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Abstract

Emission control technologies installed on power plants are a key feature of many air pollution
regulations in the US. While such regulations are predicated on the presumed relationships
between emissions, ambient air pollution, and human health, many of these relationships have
never been empirically verified. The goal of this paper is to develop new statistical methods to
quantify these relationships. We frame this problem as one of mediation analysis to evaluate the
extent to which the effect of a particular control technology on ambient pollution is mediated
through causal effects on power plant emissions. Since power plants emit various compounds that
contribute to ambient pollution, we develop new methods for multiple intermediate variables that
are measured contemporaneously, may interact with one another, and may exhibit joint mediating
effects. Specifically, we propose new methods leveraging two related frameworks for causal
inference in the presence of mediating variables: principal stratification and causal mediation
analysis. We define principal effects based on multiple mediators, and also introduce a new
decomposition of the total effect of an intervention on ambient pollution into the natural direct
effect and natural indirect effects for all combinations of mediators. Both approaches are anchored
to the same observed-data models, which we specify with Bayesian nonparametric techniques. We
provide assumptions for estimating principal causal effects, then augment these with an additional
assumption required for causal mediation analysis. The two analyses, interpreted in tandem,
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provide the first empirical investigation of the presumed causal pathways that motivate important
air quality regulatory policies.

Keywords

Ambient PM; 5; Bayesian nonparametrics; Gaussian copula; Multi-Pollutants; Natural indirect
effect

1. Introduction.

Motivated by evidence of the association between ambient air pollution and human health
outcomes, the US Environmental Protection Agency (EPA) oversees a vast program for air
quality management designed to limit population exposure to harmful air pollution (Pope II1,
Ezzati and Dockery, 2009; Dominici, Greenstone and Sunstein, 2014). Fine particulate
matter of diameter 2.5 micrometers or less (PMj 5) is of particular importance, with
regulations to limit exposure to PM; 5 estimated to account for over half of the benefits and a
substantial portion of the costs of all monetized federal regulations (Office of Management
and Budget, 2013). A large contributor to ambient PM, 5 in the US is the power generating
sector, in particular coal-fired power plants. These plants emit PM, 5 directly into the
atmosphere, but are also major sources of sulfur dioxide (SO,) and nitrogen oxides (NO,)
that, once emitted into the atmosphere, contribute to secondary formation of PM, 5 through
chemical reaction, coagulation and other mechanisms. The amount PM; 5 formation initiated
by emissions of SO, and NO, depends largely on atmospheric conditions such as
temperature (Hodan and Barnard, 2004). Power plants are also major sources of CO,
emissions.

A variety of regulatory programs under the purview of the Clean Air Act (e.g., the Acid Rain
Program) are designed to reduce emissions from power plants, with one goal of reducing
population exposure to ambient PM, 5. One key strategy for achieving this reduction is the
installation of SO, control technologies such as flue-gas desulfurization scrubbers
(henceforth, “scrubbers”), on power plant smokestacks to reduce SO, emissions and, in turn
PMj, 5. Estimates of the annualized human health benefits of regulatory polices such as the
Acid Rain Program rely heavily on presumed relationships between such control strategies,
emissions, ambient PM; 5, and human health. While the underlying physical and chemical
understanding of the link between power plant emissions and PM, 5 is well established,
there remains considerable uncertainty about the effectiveness of specific strategies for
reducing harmful pollution amid the realities of actual regulatory implementation.
Accordingly, the EPA and other stakeholders have increasingly emphasized the need to
provide evidence of which specific air pollution control strategies are most effective or
efficient for reducing population exposures to PM, 5(HEI Accountability Working Group,
2003; U.S. EPA, 2013).

The goal of this paper is to propose a statistical method to examine the causal effect of
scrubbers installed at coal-fired power plants on the ambient concentration of ambient PMj 5
using observed data on power plant emissions and ambient pollution. Physical and chemical
understanding of these processes provide strong support for the expectation that scrubbers
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reduce ambient PM; 5“through” reducing emissions of SO,, but this relationship has never
been empirically verified using observed data in the context of regulations that may
simultaneously impact a variety of factors. A key statistical challenge to verifying this
relationship derives from the fact that SO, emissions are highly correlated with emissions of
NO, and CO, and NO, is known to play an important role in the formation of ambient
PM), s, possibly through interactions with SO,. Thus, the question will be formally framed
as one of mediation analysis: To what extent is the causal effect of a scrubber (the
“treatment”) on ambient PM, 5 (the “outcome’) mediated through reduced emissions of
SO,, NO, and CO; (the “mediators™)? Recovering a statistical answer to this question amid
the problem of multiple highly correlated and possibly interacting mediators that are
measured contemporaneously requires new methods development and would also serve to
bolster the promise of statistical methods in studies of air pollution that have historically
relied on physical and chemical knowledge and not on statistical analysis.

To answer this question, we develop new methods that draw from two frameworks for
estimating causal effects in the presence of mediating variables: (1) principal stratification
(Frangakis and Rubin, 2002) and (2) causal mediation analysis (Robins and Greenland,
1992). The methodological contributions of this paper come in three areas. First, we develop
new methods to accommodate multivariate mediating variables that are measured
contemporaneously (not sequentially), are correlated, and may interact with each to impact
the outcome (see Figure 1. for a an illustrative directed acyclic graph). This is essential for
evaluating scrubbers because power plants simultaneously emit multiple pollutants that may
interact through atmospheric processes to impact ambient PM, 5. Existing methods in the
literature for both principal stratification and mediation analysis have primarily focused on
settings with a single mediator (e.g., Baron and Kenny (1986); Frangakis and Rubin (2002);
VanderWeele (2009); Joffe and Greene (2009); Daniels et al. (2012)) and existing extensions
to cases with multiple mediating variables cannot accommodate the setting of power plant
emissions where mediators may simultaneously and jointly impact the outcome (Wang,
Nelson and Albert, 2013; Imai and Yamamoto, 2013; VanderWeele and Vansteelandt, 2014;
Daniel et al., 2015). Our second methodological contribution is the use of Bayesian
nonparametric approaches to model the observed distribution of emissions and pollution
outcomes, making use of a multivariate Gaussian copula model to link flexibly-modeled
marginal distributions of observed outcomes to a joint distribution of potential outcomes.
Similar strategies with a single mediator have received recent attention in the principal
stratification literature (Bartolucci and Grilli (2011); Ma, Roy and Marcus (2011); Schwartz,
Li and Mealli (2011); Conlon, Taylor and Elliott (2014)) and are emerging for causal
mediation analysis (Daniels et al., 2012; Kim et al., 2016). These approaches are important
for confronting continuous mediators and infinitely many principal strata, and are deployed
here in a novel way to address the problem of multiple mediators while flexibly modeling
the observed-data distributions of both mediators and outcomes. Finally, we provide a
unification of principal stratification and causal mediation analysis. While the mathematical
relationships between these two approaches are well understood (Mealli and Rubin, 2003;
VanderWeele, 2011; Mattei and Mealli, 2011), there has not been, to our knowledge, a
comprehensive deployment of both perspectives in a complementary fashion to illuminate
the scientific underpinnings of a specific problem. Baccini, Mattei and Mealli (2015) made
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important progress in this direction using different observed-data models to estimate
principal effects and mediation effects in a problem with a single mediator. In contrast, the
approach developed here uses the exact same observed-data models to ground both
perspectives, proposes a common set of basic assumptions for estimating both principal
effects and mediating effects, modularizes an additional assumption required to augment a
principal stratification analysis in order to obtain estimates of natural direct and indirect
effects, and considers settings with multiple mediating variables. Ultimately, we provide a
new dimension of quantitative, statistical evidence for supporting air policy regulatory
decisions.

2. Scrubber Installation and Linked Data Sources.

Title IV of the Clean Air Act established the Acid Rain Program (ARP), which required
major emissions reductions of SO, (and other emissions) by ten million tons relative to 1980
levels. This reduction was achieved mostly through cutting emissions from power plants, or
more formally, electricity-generating units (EGUs). Impacts of the ARP have been evaluated
extensively, and the program is generally lauded as a success due to marked national
decreases in SO, and NO,, coming at relatively low cost. Estimates of the annualized human
health benefits of the entire ARP range from $50 billion to $100 billion (Chestnut and Mills,
2005), but rely heavily on presumed relationships between power plant emissions, ambient
PM,; 5, and human health.

While power plants under the ARP had latitude to elect a variety of strategies to reduce
emissions, one key strategy is the installation of a scrubber to reduce SO, emissions. The
precise extent to which installation of a scrubber reduces ambient PM, 5 through reducing
SO, emissions remains unknown, and has never been estimated empirically amid the
realities of actual regulatory implementation where pollution controls may impact a variety
of factors that are also related to the formation of PM; 5. Knowledge of these relationships is
complicated by the fact that power plants emit more than just SO,, and emissions of a
variety of pollutants likely interact in the surrounding atmosphere to form ambient PMj s.

