

1 Impact of Convectively Generated Low-Frequency Gravity Waves on

2 Evolution of Mesoscale Convective Systems

3 Rebecca D. Adams-Selin*

4 *Atmospheric and Environmental Research, Inc.*

Downloaded from <http://journals.ametsoc.org/jas/article-pdf/doi/10.1175/JAS-D-19-0250.1/4990955/jasd190250.pdf> by guest on 31 August 2020

5 *Corresponding author address: Atmospheric and Environmental Research, 11515 South 39th St,
6 Suite 102, Bellevue, NE 68123
7 E-mail: rselin@aer.com

Early Online Release: This preliminary version has been accepted for publication in *Journal of the Atmospheric Sciences*, may be fully cited, and has been assigned DOI 10.1175/JAS-D-19-0250.1. The final typeset copyedited article will replace the EOR at the above DOI when it is published.

ABSTRACT

8 Idealized numerical simulations of Mesoscale Convective Systems (MCSs)
9 over a range of instabilities and shears were conducted to examine low-
10 frequency gravity waves generated during initial and mature stages of con-
11 vection. In all simulations, at initial updraft development a first-order wave
12 was generated by heating extending the depth of the troposphere. Additional
13 first-order wave modes were generated each time the convective updraft rein-
14 tensified. Each of these waves stabilized the environment in advance of the
15 system. As precipitation descended below cloud base, and as a stratiform
16 precipitation region developed, second-order wave modes were generated by
17 cooling extending from the mid-levels to the surface. These waves destabi-
18 lized the environment ahead of the system but weakened the 0-5 km shear.
19 Third-order wave modes could be generated by mid-level cooling caused by
20 rear inflow intensification; these wave modes cooled the mid-levels destabiliz-
21 ing the environment. The developing stage of each MCS was characterized by
22 a cyclical process: developing updraft, generation of $n = 1$ wave, increase in
23 precipitation, generation of $n = 2$ wave, and subsequent environmental destabi-
24 lization reinvigorating the updraft. After rearward expansion of the strati-
25 form region, the MCSs entered their mature stage and the method of updraft
26 reinvigoration shifted to absorbing discrete convective cells produced in ad-
27 vance of each system. Higher-order wave modes destabilized the environment
28 making it more favorable to development of these cells and maintenance of
29 the MCS. As initial simulation shear or instability increased, the transition
30 from cyclical wave/updraft development to discrete cell/updraft development
31 occurred more quickly.

32 **1. Introduction**

33 Gravity waves generated by convection are widely understood to impact the environment sur-
34 rounding that convection. Vertical motions associated with these waves can act to both initi-
35 ate (e.g., Wilson et al. 2018) or organize (Bretherton and Smolarkiewicz 1989; Nicholls 1991;
36 Pandya et al. 1993; Mapes 1993; Shige and Satomura 2001; Liu and Moncrieff 2004) convection.
37 Convectively-generated gravity waves fall along a spectrum of high to low frequency; depending
38 on the frequency the waves have different sets of causal factors and subsequent impacts. In a
39 resting atmosphere, wave frequency is related to wave energy propagation direction through

$$\cot(\alpha) = \frac{\omega}{\sqrt{N^2 - \omega^2}} \quad (1)$$

40 where α is the angle of energy propagation as measured from the vertical, N is the Brunt-Väisälä
41 frequency, and ω is the frequency of the wave (Pandya et al. 2000). According to (1), as the wave
42 frequency decreases the direction of energy propagation becomes more horizontal. Low-frequency
43 waves thus can propagate horizontally for extended distances without their energy escaping verti-
44 cally. These waves are mainly excited by changes in the diabatic heating profile associated with
45 convection (Lane and Reeder 2001; Pandya et al. 2000). High-frequency waves, conversely, lose
46 most of their energy to vertical propagation unless a trapping mechanism exists. They are gen-
47 erally excited by cyclical re-development of convective cells (McAnelly et al. 1997, MNCN97
48 hereafter) or nonlinear advection of buoyancy (Lane and Reeder 2001). High- and low-frequency
49 waves can work in concert to develop or organize convection, a process termed “discrete prop-
50 agation (Fovell 2002; Fovell et al. 2006; Su and Zhai 2017): low-frequency waves prepare the
51 environment through more gentle ascent over a larger area, while high-frequency waves actually
52 initiate the convection. Low-frequency waves have also been shown to aid environmental recovery
53 from previous convection through subsequent destabilization (Trapp and Woznicki 2017).

54 Low-frequency wave structure is defined by vertical modes of diabatic heating. These modes
55 also determine its speed through

$$c = \frac{NH}{n\pi} \quad (2)$$

56 where c is the wave speed, H the vertical depth of the troposphere, and n the vertical mode of the
57 diabatic heating profile (Nicholls 1991). Here an $n = 1$ wave would be generated by an increase in
58 heating over the depth of the troposphere peaking at the midlevels, roughly corresponding to the
59 heating profile in the convective region of an MCS (Gallus and Johnson 1991). The wave itself
60 consists of a wave front with descent over the depth of the troposphere that propagates away from
61 the heating source at speed c , shown in Fig. 1a. The displacement and warming resulting from
62 the descent were found by Mapes (1993) to be “semi-permanent” until the diabatic heating profile
63 decreases, at which time a wave front of ascent through the depth of the troposphere would be
64 generated (Fig. 1a). Lane and Zhang (2011) noted the cyclical nature of heating within convec-
65 tion as cells redevelop; when using a heating profile periodic in time they found $n = 1$ waves can
66 travel in downdraft/updraft couplets. Adams-Selin and Johnson (2013) observed four $n = 1$ up-
67 draft/downdraft couplets using Oklahoma Mesonet surface pressure data, and Su and Zhai (2017)
68 similarly observed a $n = 1$ couplet. Microphysical heating aloft and cooling over the lower half of
69 the troposphere, the heating profile of an MCS stratiform region (Gallus and Johnson 1991; Fovell
70 2002), generates $n = 2$ wave modes with ascent over the lower half of the troposphere; $n = 3$ wave
71 modes can be associated with ascent in either the lower or middle third of the troposphere. Lane
72 and Reeder (2001) found the impact of these waves on the surrounding convective available po-
73 tential energy (CAPE) and convective inhibition (CIN) fields varied; waves with upward vertical
74 motions maximized in the lower (middle) troposphere most impacted CIN (CAPE) fields.

75 Low frequency waves thus are expected to be produced by Mesoscale Convective Systems
76 (MCSs), but to this point there has been no systemic examination of waves produced during an

77 MCS lifecycle. Recent research has noted the prevalence of bores associated with nocturnal MCSs,
78 particularly in the Great Plains region of the United States. Efforts have examined how bores can
79 maintain lifting within, and destabilize large regions in advance of, MCSs through low-level lifting
80 (Haghi et al. 2017; Johnson et al. 2018; Parsons et al. 2019; Zhang et al. 2020). The development
81 of the nocturnal low-level jet often leads to a critical layer to trap wave energy (Lindzen and Tung
82 1976; Koch et al. 1991) and a flow regime favorable to bores (Rottman and Simpson 1989; Haghi
83 et al. 2017). It is likely that low-frequency gravity waves occur concurrently with bores. Parsons
84 et al. (2019) and Haghi et al. (2019) both suggest such a possibility but thus far the low-frequency
85 gravity waves associated with MCSs have not yet been identified. MCSs also frequently initialize
86 in a weakly stable or neutral temperature regime before sunset, where bores are not as frequent
87 but low-frequency waves could still occur. While it is possible for the elevated stable and trapping
88 layers necessary for long-lived bores to exist during the day (e.g., Fig. 1 of Zhang et al. (2020)),
89 the existence of such a vertical temperature profile is not guaranteed.

90 Thus, given the established importance of low-frequency gravity waves in “preparing” the sur-
91 rounding environment for additional convective development and initiation, a systematic exami-
92 nation of low-frequency gravity waves produced during the lifetime of an MCS is necessary. This
93 work will focus on the waves generated by a Mesoscale Convective System (MCS), the specific
94 modes produced by the different stages of its lifecycle, and how those wave modes vary across
95 a range of environments. Previous studies such as Pandya and Durran (1996) and Pandya et al.
96 (2000) have examined how different vertical tilts of the heating profile have impacted the circula-
97 tion within an MCS, but have not studied how different initial environments modify the in-storm
98 latent heating distributions. It is hypothesized that these the low-frequency waves produced by
99 MCSs vary among storms occurring in different environments, subsequently impacting the waves’

100 environmental effects surrounding the MCS, additional convective development, and potential dis-
101 crete propagation.

102 The methodology and configuration of the simulations are described in Section 2. The control
103 run is described in Section 3. Generated wave and impact sensitivities to environmental shear and
104 instability variations are discussed in Sections 4 and 5. The MCS response across the sensitivity
105 tests is described in Section 6. Discussion and conclusions are presented in Section 7.

106 **2. Methodology**

107 Idealized Cloud Model 1 version 18 (CM1; Bryan and Fritsch 2002) simulations were used.
108 This study expands upon previous examinations of low-frequency gravity waves that used sim-
109 plified linearized models with specified heat sources (e.g., Bretherton and Smolarkiewicz 1989;
110 Nicholls 1991; Pandya et al. 1993; Mapes 1993; Liu and Moncrieff 2004) by incorporating all at-
111 tendant non-linear effects. Stechmann and Majda (2009) found such effects to be important when
112 determining wave responses in environments with non-zero wind shear. Nine sets of initial con-
113 ditions were defined using a modified version of the sounding from Weisman and Klemp (1982),
114 three different thermodynamic profiles and three different shear profiles. For each profile, N was
115 calculated and smoothed if anywhere in the profile was discontinuous below the tropopause to
116 ensure no trapping levels were present to confuse the results. In all profiles, the only smoothing
117 of N that was required was below 2 km around the height of the lifted condensation level. Once N
118 was smoothed, a new potential temperature was solved for, assuming q_v was unmodified from the
119 original sounding.

120 A 350 km (x direction) by 300 km (y direction) by 18 km (z direction) domain was used with
121 open-radiative lateral boundary conditions and zero-flux lower and upper boundary conditions.
122 The horizontal grid-spacing was 250 m and the vertical grid spacing was uniformly 100 m. A time

123 step of 1.5 s was used with vertically implicit Klemp-Wilhelmsen time-splitting with an acoustic
124 time step of 1/3 s. Rayleigh damping was applied above 14 km with an inverse e-folding time of
125 1/300 s⁻¹. The simulation parameterized subgrid turbulence via a prognostic TKE scheme (Bryan
126 and Fritsch 2002). Convection was initialized via the “cold pool-dam break” method (Weisman
127 et al. 1997), consisting of a rectangular box of negative potential temperature perturbation estab-
128 lished during initiation. The cold perturbation of -6 K extended from 0 to 100 km in the x direction,
129 from 50 to 250 km in the y direction, and linearly decreased until 0 K at 2.5 km aloft. The Morrison
130 microphysical parameterization (Morrison et al. 1997) was used with the hail option.

131 The background stability and shear of the initiating environment were varied systematically
132 to examine its impact on the waves produced. Three different surface mixing ratio (q_v) values
133 were used of 12.2, 14.3, and 16.2 g kg⁻¹, resulting in three different initial Maximum Unstable
134 Convective Available Potential Energy (MUCAPE) values of approximately 1500, 2500, and 3500
135 J kg⁻¹. (Because the convection was surface-based, however, all further analyses of CAPE will
136 use a surface-based value.) Shear profiles were linear with easterly winds at the surface of 5, 15,
137 and 25 m s⁻¹ decreasing to 0 m s⁻¹ at 5 km aloft; no trapping or critical levels exist in the shear
138 profile. These perturbations were designed to mimic those of Weisman and Klemp (1982) and
139 Weisman et al. (1988) to allow for comparison with the results of those studies. Two additional
140 simulations were run to test the sensitivity of results to the initialization method and addition of a
141 nocturnal boundary layer. All simulations run are listed in Table 1.

142 3. Control simulation

143 The control simulation, 14.3H15 (Fig. 2), has 15 m s⁻¹ of 0-5 km shear, a surface q_v of 14.3
144 g kg⁻¹, 2497 J kg⁻¹ of MUCAPE, and the profile most similar to the original Weisman and
145 Klemp (1982) sounding. Simulated radar reflectivity values first become apparent at 20 minutes

146 into the simulation as a convective updraft extends through the mid-levels in a north-south line.
147 Precipitation first reaches the surface at 24 minutes (Fig. 2c). The convective line widens and a
148 small region of leading stratiform precipitation develops around 35 minutes, which transitions to
149 a leading line-trailing stratiform configuration by 54 minutes (Fig. 2f). As the stratiform region
150 extends rearward, a rear inflow jet develops and slowly spreads westward. An intensification of the
151 rear-to-front flow occurs just prior to 100 minutes (Fig. 2i). By 90 minutes discrete convective cells
152 have formed in advance of the main updraft (Fig. 2h). At 115 minutes these cells were absorbed
153 into the main updraft, reinvigorating it.

154 Unlike previous studies of low-frequency gravity waves forced by idealized heat sources, the
155 highly variable nature of the latent heating profile within a full MCS simulation will result in
156 many gravity waves of a range of frequencies (e.g., Adams-Selin and Johnson 2013). Identifying
157 specific wave modes is therefore difficult. In this study, the existence of a specific wave mode is
158 confirmed provided its phase speed and a subsequent Fourier decomposition method agree. That
159 wave mode must also be reflected within the vertical motion field for the remaining length of the
160 simulation once generated to ensure the waves are low frequency.

161 *a. Fast-moving wave mode*

162 Three waves of mode $n = 1$ consisting of downdraft-updraft couplets are evident in the vertical
163 wind field within a Y cross-section at 6 km aloft (Fig. 3a). The waves associated with downward
164 motion are marked by solid lines, and with upward motion by dashed lines. Vertical motion
165 associated with $n = 1$ waves should peak in the mid-levels. The motions associated with these
166 waves at 2.5 km are still evident but not as strong (Fig. 3b). The three waves propagate quickly
167 away from the initiating convection at similar speeds of 36.6, 35.9, and 34.0 m s^{-1} after accounting
168 for the mean tropospheric u wind, calculated from the initial wind profile, of -1.9 m s^{-1} . With a

169 mean N of 9.8E-3 s^{-1} the predicted $n = 1$ wave speed from (2) is 37.4 m s^{-1} . Figures 2a and b
170 show an increase in mid-level latent heating between 14 and 20 min, highlighted by the horizontal
171 black arrow. Generation of an $n = 1$ gravity wave follows at 20 min (Fig. 2c) consisting of upward
172 vertical motion extending the depth of the troposphere that propagates away from the system. A
173 subsequent lessening of mid-level heating is evident at 30 min (Fig. 2d). The resulting $n = 1$
174 response is difficult to see in Fig. 2d due to the strength of a concurrent $n = 2$ wave, but it is visible
175 in Fig. 3a.

176 *b. Slow-moving wave modes*

177 Three slower-moving waves are visible 2.5 km aloft in Fig. 3b. These waves appear to be higher
178 order modes than the $n = 1$ waves due to their slower speed. The first wave is associated with
179 upward vertical motions more evident at 2.5 km although still visible at 6 km. The wave moves
180 at a speed of 15.6 m s^{-1} accounting for the mean tropospheric u wind, approximately half the
181 speed of the second $n = 1$ wave or 17.9 m s^{-1} and agreeing with (2). Figures 2b,c shows an
182 increase in low-level latent cooling associated with the first descent of precipitation below cloud
183 level, indicated by the horizontal black arrow in Fig. 2c. The $n = 2$ vertical motion response,
184 upward motion in the lower half of the troposphere overlaid by downward motion aloft, can be
185 seen in Fig. 2d shortly ahead of the convective updraft and again in Fig. 2e at $X=115$ km having
186 propagated ahead of the system.

187 The second higher order wave in Fig. 3b similarly shows stronger upward motions at 2.5 km
188 than at 6 km. In Fig. 2g, a second $n = 2$ wave is evident in the vertical motion field at $X=112$ km.
189 Prior to the appearance of this wave, the latent cooling field increases from the surface to 6 km in
190 Fig. 2f (noted by the horizontal arrow). This wave moves at 15.3 m s^{-1} , similar to the first $n = 2$
191 wave.

