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How to study the neural mechanisms of multiple tasks .

Guangyu Robert Yang, Michael W Cole and Kanaka Rajan

Most biological and artificial neural systems are capable of
completing multiple tasks. However, the neural mechanism by
which multiple tasks are accomplished within the same system
is largely unclear. We start by discussing how different tasks
can be related, and methods to generate large sets of inter-
related tasks to study how neural networks and animals
perform multiple tasks. We then argue that there are
mechanisms that emphasize either specialization or flexibility.
We will review two such neural mechanisms underlying multiple
tasks at the neuronal level (modularity and mixed selectivity),
and discuss how different mechanisms can emerge depending
on training methods in neural networks.
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Why should we study multiple tasks?

The study of systems and cognitive neuroscience rely
heavily on investigating neural systems as they perform
various tasks. A task generally refers to the set of com-
putations that a system needs to perform to optimize an
objective, such as reward or classification accuracy. A
classical cognitive task is the random-dot motion task
[8], where an agent/subject needs to decide the moving
direction of a group of coherently moving dots, amid a
group of randomly moving dots. In neuroscience and
cognitive science, each task is typically designed to shed
light on the neural mechanism of a particular function.
For example, the random-dot motion task is carefully
designed so the moving direction cannot be inferred by
the stimulus at any individual time point so this task can
be used to study how agents integrate information over
time. A substantial body of experimental and

\!} CrossMark

computational work has been devoted to understand
the neural mechanisms behind individual tasks.

Although neural systems are usually studied with one task
at a time, these systems are usually capable of performing
many different tasks, and there are many reasons to study
how a neural system can accomplish this. Studying mul-
tiple tasks can serve as a powerful constraint to both
biological and artificial neural systems (Figure 1a). For
one given task, there are often several alternative models
that describe existing experimental results similarly well.
The space of potential solutions can be reduced by the
requirement of solving multiple tasks.

Experiments can uncover neural representation or mech-
anisms that appear sub-optimal for a single task. For
instance, neural activity in prefrontal cortex during work-
ing memory tasks is often highly dynamical [43], even
though such time-varying representations are not neces-
sary for these tasks. In another example, selectivity of
parietal cortex neurons can shift across days even when
mice continue to perform the same task equally well [19].
These seemingly unnecessary features could potentially
be better understood in the context of having a single
system that needs to solve many varied tasks [44,19].

Studying multiple tasks also raises important questions
that are not as salient when studying a single task. One
such question is the issue of continual learning. Humans
and animals can learn new tasks without rapidly for-
getting all previous tasks learned. In contrast, traditional
neural network models experience “catastrophic for-
getting”, where learning of a new task can strongly
interfere with performance of previously learned tasks.
It remains to be understood how biological brains combat
this issue of catastrophic forgetting.

When multiple tasks are learned sequentially, the learn-
ing of previous tasks can potentially lead to emergence of
network architecture, neural representation, and learning
rules that greatly facilitate learning of future tasks. Mech-
anisms and strategies for making this happen is the
subject of transfer learning [45] and meta-learning
(learning-to-learn). The topic of curriculum learning is
concerned with finding a good set of tasks to pre-train on
before training a difficult task, which can aid learning and
transfer of task features.

Finally, studying a network capable of performing multi-
ple tasks raises questions about how the neural represen-
tation of different tasks are related to one another. Similar
to how a substantial amount of neuroscience work is
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(@) In the space of models, every task can be solved by many different models, indicated by the colored areas. Solving multiple tasks provides a
stronger constraint on the space of allowed models. (b) Any specific task usually comprises several subtasks, and can also be described as an
instance of a meta-task. (c) The organization of tasks is agent-dependent. Which subtasks to break a task into depend on the presumed neural
mechanism. For a sensori-motor transformation task, if the computation is carried out by multiple stages of network processing, it is more
sensible to break the task into multiple subtasks. However, if the task is performed by a neural network with a single hidden layer, the previous

subtasks may no longer be meaningful.

devoted to understanding how different stimuli and
actions are represented in the same circuit, we can ask
how tasks are represented in the same circuit. Are differ-
ent tasks supported by overlapping populations of neu-
rons? If so, how strong is the overlap, and what is the
overlapping part responsible for? Understanding this
question can potentially help us better understand con-
tinual learning and learning-to-learn, given that cata-
strophic forgetting presumably happens because the
representation of tasks interfere, while transfer learning
happens when representation of tasks can be reused.