To provide refined evidence of the extent to which scrubbers reduce emissions and cause
improvements to ambient air quality, we assembled a national database of ambient air
quality measures, weather conditions, and information on power plants. Specifically, we
assembled data on 258 coal-fired power plants from the EPA Air Markets Program Data and
the Energy Information Administration, with information on plant characteristics, emissions
control technologies installed (if any), and emissions of SO,, NO,, and CO, during 2005,
five years after promulgation of an important phase of regulations under the Acid Rain
Program. For each power plant, we augment the data set with annual average ambient PMj 5
concentrations in 2005 and baseline meteorologic conditions in 2004 measured at all
monitoring stations in the EPA Air Quality System that are located within 150km. The
150km range was chosen both to acknowledge that atmospheric processes carry power plant
emissions across distances at least this great, but also to minimize the number of monitoring
stations considered within range of more than one power plant. We regard any power plant
as “treated” with scrubbers in 2005 if at least 10% of the plant’s total heat input was
attributed to a portion of the plant equipped with a scrubber as of January 2005. Note that
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this proportion was nearly 0% or nearly 100% for the vast majority of plants, indicating
robustness to this 10% cutoff. Other power plant characteristics are listed in Table 1. The
data files and programs to assemble the analysis data set are available at https://
dataverse.harvard.edu/dataverse/mmediators and https:/github.com/1it777/
MultipleMediators, respectively.

3. Causal Mediation Analysis and Principal Stratification.

3.1.

Mediation Analysis with a Single Mediator.

To fix ideas, consider the single mediator case. Let Z; € {0,1} indicate the presence of the
intervention of interest, here, whether power plant 7 has installed scrubbers in January 2005
(Zi=1)and let Z= (2, -, Z,) be the vector of intervention indicators for power plants 7
=1, -+, n. Using potential-outcomes notation (Rubin, 1974), let M;(2) denote the potential
emissions that the /~th power plant would be generated under the vector of scrubber
assignments Z, and let Y(Z; M) denote the potential ambient PM, 5 outcome that could, in
principle, be defined for any scrubber assignment vector Z and any vector of intermediate
emissions values M. Throughout the paper, we adopt the stable unit treatment value
assumption (SUTVA; Rubin 1980) which impliesl) there is no “interference” in the sense
that potential intermediate and outcome values from power plant 7 do not depend on
scrubber treatments and emissions intermediates of other power plants (i.e, M(Z) = M(Z))
and Y(Z; M) = Y(Z; M,)) and 2) there are “no multiple versions” of scrubber treatments
such that whenever Z, = Z/, Ml.(Zl.) = Ml.(Z;.) and Y i(Zl.; Mi(Zi)) = Yl.(Z;.,Mi(Z;.)). For reasons that
will become clear later, we augment the standard SUTVA to also assume “no multiple
versions” of emissions intermediates which states, if M, =M, then Yi(Zi; Mi) = Yl.(Zl.;M l’)
(Forastiere et al. 2016). We revisit possible violations of SUTVA in Section 8, but note here
that the linkage of power plants to monitors within 150km provides some justification for
this assumption.

The natural direct effect (Pearl, 2001) is defined by NDE = F] Y(1; M{(0))— Y(0; M[0))],
representing the effect of the intervention obtained when setting the mediator to its ‘natural’
value M/(0); i.e., its realization in the absence of the intervention. The natural indirect eftect
is defined as NIE = £] Y(1; M(1)) — Y(1; M{0))], representing the effect of holding the
intervention status fixed at Z= 1 but changing the value of the mediator from A (0) to M
(1). The total causal effect of the intervention on the outcome can then be defined as TE =
NDE + NIE = £ Y(1; M(1)) — Y/(0; M{0))]. Similar controlled effects could also be
defined to represent causal effects at specific values of M (Pearl, 2001; Robins and
Greenland, 1992).

Implicit in the definition of these effects is the conceptualization of hypothetical
interventions that could independently manipulate values of both Zand M to, for example,
“block” the effect on the mediator. Thus, it is important to note that potential outcomes of
the form Yl.(Zl.; Ml.(Z l’)) are purely hypothetical for Z; # Z, and can never be observed for any
observational unit. Such unobservable potential outcomes have been referred to as a priori
counterfactuals (Robins and Greenland, 1992; Rubin, 2004). We revisit conceptualization of

a priori counterfactuals in the context of the power plant study in Section 4.1, but note here
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the distinction between a priori counterfactuals and potential outcomes of the form Y(Z;
M{(Z)) that are observable and actually observed for some units.

3.2. Principal Stratification.

A distinct but related framework for defining causal effects in the presence of intermediate
variables is principal stratification (Frangakis and Rubin, 2002). Continuing with the single-
mediator case, principal stratification considers only a single intervention and relies on
definition of two causal effects: the effect of Z;on M,, defined as M(1)—M/0), and the
effect of Z;on Y, defined as Y(1; M(1)) — Y;(0; M[0)). The objective is to estimate
principal effects, which are average causal effects of Z;on Y;within principal strata of the
population defined by (M(0), M[1)).

With principal stratification, dissociative effects are defined to quantify the extent to which
the intervention causally affects outcomes when the intervention does not causally affect the
mediator, for example, E[ Y(1; M{(1))—Y[0; M[0)) | M[1) = M[0)]. Dissociative effects are
similar to direct effects in a mediation analysis in that they represent causal effects of an
intervention on the outcome among the subpopulation where there is no causal effect on the
mediator, but they refer only to the specific subpopulation with AM(1) = M(0). VanderWeele
(2008) and Mealli and Mattei (2012) show that dissociative effects represent a quantity that
is only one contributor to the NDE, with the amount of contribution tied to the size of the
subpopulation with M(1) = M(0).

Associative effects are defined to quantify the causal effect of the intervention on the
outcome among those for which the intervention does causally affect the mediator, for
example, £[ Y{(1; M{1)) — Y(0; M[0)) | M(1) < M[0)]. An associative effect that is large in
magnitude relative to the dissociative effect indicates that the causal effect of the
intervention on the outcome is greater among those for which the mediator is causally
affected, compared to those for which the mediator is not affected. This could be interpreted
as suggestive of a causal pathway whereby the intervention impacts the outcome through
changing the mediator, but note that associate effects are generally a combination of the
NDE and NIE for a defined sub-population.

Dissociative effects that are similar in magnitude to associative effects indicate that the
intervention effect on the outcome is similar among observations that do and do not exhibit
causal effects on the mediator, which could be interpreted as suggestive of other causal
pathways through which Z;affects Y,

A primary distinction between principal stratification and causal mediation analysis is that
principal effects only pertain to population subgroups comprised of observations with
particular values of (M(0), M{(1)), whereas natural direct and indirect effects are defined for
the whole population (as discussed in detail in Mealli and Mattei (2012)). Importantly, note
that the a priori counterfactuals of the form Y(Z,, M(Z})) for Z; # Z; do not appear in the

definition of principal effects, which rely only on the definition of observable potential
outcomes Y(Z;, M(Z;)). Thus, there is no conception in principal stratification of a
hypothetical intervention acting on M, independently from Z;, and there is no definition of a
causal effect of Z;on Y;that is mediated through A;. From a modeling perspective, principal
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effects can be estimated when an outcome model is specified conditional on both potential
mediators (intermediate outcomes), M(0) and M(1) while causal mediation analysis has
tended to rely on an outcome model that depends on the observed mediator. The differences
in modeling strategies that are typically employed in principal stratification and causal
mediation analysis complicate comparisons, as results of such analyses have typically been
driven in part by different modeling assumptions. In Section 5, we will propose a new set of
assumptions to build a common observed-data model for principal stratification and causal
mediation analysis.

