Deterministic Actors

Marten Lohstroh, Edward A. Lee
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA, USA
{marten,eal } @berkeley.edu

Abstract—Actors have become widespread in programming
languages and programming frameworks focused on parallel and
distributed computing. While actors provide a more disciplined
model for concurrency than threads, their interactions, if not
constrained, admit nondeterminism. As a consequence, actor pro-
grams may exhibit unintended behaviors and are less amenable to
rigorous testing. We show that nondeterminism can be handled in
a number of ways, surveying dataflow dialects, process networks,
synchronous-reactive models, and discrete-event models. These
existing approaches, however, tend to require centralized control,
pose challenges to modular system design, or introduce a single
point of failure. We describe “reactors,” a new coordination
model that combines ideas from several of the aforementioned
approaches to enable determinism while preserving much of
the style of actors. Reactors promote modularity and allow for
distributed execution. By using a logical model of time that can
be associated with physical time, reactors also admit control over
timing.

Index Terms—concurrency control, distributed computing,
programming, software testing

I. INTRODUCTION

Loosely, actors are concurrent objects that communicate by
sending each other messages. Under this loose definition, an
enormous number of actor programming languages and mod-
els have been developed, although many are called by other
names, including dataflow, process networks, synchronous-
reactive languages, and discrete-event languages. A narrower
definition, originally developed by Hewitt and Agha [1],
[2], has recently seen a renaissance, appearing in several
software frameworks such as Scala actors [3], Akka [4], and
Ray [5], and programming languages, like SALSA [6] and
Rebeca [7]]. Unlike various related dataflow models, the Hewitt
actor model, as it is known, is nondeterministic. Even if
each actor reacts in deterministic ways to incoming messages,
when composed, a collection of actors typically yields many
possible behaviors. In this paper, we explain how most of the
nondeterminism can be avoided without losing expressivity.
This results in distributed programs with more testable and
repeatable behaviors that admit nondeterminism only where it
is explicitly required by the application.

We begin by illustrating the concern with a simple example,
given in Fig. [1] It uses a pseudo-code syntax that is a mashup
of several of the concrete languages mentioned above. This

The work in this paper was supported in part by the National Science
Foundation (NSF), award #CNS-1836601 (Reconciling Safety with the In-
ternet) and the iCyPhy Research Center (Industrial Cyber-Physical Systems),
supported by Avast, Camozzi Industries, Denso, Ford, Siemens, and Toyota.

| actor X {

2 state = 1;

3 handler dbl () {
4 state x= 2;

11 actor Y {
12 handler main ({

5 } 13 x = new X();
6 handler incr (arg) { 1 X".ibl O3
15 x.incr(1l);
7 state += arg; 6 }
8 print state; ’

9 }

10 }

Fig. 1. Pseudo code for an actor network that is deterministic under reasonable
assumptions about message passing.

code defines an actor class X that has a single integer state
variable that is initialized to 1. It has two message handlers,
named dbl () and incr (). When invoked, these handlers
will double and increment the state variable, respectively.

The actor named Y with handler main creates an instance
of X and sends it two messages, dbl and incr. Note that
although many actor languages make these look like remote
procedure calls, presumably because such syntax is familiar to
programmers, they are not remote procedure calls. Lines 14
and 15 send messages and return immediately. The semantics
of actors is “send and forget,” a key feature that enables
parallel and distributed execution.

The program in Fig. [T] is deterministic under mild assump-
tions about the network that relays messages. First, we need to
assume that messages are delivered reliably in the same order
that they are sentE] Since dbl is sent before incr, actor x
will execute handler db1l () before handler incr (). Second,
we need to assume that handlers are mutually exclusive That
is, once a handler begins executing, it executes to completion
before any other handler in the same actor begins executing.
This assumption prevents a race condition between lines 4 and
7. Thus, in this program, line 4 will execute before line 7 and
the printed output will be 3.

Consider now the seemingly minor elaboration shown in
Fig. 2] This program introduces a third actor class, Relay,
which has a single handler r1y that simply relays a message,
in this case db1l, to the actor x passed to it. This is about as
close as one can get to a “no op” in actor-oriented program. It

IThis can be realized on a distributed system by relying on the eventual,
in-order delivery property of TCP/IP.