Organization of tasks

Imagine we are studying how different tasks are repre-
sented in the brain. A visual task (for example object
recognition) and a motor task (for example, an arm reach-
ing task) will utilize largely non-overlapping populations
of neurons. On the other hand, two visual tasks, for

example, object recognition and reading, will utilize
largely overlapping populations of neurons. Why are
the neural resources separated in one case, and shared
in another case? Intuition tells us that the two visual tasks
are closer to each other, therefore can reuse similar
circuits, while the visual and motor tasks are farther apart.
How do we make these intuitive concepts of task simi-
larity more formal?

To answer this question, we argue that it is critical to
develop a vocabulary so we can more rigorously discuss
how tasks are related to each other. Understanding the
relationship between tasks will then help us understand
why some tasks interfere with other tasks, and why
learning of one task can improve learning of another task.
Here we describe two fundamental relationships that
tasks can have with one another. Later we review how
large sets of tasks can be constructed based on these
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relationships. Tasks can be directly related to one another
through at least two types of relationships: a part-whole
relationship, and a specific-general relationship.

Part-whole relationship Each individual task (the whole)
can comprise multiple subtasks (parts). To perform the
whole task, it is necessary to perform all the subtasks. A
task is a supertask of its subtasks. For example, inferring
momentary moving direction is a subtask of the random-
dot motion task, which requires integrating momentary
evidence across time. The task of computing fix) = 2x + 1
(Figure 1b) can be written as a combination of two
subtasks g(x) = 2x and /(x) =x+ 1 such that Ax)=/(g
(x)). A subtask is itself a task, and can typically be further
divided into subtasks, forming a hierarchical tree of tasks

[3].

Specific-general relationship Meanwhile, a more general
task can be instantiated as a more specific task. We call
the more general task a “meta-task”, and the more
specific task, a task instance. Here we use “meta” as
meaning beyond and figher-order, instead of self-
referential. The task flx) = 2x + 1 can be treated as a special
case of the more general task F'(x) = ax + b, with 2 = 2 and
b=1.

Relationships between tasks are agent-dependent

The above definitions of subtask and meta-task imply, for
example, that processing a pixel is a subtask of processing
an image, while recognizing a single image is a task
instance of the meta-task of recognizing images. Follow-
ing our previous example, f{x) = 2x + 1 can be divided into
subtasks fix) = A(g(x)), where g(x) = +/x and A(x) = 2x°
+ 1. It can also be viewed as an instance of the meta-task
F(x) = ax + a* + b, where @ =2 and b =—3.

"T'his conceptualization of the relationship between tasks
is useful for describing different ways tasks can be repre-
sented by agents. In practice, it is useful to describe two
computational processes as separate tasks if the neural
mechanism are different between those processes. In
contrast, it is useful to describe multiple computational
processes as part of the same task if those processes are
carried out using an overlapping set of neural representa-
tions. If two computational process are presumably sup-
ported by the same mechanism (for example, classifying
two images from the same dataset), then conceptually
there is no need to separate them into two tasks, instead
they can be considered two conditions of the same task.

Agents (animals/networks) can have different underlying
neural mechanisms for the same task. So there must be an
agent-dependent view on how to decompose a task into
subtasks, and whether one task is a meta-task of another
task (Figure 1c). The task “driving” can be intuitively
decomposed into subtasks such as object recognition, plan-
ning, and motor control. Yetifa computationally-pooragent

drives by mapping pixel inputs directly into motor outputs
through a feedforward network with a single hidden layer,
the recognition/planning/control decomposition would no
longer be meaningful. Whether a task should be viewed as
coming from a particular meta-task is similarly influenced
by the neural mechanism.