3.3. Existing Considerations for Multiple Mediators.

Extensions of the causal mediation ideas outlined in Section 3.1 to settings of multiple
mediating variables are emerging. For contemporaneously observed mediators,
straightforward extensions of the Baron and Kenny (1986) regression-based structural
equation model approach (MacKinnon, 2008) have been proposed. For each of K
contemporaneous mediators (M), My, -+, M), a series of regression models is used to
estimate mediator-specific NIEs in a manner that implies additivity of indirect effects:

K
JNIE = Z NIE, and TE = NDE + JNIE,
k=1

3.1)

where JNIE is used to denote the joint natural indirect effect due to changes in all K
mediators, and NIE; = E[ Y(1; My (1)) — Y{(1; My (0))] represents the natural indirect
effect of the &-th mediator. These approaches assume that each M ; mediates the treatment
effect independently of the other mediators, without interactions among mediators (i.e., the
mediators are causally independent or parallel). Figure 1.a without dashed lines illustrates
this case. Wang, Nelson and Albert (2013) propose an alternative modeling approach under
the setting of causally independent mediators. If the mediators interact with each other in
terms of their impact on the outcome, then additivity of indirect effects as in the above
cannot hold; and estimation of multivariate mediated effects can then be further complicated
by correlations among the mediators. Dependence among mediators has been considered
when My are observed sequentially (i.e., sequential mediators; Figure 1.b), as in Imai and
Yamamoto (2013). Albert and Nelson (2011), and Daniel et al. (2015) propose approaches
for either sequentially dependent mediators or mediators that do not affect nor interact with
each other. These approaches offer a decomposition of the JNIE in the case of sequential
dependence, and assume additivity of natural indirect effects otherwise. VanderWeele and
Vansteelandt (2014) discuss an approach to decompose the JNIE further when the mediators
simultaneously affect each other; however, their approach does not evaluate the impact of
each individual mediator (see Section 4.3). Taguri, Featherstone and Cheng (2015) propose
an approach for contemporaneous, non-ordered mediators, but rely on an assumption that the
mediators are conditionally independent given observed covariates, which does not fully
represent the possibility of contemporaneous interactions among the mediators, as may be
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the case with multiple emissions (in particular SO, and NO,) and the formation of ambient
PMj; 5. Section 6 examines the possibility of contemporaneous interactions among (possibly
correlated) mediators in the context of the scrubber study.

In summary, existing methods for multiple mediators rely on either assumed causal
independence of (parallel) mediators and additivity of indirect effects, sequential
dependence of mediators, or on restrictive assumptions of conditional independence among
mediators. VanderWeele and Vansteelandt (2014) point out that if there are interactions
between the effects of (nonsequential) multiple mediators on the outcome, the joint indirect
effect may not be the sum of all three indirect effects. They note that, in principle, an
analysis could proceed with an outcome model including interactions MM for all {/, &}
combinations combined with models for (Z(M,, My)). However, this approach would lead to
issues of model compatibility between the models for M;and M and that for the product
M;Mjy. The lack of satisfactory methods for more general settings of multiple
contemporaneously-measured mediators motivates the methods developed herein, where we
offer a new decomposition of the joint natural indirect effect into individual indirect effects
that may not affect the outcome additively.

4. New Methods for Causal Mediation Analysis and Principal Stratification

with Multiple Contemporaneous Mediators.

4.1.

Notation for Multiple Mediating Variables.

Suppressing the 7 subscript indexing power plants, let {M(2); k=1, ..., K} denote the
potential emissions of K pollutants that would occur if a power plant were to have scrubber
status Z= z, for z= 0, 1. While much of our development is general for any K, we focus on
the case K= 3 so that My(2), k=1, 2, 3 denotes the potential emissions of SO,, NO,, and
CO,, respectively. The causal effect of the scrubber on emission & can then be defined as a
comparison between My(1) and MK0). Let M(z|, 20, z3) = {M(21), Mr(2), M5(z3)} denote
potential emissions under a set of three scrubber statuses {z|, 2z, z3}.

We similarly define potential PM; 5 outcomes, but extend the notation to define potential
concentrations under different values of scrubber status, Z, and different possible values of
emissions, M(z|, 2, z3). Thus, in full generality, each power plant has a set of 251 = 16
potential outcomes for PM, 5, Y (7 M(z], 2, z3)), which denote potential values of PM 5
that would be observed under intervention Z = z with pollutant emissions set at values under
interventions z|, 2, z3. Definition of all 16 potential PM; 5 concentrations is required for
definition of natural direct and indirect effects and entails a priori counterfactuals. For
example, Y'(1; M(0, 0, 1)) would represent the potential ambient PM; 5 concentration near a
plant under the hypothetical scenario where the plant installs a scrubber (z= 1), but where
emissions of SO, and NO are set to what they would be without the scrubber (z; = 2 = 0)
and emissions of CO, are set to what they would be with the scrubber (z3 = 1). This may be
conceptualized as a setting where a power plant installs a scrubber, but offsets the cost of the
technology by burning coal with a higher sulfur content and discontinuing use of a different
NOj control, thus “blocking” the intervention and maintaining SO, and NO, emissions at
levels that would have occurred without the SO, technology. Principal stratification will only
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rely on potential outcomes with z= z; = 2z, = z; that are observable from the data, such as
M(1, 1, 1) and Y (1; M(1, 1, 1)) observed for any power plant that installs a scrubber.
Finally, let X denote a vector of baseline covariates measured at the power plant or the
surrounding area.

4.2. Observable Outcomes: Principal Causal Effects for Multiple Mediators.

Extending principal stratification to settings where the intermediate variable is multivariate
is conceptually straightforward. Principal stratification defines a principal stratum for every
combination of the joint vector (M(0, 0, 0), M(1, 1, 1)), and principal causal effects are
defined as comparisons between Y (0; M(0, 0, 0)) and Y (1; M(1, 1, 1)) within principal
strata.

For any subset # C {1,2,3}, let IM(1, 1, 1) — M(0, 0, 0)I % denote the element-wise absolute

differences between emissions of the subset of pollutants in %, e.g.,
IM(1,1,1) = M(0,0,0) 15, |M (1) = M (0), |M(1) — M4(0)|}. Definitions of quantities

)

={1,3} = {
such as average associative and dissociative effects can proceed following Zigler, Dominici
and Wang (2012) by defining:

EDE,, = E[Y(I;M(l, 1.1)) = ¥(0: M(0,0,0)| I(M(1, 1, 1) = M(0,0,0)1 5, < c%],

EDE,, = E[Y(I;M(l, 1.1) = Y(0:M(0,0,0)| I(M(1, 1,1) = M(0,0,0)1 5, < CA%},

where CA% denotes a vector of thresholds beyond which a change in each emission in % is

considered meaningful, CIJ%/ is a vector of thresholds be low which changes in these

emissions are considered not meaningful, and > and < represent element-wise comparisons.
Note that the dissociate effect is now defined on principal strata where potential changes (or
differences) in the intermediate variables are less than some vector of thresholds

I(M(1, 1, 1) = M(0,0,0)) | 5 < C% instead of principal stratum with strict equality
I(M(1, 1, 1) = M(0,0,0))| 5 = {0,0,0} 5 to accommodate continuous intermediate values. For

example, % = {1,3} would be used to define the associative (dissociative) effect in the

subpopulation exhibiting an effect on SO, and CO, in excess of C‘;{ (below C%), without
regard to the effect on NO,. For the data analysis in Section 7, we divide the EAE defined
above into two parts: EAE}',[ will denote the average associative effects among power plants
where all emissions in # are causally increased in excess of C‘;, while EAE, will denote

the average associative effect in power plants where all emissions in % were causally

reduced in excess of Cég. Note that these summary quantities only consider a subset of

principal strata that may be of interest. For example, analogous average principal effects
could be calculated among strata where some emissions are decreased and others are
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increased. We avoid burdensome notation for such summaries, but will revisit estimates in
additional principal strata in the context of the data analysis in Section 7.

In addition to estimating average dissociative and associative effects for different % as
defined above, interest may lie in entire surfaces of, for example, how the causal effect on
PM), s varies as a function of the causal effect on each emission (“causal effect
predictiveness” surface (Gilbert and Hudgens, 2008)).

4.3. Observable and a priori Counterfactual Outcomes: Natural Direct and Indirect Effects
for Multiple Mediators.

Extending definitions of natural direct and indirect effects to the multiple mediator setting is
somewhat more complicated. The natural direct effect is defined as NDE = £ Y (1; M(0, ---,
0))- Y (0; M(0 -+, 0))], representing the causal effect of Zon Yis “direct” in the sense that
it is not attributable to changes in any of the K emissions. The joint natural indirect effect of
all K mediators, JNIE,...x, is derived by subtracting the natural direct effect from the total
effect, INIE ;...x=TE-NDE = F Y (1, M(1, 1, -, 1))~ Y (1, M(0, O, -*- , 0))].

In addition to JNIE,...g, we introduce a decomposition into the natural indirect effects
attributable to changes in different combinations of the K mediators. Maintaining focus on
the case where K =3, the INIE |3 can be decomposed into emission-specific indirect effects
and the joint indirect effects of all possible pairs of emissions. See Figure 5 in the Web
Appendix for a graphical representation.

