient PM2.5 within 150km is estimated to be −1.12 (−2.07, 
−0.29) μg/m3, suggesting a reduction amounting to approximately 10% of the national 
annual regulatory standard for PM2.5.

7.1. Principal Causal Effects.

For the k-th emission, let σk denote the posterior standard deviation of the estimated 
individual-level causal effect of a scrubber on Mk, with posterior mean estimates σ1 = 0.24, 

σ2 = 0.42, σ3 = 0.02. Let σ𝒦 denote the vector of σk for the emissions in 𝒦. To summarize 

dissociative effects, we set C𝒦
D = 0.25σ𝒦 to estimate EDE𝒦 among power plants where the 

scrubber effect on emissions in 𝒦 is within one-fourth of a standard deviation of the effect 

in the population. Similarly, we summarize associative effects with C𝒦
A = 0.25σ𝒦 to estimate 

EAE𝒦
− EAE𝒦

+  among power plants where the scrubber causally reduces (increases) 

emissions in 𝒦 more than one-fourth of a standard deviation of the effect in the population.

Before providing estimates of specific principal effects, we first examine 3-D surface plots 
in Figure 2. For each emission separately (k ∈ {1, 2, 3}), Figure 2 depicts estimated 
scrubber effects on PM2.5 across varying effects on emissions determined by values of 
(Mk(0), Mk(1)) simulated from the model. Note the pattern for all emissions that the surfaces 
are sloped downward in the direction of increasing Mk(0) and Mk(1) (sloped towards the 
viewer), indicating larger effects on PM2.5 among plants with larger emissions values under 
both scrubber statuses, i.e., larger plants.

In Figure 2(a) for SO2, the dots in the xy-plane lie almost entirely in the region where M1(1) 
< M1(0), indicating as expected that scrubbers predominantly decrease SO2 emissions. 
Associative effects for SO2 are indicated by the downward slope of the surface in the 
direction of decreasing M1(1) − M1(0) (towards the left of the viewer), indicating that larger 
decreases (increases) in SO2 are associated with larger decreases (increases) in PM2.5.

The analogous surfaces for NOx and CO2 appear in Figures 2(b) and 2(c), respectively. In 
contrast to the surface for SO2, the dots in the xy-plane fall more closely and symmetrically 
around the line Mk(1) = Mk(0), reflecting that scrubbers do not affect these emissions, on 
average. The surface for NOx exhibits some evidence of associative effects in the opposite 
direction of those for SO2; there is some downward slope of the surface in the direction of 
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increasing Mk(1) − Mk(0) (towards the right of the viewer), indicating that larger increases 
(decreases) in these emissions are associated with larger decreases (increases) in PM2.5.

Table 3 lists posterior mean and standard deviation of EDE, EAE−, and EAE+ for all 
possible 𝒦. Estimates of EDE for all 𝒦 indicate little to no reduction in PM2.5 among plants 

where emissions were not affected in excess of C𝒦
D , with the exception of some pronounced 

estimates of EDE for and 𝒦 = NOx  and 𝒦 = CO2 . Estimates of EAE− and EAE+ tend to 

be less than zero. The most pronounced estimate of EAE𝒦
− = − 1.19(0.46) for 𝒦 = SO2

suggests that PM2.5 was reduced among power plants where SO2 emissions were 
substantially reduced, which corresponds to the contour of the surface in Figure 2(a) and is 
consistent with the anticipated causal pathway whereby scrubbers reduce PM2.5 through 
reducing SO2 emissions. In accordance with the opposite sloping surface in Figures 2(b), the 
estimate of EAE𝒦

+  is most pronounced for 𝒦 = NOx , and {NOx, CO2}, indicating that 

ambient PM2.5 is decreased plants with substantial increases in NOx emissions.