2This assumption can be relaxed by statically analyzing the code of the
handlers and enforcing mutual exclusion only between handlers that share
state variables.

1 actor Y {

handler main {
x = new X();
z = new Relay();
z.rly(x);
x.incr(1);

}

11 actor Relay {
12 handler rly
13 x.dbl ();
14 }

15 }

(%) {

I Y I)

}

Fig. 2. Modification of the code in Fig.[I]yielding a nondeterministic program.
Actor X remains the same.

import ray

1
2 Qray.remote
3 class X(): .
4 def __init__ (self): 7 def test():
18 x = X.remote ()
5 self.count =1 19 r = Relay.remote ()
¢ def dbl(self): -
20 fl = r.rly.remote (x)
7 self.count *= 2 .
. return self.count 21 f2 = x.inc.remote (1)
: 2 return ray.get (f1) \

9 def inc(self, arg):
10 self.count += arg
1 return self.count
12 @ray.remote

13 class Relay () :

14 def rly(self, x):

15 return ray.get (

16 x.dbl.remote())

2 + ray.get (£2)

25 ray.init ()
26 result = test ()
27 print (result)

Fig. 3. A nondeterministic actor network in the syntax of Ray.

is an actor that, when it receives a message, simply passes the
message on. However, this innocent change has profound con-
sequences. The execution is no longer deterministic under any
reasonable assumptions about message delivery. The printed
value could be either 2 or 3, depending on whether db1 () or
incr () is invoked first. (The final state will be 3 or 4.)

A similar example written in the concrete syntax of Ray [S]]
is shown in Fig. [3] Ray extends the metaphor of remote
procedure calls by integrating futures [8] into the language.
In Ray, message handlers can return values. The semantics is
still “send and forget,” so when a message is sent, a “future”
is returned. A future is a placeholder data structure for the
returned result. Execution can continue until returned result
is actually needed, at which point the sender of the message
can call ray.get () on the future. The call to ray.get ()
blocks until the result is actually received. Nevertheless, the
program in Fig. |3| remains nondeterministic; it is capable of
producing either 5 or 6 as a result. You can easily verify this
by inserting sleep () statements from Python’s time module
to alter the timing of the execution.

The blocking behavior of ray.get () provides a mecha-
nism, one not available in any other actor language that we
know of, for controlling the execution of a network of actors.

1 def test(): 5 part = ray.get (fl)

2 x = X.remote () 6 f2 = x.inc.remote (1)
3 r = Relay.remote () 7 return part \

4 fl = r.rly.remote (x) 8 + ray.get (£2)

Fig. 4. Modification to the program in Fig. [3] to make it deterministic.

This mechanism could be used, for example, to make the
program in Fig. [3| deterministic. The test function could be
replaced with the code in Fig. 4| This code forces the main
actor to block until the result of the invocation of dbl ()
is received before sending the incr message. This solution,
however, requires a very savvy programmer and largely defeats
the purpose of the futures. We doubt that many Ray programs
will be written with such controls.

This type of nondeterminism is endemic to the Hewitt actor
model. Moreover, without the blocking futures of Ray, it is
difficult to change the program in Fig. [2|to consistently print 3.
One way would be to modify class X so that it always invokes
dbl () before incr (), but this is a much more restrictive
actor that may as well have only one message handler that
doubles the state and then increments it. Alternatively, we
could set up another message handler in X that tells it
which handler to invoke first, but we would have to ensure
that messages to that handler are invoked before any other.
Moreover, the semantics now becomes complex. Should a
message telling X to invoke dbl () first apply only to the
next dbl message or to all subsequent ones? What if two
dbl messages arrive with no intervening incr message?

Since such a simple program results in unfixable nondeter-
minism, we can only conclude that the Hewitt actor model
should be used only in applications where determinism is
not required. While there are many such applications, even
for those, we pay a price. The code becomes much more
difficult to test. Standard testing techniques are based on
presenting input test vectors and checking the behavior of
the program against results known to be good; in the face
of non-determinism, the entire set of known-good results may
be difficult to determine and too vast to enumerate.