We define the mediator-specific NIE for the k-th emission as a comparison between the
potential PM; 5 outcome under scrubbers and the analogous outcome with the value of the &~
th emission fixed to the natural potential value that would be observed without scrubbers.
Specifically, for emissions of SO,, NO,, and CO, define:

NIE, = E[Y(1;M(1, 1, 1)) = Y(1; M(0, 1, 1))],
NIE, = E[Y(1; M(1, 1, 1)) — Y(1; M(1,0, 1))],
NIE, = E[Y(1; M(1, 1, 1)) — Y(1; M(1, 1,0))].

4.1)

In a similar fashion we can define the joint natural indirect effect attributable to subsets of
mediators jand & for j# k as differences between the observable potential PM, 5 outcomes
under scrubbers and the analogous a priori counterfactual with values of pollutants jand &
set to their natural values that would be observed without scrubbers. For example, INIE |,
defines the joint natural indirect effects of mediators 1 (SO;) and 2 (NO,) as

JNIE, , = E[Y(1;M(1, 1, 1)) = Y(1;M(0, 0, 1))] .

Values of INIE j; for other pairs of mediators can be defined analogously, and all such pairs
correspond to the second row in Figure 5 in the Web Appendix. Note that the joint natural
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indirect effect of each pair of mediators is not equal to the sum of corresponding mediator-
specific NIEs unless there is no overlap between mediator-specific NIEs (additivity). For
example, we can represent the relationship between JNIE, and the mediator-specific effects
NIE; and NIE; as

(NIE + NIE )— INIE, = E[Y(1;M(1,1,1)) = Y(1; M(0, 1, 1)) — Y(1; M(1,0, 1)) + Y(1; M(0, 0, 1))] .

1 2

Thus, if this quantity is not equal to 0, we argue that additivity of mediator-specific NIEs
does not hold. Note that the above decomposition of JNIE ;3 differs from VanderWeele and
Vansteelandt (2014), which considers the portion of the JNIE|,3 mediated through M, then
sequentially considers the additional contribution of each mediator in the presence of the
others. This presumed ordering of mediators precludes estimation of the effect through
different pairs of mediators such as INIE,3 or JNIE3, the availability of which is a benefit
of our proposed decomposition. Our decomposition also differs from Daniel et al. (2015)
who only allow interacting overlap between mediator-specific NIEs when one mediator
causally affects another.

Note that alternative definitions of NIE could use contrasts of the form:
NIE} = E[Y(0; M(1, 1, 1)) — Y(0; M(0, 1, 1))]. Such a strategy is also considered in Daniel et al.

(2015), but defining NIE} in this way would rely entirely on a priori counterfactuals,

whereas a benefit of using the definitions in (4.1) is that each definition uses the observable
potential outcome Y (1; M(1, 1, 1)), comparing against only one a priori counterfactual (e.g.,
Y(1; M(0, 1, 1))).

5. Flexible Bayesian Models Assumptions and Estimation.

Under the assumptions developed in this section, Bayesian inference for the causal effects
defined in Section 4 follows from specifying models for the joint distribution of all potential
mediators (conditional on covariates) and the outcome model conditional on all potential
mediators and covariates, and prior distributions for unknown parameters. Posterior
distributions cannot be computed directly from observed data because potential outcomes
are never jointly observed in both the presence and absence of a scrubber and a priori
counterfactuals are never observed. Our estimation strategy consists of three steps. First, we
specify nonparametric models for the observed data. The marginal distribution of each
observed mediator (i.e.,M(0, 0, 0) = {M[(0), M(0), M;(0)} observed for power plants that
did not install scrubbers and M(1, 1, 1), = {M(1), M>(1), M3(1)} observed for those that
did) is specified separately and then linked into a coherent joint distribution using a
Gaussian copula model (Nelsen, 1999). The models for the potential outcomes Y (1; M(1, 1,
1)) and Y (0; M(O0, 0, 0)) are specified conditional on covariates and all potential mediators
(M(1, 1, 1) and M(0, 0, 0)) that are never observed simultaneously. Thus, the conditional
outcome models are estimated via the data augmentation for unobserved potential mediators.
Second, we introduce two assumptions for estimating the TE and the associative and
dissociative effects. Third, we employ an additional assumption to equate the distributions of
a priori counterfactuals to those of the observed potential outcomes under intervention Z= 1
to allow estimation of the natural direct and indirect effects. We also provide optional
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modeling assumptions to sharpen posterior inference for the power plant evaluation.
Throughout, we estimate the distribution of the covariates, Fx(x), using the empirical
distribution.

Models for the Observed Data.

We specify Dirichlet process mixtures for the marginal distribution of each mediator
(Miiller, Erkanli and West, 1996). For each intervention z=0, 1, k=1, 2, 3 and baseline
covariates X = x, the conditional distribution of the A4-th observed mediator is specified as

_ _ (A7 Tpz z L1
My [1Z;=2.X;=x; N(ﬂko’i+xi ﬂkl,rk7i), My ;2 050= 1,0,
Z Z Z
Pro, ik, i e

F%«DP(ﬂi, yi)

where {/=1, 2, ..., n,} denotes the observations with Z= zand k indicates the &-th
mediator. We bound the mediator from below (0) using a truncated normal kernel (within the

interval [0, 00)). ﬂio,i and Ti’l- denote the intercept and precision parameters for the &-th

emission at the /~th power plant that received intervention z Here, DP denotes the Dirichlet

process with two parameters, a mass parameter (/12) and a base measure (P}i) To not overly

complicate the model we only ‘mixed’ over the intercept and precision parameters in the

conditional distributions, ;,, ; and 7; .. The base distribution & is taken to be the normal-
Gamma distribution, N(u3, S7)G(a;, by ). Details including hyper prior specification are given

in Section A of the Web Appendix.

The marginal distributions of each mediator under each z= 0, 1 are linked to model the joint
distribution of [M,, M, Ms|Z= z, X= x] with Gaussian copula models of the form:

Fyg, s, z)(“‘z, z, z) = ¢3[(D1_1(FMl(z)(ml)]’d’l_l[FMz(z)(mZ)]’(pl_l|FM3(z)(m3)”’

where m, , , are values of potential mediators under intervention Z= zand ®; is the -
variate standard normal CDF. Note that we elect to model the marginal distribution of each
univariate random variable separately, and then combine with the Gaussian copula model,
rather than directly model the joint distributions of [M,, M,, Ms|Z= z, X= x|. Thus, we
allow full flexibility using DP mixtures of (truncated) normals for the marginal distributions
(the fit of which can be checked empirically) and use the Gaussian copula to link them to
construct the joint distribution of potential mediators. The Gaussian copula model implies
some (correlation) structure to the joint distribution of all observable potential outcomes,
without implying any specific causal structure. Flexibility of this structure derives from the
fact that each marginal distribution is modeled as nonparametric with infinite dimensional
parameter spaces. The strategy is designed to coalesce with the modeling strategy in Section
5.2. Note that other potential alternatives to link the fixed marginal distributions such as
mixtures of marginals (e.g. H(x,.x,) = pF(x,) + (I — p)G(x,) or H(x,,x,) = \/F(x,)G(x,) do not
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specify the full joint distribution distribution of (x, y) (Nelsen, 1999)) and our method does
not limit the number of the mediators in general. While the joint distribution of all potential
mediators (M(0, 0, 0) and M(1, 1, 1)) is also modeled via the same Gaussian copula model,
this entails modeling unobserved potential mediators and will be discussed as a part of the
assumptions in Section 5.2

To model the distributions of the potential outcomes for each z= 0, 1 conditional on all
potential mediators and covariates, we use a locally weighted mixture of normal regression
models (Miiller, Erkanli and West, 1996) that is induced by specifying a DP mixture of
normals for the joint distribution of the outcome, all mediators and covariates. For each
intervention z= 0, 1, potential values of all (counterfactual) mediators and baseline
covariates X = x, the conditional distribution of the observed outcome y;is specified

fO;im0,0,0), m(1,1,1),x,Z, = z

(o]
— Z 7 3
- 121 colN(yl., m(0,0,0),m(1, 1, 1),xi|pl,Zl>

Z_ .2 (&) 4 Z Z Z
where o] = yl/(zj . 1;/].N(ml.(o, 0,0), m,(1, 1, 1), xl.luj’\l,zﬁ (\17\]))) and i\ denotes all
elements of mean parameters pj. except for Y. Similarly, Zj.’ AL denotes a submatrix of
covariance matrix Zj: formed by deleting the the first row and the first column. The weight
; z z_ .z _ 2 "z Z ; :
involves the parameter 7i where i=7; I, < j(l 7 ) and v; Beta(1, a"). This flexible

conditional model specification is a necessary feature in our case since we allow the
outcome model to capture nonlinear and/or interaction effects of the mediators. Note again
that this outcome model is conditional on all potential mediators {M(0, 0, 0), M(1, 1, 1)}
which cannot be observed at the same time. We use a similar approach to that used in
Schwartz, Li and Mealli (2011) to model the observed outcome distribution conditional on
partly missing potential intermediate variables by constructing complete intermediate data.
Here, we impute unobserved potential mediators for each unit with a data-augmentation
approach based on the joint distribution of all potential mediators specified above. Details
about hyper prior specification and posterior computation are given in the Web Appendix.