Recall that the estimates in Table 3 represent average principal effects over only a subset of 
principal strata, in particular those where changes in multiple emissions are concordant (i.e., 
all decreasing, all increasing, or none changing). Other strata may be of interest. Figure 3 
provides estimates of principal effects in a cross-classification of strata defined by changes 
in CO2 and SO2, with changes defined as increases, decreases, or no change in reference to 
CK
D and C𝒦

A . For example, the third column of Figure 3 subdivides the stratum defined by 

causal increases in CO2 into three substrata: those where CO2 increases and SO2 (1) 
decreases (in excess of C𝒦

A ); (2) does not substantially change (beyond CK
D) ; or (3) increases 

(in excess of C𝒦
A ). Principal causal effect estimates for these three substrata appear along 

with their relative proportion among the stratum defined by CO2 increases, indicated by the 
size of the plotting symbol. The light grey dot corresponds to EAE𝒦

+  for 𝒦 = SO2, CO2  as 

reported in Table 3, but note that only 4% of CO2-increase stratum exhibits SO2 increases. 
The dark grey dot corresponds to the principal effect among the 21% of the CO2-increase 
stratum in substratum (2) where SO2 does not change, with a principal effect estimate of 
−0.13 (0.99). The remaining proportion (75%) of the CO2-increase stratum belongs to 
substratum (3) where the plants exhibiting decreases in SO2 and a corresponding principal 
effect estimate of −1.21 (0.73). Thus, for 𝒦 = CO2 , the negative estimate of EAE𝒦

+  from 

Table 3 is revealed to be generated in large part by strata where SO2 decreases and there is a 
pronounced negative effect on PM2.5. Analogously, the second column of Figure 3 
considering the stratum where CO2 emissions do not substantially change (used to estimate 
EDE) reveals that 63% of this strata exhibited causal reduction in SO2 and a causal reduction 
in PM2.5 of −0.87 (0.49), explaining in large part the negative estimate of EDE𝒦 for 

𝒦 = CO2  in Table 3. Analogous cross-classification of strata by changes in NOx and SO2 

appears very similar to Figure 3 and is not presented.
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The main conclusions from the principal stratification analysis are that1) scrubbers reduce 
SO2 on average, but not NOx or CO2, 2) there is some evidence of a nonzero dissociative 
effect for SO2, 3) associative effects for SO2 are more pronounced than dissociative effects, 
with PM2.5 reduced more around plants where scrubbers cause large reductions in SO2; 4) 
associative effects for NOx and CO2 are more pronounced than dissociative effects, with 
PM2.5 reduced more around plants where scrubbers cause larger increases in these 
emissions; but that 5) strata defined by increases (or no change) in NOx and/or CO2 are 
comprised in large part by substrata where SO2 and PM2.5 were causally reduced. This 
analysis points towards (but cannot confirm) the conclusion that scrubbers affect PM2.5 
among plants where emissions are not changed, and that scrubber effects on PM2.5 are 
mediated in part through effects on SO2, with less evidence of a mediating role of NOx and 
CO2.

7.2. Mediation Effects.

To estimate direct and indirect effects, we augment the principal stratification analysis with 
Assumption 3 in Section 5.2.2 about a priori counterfactuals. Figure 1 (top) in the Web 
Appendix depicts boxplots of the posterior distributions of TE, NDE, JNIE123, JNIE12, 
JNIE23, JNIE13, and the individual NIEs. The estimated NDE, representing the direct effect 
of a scrubber on ambient PM2.5 that is not mediated through any emissions changes, is −0.53 
(−1.51, 0.39) μg/m3, indicating no evidence of a direct effect of scrubbers on PM2.5 that is 
not mediated through SO2, NOx, or CO2. The NIEs for NOx (NIE2) and CO2 (NIE3) are 
estimated to be very close to 0, −0.02 (−0.26, 0.21) and −0.04 (−0.33, 0.23), respectively. 
The estimated NIE for SO2 (NIE1) is −0.54 (−1.20, −0.01), indicating a significant indirect 
effect. The joint natural indirect effects involving SO2 are all similar in magnitude to NIE1, 
with estimates of JNIE12, JNIE13, and JNIE123 of −0.56 (−1.23, −0.01), −0.58 (−1.25, 
−0.02), and −0.59 (−1.27, −0.02), respectively. The estimated JNIE23 is −0.03 (−0.31, 0.23).