192 The third wave does have upward motions at 2.5 km, but the upward motion at 6 km appears
193 stronger. The wave moves at a slower speed of 13.7 m s^{-1} , closer to one-third of the initial $n = 1$
194 wave speed (12.2 m s^{-1}). Figure 2i shows an increase in latent cooling from 3 to 6 km just prior
195 to 100 min, generation time of this wave. Unfortunately an ongoing discrete propagation event
196 prevented identification of an $n = 3$ wave in cross-sections of vertical motion, but the change in
197 vertical peak cooling location as well as the slower speed hints strongly at this feature being an
198 $n = 3$ wave. Additional analysis will take place in the next subsection.

199 The cold pool-dam break initialization method is a dynamically forceful method of forcing con-
200 vection. Thus it is of interest to determine if the waves generated here are artifacts of that ini-
201 tialization method. The 14.3H15 simulation was repeated with identical initialization conditions
202 except use of a line of three warm bubbles for convective initialization. While the forward propa-
203 gation speed was not as large, likely due to an initially smaller cold pool, timing of wave activity
204 was very similar (Fig. 4a,b). In Fig. 4a,b, the solid, dashed, and dotted lines are copied from the
205 $n = 1$, $n = 2$, and $n = 3$ wave fronts identified in the control simulation (Fig. 3) yet align almost
206 exactly with the waves produced in the bubble-initialized simulation.

207 The environment used here was specifically designed to not allow bore generation to mimic
208 initialization of MCSs during daytime. In order to examine if similar low-frequency waves develop
209 when initialized in a nocturnal environment, a simulation was run with the same shear profile, but
210 with the surface temperature cooled by 6 K and the temperature profile up to 1 km was defined
211 using $T = \min(T, T_{sfc})$ (the artificial cooling method of Parker 2008). Similar $n = 1, 2, 3$ waves are
212 generated in Figs. 4c,d, showing these wave processes will occur in both daytime and nocturnal
213 MCSs.

214 *c. Generating processes*

215 Each of the waves observed above appeared to be generated in conjunction with changes in
216 the latent heating profile. To evaluate the connection between the latent heating changes and
217 the generated waves, the mean vertical heating and cooling profiles, shown in Fig. 5, were first
218 smoothed with a 1-2-1 filter and then decomposed into 10 Fourier components similar to Stephan
219 et al. (2016). Specifically,

$$S(z) = \sum_{n=1}^{n=10} A_n \sin \frac{\pi n z}{H} \quad (3)$$

220 where A_n is the coefficient associated with each component, z is height, and n and H are as
221 in (2). Each component consists of a sine mode with nodes at the surface and at height H . An A_1
222 coefficient is associated with an $n = 1$ mode, and the values of the coefficient are plotted in black
223 in Fig. 5. It is only plotted if both the coefficient is determined to be 99% significant per a two-
224 tailed t-test, and the entire decomposition is determined to be 99% significant per the F-statistic.
225 The coefficients A_2 and A_3 are plotted in Fig. 5b. Coefficient A_4 is only rarely significant; waves
226 associated with any higher coefficients would not propagate quickly enough to be seen or modify
227 the environment ahead of the convective line.

228 Figure 5a also shows the maximum vertical motion in the cross-section at 6 km, plotted in white.
229 From these two line plots, it is evident that the A_1 coefficient and mid-level updraft speed are
230 correlated, as would be expected. The cyclical nature of the updraft, at least prior to 70 min, can
231 be seen, with peaks in mid-level heating and updraft speed followed by times of diminished heating
232 and slower updrafts. The downward motion portion of each $n = 1$ wave couplet is generated when,
233 or shortly after, a peak in the A_1 coefficient occurs; the upward motion portion when a minimum
234 in the A_1 coefficient occurs. In this way the $n = 1$ wave couplets appear connected to cyclical
235 convective updraft development (similar to MNCN97, Lane and Zhang 2011). It is possible there

236 are additional $n = 1$ waves generated after 70 min, and the variations in the A_1 coefficient would
237 seem to indicate that could be occurring. However, at that point the vertical motion field ahead of
238 the convective line is complex and identifying additional $n = 1$ waves wasn't possible.

239 The processes generating the higher order wave modes are more complicated. The first and
240 second $n = 2$ waves are generated shortly after large decreases in the A_2 coefficient (Fig. 5b). From
241 Figs. 2b and c the increase in low-level cooling occurs as precipitation first falls below the cloud
242 and reaches the surface, evidenced by the thick black line enclosing total condensate descending
243 to the surface in Fig. 2c along with an increase in latent cooling in the same location (identified
244 by horizontal arrow). The second $n = 2$ wave occurs shortly after the stratiform precipitation
245 region begins to develop and expand rearward. Figures 2e, f display this process. The horizontal
246 arrow in each subfigure starts at the same location, but in Fig. 2f the total condensate contour has
247 expanded about 5 km rearward. The associated latent cooling deepens and expand upward in the
248 time between the two subfigures. The deeper layer of cooling can also be seen in Fig. 5b. While
249 an additional surge of cooling is evident at 80 min in Fig. 5b, the A_2 coefficient does not decrease
250 as much as during the generation of the two $n = 2$ waves.

251 The third slow-moving wave, or $n = 3$ wave, is generated during an increase in mid-level cooling
252 from 4-7 km. It is associated with an increase in the positive A_3 coefficient (dashed line plot in
253 Fig. 5b), but not a decrease in the A_2 coefficient. Figures 2h and i also show the increase in mid-
254 level cooling occurring at the rear of the stratiform region. The thin black lines in Figs. 2h, i show
255 the mid-level rear-to-front flow at the rear of the storm increasing from 6 to 10 m s^{-1} . With the
256 cooling concentrated farther aloft due to the elevated rear inflow jet, an $n = 3$ wave was generated
257 instead of an $n = 2$ wave. It should be noted this $n = 3$ wave is of a different structure than that
258 generated by cooling in the low-levels studied by Lane and Reeder (2001). Because Lane and

259 Reeder (2001) used a tropical sounding to initialize their simulation, it is likely the microphysical
260 cooling profile was different than that of the mid-latitude convection simulated here.

261 *d. Environmental response*

262 The fast-moving $n = 1$ waves are associated with net decreases in the CAPE field and net in-
263 creases in the Level of Free Convection (LFC) field (Fig. 6a,b). From Fig. 3a, it is evident that
264 the downward motion portion of the three $n = 1$ wave couplets is stronger than the subsequent
265 upward motion. Because of this imbalance, the CAPE field is reduced by about 500 J kg^{-1} by the
266 associated warming and drying with the first $n = 1$ wave couplet (Fig. 6a), and it does not recover
267 with passage of the updraft portion of the couplets unlike in the study of Su and Zhai (2017). The
268 LFC (Fig. 6b) did not respond as strongly to the $n = 1$ waves. (Note that the CAPE responses that
269 appear in Fig. 6a perpendicular to the $n = 1$ waves, after 60 min and from $X=225$ to 300 km, are
270 due to isolated cells developing at the right edge of the domain due to model noise and are not
271 caused by wave activity.)

272 The CAPE field responds to the first $n = 2$ wave generated at 24 min. In the area immedi-
273 ately next to and 10-15 km ahead of the convective line, the CAPE field almost recovers from a
274 minimum of approximately 870 J kg^{-1} to 1370 J kg^{-1} , near the amount of CAPE in the sound-
275 ing used for initialization. This result agrees with the simulations of Fovell (2002) that found
276 a “cool/moist tongue” spreading ahead of a squall line, established by lifting associated with an
277 $n = 2$ wave. Shortly after the first $n = 2$ wave, however, a second $n = 1$ wave is generated at 36
278 min, restricting the recovery of the CAPE field in this same area to no more than approximately
279 1270 J kg^{-1} . A similar pattern is seen in the LFC field, with the initial $n = 1$ wave increasing
280 the LFC from 1410 to 1530 m within 10-15 km of the convective line, and the subsequent $n = 2$
281 wave helping the sub-cloud layer not only recover, but further reduce the LFC to approximately

282 50 m below the value at the start of the simulation. The vertical motion of the $n = 2$ waves is
283 concentrated in the lower half of the troposphere and thus will more strongly affect LFC (compare
284 the vertical structure of the waves in Fig. 2d). Lane and Reeder (2001) noted a similarly stronger
285 response in the LFC field than the CAPE field to higher-order wave modes.

286 The third slow-moving wave, the $n = 3$ wave, produces a stronger response in the CAPE field,
287 an increase of almost 100 J kg^{-1} , but a neutral to slightly stabilizing effect on the LFC. Again, this
288 would be consistent with a $n = 3$ wave with upward motion in the mid-levels (Fig. 3a) producing
289 adiabatic cooling and a destabilizing influence, yet with downward motion at very low levels
290 warming the subcloud layer and increasing the LFC. The low-level stabilizing influence of this
291 wave is very minimal, however.

292 The low-frequency waves also modify the horizontal wind field (Fig. 6c). A $n = 1$ wave, for
293 example, should enhance surface level inflow toward the storm and outflow aloft, enhancing west-
294 erly shear (e.g., Nicholls 1991, Fig. 5). A $n = 2$ wave should conversely enhance inflow at lower
295 mid-levels, and diminish surface-level inflow, decreasing westerly shear. The first $n = 1$ wave here
296 has a relatively small impact on the 0-5 km shear field due to the arrival of the first $n = 2$ wave
297 shortly thereafter. The first and second $n = 2$ waves, however, in sum reduce the 0-5 km shear by
298 over 7 m s^{-1} due to a combination of decreasing surface inflow by 2 m s^{-1} and increasing 5-km
299 inflow by 5 m s^{-1} . The $n = 3$ wave has a minimal impact.

300 *e. MCS response*

301 Evaluation of parcel trajectories, run using the CM1 parcel trajectory package, reveals air parcels
302 from 0 to 4 km are ingested into the updraft. Storm relative inflow is largely concentrated over the
303 same layer. Thus, modification to that environmental layer ahead of the system will directly mod-
304 ify the air being ingested by the storm, and should affect the system updraft strength. The CAPE

305 and LFC of the inflow air is taken from the cross-section displayed in Fig. 6a 5 km horizontally
306 ahead of the cold pool. This value and the maximum updraft speed at any level are displayed in
307 Figure 7. The leading edge of the cold pool, for this calculation, was defined as the point where
308 the CAPE field dropped below 200 J kg^{-2} , easily visible as the white area in Fig. 3a; it also cor-
309 responds to the location of the -2 K potential temperature perturbation. The variations in CAPE
310 associated with the passage of the first $n = 1$ wave (21 min), first $n = 2$ wave (27 min), second
311 $n = 1$ wave (37 min), and second $n = 2$ wave (55 min) are all visible and marked on Fig. 7b, albeit
312 the response to the second $n = 2$ wave is more subtle. Similar changes are noted in the maximum
313 updraft speed following a short lag as the parcels with modified instability are ingested. For ex-
314 ample, following the first decrease in CAPE the peak updraft speed also decreases 7 minutes later;
315 as the CAPE values begin increasing due to the $n = 2$ wave the updraft begins similarly increasing
316 in speed 6 minutes later.

317 Such correlation appears to indicate the updraft strength and buoyancy of the ingested air are
318 related. A different possibility is cyclical cell development alone, independent of wave activity, is
319 influencing the development of the updraft. Specifically, after development of an updraft, precip-
320 itation descends to the surface, creating a cold pool and downdraft that cuts off the storm-relative
321 inflow; as the cold air continues to expand it is able to trigger new convection through the lift on
322 its leading edge (e.g., Weisman and Klemp 1982). In this simulation, however, prior to 70 min the
323 convective updrafts and downdrafts are able to tilt enough that the downdrafts do not cut off the
324 storm-relative inflow (Figs. 8a). Cyclical variations in convective updraft strength are still evident
325 (Fig. 5a), but the convective updraft remains contiguous from the surface to the anvil (Fig. 2).
326 Instead, during that period as precipitation descends to the surface (24 min in Figs. 2c, 5b), a $n = 2$
327 wave is generated that travels ahead of the convective updraft (located between $X=95$ and 110 km
328 in Fig. 8b). Through lifting this wave destabilizes the pre-storm layer to such an extent cloud is

329 able to form (thin black lines in Fig. 8b). The cloud extends 5 km ahead of the convective updraft.
330 The additional latent heat release and buoyancy provided by the condensing water (Fig. 8c) is
331 shortly ingested into the convective updraft, leading to its subsequent intensification (see 34 min
332 in Fig. 5a).

333 This cyclical behavior of the convective updraft is similar to the cyclical upscale evolution of
334 a convective updraft seen in linear low-frequency wave processes modeled by MNCN97. Exam-
335 ination of parcel trajectories confirms this process. Figure 9 displays parcels whose trajectory
336 culminated inside the convective updraft at (Fig. 9a) 32 min and (Fig. 9b) 42 min. By 42 min
337 parcels flowing through the destabilized region ahead of the convective line from X=95 to 100 km
338 shown in Fig. 8c have reached the convective updraft. In Fig. 9b, lifting and upward motion of
339 the parcels over that same region ahead of the convective updraft is evident, with some parcels
340 reaching speeds upward of 5 m s^{-1} before even being ingested into the convective line. Such
341 lifting is not evident 10 min prior (Fig. 9a), before the destabilizing effects of the $n = 2$ wave. The
342 convective updraft itself also shows higher peak updraft speeds from 2 to 8 km aloft after ingesting
343 this destabilized air (Fig. 9b).

344 This pattern: increased updraft speed, $n = 1$ wave generation, decreased inflow CAPE, $n = 2$
345 wave generation, increased inflow CAPE, increased updraft speed, repeats until about 70 minutes
346 into the simulation. At that point both the CAPE field and the environmental response to the
347 waves becomes more muddled. However, at approximately 90 minutes a discrete propagation
348 event occurs (see Fovell et al. 2006, Fig. 16). After passage of the second $n = 2$ wave more small
349 clouds are generated in the newly destabilized air (Figs. 2f-i, 3b) than were generated by the first
350 $n = 2$ wave. These clouds are advected toward the convective line by the ambient wind field. The
351 updraft field is strengthened as it absorbs these smaller updrafts, and a “jump” forward by the
352 convective line occurs at approximately 115 min.

353 This discrete propagation method appears key to invigorating the updraft and maintaining its
 354 intensity at the mature stage of the MCS lifecycle after 70 min. Convective updraft intensity in
 355 linear convective systems is frequently related to updraft tilt, as a more strongly tilted updraft is
 356 weakened by a downward-directed pressure gradient (Parker 2010). Updraft tilt is typically related
 357 to the balance of vorticities generated by the cold pool and low-level environmental storm-relative
 358 shear, or the ratio of the cold pool strength, C , to shear (Δu_{env}^2). C is defined by $C^2 = \int_0^h B dz$, where
 359 B is buoyancy and h the height at which B reaches 0. B is defined as

$$B = g \left(\frac{\theta - \bar{\theta}}{\bar{\theta}} + 0.61(q_v - \bar{q}_v) - q_t \right) \quad (4)$$

360 where g is gravitational acceleration, θ potential temperature, q_v water vapor mixing ratio, q_t total
 361 hydrometeor mixing ratio, and the bars designate environmental conditions, as in Adams-Selin
 362 and Johnson (2013). A ratio of one should lead to an upright updraft, while a number larger than
 363 one to an updraft that is tilted rearward over the cold pool (Rotunno et al. 1988; Weisman and
 364 Rotunno 2004). Many additional factors have been noted as important to updraft strength beyond
 365 low-level vorticity balance, including upper level shear (Coniglio et al. 2006) and the rear inflow
 366 jet (Weisman 1992). The $C/\Delta u_{env}$ ratio is used here as a baseline indicator for updraft strength; if
 367 the peak updraft speeds increase despite a large ratio, additional factors must be present to explain
 368 the updraft strength.

369 Three different $C^2/\Delta u_{env}^2$ ratio calculation methods are presented in Fig. 7c: the unmodified
 370 $\frac{C^2}{\Delta u_{env}^2}$ ratio as described above; a version incorporating the impacts of the rear inflow jet, $\frac{C^2 - u_j^2}{\Delta u_{env}^2}$;
 371 and $\frac{C^2}{\Delta u_{orig}^2}$ using the environmental shear at the start of the simulation instead of the wave-modified
 372 shear ahead of the convective line. Here, C is the maximum value from anywhere in the cold pool,
 373 u_j^2 is defined as $(u_H^2 - u_0^2)$, u_H and u_0 are the storm-relative flow within the system at the height
 374 of the cold pool and the surface, and Δu_{env} is the 0-5 km shear in the environment 5 km ahead of

375 the convective line as defined by the location of the maximum updraft over the lowest 2.5 km. All
376 three $C^2/\Delta u_{env}^2$ values are much larger than one during and after the discrete propagation episode
377 at 90 min due to the strong cold pool and weakened deep-layer shear diminished by the $n = 2$
378 waves (Fig. 6c). The solid and dashed line calculations of the $C^2/\Delta u_{env}^2$ use u wind speeds from
379 5 km ahead of the updraft, which were modified by the first $n = 2$ wave after its generation at
380 24 min. After generation of the second $n = 2$ wave at 52 min, the $C^2/\Delta u_{env}^2$ values continued to
381 increase due to the decreasing shear. The dotted line in Fig. 7c used the shear originally available
382 in the environment at the start of the simulation. Without the modifications of the $n = 2$ waves,
383 $C^2/\Delta u_{env}^2$ would have remained closer to 1, and the downward pressure perturbations acting on the
384 updraft smaller (Parker 2010). However, the increased buoyancy of the inflow air resulting from
385 the lifting provided by the same $n = 2$ waves, in addition to the absorption of smaller convective
386 cells generated by high frequency waves working in conjunction with the $n = 2$ waves, helps to
387 offset that negative effect.