Constructing large sets of tasks

Neuroscience and cognitive science have benefited tre-
mendously from carefully designed single tasks. To study
the neural mechanism of one particular function, a neu-
roscience task is typically constructed such that other
functions cannot be used to solve it. How can we extend
this design principle to the study of multiple tasks? We
review two methods to build large, controlled sets of
tasks, one starts with a common set of subtasks, another
starts with a common meta-task.

Tasks with common subtasks In visual perception, vari-
ous tasks like object classification, localization, and seg-
mentation [38] share many similar computations. These
shared computations or subtasks are not necessarily
named, but are typically embodied by common feature
extraction layers in both animals (e.g., retina, V1) and
neural network models. In motor control and robotics,
many tasks involve the same lower-level subtasks like
walking and grasping [58,9]. Many cognitive tasks involve
working memory and decision making [67°°].

Besides choosing tasks that already share common com-
putations, we can construct many interrelated tasks start-
ing from a small set of subtasks as building blocks
[32°°,66°,35,63] (Figure 2a). A task can be characterized
as a graph of subtasks (Figure 2b). For example, combin-
ing the subtasks “select an object from an image”, “get
the color of an object”, and “compare the value of two
attributes”, we can construct a variant of the delayed-
match-to-category task [24]: “Compare the color of the
current object with that of the last object” (Figure 2c).
The task graph describes the order in which the subtasks
are composed together [32°°,66°]. This approach allows
for the compositional generation of a large number of
tasks using a small set of subtasks. Cole and colleagues
have studied how humans can perform many tasks using a
dataset of 64 tasks that are generated compositionally
from 4 sensory, 4 motor, and 4 logic subtasks [14,30].

Many questions we would like to ask with multiple tasks
can benefit from having a collection of tasks with common
subtasks. The total number of distinct tasks can grow
exponentially with the number of subtasks, therefore
providing strong constraint for training. It provides a
way to test whether networks can transfer knowledge
better when the new task has more common subtasks
with previously learned tasks. It also allows us to ask
whether a neural network can quickly identify the com-
mon subtasks from learning a group of tasks.
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(a-c) Generating multiple tasks from a shared set of subtasks. A small subset of subtasks (a) can be used to generate a large number of tasks
through composition (b), from which a single task can be sampled (c). Adapted from [66°]. (d,e) Generating multiple tasks from the same meta-
task. Starting with a common meta-task (d), many tasks can be instantiated (e).

Tasks with a common meta-task A classic meta-task
example is the Harlow task [29]. In this meta-task, an
animal/agent learns to choose between two objects
(Figure 2d), one rewarding, and the other not. For each
instance of this meta-task, a new set of two objects is used.
Within a task, the objects are shown at different spatial
locations in each trial. Critically, each task instance only
lasts for a few trials (Figure 2e), so the animal/agent needs
to learn efficiently within a task to maximize reward. Here
each concrete task requires rapid learning, so the meta-
task can be described as learning-to-learn [61°°]. Simi-
larly, learning to categorize using a small number of
examples can be considered a meta-task, where each task
instance would involve several examples from new cate-
gories [60,36].

Many other tasks can be conceptualized as instances of
corresponding meta-tasks. The task of navigating a par-
ticular maze can be an instance of the more general maze
navigation task [57]. A 2-arm bandit task with a particular
reward probability for each arm is a special case of the
general 2-arm bandit task [61°°], which itself is an
instance of the n-arm bandit task. Starting from a generic
enough meta-task, we can generate many, even infinite,
interrelated tasks.

The benefit of constructing a large set of tasks with a
shared meta-task is that the difficulty of individual task

can be kept the same. This can, for example, allow us to
probe whether a model is getting faster at learning new
tasks. In addition, studying tasks from a common meta-
task allows us to investigate whether networks have
acquired the abstract structure of the meta-task, and
how the task structure is represented.