5.2. Assumptions for Estimation of Causal Effects.

To estimate causal effects based on the model for the observed data specified in Section 5.1,
we formulate assumptions relating observed quantities to both observable outcomes and a
priori counterfactuals. Denote the conditional distribution [ Y (2 M(z, 2, z3)) | M(0, 0, 0) =
mg 0, M(1, 1, 1) =my ; 1, X =x] with LMz, 2, ) (7 [ Mo 0,0, My 1,1, X) Where m » 4 is
a vector of hypothetical values of the mediators under the interventions zj, 2z, z3. The
conditional distribution [M(z, 2, z3)| X = x] is denoted by M(z1,2,3)(M 1,2, 3/). Other
conditional distributions are defined analogously, and we henceforth omit conditioning on
covariates X = x to simplify notation.
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5.2.1. Assumptions for principal causal effects.—We begin with an ignorability
assumption stating that, conditional on covariates, “assignment” to scrubbers is unrelated to
the observable potential outcomes:

Assumption 1. (Ignorable treatment assignment)

{Y(z:M(z,2,2), M(0,0,0), M(1, 1, D} L ZI1X = x,

for z=0, 1. This assumption permits estimation of the distributions of potential outcomes
under intervention Z= z with observed data on ambient PM, 5 and emissions under the same
intervention.

We adopt a Gaussian copula model to link the distributions of (M)(2), Ms(2), M;s(z2)) for z=
0, 1 into a single joint distribution of observable potential outcomes.

Assumption 2. The joint distribution of all potential mediators conditional on covariates
follows a Gaussian copula model (Nelsen, 1999 ):

—1 —1 —1
FM(O,O,O),M(L1,1)(“‘0,0,0’“‘1,1,1)=‘p6[‘p1 ‘FM1(0)<’”1)]"D1 lFMZ(O)(mZ)]’(Dl lFM3(0)(’”3)]’

‘pl_l’FMl(l)(’"l)l"Dl_llFM2(1)(’"2)l"D1_llFM3(1)(’"3)”

where ©¢ is the multivariate normal CDF with mean 0 and a correlation matrix R.

Assumption 2 implies a joint distribution of all observable potential mediators in a manner
consistent with the models for [M|, Ms, M5|Z= z, X= x] described in Section 5.1. However,
this entire joint distribution of potential mediators under both interventions is not fully
identified from the data since potential mediators under different interventions are never
jointly observed. Specifically, entries of the correlation matrix R corresponding to, for
example, the correlation between M(0) and My(1), are not identifiable in the sense that no
amount of data can estimate unique values for these parameters. Nonetheless, proper prior
distributions for these parameters can still permit inference from proper posterior
distributions. Such parameters are sometimes referred to as “partially identifiable” in the
sense that increasing amounts of data may lead the supports of posterior distributions to
converge to sets of values that are smaller than those specified in the prior distribution
(Gustafson, 2010; Mealli and Pacini, 2013). This can arise due to restrictions on the joint
distribution implied by the models for the marginal distributions (e.g., the positive-
definiteness restriction on R may exclude some possible values for its entries). We discuss
two prior specifications for the partially-identified parameters in R, noting that further
details of partial identifiability in the principal stratification context appear in Schwartz, Li
and Mealli (2011).

5.2.2. Assumptions for Mediation Effects.—Towards estimation of natural direct

and indirect effects, we augment the assumptions of Section 5.2.1 with one relating
observable outcomes to a priori counterfactual outcomes.
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Assumption 3. For intervention Z= 1, the conditional distribution of the potential outcome
given values of all potential mediators (and covariates) is the same regardless of whether the
mediator values were induced by Z=1 or Z= 0.

This assumption implies that the a priori counterfactual Y (1; M(0, 0, 0)) and the observable
potential outcomes Y (1; M(1, 1, 1)) have the same conditional distribution,

1.M(0,0,0)0"M(©.0.0) = m. M(L 1. 1), x)
= /1M1, 1, HOMO.0.0. M(L 1, 1) = m.x)..

This assumption also applies to any two mediators in the absence of the intervention. For
instance, the a priori counterfactual of PM; 5, Y (1; M(0, 1, 0)), and Y'(1; M(1, 1, 1)) have
the same conditional distribution regardless of whether corresponding emissions values
arose under a scrubber (Z = 1) or absent a scrubber (Z = 0),

1700, 1,0/0™M(0. 1.0) = m, M(1,0, 1), x)
= /1M1, 1, 1HOMO.0,0. M(L 1. 1) = m.x).

The key point is that the distribution of PM, 5 under a given (unobservable) combination of
mediators (m) only depends on the values of the mediators and not the intervention that led
to those mediators. Asserting this assumption in this case relies in part on what is known
about the underlying chemistry relating SO,, NO,, and CO, emissions to PM; 5. Note that
such an assumption may be more difficult to justify in, say, a clinical study where
assumptions about a priori counterfactuals might pertain to choices of study participants.

The above assumption can be cast as two homogeneity assumptions of the form proposed in
Forastiere, Mealli and VanderWeele (2016). For example, one implication of Assumption 3
is that the a priori counterfactual Y (1; M(0, 0, 0)) is homogeneous across all principal strata
with M(0, 0, 0) = m, regardless of the value of M(1, 1, 1). Viewing Assumption 3 in terms of
the implied homogeneity across principal strata aids interpretation and justification in the
context of the power plant example. Homogeneity across strata implies that the potential
ambient air quality value in the area surrounding a power plant is related to (possibly
counterfactual) emission levels only, and not to the power plant characteristics that govern
effectiveness of scrubbers for reducing emissions (i.e., the power plant characteristics that
determine the exact principal stratum membership). This underscores the importance of
including covariates in X that capture characteristics of the monitoring locations (e.g.,
temperature and barometric pressure). Appendix D provides details of the relationship
between Assumption 3 and assumptions of homogeneity across principal strata. While
Assumption 3 implies homogeneity assumptions, the converse is not true in the case of
multiple mediators due to the connection of Assumption 3 to a priori counterfactuals defined
to have mediator values induced by different interventions (e.g., Y (1; M(0, 1, 0)). We
discuss a sensitivity analysis to this assumption in Web Appendix J.

5.2.3. Optional Modeling Assumptions to Sharpen Posterior Inference.—With
the above model specification, the partial identifiability of the model parameters in R
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warrants careful attention. Proper but noninformative prior distributions for these parameters
could be specified marginally for these parameters as Unif(—1, 1), or equivalently, as
conditionally uniform on intervals satisfying positive definiteness restrictions for the
correlation matrix. In either case, posterior inference may exhibit large uncertainty.

We consider in detail an alternative prior specification similar to that in Zigler, Dominici and
Wang (2012) to sharpen posterior inference. Specifically, the correlations between mediators
under different interventions are specified as follows:

Cor(Mj(O), Mk(O)) + Cor(Mj(l M k(l))
p)

Cor(Mj(O),Mk(l)) = x p, for jk=1,2,3

with p a sensitivity parameter. This strategy implies that (a) the correlation between the same
mediator (= k) under opposite interventions is p, and (b) the correlation between different
mediators (j# &) under opposite interventions is an attenuated version of the correlation
observed separately under each intervention. Section B of the Web Appendix provides a
correlation matrix implied by this assumption in the case of 2 mediators. We assume a single
p and specify a uniform prior distribution, p ~ Unif(0, 1), but a different parameter could be
specified for each mediator.

As an additional assumption to sharpen posterior inference, we assume that the correlations
between emissions (mediators) are all positive. Support for this assumption comes from
observed-data estimates of these conditional correlations that are all positive.

In summary, assumptions 1-2 are sufficient to estimate the principal causal effects, and
pertain only to observable potential outcomes. Adding assumption 3 relating observed
quantities to a priori counterfactuals permits estimation of direct and indirect effects for
mediation analysis. The optional assumptions here in Section 5.2.3 are designed to sharpen
posterior inference in the power plant analysis.

5.2.4. Posterior Inference.—A Markov chain Monte Carlo (MCMC) algorithm is used
to sample from this posterior distribution and estimate causal effects using the following
steps: (1) sampling parameters from each marginal distribution for potential mediators and
conditional distribution for potential outcomes defined in Section 5.1; (2) sampling
parameters from the correlation matrix R of the Gaussian copula; (3) sampling via data
augmentation a priori counterfactual mediators from the joint distribution;(4) computing
causal effects based on all potential mediators and outcomes including imputed a priori
outcomes and mediators; (5) iterate Steps 1—4. The specifics of estimation (conditional on
our specific model formulation) are based on the existing literature on Bayesian estimation
of causal effects (and principal causal effects in particular), for example, in Mattei and
Mealli (2011); Zigler, Dominici and Wang (2012); Daniels et al. (2012).