To underscore the challenges that nondeterministic software
poses to testability, we cite Toyota’s unintended acceleration
case. In the early 2000s, there were a number of serious car ac-
cidents involving Toyota vehicles that appeared to suffer from
unintended acceleration. The US Department of Transportation
contracted NASA to study Toyota software to determine
whether software was capable of causing unintended accelera-
tion. The NASA study [9] was unable to find a “smoking gun,”
but they concluded that the software was “untestable” and that
it was impossible to rule out the possibility of unintended
acceleration [10]. The software used a style of design that
tolerates a seemingly innocuous form of nondeterminism.
Specifically, many state variables, representing for example the
most recent readings from a sensor, were accessed unguarded
by a multiplicity of threads. We suspect that this style of
design seemed reasonable to the software engineers because
one should always use the “most recent” value of a sensor.
But the software becomes untestable because, given any fixed
set of inputs, the number of possible behaviors is vast.

Not all concurrent software is used in such safety-critical
scenarios, of course, but all software benefits from testability.
The Toyota software did not use Hewitt actors, but many
Hewitt actor programs share a similar form of nondeterminism.
Messages are handled in order of arrival, so the state of an

actor represents the effects of the “most recent” messages.

The main contribution of this paper is to show that the
Hewitt actor model can be extended to yield a deterministic
model of computation using any of various techniques, some
of which have a long history. These include various dataflow
dialects, process networks, synchronous-reactive models, and
discrete-event models. After discussing these coordination
approaches, we explain a new coordination model we call “re-
actors,” which combines several of the aforementioned tech-
niques with the goal of enabling determinism while preserving
much of the style of actors. Specifically, the reactor model
promotes modularity and allows for distributed execution.
Reactors use a logical model of time to achieve deterministic
execution; we show how their capability of relating logical
time to physical time allows for the design of distributed
reactor systems that behave deterministically.

II. ACHIEVING DETERMINISM

A system is deterministic if, given an initial state and a
set of inputs, it has exactly one possible behavior. For this
definition to be useful, we have to define “state,” “inputs,’
and “behavior.” For example, if we include in our notion of
“behavior” the timing of actions, then no computer program
in any modern programming language is deterministic. In
our discussion above, the actor programs have no inputs, the
initial state is state = 1 in an instance of actor X, and the
“behavior” is the result printed. Timing is not part of the model
and therefore irrelevant to the definition of determinism.

Determinism is a property of a model, not a property of a
physical realization of a system [L1]. A Turing machine, for
example, provides a deterministic model of computation that
does not include timing. The “input” is a sequence of bits,
and the “behavior” consists of sequential transformations of
that sequence. Any particular physical realization of a Turing
machine will have properties that are absent from Turing’s
model, such as timing, but we could construct a different
model that did consider timing part of the “behavior.” Such a
model would be nondeterministic. The same physical system,
therefore, is deterministic or not depending on the model.

A. Determinism for Software

Whether a software system is deterministic depends on our
model of the software. A simple model of a program defines
initial state as the starting values of all variables, the inputs as
a static bit sequence (a binary number) available all at once
at the start of execution, and the output as a bit sequence
produced all at once upon termination of the program. This is
the classic Church-Turing view of computation.

This classic model, however, has difficulty with many prac-
tical software systems. A web server, for example, does not
have inputs that can be defined as a binary number available
all at once at the start of execution. Nor does it terminate
and produce a final output. An alternative model for a web
server defines its inputs as a (potentially unbounded) sequence
of binary numbers, and the “behavior” as sequence of binary

numbers produced as outputs. In this model, whether the web
server is deterministic may be an important question.

In a concurrent or distributed software system, however,
defining the inputs as a sequence of binary numbers may be
problematic. A distributed database, like Google Spanner [12],
for example, accepts inputs at a globally distributed collection
of data centers. It is impossible to tell whether a query arriving
in Dallas arrives before or after a query arriving SeattleE] In
Google Spanner, however, when a query comes in to a data
center, it is assigned a numerical timestamp. The “inputs” to
the global database are defined as an unbounded collection of
timestamped queries, and the “behavior” is the set of responses
to those queries. Under this model, Spanner is deterministic.
We emphasize that this is not an assertion about any physical
realization of Spanner, which could exhibit behaviors that
deviate from the model (if, for example, hardware failures
undermine the assumptions of the model). It is the model that
is deterministic, not the physical realization.