388 An additional increase in CAPE due to the $n = 3$ wave is evident beginning at 115 min (Figs. 7c,
389 3a); an increase in updraft speed occurs shortly thereafter starting at 121 min. At that time discrete
390 convective cells formed in advance of the system are also being absorbed. Again, this increase
391 in updraft speed cannot be caused by updraft tilt as all three calculations of $C^2/\Delta u_{env}^2$ have been
392 steadily increasing and should be acting as a depressant on the updraft strength.

393 4. Shear sensitivities

394 The control simulation was repeated with three initial sounding perturbations each of CAPE and
395 0-5 km shear for a total of nine simulations (Table 1). For clarity, this section will focus on the three
396 shear sensitivity tests 14.3H5, 14.3H15 (the control run), and 14.3H25, and the following section

397 on three instability sensitivity tests, 12.2H15, 14.3H15, and 16.2H15. Comments evaluating the
398 MCS response in all the simulations will be presented at the end.

399 *a. Waves and generating processes*

400 As would be expected, the different initial environments generated MCSs with gross differences,
401 but still some similarities among wave activity. All of the simulations showed an initial increase
402 in mid-level updraft strength (white line plot in top row of Fig. 10) at the same time as a peak in
403 the A_1 coefficient (black line plot in top row of Fig. 10) as the initial convective updraft developed,
404 generating an $n = 1$ wave (solid vertical black lines in top row of Fig. 10). As in the control run,
405 each increase in mid-level latent heating and the A_1 coefficient prior to about 70 minutes into the
406 simulation generates a $n = 1$ wave. While subsequent increases in latent heating potentially also
407 generate $n = 1$ waves, their signal is hidden by higher-order wave modes.

408 Initially, peak updraft speeds were strongest in 14.3H25 (Fig. 10c). Over time 14.3H15 updrafts
409 (Fig. 10b) reached magnitudes comparable to those of 14.3H25, while 14.3H5 (Fig. 10a) had
410 weaker updrafts throughout. These results were somewhat different than the trend in peak updraft
411 speeds in squall line simulations with varying shears in Weisman et al. (1988), which observed
412 the strongest initial updraft maxima in simulations with minimal or no shear (their Fig. 3). This
413 difference is likely due to either the different methods of convective initialization used in the
414 simulations, or the depth of the layer of environmental shear. Weisman et al. (1988) used a line
415 of warm bubbles for initialization. With the stronger initial forcing of the dam break used here,
416 strong shears do not have as detrimental an effect on the initial updraft and larger speeds are able
417 to be reached. When the control simulation here was repeated using a line of warm bubbles to
418 initialize convection, initial updraft speeds were not as strong (Fig. 4). However, as simulation
419 time progressed in the shear tests, the strong shear simulations in both this study and Weisman

420 et al. (1988) produced larger updraft speed maxima. Furthermore, the shear in Weisman et al.
421 (1988) only covered the 0-2.5 km layer instead of the deeper 0-5 km layer as in this study and in
422 Weisman and Klemp (1982), which Coniglio et al. (2004) noted can impact updraft strength.

423 Latent heating rate trends closely mirrored trends in updraft speed. After the initial peak in up-
424 draft speed, the latent heating rates of 14.3H15 and 14.3H25 were fairly comparable. Variations
425 in mid-level updraft strength generally corresponded to similar variations in mid-level latent heat-
426 ing and A_1 , associated with $n = 1$ wave generation (Fig. 10a-c). Vertical motions associated with
427 the $n = 1$ waves in 14.3H5 were weaker than those generated in the other two shear tests (e.g.,
428 compare Figs. 11a and 12a), coincident with weaker latent heating values.

429 As precipitation first began to fall below cloud level, latent cooling due to evaporation and melt-
430 ing increased generating $n = 2$ waves during or shortly after minima in A_2 (bottom row of Fig. 10).
431 Horizontal arrows in Figs. 11a and 12a show the new areas of latent cooling that formed when pre-
432 cipitation first reached the surface. Resulting $n = 2$ waves appear in Figs. 11b and 12b (compare
433 with Fig. 2d). As the systems continued to develop, all three developed stratiform regions. The
434 stratiform regions in 14.3H5 and 14.3H15 developed rearward, with increased low-level cooling
435 to the left of the convective updraft (Figs. 11c, 2f); the stratiform region and low-level cooling oc-
436 curred to the right of the updraft in 14.3H25 (Fig. 12b). Subsequent $n = 2$ waves are evident in all
437 three tests (Figs. 11d, 2d, 12c). No $n = 3$ waves appear in 14.3H5 as latent cooling never expands
438 far above 6 km (Fig. 10d). However, in 14.3H25 and 14.3H15, an increase in mid-level cooling
439 appears coincident with development of the mid-level rear inflow jet (Figs. 12d, 2i). This cooling,
440 concentrated in mid-levels and associated with peaks in A_3 , generated $n = 3$ waves (Figs. 10f, 12e).
441 (While there are clearly high-frequency waves visible in Fig. 12e, none of them were long-lasting
442 as seen in Fig. 13 and hence are not identified by wave mode.)

443 The stronger updraft and extra-storm circulation in 14.3H25 lofted more condensate and ad-
444 vected it farther from the updraft, leading to a wider stratiform precipitation region (e.g., compare
445 Figs. 12e and 2g). Much of the extra frozen condensate remained aloft until later in the simulation
446 compared to 14.3H15 and 14.3H5. The cooling rates of 14.3H25 (Fig. 10f) are smaller in mag-
447 nitude than those of 14.3H15 and 14.3H5 until almost 2 hours into the simulation. In Fig. 13f,
448 the vertical motion signatures associated with the earlier higher order wave modes (i.e., the $n = 2$
449 waves generated between 20 and 60 minutes) are weaker and less coherent than those seen with
450 later waves (i.e., the $n = 2$ waves generated at 105 and 130 min).

451 *b. Environmental response*

452 As in the control simulation, the initial $n = 1$ wave in all three shear tests corresponds to a
453 decrease in instability as evidenced by the CAPE field (top row in Fig. 14). In 14.3H25 with
454 the strongest initial updraft and $n = 1$ wave response, the CAPE field was reduced to 55% of its
455 original value; the initial perturbations in 14.3H15 and 14.3H5 are each slightly weaker but still
456 evident. The initial $n = 1$ waves also increase the LFC field (middle row in Fig. 14), but pertur-
457 bation magnitudes are smaller than in the CAPE field. Subsequent $n = 1$ waves in all three tests
458 modify the CAPE and LFC fields only slightly. The initial $n = 1$ wave front can only minimally
459 modify the 0-5 km shear field in all three tests before subsequent $n = 2$ wave arrival (bottom row
460 in Fig. 14).

461 The upward motion in the lower levels associated with the $n = 2$ waves acts to help the CAPE
462 field within 10-15 km of the convective line partially recover from the stabilizing influence of the
463 $n = 1$ wave (top row Fig. 14). Only in 14.3H15 did the CAPE field return to its value at the start
464 of the simulation. In that case, an $n = 3$ wave with mid-level upward motion was generated by
465 a mid-level cooling perturbation at 100 min (bottom row in Fig. 10). The LFC field, conversely,

466 was returned to its initial values in all shear tests by the $n = 2$ waves. This result is consistent with
467 $n = 2$ wave vertical motions being more concentrated in the lower layers (i.e., compare the $n = 2$
468 and $n = 3$ waves in Fig. 12e).

469 The $n = 2$ wave LFC perturbations are stronger in 14.3H5 and 14.3H15, with only a weak LFC
470 perturbation in 14.3H25. Meanwhile, 14.3H15 and 14.3H25 have stronger CAPE perturbations
471 associated with $n = 3$ waves, while 14.3H5 has no evident $n = 3$ waves. The different vertical
472 distributions of cooling in 14.3H5 and 14.3H25 hint at these results. In 14.3H5 cooling was lim-
473 ited to the bottom half of the troposphere (Fig. 11c, Fig. 10c) generating $n = 2$ waves with peak
474 vertical motion in the lower mid-levels (e.g., Fig. 11d). Conversely, the cooling in 14.3H25 was
475 more concentrated in the mid-levels (Fig. 10f), generating $n = 3$ waves with vertical motion more
476 strongly affecting the CAPE field. 14.3H15 exhibited cooling in both vertical locations.

477 5. Instability sensitivities

478 a. Waves and generating processes

479 Simulations with increasing amounts of instability produce larger updraft speeds both during
480 initial development and the mature stage of the simulation (Fig. 15), as would be expected given
481 the results of Weisman and Klemp (1982). Latent heating rates follow a similar trend, with in-
482 creased heating rates seen in simulations with higher initial instability. As in previous simulations,
483 generation times of the $n = 1$ waves correspond to peaks in the A_1 coefficient and mid-level heat-
484 ing. The vertical motions produced by the $n = 1$ waves at 6 km are stronger and more uniform in
485 the simulations with higher instability (top row, Fig. 16).

486 Stronger updrafts with increasing instability produced and maintained larger amounts of con-
487 densate aloft, resulting in a wider stratiform precipitation region in 16.2H15 compared to 12.2H15
488 and 14.3H15. For example, compare the total condensate shown in Figs. 17c, 2g, and 18c, each

489 subfigure shortly after one hour into each of the simulations. Latent cooling rates, particularly over
490 the lower 0-2 km layers, also increased with increasing instability (Fig. 15, bottom row). Higher
491 order wave modes were generated more quickly and more often in higher instability simulations
492 (dashed and dotted lines in bottom row of Fig. 15). As in previous simulations, these wave modes
493 were generated by precipitation descending below cloud level, developing into a stratiform re-
494 gion rearward of the convective line, and development or increase in rear-to-front flow. All these
495 processes occurred more quickly in systems developing in more unstable environments. For ex-
496 ample, in 12.2H15, descent of precipitation and latent cooling below cloud level occurs at 38 min
497 (Fig. 17a), followed by an $n = 2$ wave (Fig. 17b). In 16.2H15, precipitation falls below cloud level
498 earlier at 24 min, increasing latent cooling and generating an $n = 2$ wave (Fig. 18a, wave evident
499 in Fig. 18b). Expansion of a stratiform precipitation region rearward in 12.2H15, with associated
500 cooling, occurs at 76 min (Fig. 17c, wave evident in Fig. 17d). In 16.2H15, these processes occur
501 earlier at 62 min (Fig. 18c, $n = 2$ wave in Fig. 18d). The first significant increase in mid-level
502 rear-to-front flow and cooling happens close to the same time in 16.2H15 ($n = 3$ wave also visible
503 in Fig. 18d). Conversely, in 12.2H15 the first $n = 3$ wave isn't generated until 114 min (cooling
504 and wind increase in Fig. 17e, wave evident in Fig. 17f).

505 *b. Environmental response*

506 As seen previously, a decrease in CAPE is associated with each initial $n = 1$ wave (top row in
507 Fig. 19). The strength of the CAPE decrease is directly related to the strength of the $n = 1$ wave
508 response and therefore is strongest in 16.2H15, with the 12.2H15 response being more gradual.
509 Subsequent increases in the CAPE field, again larger in simulations with increasing instability,
510 occur with passage of $n = 2$ and $n = 3$ wave modes. As in the shear tests, the CAPE field was only

511 returned to its initial simulation value with passage of an $n = 3$ wave with its peak upward motions
512 in the mid-levels.

513 The impact of $n = 1$ and $n = 2$ waves on the LFC field, conversely, decreases with increasing
514 instability (middle row in Fig. 19). An approximately 250-m increase in LFC associated with the
515 $n = 1$ waves is evident in 12.2H15 with a subsequent $n = 2$ wave-generated decrease of 350 m.
516 In 16.2H15 these perturbations are only about 50 m. The original LFC height in 12.2H15 is near
517 2 km, closer to the peak vertical velocities in the $n = 2$ waves (e.g., Figs. 17c,d, 18b), explaining
518 the heightened LFC impact in 12.2H5 despite the weaker vertical motions of its waves. That is,
519 the impacts of the $n = 2$ waves on the LFC field depends on both the type of wave and the vertical
520 location of the LFC.

521 The 0-5 km shear field perturbation strength slightly increases with increasing instability (bottom
522 row in Fig. 19). As in previous tests, only the first $n = 2$ wave has a large impact on the shear field,
523 decreasing it by 5-7 m s^{-1} . This modification to the shear field appears permanent, an important
524 consideration when examining balances among cold pool- and environment-generated vorticities
525 (Rotunno et al. 1988; Weisman et al. 1988) and discussed further in the next section.

526 6. Sensitivity test impacts on MCS response

527 As the environment ahead of the MCS is modified by waves, it is expected the strength of the
528 convective updraft will vary in response as was seen with the control simulation. To test this theory,
529 the cross-correlation coefficient between the maximum updraft speed and the surface-based CAPE
530 5 km ahead of the cold pool edge was calculated for a range of time lags (Fig. 20). This location
531 was chosen to be representative of the storm inflow and is shown for the control run in Fig. 7.
532 The calculations were done for 0-70 and 70-140 min of the simulations separately, as the wave
533 activity generally changes character from cyclical $n = 1, 2$ waves in the first half to chaotic higher-

534 order wave modes ($n = 2, 3$) in the second half. In the first half of the simulations (Fig. 20a), a
535 strong negative correlation at small positive time lags ($<= 10$ min) is evident, or an increase in
536 updraft speed preceding a decrease in CAPE. That pattern would correspond to an increase in
537 updraft speed and latent heat generating an $n = 1$ wave, decreasing CAPE as it moved ahead of the
538 system. Another significant signal appears in the upper left quadrant of Fig. 20a, corresponding to
539 an increase in CAPE preceding (by a longer time period, about 20-30 min) an increase in updraft
540 speed. This signal appears in all cases except 12.2H5 (blue line), although in 14.3H5 (orange line)
541 the correlation coefficient does not reach the same level of statistical significance. The peak in the
542 upper left quadrant would appear to indicate feedback: as the higher CAPE values are ingested by
543 the updraft it is able to intensify. This process is similar to that shown in Fig. 9. In the second half
544 of the simulations, the correlation coefficient signal changes character and is much less coherent
545 (Fig. 20b). This signal is consistent with the more chaotic nature of multiple low-frequency wave
546 modes being generated. Very little signal shows in the upper left quadrant, indicating that increased
547 CAPE in advance of the system is not correlated with increased updraft speed like it was in the
548 first half of the simulations.

549 Increases in updraft magnitude in the latter half of the simulations instead were more directly
550 connected with instances of cloud or convective updraft formation ahead of the system, potentially
551 developing into discrete propagation, instead of direct ingestion of higher-CAPE air. Figure 21
552 displays the cloud water mixing ratio at 2.5 km in addition to the vertical velocity at 6 km, chosen
553 to be representative of the overall updraft strength, for all the sensitivity tests. Formation of cloud
554 ahead of the convective line associated with higher order wave modes appears in the tests with 15
555 or 25 m s^{-1} shear; the weaker vertical motions associated with higher wave modes in the 5 m s^{-1}
556 shear cases (e.g., Fig. 13d) reduced cloud formation (Fig. 21a-c). In 14.3H15, 16.2H15, 12.2H25,
557 14.3H25, and 16.2H25, these clouds develop convective updrafts of their own, intensifying the

558 main updraft when they are eventually advected into it. Discrete propagation events, where the
559 main convective line “jumps” forward when absorbing these new convective cells, are evident in
560 14.3H15 (around 105 min) and 16.2H15 (around 100 min). Discrete propagation is not necessarily
561 apparent in the higher shear simulations, but due to the leading stratiform nature of these system
562 those events are more difficult to identify. However, updraft intensification following absorption
563 of newly developed convective cells generated by higher-order wave modes is still evident.