As discussed in Section 4.3, a benefit of the proposed approach is the accommodation of 
overlap between NIEs, and the opportunity to examine the extent of overlap. We evaluate the 
relationship between the joint effects JNIEjk and the mediator-specific effects NIE1, NIE2, 
NIE3 through (NIE1 + NIE2) − JNIE12 = −0.01 (−0.18, 0.16), (NIE1 + NIE3) JNIE13 = 0.01 
(−0.22, 0.23) and (NIE2 + NIE3) − JNIE23 = 0.00 (−0.19, 0.15), which give no evidence of 
overlap between NIEs. That is, the effect of a scrubber on ambient PM2.5 that is mediated 
through emissions changes appears to be described by indirect effects that act additively and 
do not exhibit any apparent synergy that would lead to overlapping effects. The lack of 
overlapping indirect effects, combined with the fact that a) all indirect effects involving SO2 
(NIE1, JNIE12, JNIE13, and JNIE123) are similar in magnitude and b) all indirect effects not 
involving SO2 (NIE2, NIE3, JNIE23) are estimated to be zero, provides strong evidence that 
the effect of scrubbers on PM2.5 is primarily driven by effects on SO2.

In the Web Appendix, we also conduct inference using flat priors on plausible values of the 
partially-identifiable parameters, and the estimates for the effects are similar to those in the 
main analysis.

The conclusions of the causal mediation analysis are clear and mostly consistent with those 
from the principal stratification analysis: scrubber effects on ambient PM2.5 are almost 
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entirely mediated through reductions in SO2 emissions. Combining reductions in SO2 with 
reductions of NOx and CO2 does not significantly change the mediated effect. In fact, NOx 
and CO2 appear to play no role in the causal effect of scrubbers on PM2.5.

7.3. Results from Alternative Analyses.

We conduct two simpler analyses for comparison. First, we implement separate single-
mediator analyses using the methods described above with K = 1. Results are largely 
consistent with the multiple mediator analysis, as suggested by the apparent absence of 
overlapping effects. For SO2 emissions, the total, indirect and direct effects are estimated to 
be −1.28 (−2.25, −0.62), −0.70 (−1.51, −0.04) and −0.58 (−1.35, 0.37), respectively. For 
NOx emissions, the total, indirect and direct effects are estimated to be −1.21 (−2.05, −0.40), 
−0.04 (−0.32, 0.28) and −1.17 (−1.99, −0.32), respectively. With CO2 emissions, the total, 
indirect and direct effects are estimated to be −1.22 (−1.98, −0.29), 0.03 (−0.26, 0.33) and 
−1.25 (−2.05, −0.30), respectively. Note that significant estimated direct effects for NOx and 
CO2 suggest pathways that are not through NOx and CO2 (i.e., the pathway through SO2).

For a second comparison, we conduct a multiple mediator analysis using a traditional 
regression approach to mediation with the same model in Section 6. The mediation effects 
are estimated to be NIE1 = α11β2 = − 0.39(95%C.I.−1.11, 0.25), NIE2 = α12β3 = 
−0.09(95%C.I. −0.44, 0.22), NIE3 = α13β4 = 0.08(95%C.I.−0.08, 0.35), NDE = β1 = 
−0.18(95%C.I. − 2.56, 0.11). Thus, while these results are on average consistent with the 
results from the proposed methods, the estimate of the NIE1 is not significant. Note that this 
analysis explicitly assumes that the mediators do not interact with each other in the outcome 
model, implying an estimate of the joint indirect effect of all three mediators that is the sum 
of all three indirect effect (i.e., JNIE123 = −0.40(95%C.I. − 1.15, 0.34)) which is also not 
significant. The discrepancy between the results of the traditional regression approach and 
ours is due to our flexible modeling strategy using Bayesian nonparametric methods 
(Dirichlet process mixtures) that even in presence of additivity, allows for nonlinearities and 
non-normal errors.