Consider again the actor programs in Figs. [2] and 3] If
we wish for these programs to be deterministic, we have to
somehow constrain the order in which message handlers are
invoked. We have an intuitive expectation that dbl () should
be invoked before incr (), but that is not what the programs
say. The programs, as written and as interpreted by modern
actor frameworks, do not specify the order in which these
handlers should be invoked. Thus, it will not be sufficient to
simply improve the implementation of the actor framework.
We have to also change the model.

B. Coordination for Determinism

Let us focus on the actor network sketched in Fig.
Since actor Y first sends a message that has the eventual
effect of doubling the state of actor X and then sends a
second message to increment the state of X, let us assume
that it is the design intent that the doubling occur before the
incrementing. Any technique that ensures this ordering across
a distributed implementation will require some coordination.
There are many ways to accomplish this, many of which date
back several decades. Here, we will outline a few of them.

In 1974, Gilles Kahn showed that networks of asyn-
chronously executing processes could achieve determinis-
tic computation and provided a mathematical model for
such processes (Scott-continuous functions over sequence do-
mains) [13]. In 1977, Kahn and MacQueen showed that a very
simple execution policy using blocking reads guarantees such
determinacy [14]. Using the Kahn-MacQueen principle, actor
X in Fig. 2] could be replaced with X_KPN (for Kahn Process
Network) in Fig. 5] Instead of separate message handlers, a
process in a KPN is a single threaded program that performs
blocking reads on inputs. The await calls in Fig. [5] perform
such blocking reads. That code ensures that doubling the state
will occur before incrementing it even if actor Y sends its
output messages in opposite order.

3Fundamentally, it is not only difficult to decide which query arrives first,
it is impossible to even define what this means. Under the theory of relativity,
the ordering of geographically separated events depends on the observer.

1 actor X_KPN { 6 arg = await (incr);
2 handler main { 7 state += arg;

3 state = 1; 8 print state;

4 await (dbl); 9 }

5 state *= 2; 0 }

Fig. 5. Variant of X in Fig. P]to encode design intent using blocking reads.

1 actor Relay {
handler rly (X x) {

if (some condition) { x.dbl(); }

2
3
4 }
5
Fig. 6. Modification to actor Relay in Fig.] to filter messages.

This way of encoding the design intent, however, has some
disadvantages. Suppose that the Relay actor, instead of just
relaying messages, filters them according to some condition,
as shown in Fig. [6| Now the X_KPN will permanently block
awaiting a dbl message. The filtering logic would have to
repeated in the X_KPN actor, which would have to surround
the blocking read of dbl with a conditional. Moreover, the
condition would have to be available now to X_KPN, making
the Relay actor rather superfluous. Indeed, our experience
building KPN models is that conditionals tend to have to be
replicated throughout a network of connected actors, thereby
compromising the modularity of the design.

Another family of techniques that are used to coordinate
concurrent executions for determinism fall under the heading
of dataflow and also date back to the 1970s [[15]], [16]. Modern
versions use carefully crafted notions of “firing rules” [17],
which specify preconditions for an actor to react to inputs.
Actors can dynamically switch between firing rules governed
by some conditions, but once again the conditions need to be
shared across a distributed model to maintain coordination.
One particularly elegant mechanism for governing such shar-
ing is scenario-aware dataflow, where a state machine governs
the coordinated switching between firing rules [18]].

Another family of coordination techniques that can deliver
deterministic execution uses the synchronous-reactive (SR)
principle [19]. Under this principle, actors (conceptually)
react simultaneously and instantaneously at each tick of a
global (conceptual) clock. Like Kahn networks, the underlying
semantics is based on fixed points of monotonic functions
on a complete partial order [20] and determinism is assured.
Unlike Kahn networks, however, the global clock provides
a form of temporal semantics. This proves valuable when
designing systems where time is important to the behavior of
the system, as is the case with many cyber-physical systems.
Some generalizations include multiclock versions [21]. Many
projects have demonstrated that despite the semantic model
of simultaneous and instantaneous execution, it is possible to
implement such models in parallel and on distributed machines
using strategies generally called physically asynchronous, log-
ically synchronous (PALS) [22].