564 7. Discussion and conclusions

565 A variety of sensitivity studies of MCSs over a range of initial CAPE and shear profiles were
566 conducted in order to examine the different low-frequency gravity wave responses generated dur-
567 ing the development and mature stages of the convection. In all simulations, at the time of the
568 initial development of convection a $n = 1$ wave was generated by the increase in mid-level la-
569 tent heating associated with a developing updraft, agreeing with multiple previous studies (e.g.
570 Nicholls 1991; Mapes 1993; Fovell 2002). The cyclical dissipation and intensification of the con-
571 vective updraft over the first 60-70 minutes of each simulation produced couplets of $n = 1$ wave
572 responses, similar to the downdraft-updraft couplets simulated by Lane and Zhang (2011) and
573 Adams-Selin and Johnson (2013) and observed by Su and Zhai (2017).

574 Once precipitation began descending below cloud level, increases in evaporative cooling at low
575 levels generated the first $n = 2$ wave response. As the stratiform precipitation region began to
576 develop rearward and increasing amounts of frozen condensate fell below the melting level, mi-
577 crophysical cooling increased again and another $n = 2$ wave was generated. This pattern occurred
578 in simulations both with trailing and leading stratiform precipitation systems. Finally, during pe-
579 riods of increased development of rear inflow, increased mid-level cooling generated $n = 3$ waves
580 with ascending motion in the mid-levels. The type of higher order wave mode generated ($n = 2$ or

581 $n = 3$) depended on the vertical location of the cooling, which was determined by its source (e.g.,
582 increased stratiform rain or rear inflow). Increased amounts of low-level cooling, and generation
583 of higher order wave modes, occurred more quickly in simulations with larger initial instability.

584 The impacts to the CAPE, LFC, and 0-5 km shear fields ahead of the MCS followed a fairly
585 similar pattern, albeit of different magnitudes, across all the sensitivity tests. The initial descent
586 associated with the first $n = 1$ wave produced the strongest response in the CAPE field, with the
587 larger CAPE modifications occurring in simulations with larger initial instabilities and thereby
588 stronger vertical motions. While $n = 2$ waves helped the CAPE field recover and decreased the
589 LFC, only passage of $n = 3$ waves increased the CAPE field to its original value. The 0-5 km shear
590 field was weakened by the $n = 2$ waves, reducing the environmental shear field by 5-7 m s^{-1} after
591 their passage. Through the $c/\Delta u$ ratio, it would be expected that the updraft in these simulations
592 would be tilted and weakened due to the reduced shear value (Rotunno et al. 1988; Parker 2010).
593 As that is not the case, additional factors impacting updraft strength are at play.

594 MNCN97 was able to simulate a similar $n = 1$ couplet response using a linearized model re-
595 sponding to a $n = 1$ heat source multiplied by a sine-squared factor representing sudden intensifi-
596 cation and subsequent lessening of the convective updraft (see their Fig. 20d). When they allowed
597 combined $n = 1$ and $n = 2$ heating profiles to increase, decrease, and increase again (“meso- β
598 burst and regrowth” simulation, their Fig. 20i, j) a vertical motion response was produced consist-
599 ing of a downward-upward motion couplet extending the depth of the troposphere associated with
600 the $n = 1$ signal, followed by cyclical $n = 2$ dipole wave responses. When a slowly increasing
601 proportion of the heating due to the $n = 2$ profile, representing a growing stratiform precipitation
602 region, was introduced to the linear simulation $n = 2$ wave responses were increasingly prominent,
603 particularly closer to the initial heating source due to their slower propagation speeds.

604 The simulations in this study produced similar responses to those of the linearized model in
605 MNCN97, which is impressive considering the non-linear dynamics of a full convection model.
606 The main difference is the repeated cycles of intensification, dissipation, and regrowth in these
607 simulations produced multiple $n = 1$ downdraft-updraft couplets and $n = 2$ wave response cycles,
608 unlike the single cycle used in MNCN97. The relative impact of the stratiform region on the system
609 heating profile, in addition to increasing with time, also varied depending on the the amount of
610 condensate aloft and hence the environmental instability or shear.

611 The MCS response to these wave-generated environmental variations, therefore, occurred in
612 two phases: the first, during a time of primarily clear $n = 1$ and $n = 2$ wave generation, showed
613 the updraft speed lagging wave-generated CAPE variations. Similar to the MNCN97 conceptual
614 model, the $n = 2$ wave destabilized the air in advance of the system and as the updraft column
615 ingested more unstable air, the updraft was able to intensify. In the second phase, frequent higher-
616 order wave mode generation made the wave responses less clear. Instead, the higher order wave
617 modes acted as destabilizing forces allowing additional clouds and updrafts to form ahead of the
618 convective updraft and intensify it once advected into it. This mechanism is similar to that of the
619 “cool/moist tongue” described by Fovell et al. (2006), but $n = 3$ wave modes were active as well as
620 $n = 2$ modes in generating the advanced clouds. These additional intensifications can explain why
621 the MCSs in these simulations continued in a mature state despite the reduced 0-5 km shear profiles
622 and unfavorable $c/\Delta u$ ratios. This transition point of 60-70 min, when MCSs shift from cyclical
623 convective updraft development to discrete propagation-style updraft development, occurred after
624 rearward expansion of the stratiform precipitation region and could be considered to occur when
625 the MCS shifts from its developing to its mature stage. Importantly, all these interactions occur in
626 an environment without the necessary trapping levels for bore formation, showing that while bore
627 formation is helpful for nocturnal MCS maintenance, it is not necessary.

628 Pandya and Durran (1996) and Pandya et al. (2000) found generated low-frequency waves and
629 their associated wind field perturbations highly dependent on the shape of the thermal forcing gen-
630 erating the waves, with the vertical location of the cooling relative to the maximum heating being
631 particularly impactful. They also found that the extra-storm circulation was so highly dependent
632 on the shape of the thermal forcing that variations in the gross large-scale environment had only a
633 small effect when the shape of the thermal forcing was held constant. This study has additionally
634 found that the large-scale environment can modify the types and frequency of generated waves,
635 particularly higher-order wave modes, by modifying the location and amount of condensate aloft
636 and hence the latent heating and cooling profiles. As the generated waves go on to modify the
637 large-scale environment, a closely related feedback loop among these processes is evident. Fu-
638 ture work will consider impacts of microphysical perturbations on the MCS thermal forcing shape
639 and magnitude, and therefore on the types of waves generated and their subsequent environmental
640 modifications.

641 *Acknowledgments.* This work was supported by National Science Foundation Grant AGS-
642 1636667. High-performance computing support from Cheyenne (doi:10.5065/D6RX99HX) was
643 provided by NCAR's Computational and Information Systems Laboratory, sponsored by the Na-
644 tional Science Foundation. All simulation data is archived and available via request. The author
645 also thanks Russ Schumacher for a review of the manuscript, and two anonymous reviewers for
646 their helpful contributions.

647 **References**

- 648 Adams-Selin, R. D., and R. H. Johnson, 2013: Examination of Gravity Waves Associated with the
649 13 March 2003 Bow Echo. *Mon. Wea. Rev.*, **141** (11), 3735–3756.

- 650 Bretherton, C. S., and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence
651 and detrainment around cumulus clouds. *J. Atmos. Sci.*, **46** (6), 740–759, doi:10.1175/1520-0469(1989)046<0740:GWCSAD>2.0.CO;2.
- 653 Bryan, G., and J. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical
654 models. *Mon. Wea. Rev.*, **130**, 2917–2928.
- 655 Coniglio, M., D. J. Stensrud, and M. B. Richman, 2004: An observational study of derecho-
656 producing convective systems. *Wea. Forecasting*, **19**, 320–337.
- 657 Coniglio, M. C., D. J. Stensrud, and L. J. Wicker, 2006: Effects of upper-level shear on the struc-
658 ture and maintenance of strong quasi-linear Mesoscale Convective Systems. *Journal of the At-
659 mospheric Sciences*, **63** (4), 1231–1252.
- 660 Fovell, R., 2002: Upstream influence of numerically simulated squall-line storms. *Quart. J. Roy.
661 Meteor. Soc.*, **128**, 893–912.
- 662 Fovell, R., G. L. Mullendore, and S. Kim, 2006: Discrete propagation in numerically simulated
663 nocturnal squall lines. *Mon. Wea. Rev.*, **134**, 3735–3752.
- 664 Gallus, W. A., and R. H. Johnson, 1991: Heat and moisture budgets of an intense midlatitude
665 squall line. *J. Atmos. Sci.*, **48**, 122–146.
- 666 Haghī, K. R., D. B. Parsons, and A. Shapiro, 2017: Bores observed during IHOP_2002: The
667 relationship of bores to the nocturnal environment. *Monthly Weather Review*, **145** (10), 3929–
668 3946.
- 669 Haghī, K. R., and Coauthors, 2019: Bore-ing into nocturnal convection. *Bulletin of the American
670 Meteorological Society*, **100** (6), 1103–1121.

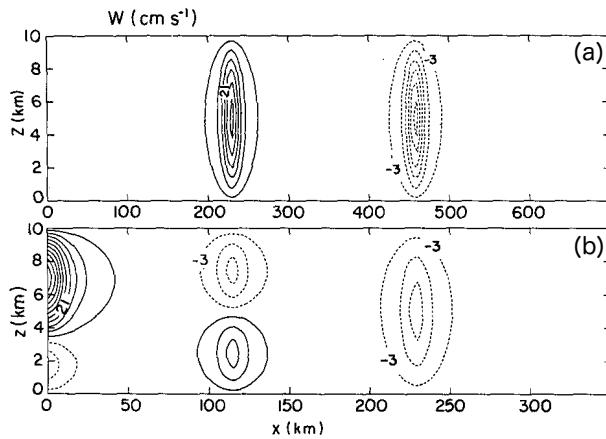
- 671 Johnson, A., X. Wang, K. R. Haghī, and D. B. Parsons, 2018: Evaluation of forecasts of a con-
672 vectively generated bore using an intensively observed case study from pecan. *Monthly Weather*
673 **Review**, **146** (9), 3097–3122.
- 674 Koch, S. E., P. B. Dorian, R. Ferrare, S. H. Melfi, W. C. Skillman, and D. Whiteman, 1991:
675 Structure of an internal bore and dissipating gravity current as revealed by raman lidar. *Monthly*
676 *Weather Review*, **119** (4), 857–887.
- 677 Lane, T., and M. J. Reeder, 2001: Convectively generated gravity waves and their effect on the
678 cloud environment. *J. Atmos. Sci.*, **58**, 2427–2440.
- 679 Lane, T. P., and F. Zhang, 2011: Coupling between gravity waves and tropical convection at
680 mesoscales. *J. Atmos. Sci.*, **68** (11), 2582–2598.
- 681 Lindzen, R. S., and K.-K. Tung, 1976: Banded convective activity and ducted gravity waves.
682 *Monthly Weather Review*, **104** (12), 1602–1617.
- 683 Liu, C., and M. W. Moncrieff, 2004: Effects of convectively generated gravity waves and rotation
684 on the organization of convection. *J. Atmos. Sci.*, **61**, 2218–2227.
- 685 Mapes, G., 1993: Gregarious tropical convection. *J. Atmos. Sci.*, **50**, 2026–2037.
- 686 McAnelly, R., J. Nachamkin, W. Cotton, and M. Nicholls, 1997: Upscale evolution of MCSs:
687 Doppler radar analysis and analytical investigation. *Mon. Wea. Rev.*, **125**, 1083–1109.
- 688 Morrison, H., G. Thompson, and V. Tatarskii, 1997: Impact of cloud microphysics on the devel-
689 opment of trailing stratiform precipitation in a simulated squall line: Comparison of one- and
690 two-moment schemes. *Mon. Wea. Rev.*, **137**, 991–1007.
- 691 Nicholls, M., 1991: A comparison of the results of a two-dimensional numerical simulation of a
692 tropical squall line with observations. *Mon. Wea. Rev.*, **115**, 3055–3077.

- 693 Pandya, R., D. Durran, and C. Bretherton, 1993: Comments on “Thermally forced gravity waves
694 in an atmosphere at rest”. *J. Atmos. Sci.*, **50**, 4097–4101.
- 695 Pandya, R., D. Durran, and M. Weisman, 2000: The influence of convective thermal forcing on
696 the three-dimensional circulation around squall lines. *J. Atmos. Sci.*, **57**, 29–45.
- 697 Pandya, R. E., and D. R. Durran, 1996: The influence of convectively generated thermal forcing
698 on the mesoscale circulation around squall lines. *J. Atmos. Sci.*, **53** (20), 2924–2951.
- 699 Parker, M. D., 2008: Response of simulated squall lines to low-level cooling. *Journal of the At-*
700 *mospheric Sciences*, **65** (4), 1323–1341.
- 701 Parker, M. D., 2010: Relationship between system slope and updraft intensity in squall lines. *Mon.*
702 *Wea. Rev.*, **138** (9), 3572–3578.
- 703 Parsons, D. B., K. R. Haghi, K. T. Halbert, B. Elmer, and J. Wang, 2019: The potential role of
704 atmospheric bores and gravity waves in the initiation and maintenance of nocturnal convection
705 over the southern great plains. *Journal of the Atmospheric Sciences*, **76** (1), 43–68.
- 706 Rottman, J. W., and J. E. Simpson, 1989: The formation of internal bores in the atmosphere: A
707 laboratory model. *Quarterly Journal of the Royal Meteorological Society*, **115** (488), 941–963.
- 708 Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines.
709 *J. Atmos. Sci.*, **45** (3), 463–485.
- 710 Shige, S., and T. Satomura, 2001: Westward generation of eastward-moving tropical convective
711 bands in TOGA COARE. *J. Atmos. Sci.*, **58**, 3724–3740.
- 712 Stechmann, S., and A. J. Majda, 2009: Gravity waves in shear and implications for organized
713 convection. *J. Atmos. Sci.*, **66**, 2579–2599.

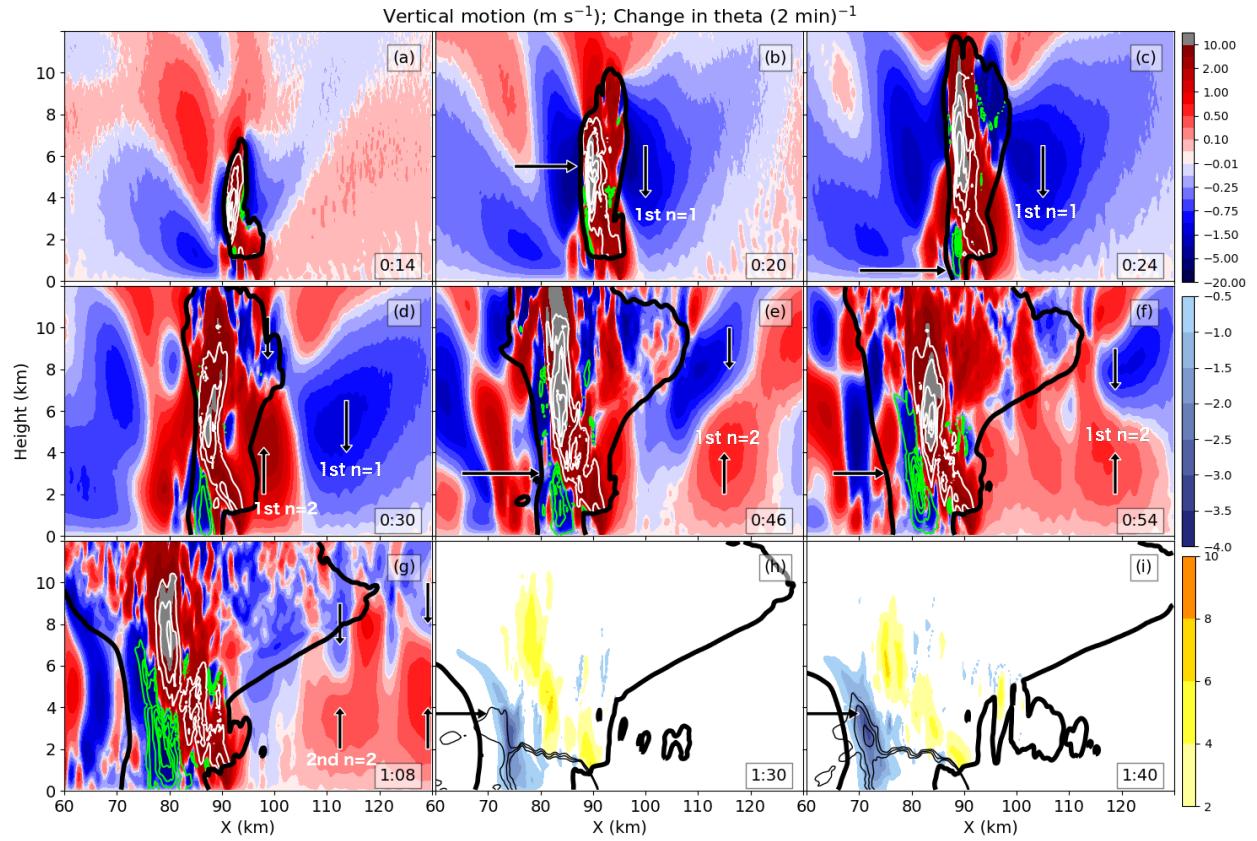
- 714 Stephan, C., M. J. Alexander, and J. H. Richter, 2016: Characteristics of gravity waves from
715 convection and implications for their parameterization in global circulation models. *Journal of*
716 *the Atmospheric Sciences*, **73** (7), 2729–2742.
- 717 Su, T., and G. Zhai, 2017: The role of convectively generated gravity waves on convective initia-
718 tion: A case study. *Mon. Wea. Rev.*, **145**, 335–359.
- 719 Trapp, R., and J. Woznicki, 2017: Convectively induced stabilizations and subsequent recovery
720 with supercell thunderstorms during the Mesoscale Predictability Experiment (MPEX). *Mon.*
721 *Wea. Rev.*, **145**, 1739–1754.
- 722 Weisman, M., and J. Klemp, 1982: The dependence of numerically simulated convective storms
723 on vertical wind shear and buoyancy. *Mon. Wea. Rev.*, **110**, 504–520.
- 724 Weisman, M., J. Klemp, and R. Rotunno, 1988: Structure and evolution of numerically simulated
725 squall lines. *J. Atmos. Sci.*, **45**, 1990–2013.
- 726 Weisman, M., W. Skamarock, and J. Klemp, 1997: The resolution dependence of explicitly mod-
727 eled convective systems. *Mon. Wea. Rev.*, **125**, 527–548.
- 728 Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of
729 long-lived mesoconvective systems. *Journal of the Atmospheric Sciences*, **49** (19), 1826–1847.
- 730 Weisman, M. L., and R. Rotunno, 2004: ?a theory for strong long-lived squall lines? revisited. *J.*
731 *Atmos. Sci.*, **61** (4), 361–382.
- 732 Wilson, J., S. Trier, D. W. Reif, R. Roberts, and T. M. Weckwerth, 2018: Nocturnal elevated
733 convection initiation of the PECAN 4 July hailstorm. *Mon. Wea. Rev.*, **146**, 243–262.