The Web Appendix contains details of the MCMC procedure (Section F), prior specification
for all other model hyper-parameters (Section A), and the procedure for computing the
principal causal effects and the mediation effects from the posterior distributions of model
parameters (Section C).
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6. Numerical Study.

We examine the performance of the proposed model under combinations of the following
two data generating scenarios: (1) correlations among the mediators (Case 1: uncorrelated
mediators vs. Case 2: correlated mediators) and (2) interaction terms between the mediators
in the outcome model (Case A: interaction term between M) and M, vs. Case B: interaction
terms between M| and M,, and between M, and M5). Data sets of size n= 500 are simulated
for each of the four cases (1/A, 1/B, 2/A, 2/B), each with three continuous confounders. In
all cases, the three mediators are generated based on a multivariate normal distribution. See
the Web Appendix (Section G) for the exact data generating mechanism.

We compare our method for estimating mediation effects to a regression-based
model(MacKinnon, 2008):

M1 =ag +otHZ+XToz1 +e
MZ=ar02+01122+X—|—a2+e2
M3 =ay;+ (Jz132+XT0z3 +eg
Y=o+ P Z+ M, +ﬂ3M2+ﬂ4M3+XTﬂ+€Y

where €, €, €3, and € yare all independently distributed as MO, o).

Table 2 summarizes the results based on 400 replications for each of the four scenarios. It
shows that our proposed model (BNP) performs well in terms of bias and MSE for all cases.
Note that the true effects change when the mediators are correlated in the presence of
interaction term(s) in the outcome model. Thus, with any interaction effects of the
mediators, it is desirable to capture the correlation structure of the mediators, which our
method does by flexibly modeling the joint distribution of all potential mediators. Also, the
flexible Bayesian nonparametric model can capture both complex relationships/interactions
among the mediators and non-additive and nonlinear forms of mediators and/or confounders
in the outcome model. In each scenario, interaction terms in the outcome model introduce
non-additivity in the joint natural indirect effect (e.g., INIE # NIE| + NIE, + NIE3) and the
traditional regression model has larger biases (and larger MSEs) for mediation effects.

7. Analysis of Power Plant Scrubbers in the Acid Rain Program.

Here we estimate causal effects of having scrubbers installed in January 2005 (2) on annual
average emissions of SO,, NO,, and CO, in 2005 (M, M,, M) and on the 2005 annual
average ambient PM; 5 concentration within 150km of a power plant ( Y). Before reporting
results, note that basic checks of the fit of marginal nonparametric models appear in Web
Appendix I, indicating fit that is clearly superior to simple parametric models.

A simple comparison of means indicates that the 150km area around power plants with
scrubbers installed (Z= 1) had average ambient PM; 5 that was lower, on average, than the
areas surrounding power plants without scrubbers (12.4 vs. 13.7 ug/n?). Similarly, the
power plants with scrubbers also emitted less SO,, more NO,, and more CO, than the plants
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without scrubbers. Table 1 lists the covariates in X to adjust for confounding and presents
summary statistics for scrubber and non-scrubber power plants.

We present an analysis with the proposed method using the constrained prior specification in
Section 5.2.3. Analysis using uniform prior distributions on all elements of the correlation
matrix appears in the Web Appendix. All reported estimates are listed as posterior means
(95% posterior intervals). The analysis estimates that having scrubbers installed causes SO,
emissions to be —1.17 (—1.86, 1.55) x 1000 tons lower, on average, than they would be
without the scrubber. The analogous causal effects for NO, and CO, emissions were 0.04
(0.00, 0.07) x 1000 tons and 0.001 (—0.00, 0.004) million tons, respectively, indicating that
scrubbers did not significantly affect these emissions, on average. The total effect (TE) of
having scrubbers installed on ambient PM, 5 within 150km is estimated to be —1.12 (—2.07,
—0.29) ug/n?, suggesting a reduction amounting to approximately 10% of the national
annual regulatory standard for PMj s.

Principal Causal Effects.

For the &-th emission, let oy denote the posterior standard deviation of the estimated
individual-level causal effect of a scrubber on My, with posterior mean estimates 6, =024,

6, =042,65=0.02. Let 6 5, denote the vector of 6, for the emissions in %. To summarize

dissociative effects, we set C% = 0.256 g, to estimate EDE 5, among power plants where the

scrubber effect on emissions in % is within one-fourth of a standard deviation of the effect

in the population. Similarly, we summarize associative effects with C’;{ = 0.255 g, to estimate

EAE;K(EAE}) among power plants where the scrubber causally reduces (increases)

emissions in % more than one-fourth of a standard deviation of the effect in the population.

Before providing estimates of specific principal effects, we first examine 3-D surface plots
in Figure 2. For each emission separately (K€ {1, 2, 3}), Figure 2 depicts estimated
scrubber effects on PM; 5 across varying effects on emissions determined by values of
(My0), My(1)) simulated from the model. Note the pattern for all emissions that the surfaces
are sloped downward in the direction of increasing M(0) and My(1) (sloped towards the
viewer), indicating larger effects on PM, 5 among plants with larger emissions values under
both scrubber statuses, i.e., larger plants.

In Figure 2(a) for SO,, the dots in the xy-plane lie almost entirely in the region where M;(1)
< M;(0), indicating as expected that scrubbers predominantly decrease SO, emissions.
Associative effects for SO, are indicated by the downward slope of the surface in the
direction of decreasing M|(1) — M;(0) (towards the left of the viewer), indicating that larger
decreases (increases) in SO, are associated with larger decreases (increases) in PMj s.

The analogous surfaces for NO, and CO; appear in Figures 2(b) and 2(c), respectively. In
contrast to the surface for SO, the dots in the xy-plane fall more closely and symmetrically
around the line My(1) = My(0), reflecting that scrubbers do not affect these emissions, on
average. The surface for NO, exhibits some evidence of associative effects in the opposite
direction of those for SO,; there is some downward slope of the surface in the direction of
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increasing My(1) — M(0) (towards the right of the viewer), indicating that larger increases
(decreases) in these emissions are associated with larger decreases (increases) in PMj s.

Table 3 lists posterior mean and standard deviation of EDE, EAE ", and EAE" for all
possible #. Estimates of EDE for all # indicate little to no reduction in PM, 5 among plants

where emissions were not affected in excess of C%, with the exception of some pronounced

estimates of EDE for and % = {NO } and % = {CO,}. Estimates of EAE™ and EAE" tend to

be less than zero. The most pronounced estimate of EAE% = —1.19(0.46) for # = {SOZ}

suggests that PM, 5 was reduced among power plants where SO, emissions were
substantially reduced, which corresponds to the contour of the surface in Figure 2(a) and is
consistent with the anticipated causal pathway whereby scrubbers reduce PM; 5 through
reducing SO, emissions. In accordance with the opposite sloping surface in Figures 2(b), the

estimate of EAE}'K is most pronounced for # = {NOX}, and {NO,, CO,}, indicating that

ambient PM 5 is decreased plants with substantial increases in NO, emissions.

Recall that the estimates in Table 3 represent average principal effects over only a subset of
principal strata, in particular those where changes in multiple emissions are concordant (i.e.,
all decreasing, all increasing, or none changing). Other strata may be of interest. Figure 3
provides estimates of principal effects in a cross-classification of strata defined by changes
in CO; and SO,, with changes defined as increases, decreases, or no change in reference to

Cg and C‘;[. For example, the third column of Figure 3 subdivides the stratum defined by

causal increases in CO; into three substrata: those where CO; increases and SO, (1)

decreases (in excess of C’;g); (2) does not substantially change (beyond Cg) ; or (3) increases

(in excess of C‘;g). Principal causal effect estimates for these three substrata appear along

with their relative proportion among the stratum defined by CO, increases, indicated by the

size of the plotting symbol. The light grey dot corresponds to EAEY, for # = {S0O,.CO,} as

reported in Table 3, but note that only 4% of CO,-increase stratum exhibits SO, increases.
The dark grey dot corresponds to the principal effect among the 21% of the CO,-increase
stratum in substratum (2) where SO, does not change, with a principal effect estimate of
—0.13 (0.99). The remaining proportion (75%) of the CO,-increase stratum belongs to
substratum (3) where the plants exhibiting decreases in SO, and a corresponding principal

effect estimate of —1.21 (0.73). Thus, for % = {CO, }, the negative estimate of EAEY, from