The specialization-flexibility continuum

It is clear that there is no single neural mechanism for
multiple tasks. Instead, there are many potential neural
mechanisms, depending on the collection of tasks, the
method that a biological or artificial system uses to acquire
the tasks, and (in the case of biological systems) the brain
areas studied. Overall, little is known about how any of
these aspects influence the neural mechanism. Here we
propose that even though there are practically infinite
possible ways to choose a set of tasks and to train net-
works, the resulting neural mechanisms usually live along
a specialization-flexibility continuum (Figure 3a) [28°].
Solutions occupying different places on this continuum
would lead to different neural mechanisms, and demand
different types of training paradigms to reach. At the
extremes of the specialization-flexibility continuum are
two distinct types of solutions for a set of acquired/trained
tasks, the specialized and the flexible solution
(Figure 3a). In the case of an animal/agent that has
learned to perform multiple tasks, the two types of
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Figure 3
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(a) (left) For a set of learned tasks (triangle), the specialized solution leads to high performance for learned tasks, but low performance when
learning tasks far from the learned tasks. (right) The flexible solution improves expected performance over a wide range of tasks at the expense of
a lower performance for the learned tasks. (b) Schematic showing potential neuronal-level mechanisms for multiple tasks, left: modularity, right:
mixed-selectivity. Color indicates the level each unit is engaged in tasks 1 and 2. Red: unit only engaged in task 1, blue: unit only engaged in task

2, purple: unit engaged in both tasks. Adapted from [67°7].

solutions will differ in the degree they specialize to the set
of learned tasks.

Consider an agent that has already learned a set of tasks
S=(A, B, C, D,...), and is about to learn a new task X. A
specialized solution is characterized by the agent’s high
performance or efficiency for the set of learned tasks , but
relative difficulty in learning the new task X, if X is dissimilar to
tasks in §. Here task X is similar to the set of tasks §'if it shares
many subtasks or a meta-task with the tasks in § (such that
shared neural representations/processes are used). Because
the organization of tasks is agent-dependent as argued before,

the distance between tasks would have to be as well. In
comparison, a flexible solution to the set of tasks § may not
achieve as high performance as the specialized solution, but it
would allow for better learning when X is dissimilar to tasks in
§. This difference between specialized and flexible solutions
are illustrated in Figure 3a. We emphasize that when a new
task Xis similar to S, both the specialized and flexible solutions
can learn it rapidly, or even perform it without learning (i.e.,
without connectivity weight changes).

"T'his continuum from specialization to flexibility is con-
ceptually connected to several other contrasting concepts.

Current Opinion in Behavioral Sciences 2019, 29:134-143
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Perhaps most relevant to this distinction, decades of
cognitive psychology (and cognitive neuroscience)
research has established that controlled versus automatic
processing is a fundamental distinction in human cogni-
tion [51,13]. Controlled processing is characterized as
being especially flexible but capacity limited and ineffi-
cient. In contrast, automatic processing is characterized as
being highly inflexible but high capacity and efficient.
Controlled processing occurs when a task is novel
(decreasing with practice) and when there is conflict
between representational mappings (e.g., from stimulus
to response) that needs to be resolved. Automatic proces-
sing occurs in all other cases, consisting of consistent
mappings between representations from extensive prac-
tice (e.g., walking, driving a familiar route, etc.). Given
that these modes of processing map directly onto the
specialized-flexible continuum, it appears that the human
brain deals with this computational trade-off by switching
from one mode of processing to the other as necessary —a
form of meta-optimization [15,7]. Specifically, it appears
that the human brain uses flexible cognitive control brain
systems early in learning [16,17,12] and in the face of
conflict [6,37], switching to specialized systems (when
possible due to low conflict) to implement automatic
processing after extensive practice [12,50]. It will be
important for future work to explore the relationship
between this computational trade-off generally (e.g., in
computational models) and the particular manner in
which human (and other animal) brains deal with this
trade-off.

From modularity to mixed-selectivity

Here we describe two neural mechanisms that may corre-
spond to specialized and flexible solutions, respectively. In
particular, we will mainly focus on mechanisms at the
neuronal level, namely how neurons are engaged in each
task, and how the group of neurons engaged in one task is
related to the group of neurons engaged in another task.