- 734 Zhang, S., D. B. Parsons, and Y. Wang, 2020: Wave disturbances and their role in the maintenance,
735 structure, and evolution of a mesoscale convection system. *Journal of the Atmospheric Sciences*,
736 **77** (1), 51–77.

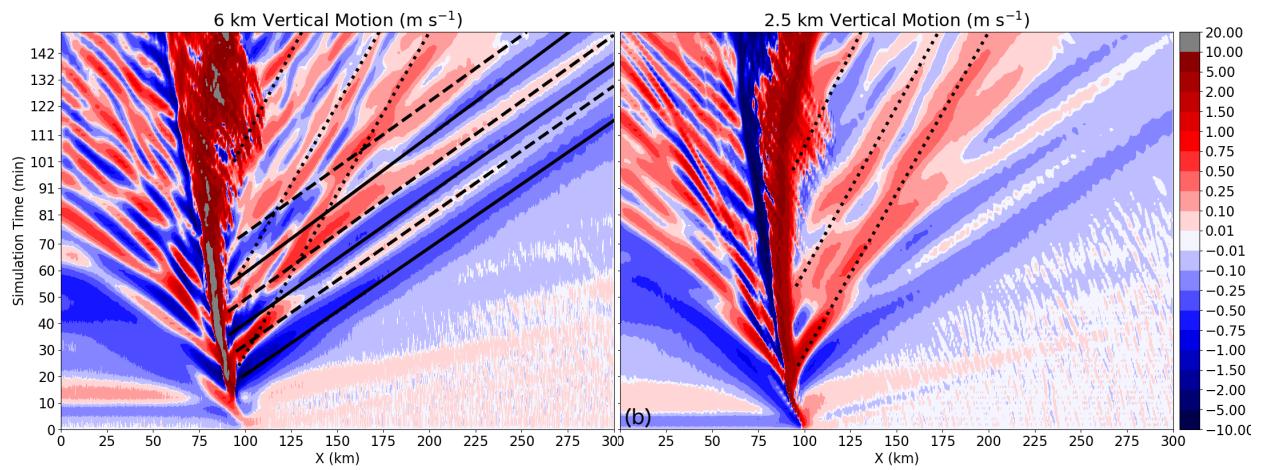
737 LIST OF TABLES

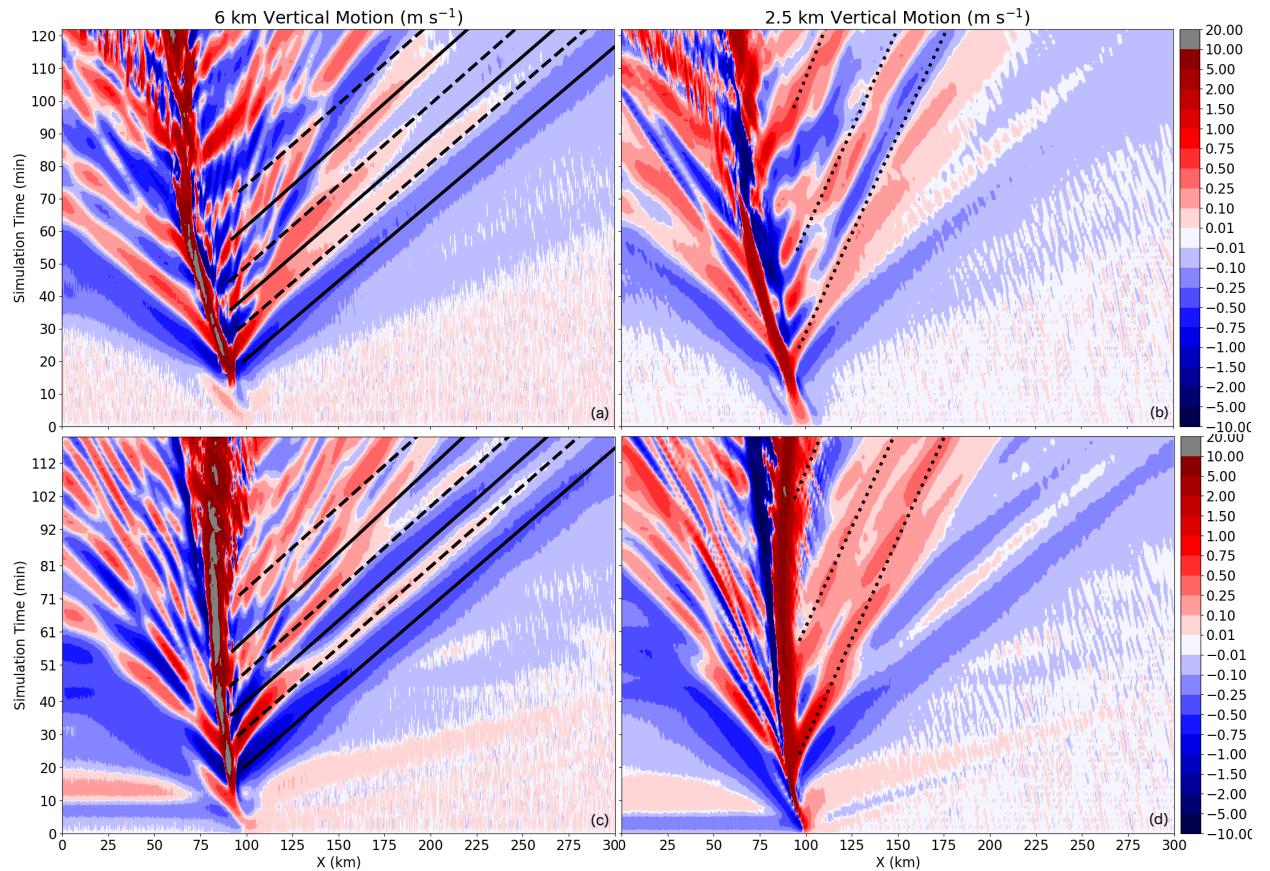

TABLE 1. Sensitivity test simulation names.

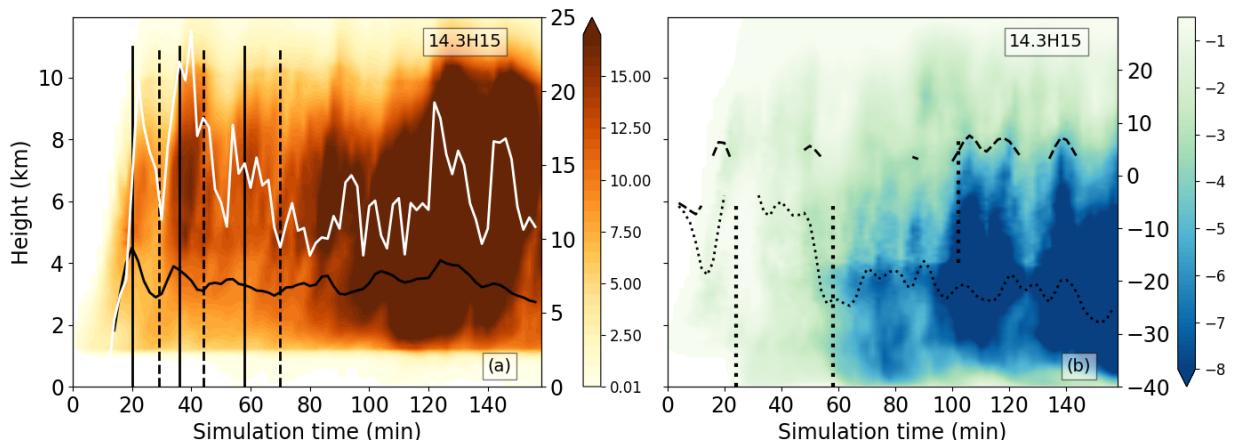
Simulation name name	Surface q_v (g kg^{-1})	MUCAPE (J kg^{-1})	0-5 km shear (m s^{-1})	Initialization method	PBL
12.2H5	12.2	1519	5	dam break	daytime
14.3H5	14.3	2497	5	dam break	daytime
16.2H5	16.2	3538	5	dam break	daytime
12.2H15	12.2	1519	15	dam break	daytime
14.3H15, CONTROL	14.3	2497	15	dam break	daytime
14.3H15, BUBBLE	14.3	2497	15	warm bubble	daytime
14.3H15, COOL	14.3	2497	15	dam break	nocturnal
16.2H15	16.2	3538	15	dam break	daytime
12.2H25	12.2	1519	25	dam break	daytime
14.3H25	14.3	2497	25	dam break	daytime
16.2H25	16.2	3538	25	dam break	daytime

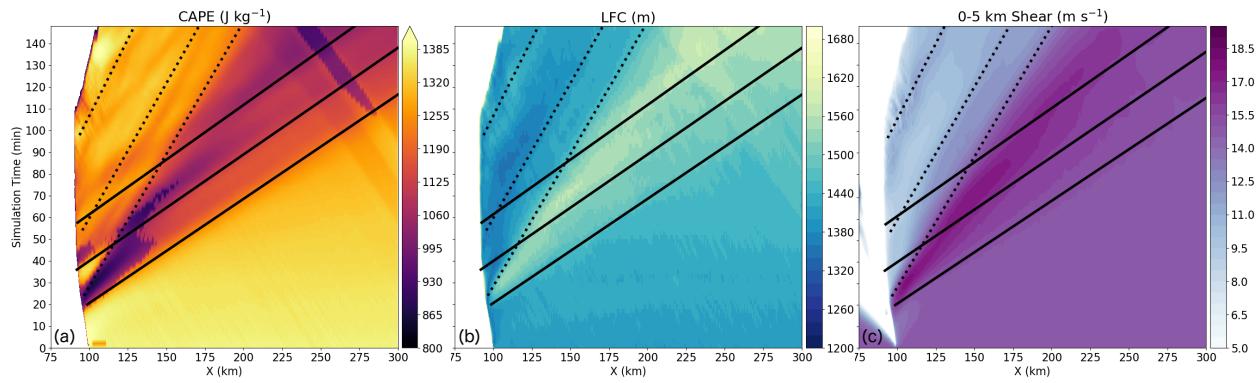

739 LIST OF FIGURES

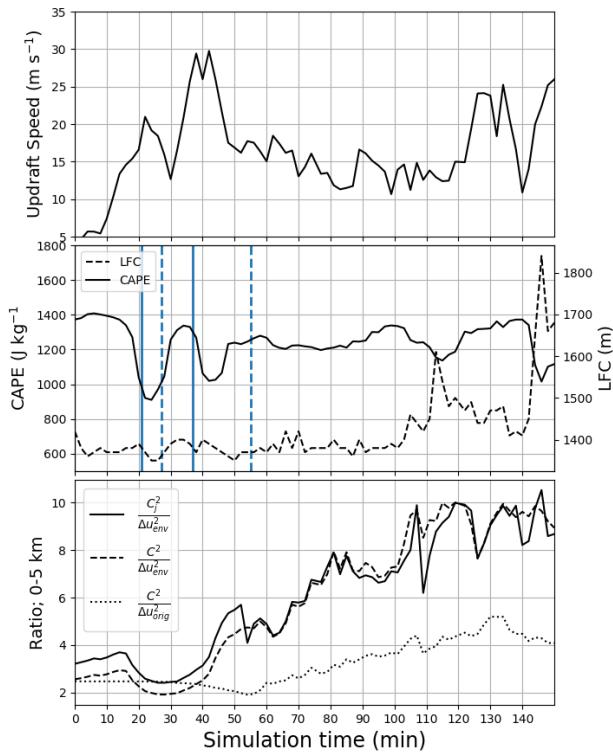
740 Fig. 1.	(a) Vertical velocity (3 cm s^{-1} , negative dashed) of a $2.0 \text{ J kg}^{-1} \text{ s}^{-1}$ convective ($n = 1$) 741 heating pulse underneath a rigid lid at 10 km 4 h after start of heating. The heating was 742 turned off after 2 h. Adapted from Figs.10 and 5 of Nicholls (1991).	39
743 Fig. 2.	(a-g) Vertical cross-sections of vertical velocity (color; m s^{-1}), latent cooling (green, 0.5 744 K (2 min^{-1})), latent warming (white, 2 K (2 min^{-1})), and total condensate (black, 0.1 g 745 kg^{-1}). (h-i) Vertical cross-section of latent warming (yellow shades, 2 K (2 min^{-1})), latent 746 cooling (blue shades, 0.5 K (2 min^{-1})), total condensate (thick black, 0.1 g kg^{-1}), and u 747 wind (thin black, 6, 8, 10 m s^{-1}) from the control simulation (14.3H15). Vertical arrows 748 highlight low frequency waves within the vertical motion field. Horizontal arrows indicate 749 in: (b) increase in mid-level latent heating, (c) increase in low-level latent cooling, (e-f) 750 rearward expansion of the stratiform region, and (h-i) increase in mid-level rear inflow and 751 latent cooling. Simulation time is shown in the lower right corner in each subfigure.	40
752 Fig. 3.	Hovmöller diagrams displaying vertical motion (m s^{-1}) at (a) 6 km and (b) 2.5 km from the 753 control simulation (14.3H15). X cross-section is averaged 5 km either side of $Y=125 \text{ km}$. 754 Three solid lines in (a) delineate three $n = 1$ waves associated with descending motion, and 755 the three dashed lines $n = 1$ waves associated with ascending motion. The dotted lines in 756 both (a) and (b) show three higher order $n = 2$ or $n = 3$ waves.	41
757 Fig. 4.	As in Fig. 3, but for (a,b) a warm bubble initialization and (c,d) a simulation with the lowest 758 1 km cooled as described in the text. Note the solid, dashed, and dotted lines indicating 759 waves are copied from Fig. 3.	42
760 Fig. 5.	Time-height diagram showing mean (a) warming and (b) cooling microphysical tempera- 761 ture tendencies ($\text{K} (2 \text{ min}^{-1})$) over the same X cross-section as Fig. 3 for the control run 762 (14.3H15). Solid, dotted, and dashed vertical lines correspond to start times of the corre- 763 sponding waves labeled in Fig. 3. The white solid line plot in (a) is the maximum updraft 764 speed within the cross-section at 6 km (m s^{-1}). The black solid line plot in (a) is the coeffi- 765 cient from a Fourier decomposition of the mean heating profile for an $n = 1$ profile; line only 766 shown if the coefficient is determined to be significant per a two-tailed t-test, and the entire 767 decomposition is significant per the F-statistic. The right axis labels in each plot correspond 768 to the values of the coefficients; in (a) they also correspond to updraft speed. Dotted and 769 dashed lines in (b) are the same but for $n = 2$ and $n = 3$ profiles.	43
770 Fig. 6.	As in Fig. 3, but for surface-based (a) CAPE, (b) LFC, and (c) 0-5 km shear. Upward motion 771 portion of $n = 1$ waves omitted for clarity.	44
772 Fig. 7.	(a) Updraft speed, (b) CAPE and LFC; and (c) the ratio between cold pool intensity and 0-5 773 km environmental shear. Generation times of four waves are noted in blue ($n = 1$ waves 774 solid, $n = 2$ waves dashed) in (b). In (c) three calculation methods are used as described in 775 the text.	45
776 Fig. 8.	(a, b) Vertical cross-sections of vertical velocity (m s^{-1}) at (a) 0:24 and (b) 0:34 simulation 777 time. Thick black dashed line is the LFC. Thick solid black lines are the -2 and -4K potential 778 temperature perturbations associated with the cold pool. Thin black solid lines correspond 779 to cloud water mixing ratios of 0.1, 0.5, and 1.5 g kg^{-1} . Thin green solid lines in (a) are rain 780 water mixing ratio of 0.1, 0.5, and 1.5 g kg^{-1} . (c) Vertical cross-section of buoyancy (m s^{-2}) from 0:34 simulation time. Thick solid line is vertical velocity of 2 m s^{-1} . Thin solid 781 lines are cloud water mixing ratio as in subfigures (a) and (b).	46