8. Discussion.
We have developed flexible Bayesian methods for principal stratification and causal 
mediation analysis in the presence of multiple mediating variables. To accommodate the 
setting of multiple pollutants that are emitted contemporaneously and possibly interact with 
one another, we have developed methods to accommodate multiple contemporaneous and 
non-independent mediators. Bayesian nonparametric modeling approaches provided flexible 
models for the observed data (marginal distribution for each mediator and conditional 
distribution for the outcome under each intervention z = 0, 1), and linked observed data 
distributions to joint distributions of potential mediators using explicit and transparent 
assumptions about both observable and a priori counterfactuals.

A key feature of our approach is the integration of principal stratification and causal 
mediation analysis in a manner that relies on the same models for the observed data. 
Deployment of these methods in the power plant analysis represents, to our knowledge, the 
most comprehensive consideration of these two approaches and the implications of the 
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results in the context of a single analysis. We use Assumption 3 to relate a priori 
counterfactual outcomes to observed outcomes, and show that this assumption implies 
homogeneity across principal strata, which aids interpretation. This assumption also has 
close ties to that of sequential ignorability (Imai, Keele and Yamamoto, 2010). Benefits of 
formulating Assumption 3 as done here include facilitation of a sensitivity analysis to this 
assumption following the general approach of Daniels et al. (2012) and the aided 
interpretation implied by the relationship to homogeneity assumptions. While a version of 
sequential ignorability relevant to the setting of multiple contemporaneous mediators with 
interactions and that can be used to identify each mediator-specific effect has not been 
previously formulated, Web Appendix E explores the relationship between our Assumption 
3 and sequential ignorability in the case of a single mediator. In this case, implications of 
these two assumptions are identical for the types of estimands considered here, although one 
assumption does not generally imply the other.

The results of the principal stratification and causal mediation analyses should be interpreted 
jointly and are, in this case study, largely consistent with one another. Principal stratification 
indicated that scrubbers tended to decrease ambient PM2.5 around plants where scrubbers 
substantially reduced SO2 emissions, a result consistent with the estimated natural indirect 
effects from the mediation analysis. Jointly interpreting results related to other emissions 
proved more subtle, and highlighted the difficulty involved in interpreting principal effects 
as mediated effects, in particular when there are multiple mediators. A finer examination of 
principal strata defined by cross-classification of SO2 changes and changes in CO2 (or NOx) 
revealed the dominating role of scrubber effects on SO2 that was corroborated by the results 
of the mediation analysis. This cross-classification also reconciled the lack of evidence for a 
natural direct effect with the apparent evidence of dissociative effects pertaining to NOx and 
CO2 that were revealed to be driven primarily by changes in SO2. The evidence of nonzero 
dissociative effects for SO2 is likely explained by the negative expected direct effect. The 
relative magnitudes of principal effects and mediation effects are consistent with the well-
known result that, in general, associative effects are a mixture of direct and indirect effects. 
Overall, these results are largely consistent with expectations: scrubbers appear to causally 
reduce SO2 emissions but not those of NOx or CO2; scrubbers causally reduce ambient 
PM2.5 (within 150km); the effect on PM2.5 is primarily mediated by causal reductions in 
SO2 emissions and not NOx or CO2 emissions; and there appears to be direct effect of 
scrubbers on PM2.5.