The first neural mechanism is modularity (Figure 3b). A
neural circuit capable of performing multiple tasks can
potentially consist of multiple groups of neurons, or
modules. A particular subset of modules will be engaged
when the network is performing each task. The second
neural mechanism is mixed-selectivity (Figure 3b). In a
neural circuit exhibiting mixed selectivity [25], neurons
do not belong to fixed functional modules, unlike the
modular mechanism. Mixed selective neurons are char-
acterized as being nonlinearly selective to many task
variables (e.g., sensory stimulus, action). Furthermore,
the selectivity is task-dependent. Collectively, these
neurons form representations that are high-dimen-
sional, supporting readout of many combinations of
task variables [47].

We argue that in the brain, modularity is typically the
result of specialization. Highly evolved and stereotypical

computations are usually supported by modular neural
circuits. Neuronal-level modularity is evident in highly-
specialized ecarly sensory processing areas. Mammalian
retina consists of more than 60 cell types [41], with at least
30 functionally distinct types of output cells [2]. Mouse
olfactory system consists of more than 1000 types of
olfactory receptor neurons [10]. Modularity is also appar-
ent at the neural system level. Mammalian cortex is made
up of about a dozen modular brain systems [31] consisting
of many areas (almost 400 in humans [26]), some of which
are highly specialized such as areas dedicated to face
processing in primates [59].

We have previously described that even highly special-
ized networks can appear flexible and rapidly learn many
new tasks as long as the new tasks are close to the learned
tasks §. Here we explain how this could be achieved in a
modular circuit. Consider a set of tasks generated from a
common set of subtasks. A highly specialized network can
support each subtask with a module (a group of neurons).
The entire task can be performed by activating the
corresponding modules. Such a network can be flexible
in the sense that it can generalize to new tasks that use the
same subtasks. But it may have difficulty learning new
tasks that involve new subtasks, as that would require
breaking existing modules. Further, there would likely be
difficulty learning and coordinating the correct combina-
tion of modules, given that more than one combination is
possible among three or more modules.

While specialization can drive modularity, flexible solu-
tions demand mixed-selectivity. Neurons are usually
mixed-selective in higher-order brain areas critical for
flexible behavior, such as prefrontal cortex and hippo-
campus. In the prefrontal cortex (which is part of the
frontoparietal system), for example, many tasks engage a
significant proportion of neurons [25]. In the hippocam-
pus, spatial and non-spatial information are nonlinearly

mixed [1,27].

From a state-space perspective, a population of neurons
with mixed selectivity can support high-dimensional
representation of sensory information. A higher-
dimensional representation can lead to read out of more
combinations of inputs, supporting faster learning of new
tasks [56]. In contrast, specialized solutions should favor
lower-dimensional representations where the network
only represents the combinations of sensory inputs useful
to the learned tasks.

Even though we described modularity and mixed-selec-
tivity as two opposing mechanisms, they can clearly co-
exist. Both mechanisms are observed in the brain, after
all. A brain area that is mixed-selective can be itself one
module of the larger modular neural system. Further,
there is evidence that the frontoparietal system (which
consists of neurons with high mixed selectivity)
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coordinates specialized modules to facilitate transfer of
previous learning to novel task contexts [16,17,30].

How to train neural networks to be specialized
or flexible

In neuroscience, it is increasingly common to compare
biological neural circuits with artificial  ones
[65,64,40,53,54]. With the exponential growth of the deep
learning field, there are many varieties of training meth-
ods available for artificial neural networks. Here we
discuss how training methods used for artificial neural
networks can influence whether the solution developed is
more specialized or flexible.

Opverall, we predict that conventional training methods
that rely on a large amount of training data will likely lead
to specialized solutions. These methods are the standard
ones in machine learning and many neuroscience appli-
cations. The best models for matching neural activity in
higher-order visual areas are deep convolutional networks
[64] trained on the ImageNet dataset [18], containing
more than 1 million images. The ImageNet task of object
classification is a general-enough task that many related
visual tasks benefit from using backbone networks
trained on ImageNet [39,22]. These results again dem-
onstrate that specialized solutions can allow rapid learn-
ing on tasks close to learned tasks.