783	Fig. 9. Parcel trajectories from simulation start through (a) 0:32 and (b) 0:42 simulation time for	47
784	parcels that were in the convective updraft at those respective times. A parcel was deter-	
785	mined to be in the convective updraft if it had an upward motion of at least 5 m s^{-1} between	
786	2 and 8 km aloft. Parcel trajectories are color coded by parcel updraft speed (m s^{-1}). The -2	
787	and 2 m s^{-1} vertical motion contours at each time are in black.	
788	Fig. 10. As in Fig. 5, but for simulations 14.3H5 (a,d), 14.3H15 (b,e), and 14.3H25 (c,f).	48
789	Fig. 11. Vertical cross-sections of vertical velocity, latent heating and cooling, and total condensate	
790	as in Fig. 2, but for test 14.3H5. Note the cross-sections in the (b) and (d) are shifted farther	
791	ahead of the convective line than in (a) and (c), to capture the wave activity.	49
792	Fig. 12. Vertical cross-sections of (a,b,c,e) vertical motion, latent heating and cooling, and total con-	
793	densate and (d) latent heating and cooling and storm-relative negative u wind as in Fig. 2,	
794	but for test 14.3H25.	50
795	Fig. 13. (Top row) 6-km vertical motion and (bottom row) 2.5-km vertical motion Hovmöller dia-	
796	grams as in Fig. 3 for three shear sensitivity tests as labeled. In the top row, only the $n = 1$	
797	wave fronts associated with downward vertical motion are labeled.	51
798	Fig. 14. (Top row) Surface-based CAPE (J kg^{-1}), as in Fig. 6a, for three shear sensitivity tests as	
799	labeled. (Middle row) LFC (m) as in Fig. 6b. (Bottom row) 0-5 km shear (m s^{-1}) as in	
800	Fig. 6c. Solid, dotted, and dashed lines show the $n = 1$, $n = 2$, and $n = 3$ waves.	52
801	Fig. 15. As in Fig. 10, but for three instability sensitivity tests as labeled.	53
802	Fig. 16. (Top row) 6-km vertical motion and (bottom row) 2.5-km vertical motion Hovmöller dia-	
803	grams as in Fig. 3 for three instability sensitivity tests as labeled.	54
804	Fig. 17. As in Fig. 2, but for test 12.2H15.	55
805	Fig. 18. As in Fig. 2, but for test 16.2H15.	56
806	Fig. 19. As in Fig. 14, but for three instability sensitivity tests as labeled. Note the maximum and	
807	minimum contoured CAPE and LFC values are different for each column, but the total	
808	CAPE and LFC ranges covered by each contour set is the same.	57
809	Fig. 20. Cross-correlation coefficients for all between surface-based CAPE (J kg^{-1}) 5 km ahead of	
810	the cold pool and maximum updraft speed (m s^{-1}) for a range of positive and negative time	
811	lags. In a negative time lag an increase in CAPE precedes an increase in maximum updraft	
812	speed; in a positive time lag an increase in maximum updraft speed precedes an increase in	
813	CAPE. The thick solid horizontal lines delineate coefficients of at least 95% significance, as	
814	determined by a two-tailed t-test with over 30 degrees of freedom. (a) Coefficients between	
815	0-70 minutes of the simulation, (b) between 70 and 140 min of the simulation.	58
816	Fig. 21. Hovmöller diagrams showing 6-km vertical motion (color fill; m s^{-1}), 2.5-km cloud water	
817	mixing ratio (thin black line; 1 g kg^{-1}), and $n = 2,3$ wave modes (black dotted, dashed	
818	lines) for all sensitivity tests as labeled.	59


819 FIG. 1. (a) Vertical velocity (3 cm s^{-1} , negative dashed) of a $2.0 \text{ J kg}^{-1} \text{ s}^{-1}$ convective ($n = 1$) heating pulse
 820 underneath a rigid lid at 10 km 4 h after start of heating. The heating was turned off after 2 h . Adapted from
 821 Figs.10 and 5 of Nicholls (1991).


822 FIG. 2. (a-g) Vertical cross-sections of vertical velocity (color; m s^{-1}), latent cooling (green, $0.5 \text{ K (2 min)}^{-1}$),
 823 latent warming (white, 2 K (2 min)^{-1}), and total condensate (black, 0.1 g kg^{-1}). (h-i) Vertical cross-section of
 824 latent warming (yellow shades, 2 K (2 min)^{-1}), latent cooling (blue shades, $0.5 \text{ K (2 min)}^{-1}$), total condensate
 825 (thick black, 0.1 g kg^{-1}), and u wind (thin black, $6, 8, 10 \text{ m s}^{-1}$) from the control simulation (14.3H15). Vertical
 826 arrows highlight low frequency waves within the vertical motion field. Horizontal arrows indicate in: (b) increase
 827 in mid-level latent heating, (c) increase in low-level latent cooling, (e-f) rearward expansion of the stratiform
 828 region, and (h-i) increase in mid-level rear inflow and latent cooling. Simulation time is shown in the lower right
 829 corner in each subfigure.


830 FIG. 3. Hovmöller diagrams displaying vertical motion (m s^{-1}) at (a) 6 km and (b) 2.5 km from the control
 831 simulation (14.3H15). X cross-section is averaged 5 km either side of $Y=125$ km. Three solid lines in (a)
 832 delineate three $n = 1$ waves associated with descending motion, and the three dashed lines $n = 1$ waves associated
 833 with ascending motion. The dotted lines in both (a) and (b) show three higher order $n = 2$ or $n = 3$ waves.


834 FIG. 4. As in Fig. 3, but for (a,b) a warm bubble initialization and (c,d) a simulation with the lowest 1 km
 835 cooled as described in the text. Note the solid, dashed, and dotted lines indicating waves are copied from Fig. 3.

836 FIG. 5. Time-height diagram showing mean (a) warming and (b) cooling microphysical temperature tendencies (K (2 min)⁻¹) over the same X cross-section as Fig. 3 for the control run (14.3H15). Solid, dotted, and
 837 dashed vertical lines correspond to start times of the corresponding waves labeled in Fig. 3. The white solid line
 838 plot in (a) is the maximum updraft speed within the cross-section at 6 km (m s⁻¹). The black solid line plot in
 839 (a) is the coefficient from a Fourier decomposition of the mean heating profile for an $n = 1$ profile; line only
 840 shown if the coefficient is determined to be significant per a two-tailed t-test, and the entire decomposition is
 841 significant per the F-statistic. The right axis labels in each plot correspond to the values of the coefficients; in
 842 (a) they also correspond to updraft speed. Dotted and dashed lines in (b) are the same but for $n = 2$ and $n = 3$
 843 profiles.
 844

845 FIG. 6. As in Fig. 3, but for surface-based (a) CAPE, (b) LFC, and (c) 0-5 km shear. Upward motion portion
 846 of $n = 1$ waves omitted for clarity.

847 FIG. 7. (a) Updraft speed, (b) CAPE and LFC; and (c) the ratio between cold pool intensity and 0-5 km
 848 environmental shear. Generation times of four waves are noted in blue ($n = 1$ waves solid, $n = 2$ waves dashed)
 849 in (b). In (c) three calculation methods are used as described in the text.