Table 3 is revealed to be generated in large part by strata where SO, decreases and there is a
pronounced negative effect on PM; 5. Analogously, the second column of Figure 3
considering the stratum where CO, emissions do not substantially change (used to estimate
EDE) reveals that 63% of this strata exhibited causal reduction in SO, and a causal reduction
in PM; 5 of —0.87 (0.49), explaining in large part the negative estimate of EDE . for

H = {COZ} in Table 3. Analogous cross-classification of strata by changes in NO, and SO,

appears very similar to Figure 3 and is not presented.
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The main conclusions from the principal stratification analysis are thatl) scrubbers reduce
SO, on average, but not NO, or CO», 2) there is some evidence of a nonzero dissociative
effect for SO,, 3) associative effects for SO, are more pronounced than dissociative effects,
with PM; 5 reduced more around plants where scrubbers cause large reductions in SO,; 4)
associative effects for NO, and CO, are more pronounced than dissociative effects, with
PM,; 5 reduced more around plants where scrubbers cause larger increases in these
emissions; but that 5) strata defined by increases (or no change) in NO, and/or CO, are
comprised in large part by substrata where SO, and PM, 5 were causally reduced. This
analysis points towards (but cannot confirm) the conclusion that scrubbers affect PM, 5
among plants where emissions are not changed, and that scrubber effects on PM; 5 are
mediated in part through effects on SO,, with less evidence of a mediating role of NO, and
CO,.

7.2. Mediation Effects.

To estimate direct and indirect effects, we augment the principal stratification analysis with
Assumption 3 in Section 5.2.2 about a priori counterfactuals. Figure 1 (top) in the Web
Appendix depicts boxplots of the posterior distributions of TE, NDE, JNIE;3, JNIE 5,
INIE;3, JNIE;3, and the individual NIEs. The estimated NDE, representing the direct effect
of a scrubber on ambient PMj 5 that is not mediated through any emissions changes, is —0.53
(—1.51, 0.39) ug/n?, indicating no evidence of a direct effect of scrubbers on PM, 5 that is
not mediated through SO,, NO,, or CO,. The NIEs for NO, (NIE,) and CO, (NIE5) are
estimated to be very close to 0, —0.02 (—0.26, 0.21) and —0.04 (—0.33, 0.23), respectively.
The estimated NIE for SO, (NIE;) is —0.54 (—=1.20, —0.01), indicating a significant indirect
effect. The joint natural indirect effects involving SO, are all similar in magnitude to NIE|,
with estimates of INIE,, INIE3, and JNIE ;3 of —0.56 (—1.23, —0.01), —0.58 (—1.25,
—0.02), and —0.59 (—1.27, —0.02), respectively. The estimated JNIE,3 is —0.03 (=0.31, 0.23).

As discussed in Section 4.3, a benefit of the proposed approach is the accommodation of
overlap between NIEs, and the opportunity to examine the extent of overlap. We evaluate the
relationship between the joint effects INIE ; and the mediator-specific effects NIE;, NIE,,
NIE; through (NIE| + NIE;) — INIE{, =—0.01 (-0.18, 0.16), (NIE; + NIE3) JNIE{3 = 0.01
(—0.22, 0.23) and (NIE; + NIE3) — INIE»3 = 0.00 (—0.19, 0.15), which give no evidence of
overlap between NIEs. That is, the effect of a scrubber on ambient PM 5 that is mediated
through emissions changes appears to be described by indirect effects that act additively and
do not exhibit any apparent synergy that would lead to overlapping effects. The lack of
overlapping indirect effects, combined with the fact that a) all indirect effects involving SO,
(NIE;, INIE,, JNIE 3, and JNIE,3) are similar in magnitude and b) all indirect effects not
involving SO, (NIE,, NIE3, JINIE»3) are estimated to be zero, provides strong evidence that
the effect of scrubbers on PMj 5 is primarily driven by effects on SO,.

In the Web Appendix, we also conduct inference using flat priors on plausible values of the
partially-identifiable parameters, and the estimates for the effects are similar to those in the
main analysis.

The conclusions of the causal mediation analysis are clear and mostly consistent with those
from the principal stratification analysis: scrubber effects on ambient PM; 5 are almost
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entirely mediated through reductions in SO, emissions. Combining reductions in SO, with
reductions of NO, and CO, does not significantly change the mediated effect. In fact, NO,
and CO, appear to play no role in the causal effect of scrubbers on PM, s.

7.3. Results from Alternative Analyses.

We conduct two simpler analyses for comparison. First, we implement separate single-
mediator analyses using the methods described above with K= 1. Results are largely
consistent with the multiple mediator analysis, as suggested by the apparent absence of
overlapping effects. For SO, emissions, the total, indirect and direct effects are estimated to
be —1.28 (—2.25, -0.62), —0.70 (—=1.51, —0.04) and —0.58 (—1.35, 0.37), respectively. For
NO, emissions, the total, indirect and direct effects are estimated to be —1.21 (=2.05, —0.40),
—0.04 (—0.32, 0.28) and —1.17 (—1.99, —0.32), respectively. With CO, emissions, the total,
indirect and direct effects are estimated to be —1.22 (—=1.98, —0.29), 0.03 (-0.26, 0.33) and
—1.25 (=2.05, —0.30), respectively. Note that significant estimated direct effects for NO, and
CO, suggest pathways that are not through NO, and CO» (i.e., the pathway through SO5).

For a second comparison, we conduct a multiple mediator analysis using a traditional
regression approach to mediation with the same model in Section 6. The mediation effects
are estimated to be NIE| = a1 =—0.39(95%C.1.-1.11, 0.25), NIE, = a5 =
—0.09(95%C.1. —0.44, 0.22), NIE3 = a1384 = 0.08(95%C.1.-0.08, 0.35), NDE= B, =
—0.18(95%C.I. —2.56, 0.11). Thus, while these results are on average consistent with the
results from the proposed methods, the estimate of the NV/E] is not significant. Note that this
analysis explicitly assumes that the mediators do not interact with each other in the outcome
model, implying an estimate of the joint indirect effect of all three mediators that is the sum
of all three indirect effect (i.e., JNIE 3 = —0.40(95%C.1. —1.15, 0.34)) which is also not
significant. The discrepancy between the results of the traditional regression approach and
ours is due to our flexible modeling strategy using Bayesian nonparametric methods
(Dirichlet process mixtures) that even in presence of additivity, allows for nonlinearities and
non-normal errors.

8. Discussion.

We have developed flexible Bayesian methods for principal stratification and causal
mediation analysis in the presence of multiple mediating variables. To accommodate the
setting of multiple pollutants that are emitted contemporaneously and possibly interact with
one another, we have developed methods to accommodate multiple contemporaneous and
non-independent mediators. Bayesian nonparametric modeling approaches provided flexible
models for the observed data (marginal distribution for each mediator and conditional
distribution for the outcome under each intervention z= 0, 1), and linked observed data
distributions to joint distributions of potential mediators using explicit and transparent
assumptions about both observable and a priori counterfactuals.

A key feature of our approach is the integration of principal stratification and causal
mediation analysis in a manner that relies on the same models for the observed data.
Deployment of these methods in the power plant analysis represents, to our knowledge, the
most comprehensive consideration of these two approaches and the implications of the
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results in the context of a single analysis. We use Assumption 3 to relate a priori
counterfactual outcomes to observed outcomes, and show that this assumption implies
homogeneity across principal strata, which aids interpretation. This assumption also has
close ties to that of sequential ignorability (Imai, Keele and Yamamoto, 2010). Benefits of
formulating Assumption 3 as done here include facilitation of a sensitivity analysis to this
assumption following the general approach of Daniels et al. (2012) and the aided
interpretation implied by the relationship to homogeneity assumptions. While a version of
sequential ignorability relevant to the setting of multiple contemporaneous mediators with
interactions and that can be used to identify each mediator-specific effect has not been
previously formulated, Web Appendix E explores the relationship between our Assumption
3 and sequential ignorability in the case of a single mediator. In this case, implications of
these two assumptions are identical for the types of estimands considered here, although one
assumption does not generally imply the other.