In the previous section, we showed that modularity is
commonly observed in specialized brain areas. In artificial
neural networks the causal link from specialization to
modularity can be studied more readily than in biological
neural systems. A recurrent neural network trained to
perform 20 interrelated cognitive tasks developed spe-
cialized neural populations, each serving a common com-
putation behind multiple tasks [67°°]. In this work, the
emergence of functionally specialized modules is not a
result of regularization that sparsifies activity or connec-
tivity, instead, it appears simply under the pressure to
perform all tasks well.

A notable case of specialized solutions is when each task
has a dedicated output network following an input net-
work shared across all tasks [11,49]. The system is modu-
lar in the sense that each output network is only engaged
in a single task. The optimal size of each output module
relative to the size of the shared input network depends
on how similar the tasks are [33°,68]. The advantage of
such systems is that multiple tasks can be performed
simultaneously. However, learning a new task involves
training a separate output network, which can be difficult
when learning a large number of tasks.

When a network is trained on a large number of task
instances from one meta-task, it can develop a specialized
solution that still generalizes to new task instances from
the same meta-task. Following an example mentioned

above, a network can be trained to perform many specific
2-arm bandit task instances, each with particular reward
probabilities and a limited amount of training data avail-
able. Once a network masters the 2-arm bandit meta-task,
it can quickly learn to perform new task instances. This
method of training a network to learn a meta-task so it can
quickly learn task instances has been subject to a large
body of machine learning work under the topic of learn-
ing-to-learn or meta-learning. A neural network can be
trained using meta-learning methods to flexibly catego-
rize [60,52,23], adapt to new reinforcement-learning tasks
[61°°,62,21,5], and imitate behaviors [20]. Networks
trained this way can develop powerful specialized solu-
tions to the meta-task. Little is known about the neuro-
nal-level neural mechanism in networks trained this way.
It would be interesting to know whether these networks
also develop modular solutions.

How to train a network to stay flexible to new tasks that
do not share subtasks or a meta-task with previously
learned tasks? We suggest that a network can stay
flexible for many tasks by explicitly preventing special-
ization to the tasks currently being learned. This can be
achieved in artificial neural networks through various
continual learning methods [34,69,4] that discourage
large changes to existing connection weights during
training. A related strategy is to train only a small subset
of connections for any given task [55,46,42]. These
methods are originally proposed to prevent neural net-
works from forgetting previously learned tasks when
learning new tasks, however, we argue that these meth-
ods can also help neural networks learn new tasks far
from the set of learned tasks. The neural network can
be initialized with random connectivity, which will
endow it with mixed selectivity [48]. When learning
a new task, mixed selectivity can be preserved as long
as learning does not strongly alter the random connec-
tivity [67°°,55].

Concluding remarks

Having the same system solve multiple tasks can provide
strong constraints on both conceptual and computational
models of the brain. It prevents us from building theories
and models that overfit the tasks being studied at hand.
Having a multi-task system further opens up many new
questions, especially when systematically-generated task
collections are used. Training non-human animals to
perform multiple tasks can be relatively difficult. The
use of artificial neural networks in neuroscience and
cognitive science can alleviate this problem by offering
a complimentary model system where multiple tasks are
more easily trained. However, depending on the particu-
lar training methods, profoundly different solutions can
arise. T'hus, modelers should choose training techniques
based on the type of solutions (specialized or flexible)
they intend to build.
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We have discussed two neuronal-level mechanisms for
multiple tasks, modularity and mixed-selectivity. Of
course, much remains to be learned about each mecha-
nism. Another line of intriguing questions is to better
connect mechanisms at the neuronal-, state-space-, and
behavioral-level. For example, what happens at the neu-
ronal level when an agent or animal had a eureka moment
(at the behavioral level) that several tasks all belong to the
same meta-task or share a common subtask? Addressing
these questions requires neural circuit/network models
that are versatile enough to perform multiple tasks, yet
simple enough to facilitate analysis and understanding.
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