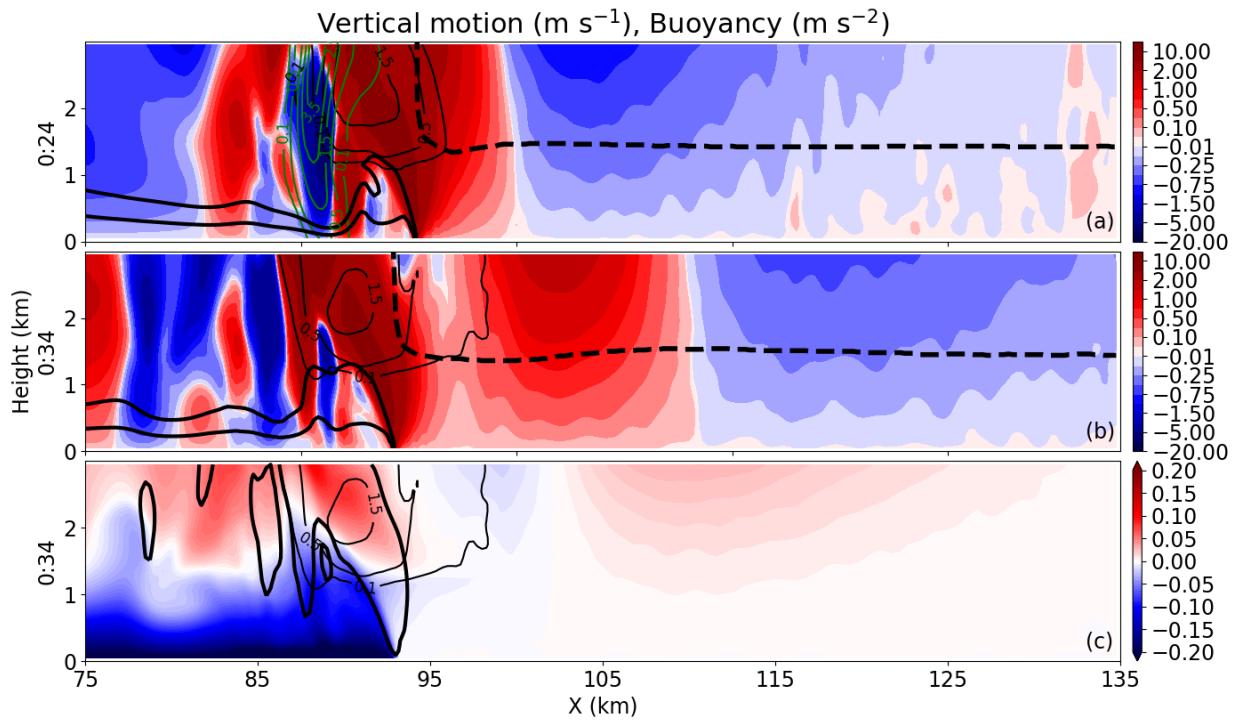
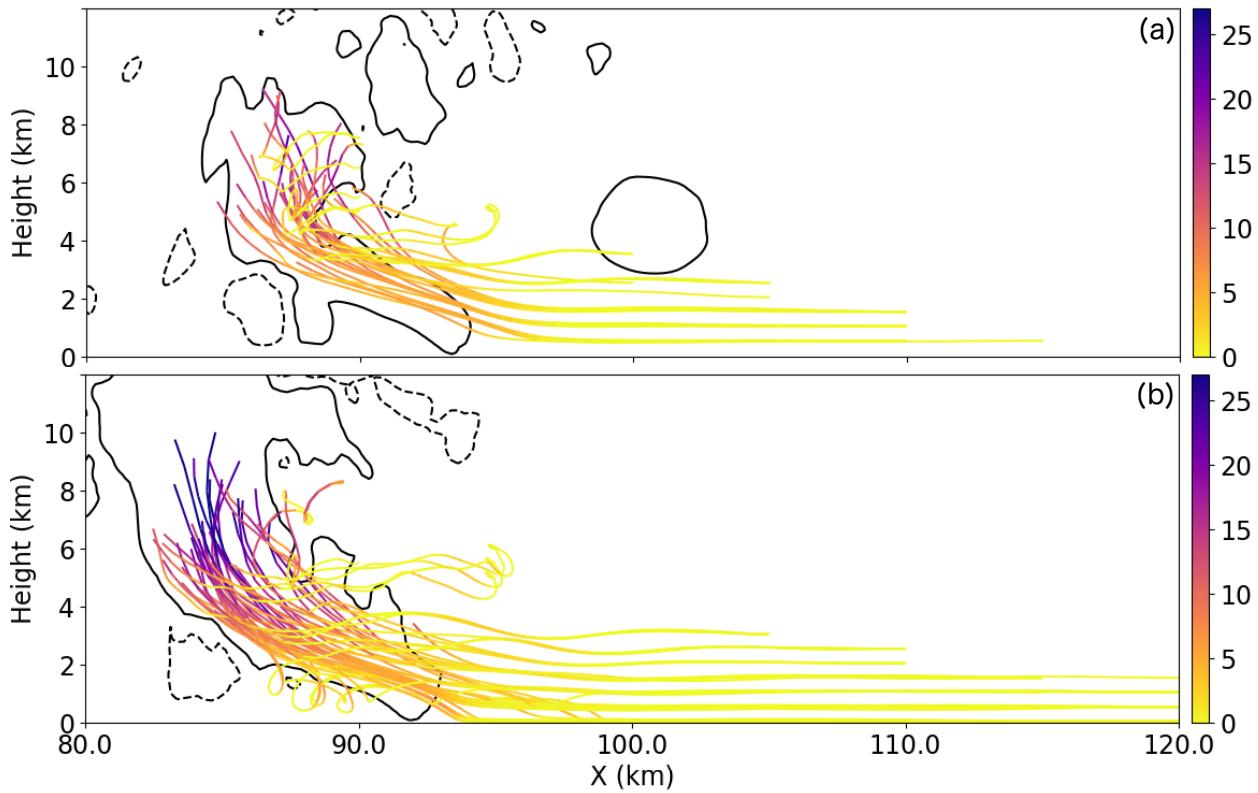
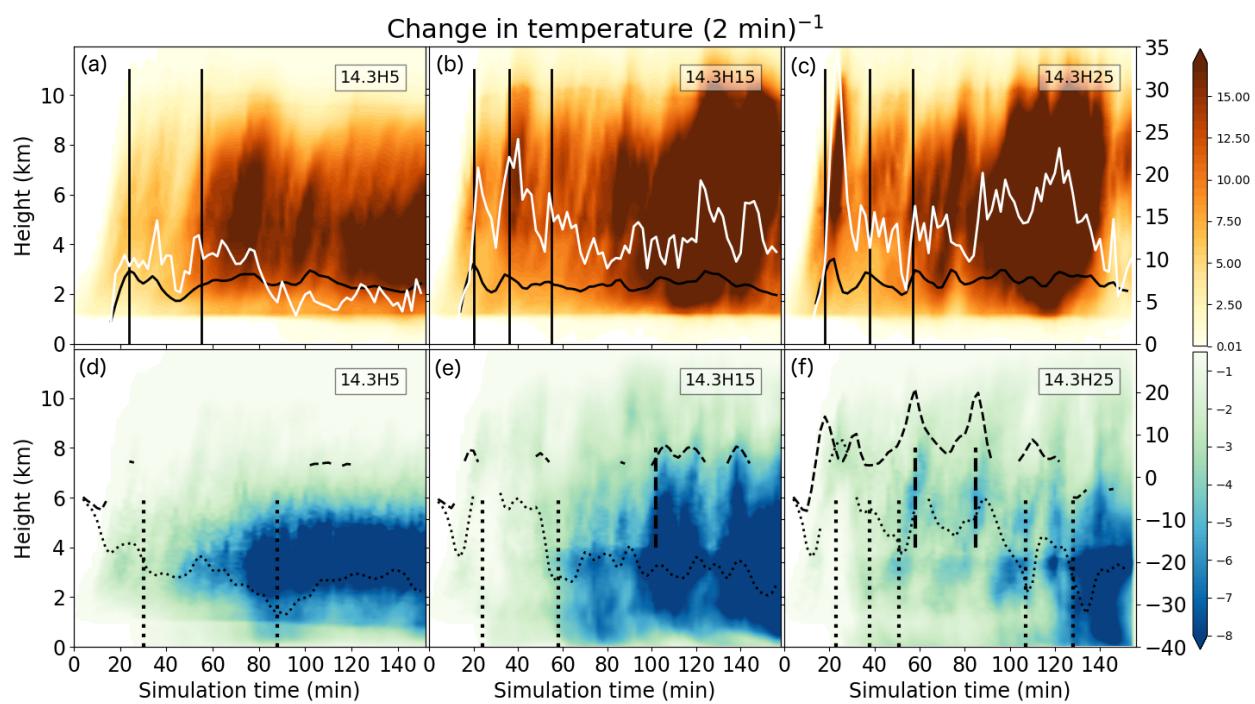
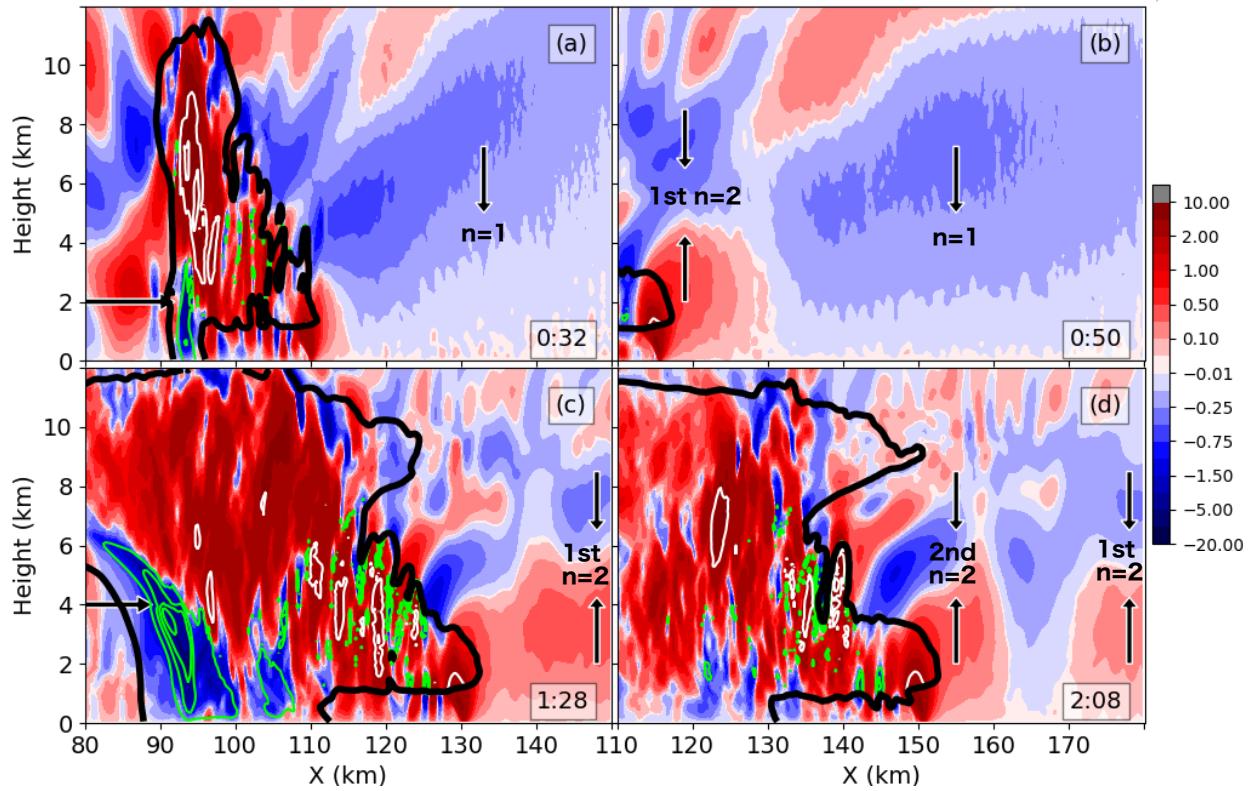
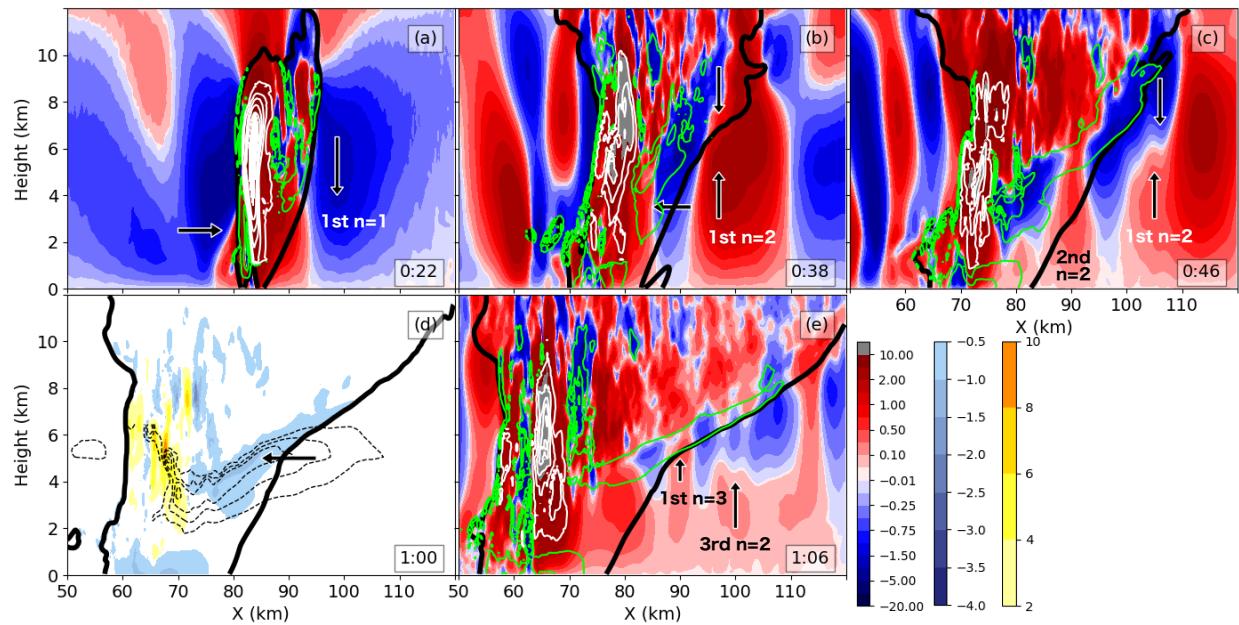
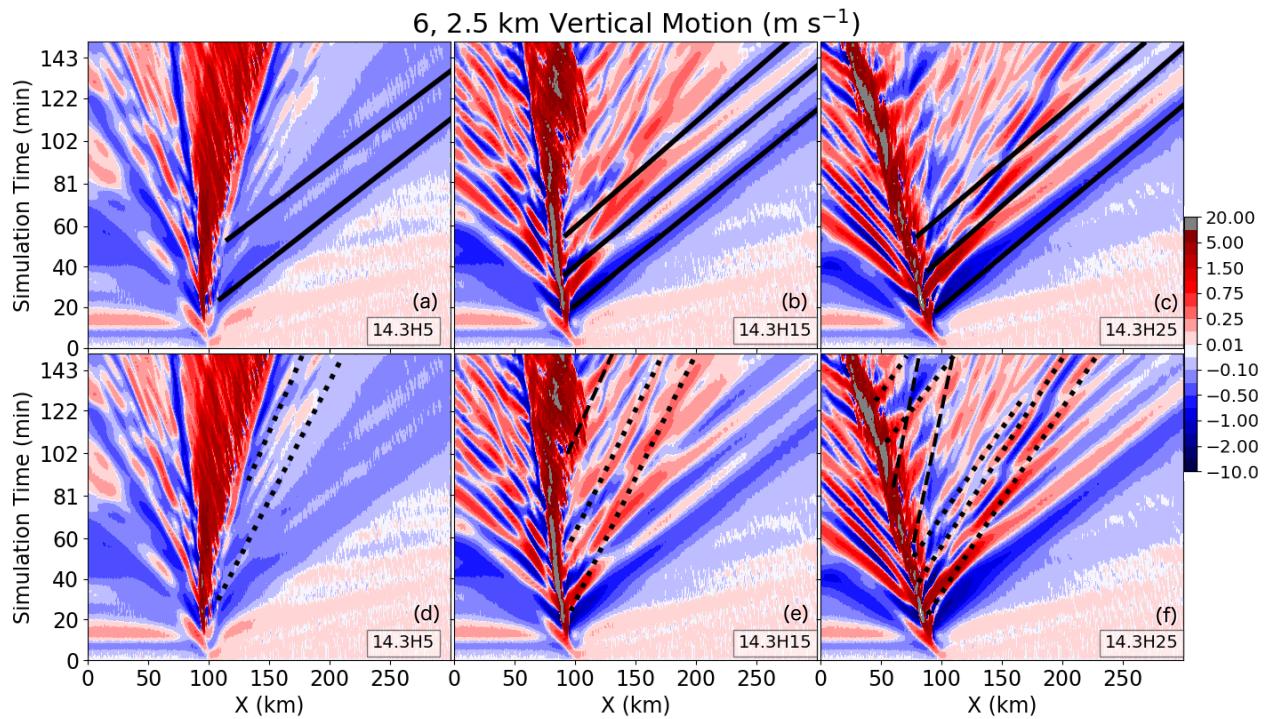
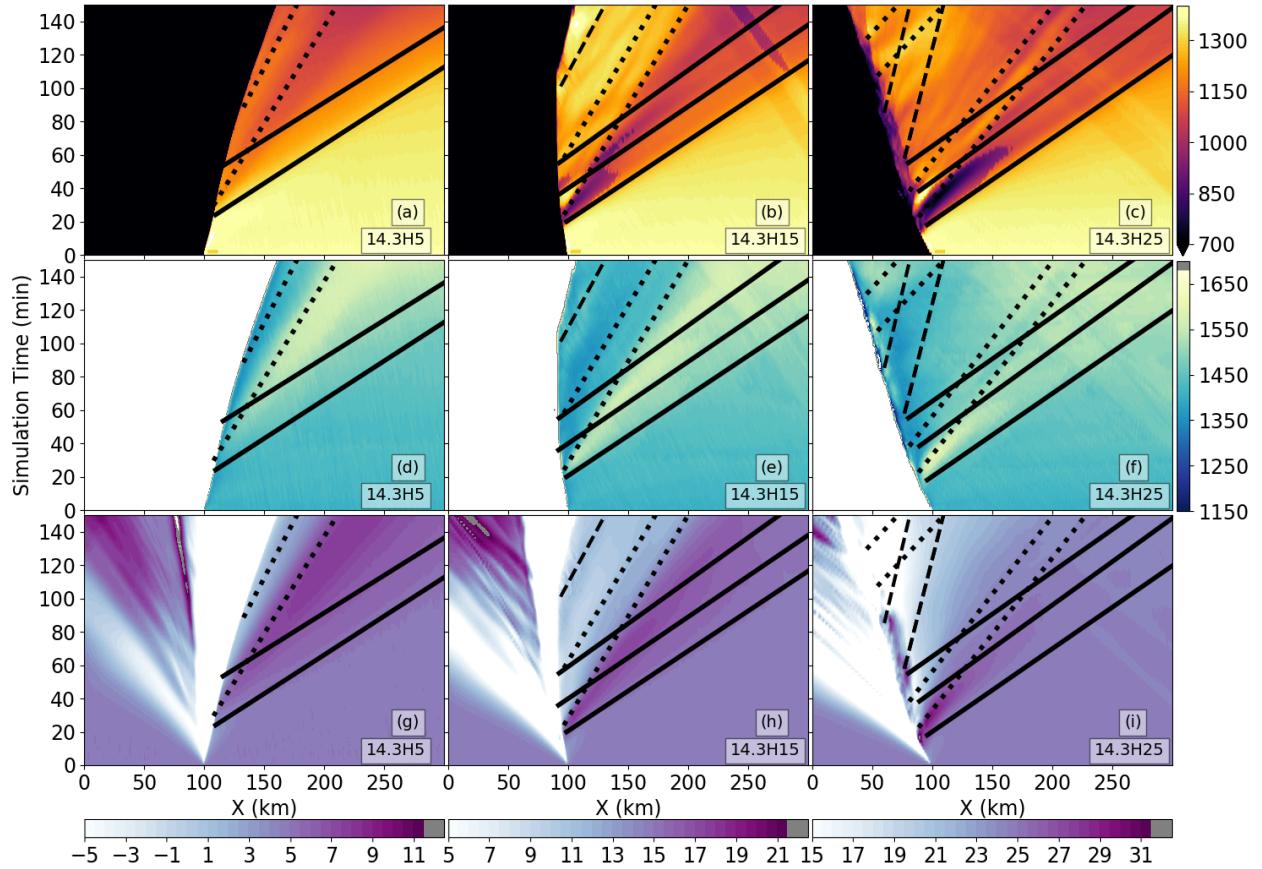



FIG. 8. (a, b) Vertical cross-sections of vertical velocity (m s^{-1}) at (a) 0:24 and (b) 0:34 simulation time. Thick black dashed line is the LFC. Thick solid black lines are the -2 and -4K potential temperature perturbations associated with the cold pool. Thin black solid lines correspond to cloud water mixing ratios of 0.1, 0.5, and 1.5 g kg^{-1} . Thin green solid lines in (a) are rain water mixing ratio of 0.1, 0.5, and 1.5 g kg^{-1} . (c) Vertical cross-section of buoyancy (m s^{-2}) from 0:34 simulation time. Thick solid line is vertical velocity of 2 m s^{-1} . Thin solid lines are cloud water mixing ratio as in subfigures (a) and (b).

856 FIG. 9. Parcel trajectories from simulation start through (a) 0:32 and (b) 0:42 simulation time for parcels that
857 were in the convective updraft at those respective times. A parcel was determined to be in the convective updraft
858 if it had an upward motion of at least 5 m s^{-1} between 2 and 8 km aloft. Parcel trajectories are color coded by
859 parcel updraft speed (m s^{-1}). The -2 and 2 m s^{-1} vertical motion contours at each time are in black.


FIG. 10. As in Fig. 5, but for simulations 14.3H5 (a,d), 14.3H15 (b,e), and 14.3H25 (c,f).


860 FIG. 11. Vertical cross-sections of vertical velocity, latent heating and cooling, and total condensate as in
 861 Fig. 2, but for test 14.3H5. Note the cross-sections in the (b) and (d) are shifted farther ahead of the convective
 862 line than in (a) and (c), to capture the wave activity.

863 FIG. 12. Vertical cross-sections of (a,b,c,e) vertical motion, latent heating and cooling, and total condensate
 864 and (d) latent heating and cooling and storm-relative negative u wind as in Fig. 2, but for test14.3H25.

865 FIG. 13. (Top row) 6-km vertical motion and (bottom row) 2.5-km vertical motion Hovmöller diagrams as
 866 in Fig. 3 for three shear sensitivity tests as labeled. In the top row, only the $n = 1$ wave fronts associated with
 867 downward vertical motion are labeled.

868 FIG. 14. (Top row) Surface-based CAPE (J kg^{-1}), as in Fig. 6a, for three shear sensitivity tests as labeled.
 869 (Middle row) LFC (m) as in Fig. 6b. (Bottom row) 0-5 km shear (m s^{-1}) as in Fig. 6c. Solid, dotted, and dashed
 870 lines show the $n = 1$, $n = 2$, and $n = 3$ waves.