The results of the principal stratification and causal mediation analyses should be interpreted
jointly and are, in this case study, largely consistent with one another. Principal stratification
indicated that scrubbers tended to decrease ambient PM; 5 around plants where scrubbers
substantially reduced SO, emissions, a result consistent with the estimated natural indirect
effects from the mediation analysis. Jointly interpreting results related to other emissions
proved more subtle, and highlighted the difficulty involved in interpreting principal effects
as mediated effects, in particular when there are multiple mediators. A finer examination of
principal strata defined by cross-classification of SO, changes and changes in CO, (or NO,)
revealed the dominating role of scrubber effects on SO, that was corroborated by the results
of the mediation analysis. This cross-classification also reconciled the lack of evidence for a
natural direct effect with the apparent evidence of dissociative effects pertaining to NO, and
CO, that were revealed to be driven primarily by changes in SO,. The evidence of nonzero
dissociative effects for SO, is likely explained by the negative expected direct effect. The
relative magnitudes of principal effects and mediation effects are consistent with the well-
known result that, in general, associative effects are a mixture of direct and indirect effects.
Overall, these results are largely consistent with expectations: scrubbers appear to causally
reduce SO, emissions but not those of NO,, or CO,; scrubbers causally reduce ambient
PM,; 5 (within 150km); the effect on PMj 5 is primarily mediated by causal reductions in
SO, emissions and not NO, or CO, emissions; and there appears to be direct effect of
scrubbers on PM, s.

The results of this case study should be interpreted in light of several important limitations.
First is the relative simplicity with which we linked power plants to monitors. Specifically,
our strategy links power plants to all of the ambient monitors within 150km. Thus, our
analysis is of the causal effects of scrubbers on average PM; 5 measured within 150km. This
likely does not reflect the full effect of emissions changes on ambient air quality, which are
expected to have implications at distances greater than 150km. A related limitation is the
assumption that there is no interference between observations. If the effect of a scrubber on
ambient PM; 5 extends far enough beyond 150km so that a scrubber at a given power plant
causally affects ambient PM, 5 surrounding other power plants, then this assumption would
be violated. More sophisticated strategies for causal inference in the presence of interference
and for linking ambient monitors to power plants based on features such as atmospheric
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conditions and weather patterns are warranted. Nonetheless analysis presented here
represents an important approximation that still yields valuable conclusions, especially with
respect to quantifying causal pathways. Another important limitation of this analysis is that
it assumes that the factors listed in Table 1 are sufficient to control for confounding, which
in this case would consist of differences between power plants or other features related to
ambient PM, s that are also associated with whether a power plant had scrubbers installed in
2005. Our approach is not readily extended to categorical mediators. We save this as
potential future research. Despite these limitations, we have developed new statistical
methodology and leveraged an unprecedented linked data base to provide the first empirical
evaluation of the presumed causal relationships that motivate a variety of regulations for
improving ambient air quality and, ultimately, human health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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(a) Contemporaneous Mediators (with Inter- (b) Sequentially Ordered Mediators
actions)

Fig 1:

Directed Acyclic Graphs : a) contemporaneous mediators with interactions (our case) and b)
sequentially ordered mediators.
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Fig 2:

A\%erage surface plots of the causal effect on PM; 5 for different values of (M(0), M(1)).
Values of (My(0), M;(1)) are plotted on the x-and y- axes, and determine the causal effect of
a scrubber on emission k. The corresponding value of the causal effect of a scrubber on
PM; 5, Y (1) — Y(0), is plotted on the zaxis. The cloud of points in the xy-plane are one
MCMC draw of 249 pairs of (My(0), My(1)). The lines on the xy-plane are at My(0) = M(1)
(solid line) and +/ - 0.255, (dashed lines).
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Fig 3:

Posterior mean estimates of principal effects for strata defined by cross-classifying changes
in CO, (x-axis) and changes in SO, (colored circles). Size of circle symbolizes the
proportion of each CO; stratum falling in the corresponding SO, category, and number (and
number in parentheses) listed is posterior mean proportion (and posterior standard
deviation).
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Summary statistics for covariates and outcomes available for the analysis of SO, scrubbers.

Table 1

Have scrubbers (n=59)

Have no scrubber (n=190)

Median IQR Median IQR
Monitor Data
Average Ambient PM, 5 2005 (zg/m?) 12.4 (7.8, 14.8) 13.7 (11.8,15.2)
Average Temperature 2004 (°C) 11.5 (10.1, 15.0) 12.8 (10.4, 16.1)
Average Barometric Pressure 2004 (mmHg) 737.8 (686.7,752.4) 746.1 (739.1, 755.6)
Power Plant Level Data
Total SO, Emission 2005 (tons) 644.3 (257.3, 1819.9) 1267.1 (504.9, 2707.6)
Total NO, Emission 2005 (tons) 852.1 (394.2,1531.3) 442.5 (193.7, 878.2)
Total CO, Emission 2005 (%1000 tons) 505.3 (232.5,960.7) 283.6 (117.7, 559.0)
Unit Level Data
Average Heat Input 2004 (x1000 MMBtu) 4653.3  (2266.4,9363.9) 27834  (1147.6,5448.1)
Total Operating Time 2004 (hours X # units) 7944.0  (7565.8,8154.9) 75839  (7171.0,7985.9)
Sulfur Content in Coal 2004 (1b/MMBtu) 1.0 (0.5,2.2) 0.7 (0.3,1.1)
Num. of NO, Controls 2004 (# units) 1.0 (1.0, 1.5) 1.0 0.9,1.3)
Pct. operating Capacity 2004 (MMBtu/MMBtu x 100) 20.2 (10.0, 28.8) 16.4 (9.3, 24.6)
Heat Rate 2004 (MMBtu/MWh) 268.5 (175.5, 436.9) 254.3 (152.6, 396.8)
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Simulation results for point estimators of causal mediation and principal causal effects over 400 replications.

The columns correspond to bias and MSE relative to the true values of the causal effects for each scenario

(Cases 1 and 2, and Cases A and B) under two different models; Parametric : a regression based model for the

causal mediation effects; BNP : Our Bayesian nonparametric method.

Case 1 Case 2

BNP Parametric BNP Parametric
Truth Bias MSE Bias MSE Truth Bias MSE Bias MSE
TE 0.73 0.02  (0.09) —0.03 (0.08) 092 -0.04 (0.08) 0.20 (0.33)
INIE 1.73 0.06 (0.11) 021 (0.07) 192 0.04  (0.08) 0.02 (0.47)
NDE -1 —0.04 (0.01) -0.25 (0.15) -1 —0.08 (0.01) -0.20 (0.08)
NIE;  -0.16  0.00 (0.00) -0.01 (0.01) 0.03 -0.05 (0.00) -0.38 (0.26)
Case A NIE; 2.45 0.02  (0.10) —0.02 (0.08) 2.65 —0.05 (0.08) -—0.39 (0.31)
NIE;  -032  0.00 (0.000 -0.01 (0.01) -032 0.01 (0.000 -0.01 (0.01)
INIE;;  2.05 0.05  (0.10) 022 (0.14) 223 0.03  (0.08) 021 (0.44)
JNIE;;  —048  0.01 (0.01) -0.01 (0.01) -029 -0.04 (0.00) -0.38 (0.28)
INIE;;  2.13 0.02  (0.10) —0.02 (0.09) 233 -0.04 (0.08) —0.39 (0.33)
TE 1.08 -0.02 (0.10) -0.01 (0.08) 133 -0.09 (0.08) —0.01 (0.08)
INIE 2.08 —0.00 (0.10) 0.6 (0.12) 233 -0.00 (0.08) -0.08 (0.11)
NDE -1 -0.01 (0.00) —0.17 (0.04) -1 —0.09 (0.01) 0.08 (0.02)
NIE; -0.16 -0.01 (0.000 -0.01 (0.01) 0.03 -0.05 (0.01) -0.20 (0.04)
CaseB  NIE; 251 —0.02 (0.10) 0.02 (0.09) 278 —0.08 (0.09) -0.25 (0.15)
NIE;  -0.13  0.00 (0.00) 0.01 (0.01) -0.05 -0.02 (0.01) -0.08 (0.01)
INIE;;  2.11 0.01  (0.10) 025 (0.16) 2.37 0.00 (0.08) 0.01 (0.10)
JNIE;3  —0.29  —0.00 (0.00) —0.01 (0.01) -0.02 —0.07 (0.01) —0.27 (0.08)
JNIE;; 248  —0.04 (0.10) -0.08 (0.09) 275 -0.09 (0.09) -0.34 (0.21)
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Posterior means (standard deviations) for expected associative and dissociative effects of SO, scrubbers.
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SO, NO, CO, $0,&NO, S0,&CO, NO,&CO, SO,& NO,& CO,
Mean —1.19 —0.77 -1.14 ~0.84 ~1.18 ~0.90 -0.94
EAE™
SD  (046) (0.59) (0.56) (0.59) (0.57) (0.67) (0.68)
Mean —032 069 —0.82 ~0.09 -0.31 —0.48 -0.15
EDE
SD  (0.57) (0.54) (0.49) (0.71) (0.68) (0.69) (0.86)
Mean 0.60 -1.68 —1.08 0.38 1.28 ~1.63 0.69
EAE+
SD  (252) (0.74) (0.75) (3.67) (3.78) (1.04) (4.68)
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