The results of this case study should be interpreted in light of several important limitations. 
First is the relative simplicity with which we linked power plants to monitors. Specifically, 
our strategy links power plants to all of the ambient monitors within 150km. Thus, our 
analysis is of the causal effects of scrubbers on average PM2.5 measured within 150km. This 
likely does not reflect the full effect of emissions changes on ambient air quality, which are 
expected to have implications at distances greater than 150km. A related limitation is the 
assumption that there is no interference between observations. If the effect of a scrubber on 
ambient PM2.5 extends far enough beyond 150km so that a scrubber at a given power plant 
causally affects ambient PM2.5 surrounding other power plants, then this assumption would 
be violated. More sophisticated strategies for causal inference in the presence of interference 
and for linking ambient monitors to power plants based on features such as atmospheric 
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conditions and weather patterns are warranted. Nonetheless analysis presented here 
represents an important approximation that still yields valuable conclusions, especially with 
respect to quantifying causal pathways. Another important limitation of this analysis is that 
it assumes that the factors listed in Table 1 are sufficient to control for confounding, which 
in this case would consist of differences between power plants or other features related to 
ambient PM2.5 that are also associated with whether a power plant had scrubbers installed in 
2005. Our approach is not readily extended to categorical mediators. We save this as 
potential future research. Despite these limitations, we have developed new statistical 
methodology and leveraged an unprecedented linked data base to provide the first empirical 
evaluation of the presumed causal relationships that motivate a variety of regulations for 
improving ambient air quality and, ultimately, human health.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig 1: 
Directed Acyclic Graphs : a) contemporaneous mediators with interactions (our case) and b) 
sequentially ordered mediators.

Kim et al. Page 26

Ann Appl Stat. Author manuscript; available in PMC 2019 October 25.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Fig 2: 
Average surface plots of the causal effect on PM2.5 for different values of (Mk(0), Mk(1)). 
Values of (Mk(0), Mk(1)) are plotted on the x-and y- axes, and determine the causal effect of 
a scrubber on emission k. The corresponding value of the causal effect of a scrubber on 
PM2.5, Y (1) − Y (0), is plotted on the z-axis. The cloud of points in the xy-plane are one 
MCMC draw of 249 pairs of (Mk(0), Mk(1)). The lines on the xy-plane are at Mk(0) = Mk(1) 
(solid line) and +/ − 0.25σk (dashed lines).
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Fig 3: 
Posterior mean estimates of principal effects for strata defined by cross-classifying changes 
in CO2 (x-axis) and changes in SO2 (colored circles). Size of circle symbolizes the 
proportion of each CO2 stratum falling in the corresponding SO2 category, and number (and 
number in parentheses) listed is posterior mean proportion (and posterior standard 
deviation).
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Table 1

Summary statistics for covariates and outcomes available for the analysis of SO2 scrubbers.

Have scrubbers (n=59) Have no scrubber (n=190)

Median IQR Median IQR

Monitor Data

Average Ambient PM2.5 2005 (μg/m3) 12.4 (7.8, 14.8) 13.7 (11.8, 15.2)

Average Temperature 2004 (°C) 11.5 (10.1, 15.0) 12.8 (10.4, 16.1)

Average Barometric Pressure 2004 (mmHg) 737.8 (686.7, 752.4) 746.1 (739.1, 755.6)

Power Plant Level Data

Total SO2 Emission 2005 (tons) 644.3 (257.3, 1819.9) 1267.1 (504.9, 2707.6)

Total NOx Emission 2005 (tons) 852.1 (394.2, 1531.3) 442.5 (193.7, 878.2)

Total CO2 Emission 2005 (×1000 tons) 505.3 (232.5, 960.7) 283.6 (117.7, 559.0)

Unit Level Data

Average Heat Input 2004 (×1000 MMBtu) 4653.3 (2266.4, 9363.9) 2783.4 (1147.6, 5448.1)

Total Operating Time 2004 (hours × # units) 7944.0 (7565.8, 8154.9) 7583.9 (7171.0, 7985.9)

Sulfur Content in Coal 2004 (lb/MMBtu) 1.0 (0.5, 2.2) 0.7 (0.3, 1.1)

Num. of NOx Controls 2004 (# units) 1.0 (1.0, 1.5) 1.0 (0.9, 1.3)

Pct. operating Capacity 2004 (MMBtu/MMBtu × 100) 20.2 (10.0, 28.8) 16.4 (9.3, 24.6)

Heat Rate 2004 (MMBtu/MWh) 268.5 (175.5, 436.9) 254.3 (152.6, 396.8)
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Table 2

Simulation results for point estimators of causal mediation and principal causal effects over 400 replications. 
The columns correspond to bias and MSE relative to the true values of the causal effects for each scenario 
(Cases 1 and 2, and Cases A and B) under two different models; Parametric : a regression based model for the 
causal mediation effects; BNP : Our Bayesian nonparametric method.