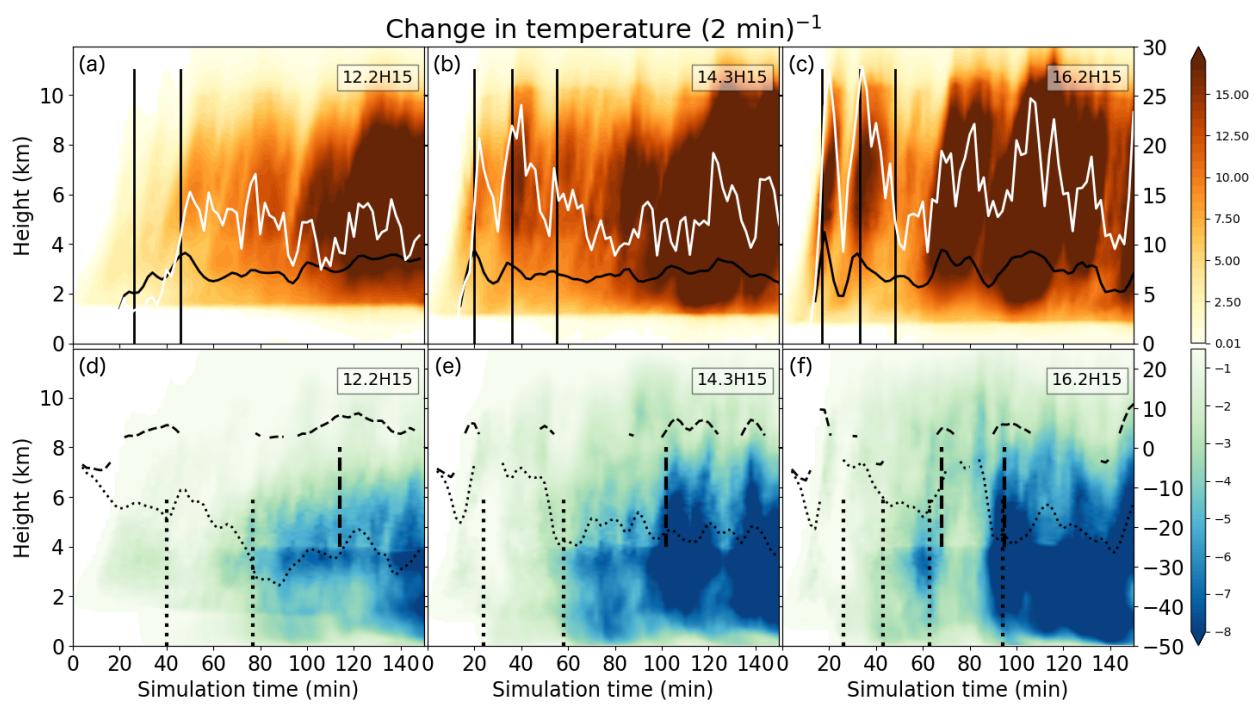
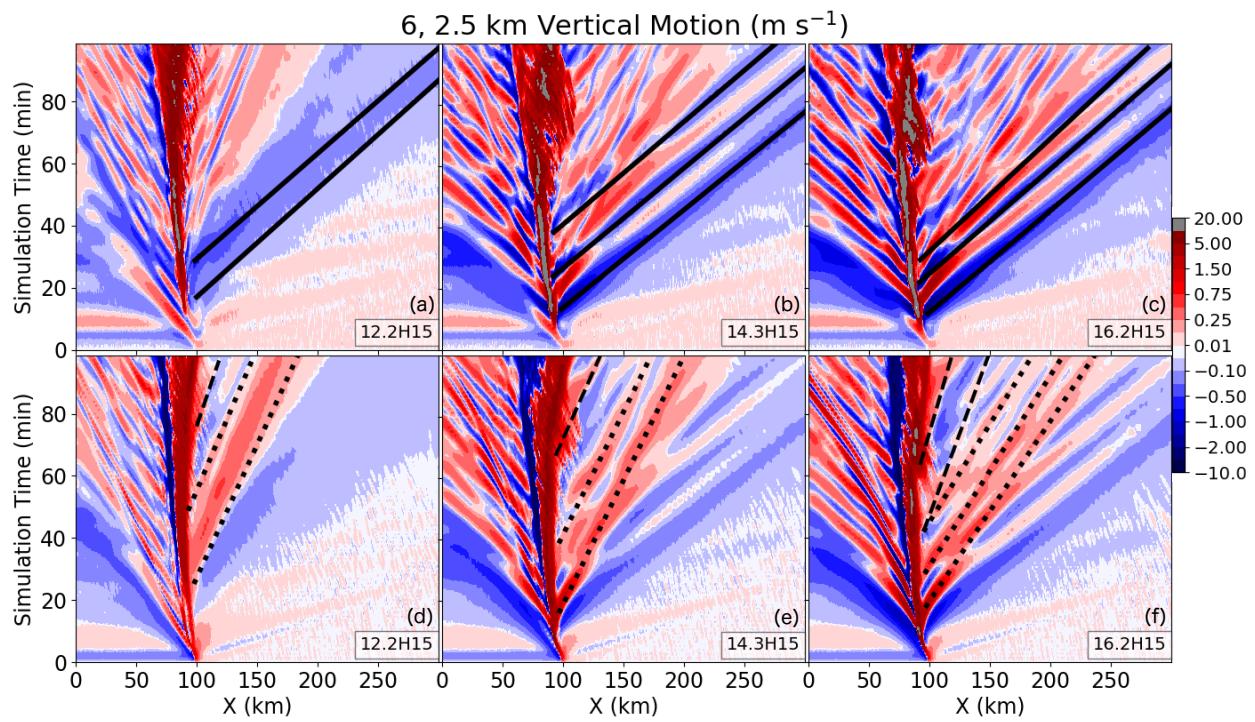



FIG. 15. As in Fig. 10, but for three instability sensitivity tests as labeled.

871 FIG. 16. (Top row) 6-km vertical motion and (bottom row) 2.5-km vertical motion Hovmöller diagrams as in
 872 Fig. 3 for three instability sensitivity tests as labeled.

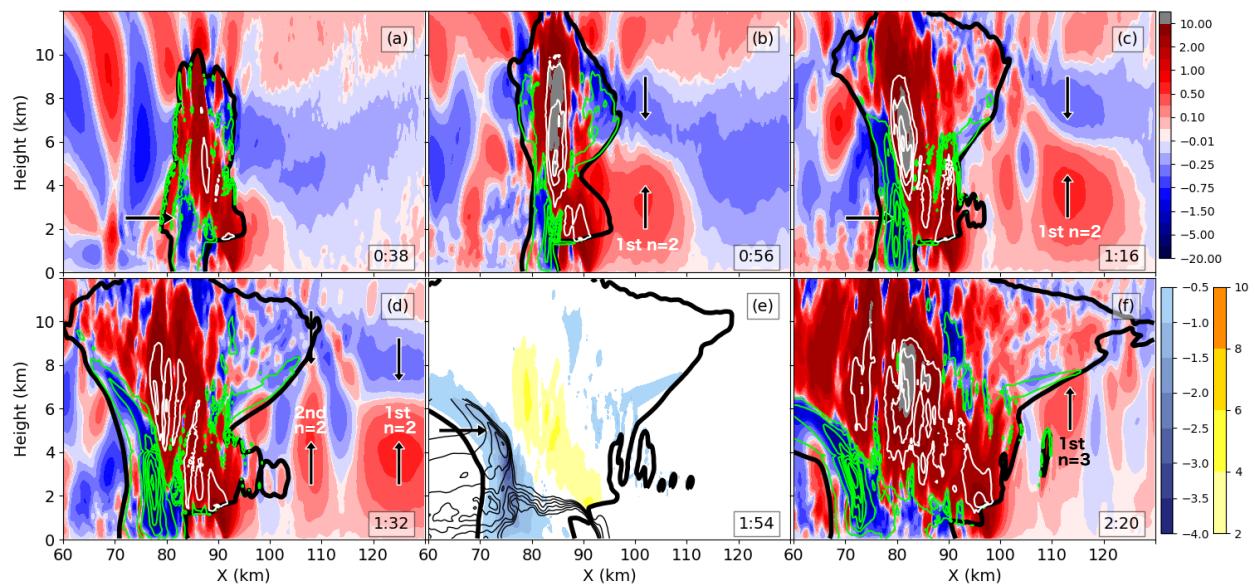
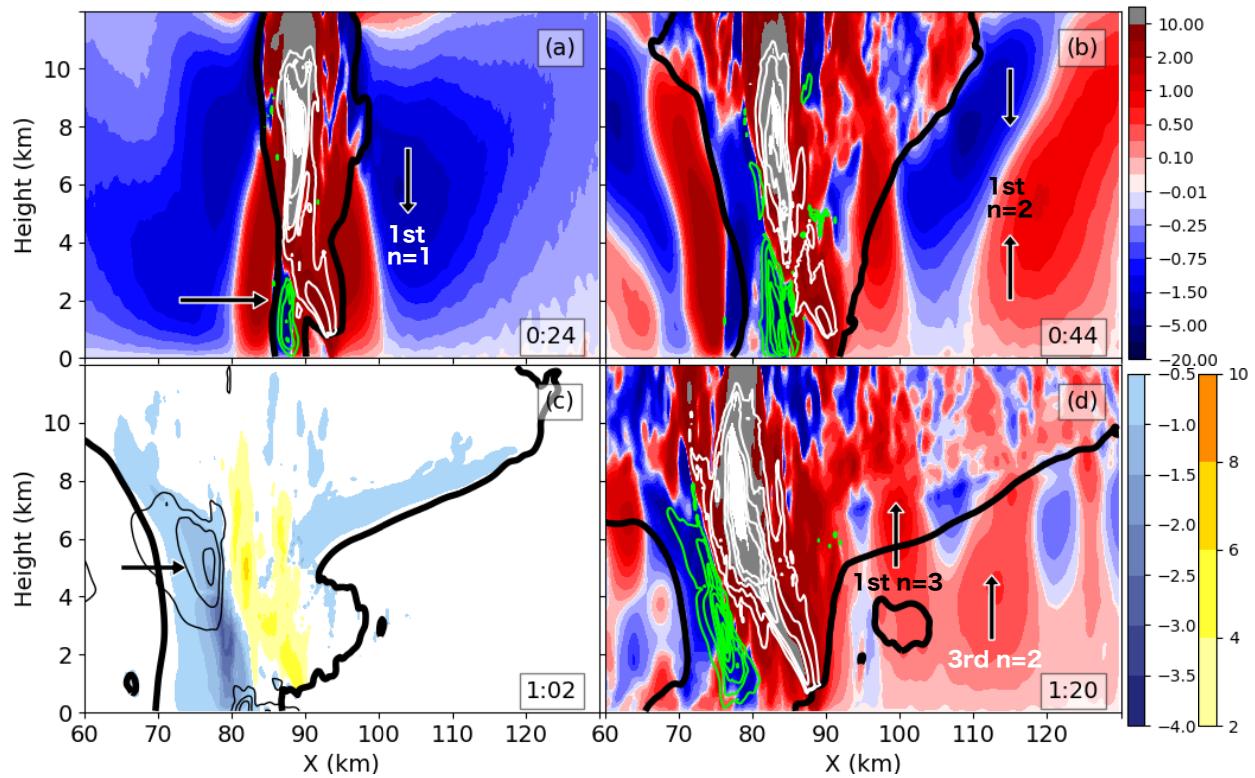
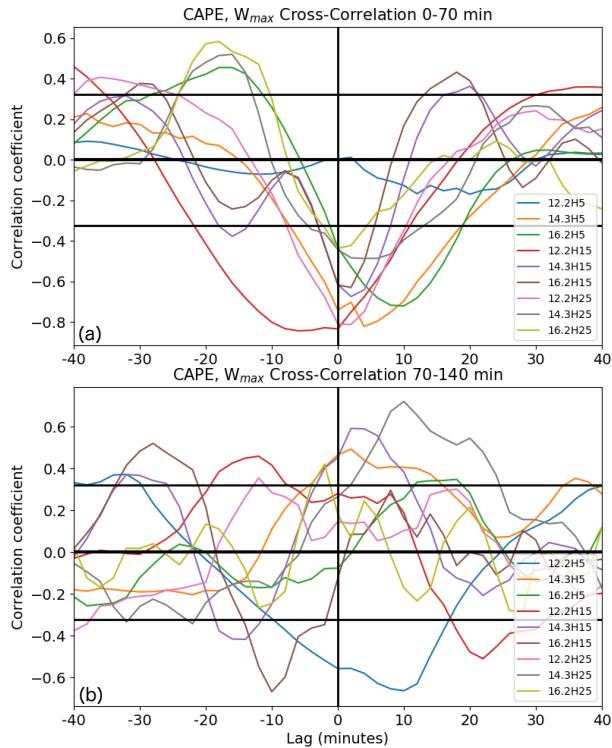
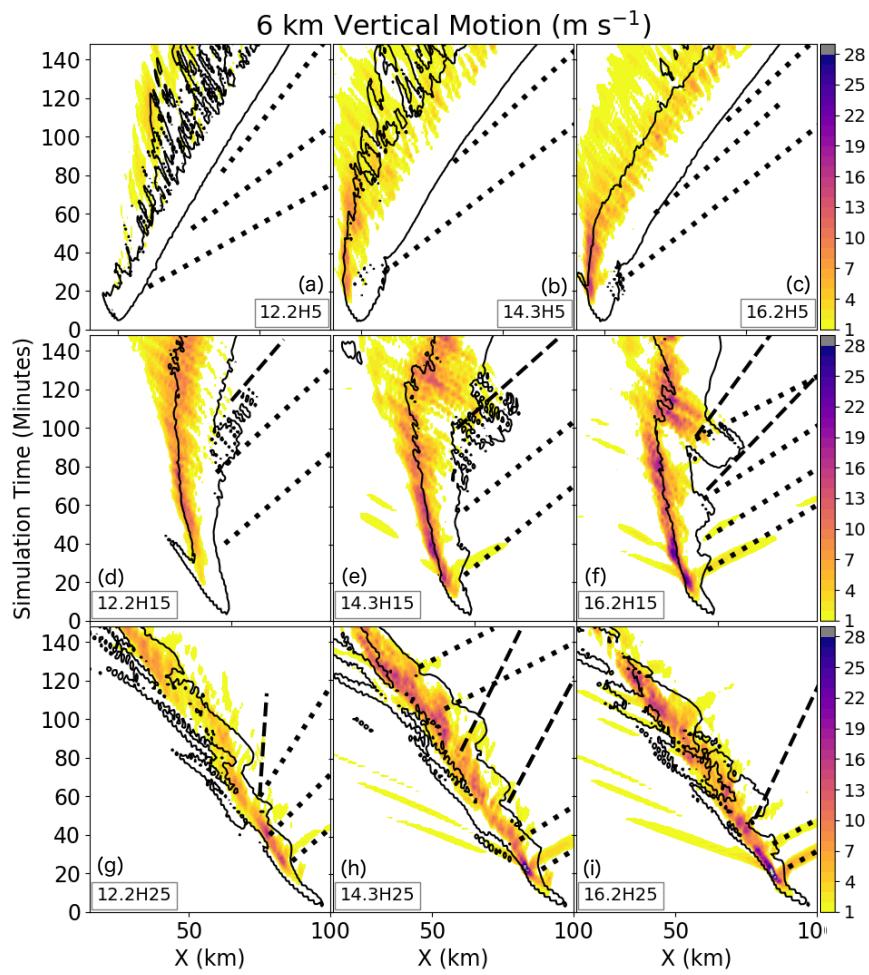


FIG. 17. As in Fig. 2, but for test 12.2H15.






FIG. 18. As in Fig. 2, but for test 16.2H15.

873 FIG. 19. As in Fig. 14, but for three instability sensitivity tests as labeled. Note the maximum and minimum
 874 contoured CAPE and LFC values are different for each column, but the total CAPE and LFC ranges covered by
 875 each contour set is the same.

876 FIG. 20. Cross-correlation coefficients for all between surface-based CAPE (J kg^{-1}) 5 km ahead of the cold
 877 pool and maximum updraft speed (m s^{-1}) for a range of positive and negative time lags. In a negative time
 878 lag an increase in CAPE precedes an increase in maximum updraft speed; in a positive time lag an increase in
 879 maximum updraft speed precedes an increase in CAPE. The thick solid horizontal lines delineate coefficients of
 880 at least 95% significance, as determined by a two-tailed t-test with over 30 degrees of freedom. (a) Coefficients
 881 between 0-70 minutes of the simulation, (b) between 70 and 140 min of the simulation.

882 FIG. 21. Hovmöller diagrams showing 6-km vertical motion (color fill; m s^{-1}), 2.5-km cloud water mixing
 883 ratio (thin black line; 1 g kg^{-1}), and $n = 2,3$ wave modes (black dotted, dashed lines) for all sensitivity tests as
 884 labeled.