Case 1 Case 2

BNP Parametric BNP Parametric

Truth Bias MSE Bias MSE Truth Bias MSE Bias MSE

Case A

TE 0.73 0.02 (0.09) −0.03 (0.08) 0.92 −0.04 (0.08) 0.20 (0.33)

JNIE 1.73 0.06 (0.11) 0.21 (0.07) 1.92 0.04 (0.08) 0.02 (0.47)

NDE −1 −0.04 (0.01) −0.25 (0.15) −1 −0.08 (0.01) −0.20 (0.08)

NIE1 −0.16 0.00 (0.00) −0.01 (0.01) 0.03 −0.05 (0.00) −0.38 (0.26)

NIE2 2.45 0.02 (0.10) −0.02 (0.08) 2.65 −0.05 (0.08) −0.39 (0.31)

NIE3 −0.32 0.00 (0.00) −0.01 (0.01) −0.32 0.01 (0.00) −0.01 (0.01)

JNIE12 2.05 0.05 (0.10) 0.22 (0.14) 2.23 0.03 (0.08) 0.21 (0.44)

JNIE13 −0.48 0.01 (0.01) −0.01 (0.01) −0.29 −0.04 (0.00) −0.38 (0.28)

JNIE23 2.13 0.02 (0.10) −0.02 (0.09) 2.33 −0.04 (0.08) −0.39 (0.33)

Case B

TE 1.08 −0.02 (0.10) −0.01 (0.08) 1.33 −0.09 (0.08) −0.01 (0.08)

JNIE 2.08 −0.00 (0.10) 0.16 (0.12) 2.33 −0.00 (0.08) −0.08 (0.11)

NDE −1 −0.01 (0.00) −0.17 (0.04) −1 −0.09 (0.01) 0.08 (0.02)

NIE1 −0.16 −0.01 (0.00) −0.01 (0.01) 0.03 −0.05 (0.01) −0.20 (0.04)

NIE2 2.51 −0.02 (0.10) 0.02 (0.09) 2.78 −0.08 (0.09) −0.25 (0.15)

NIE3 −0.13 0.00 (0.00) 0.01 (0.01) −0.05 −0.02 (0.01) −0.08 (0.01)

JNIE12 2.11 0.01 (0.10) 0.25 (0.16) 2.37 0.00 (0.08) 0.01 (0.10)

JNIE13 −0.29 −0.00 (0.00) −0.01 (0.01) −0.02 −0.07 (0.01) −0.27 (0.08)

JNIE23 2.48 −0.04 (0.10) −0.08 (0.09) 2.75 −0.09 (0.09) −0.34 (0.21)
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Table 3

Posterior means (standard deviations) for expected associative and dissociative effects of SO2 scrubbers.

SO2 NOx CO2 SO2 & NOx SO2 & CO2 NOx & CO2 SO2 & NOx & CO2

EAE−
Mean −1.19 −0.77 −1.14 −0.84 −1.18 −0.90 −0.94

SD (0.46) (0.59) (0.56) (0.59) (0.57) (0.67) (0.68)

EDE
Mean −0.32 −0.69 −0.82 −0.09 −0.31 −0.48 −0.15

SD (0.57) (0.54) (0.49) (0.71) (0.68) (0.69) (0.86)

EAE+
Mean 0.60 −1.68 −1.08 0.38 1.28 −1.63 0.69

SD (2.52) (0.74) (0.75) (3.67) (3.78) (1.04) (4.68)
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