A fourth alternative, and the one we focus on in Sec. is

based on discrete-event (DE) systems, which have historically
been used for simulation [23], [24], but can also be used as
a deterministic execution model for actors. DE is a general-
ization of SR, where there is a quantitative measure of time
elapsing between ticks of the global clock [25]. In DE models,
every message sent between actors has a timestamp, which is a
numerical value, and all messages are processed in timestamp
order. The underlying semantics of these models is based on
generalized metric spaces rather than complete partial orders,
but this semantics similarly guarantees determinism [26].

One challenge when reasoning about DE systems is that
we immediately face (at least) two time lines: logical time
and physical time(s). Logical time is the time of timestamps.
Physical time is the time of physical clocks (not to be confused
with the semantic clocks of synchronous-reactive models), and
in a distributed system, there are typically multiple physical
clocks. In real-time distributed systems, logical time and
physical time can be aligned at selected points (e.g., when
taking data from sensors or when actuating some physical
devices), but otherwise, logical time is used as a semantic
mechanism to ensure deterministic ordering and is allowed
to differ from physical time. Unfortunately, natural language
makes it difficult to form sentences about more than one time
line together. Careful wording is required to avoid confusion,
and sometimes, no wording seems adequate.

III. REACTORS

Reactors, introduced in [27]], are deterministic actors com-
posed out of reactions and coordinated under a DE seman-
tics. Reactions are message handlers, and messages between
reactors are timestamped and handled in timestamp order.
Messages with identical timestamps are logically simultaneous
and are handled in a deterministic order. We use the term
“reactors” to distinguish them from Hewitt actors. We are
currently developing a meta-language called Lingua Franca
(LF) for defining reactors and their compositions. LF is a
polyglot meta language in which the logic of reactors is given
in some target language such as C, Java, or JavaScript. The
program from Fig. 2] is rewritten in LF in Fig. []] with the
target language C, where all text between the delimiters {=
... =}is C code.

A. Ports

Reactors do not directly refer to their peers. Instead, they
have named (and typed) input and output ports. Timestamped
incoming messages arrive at input ports, and reactions send
timestamped messages via output ports.

B. Hierarchy

A composite reactor contains interconnected instances of
reactors. The composite named “Main” in Fig. |/| contains one
instance of each of the three other reactors and defines how
their ports are connected. In this simple example, there is only
one composite, but in LF, composites themselves can have
input and output ports and can contain composites.

reactor X {

1
2 input dbl;

3 input incr:int; 2 reactor Y {

4 preamble {= 23 output dbl:void;
5 int state = 1; 24 output incr;

6 =} 25 timer t (0);

7 reaction (dbl) {= 26 reaction (t) {=

3 state *= 2; 27 set (dbl, void);
9 =} 28 set (incr, 1);
10 reaction (incr) {= 29 =1}

11 state += incr; 30}

12 print state; 31 composite Main ({

13 =1} 32 x = new X();

14} 33 r = new Relay();
15 reactor Relay { 34 y = new Y ();

16 input r; 35 y.dbl -> r.r;

17 output out; 36 r.out -> x.dbl;
18 reaction (r) —>out {= 37 y.incr -> x.incr;
19 set (out, r); 38}

20 =}

Fig. 7. Lingua Franca code for a reactor network.

C. Logical Time

Messages in LF have timestamps. Reactions to messages
occur at a logical time equal to the timestamp, and logical
time does not advance during the reaction. An input port
can have at most one message at any logical time. If no
message is present, then the input is absent at that time, and
no message can later appear with that timestamp. Any output
messages produced in a reaction bears the same timestamp
as the input message that triggers the reaction. These outputs,
therefore, are logically simultaneous with the triggering inputs.
If any reactor receives more than one message with the
same timestamp (on distinct input ports), those messages are
logically simultaneous. If they trigger multiple reactions, those
reactions will be deterministically invoked in the order that the
reactions are defined. A reactor may also have one or more
timers, as shown on line 25 of Fig. That timer, named
t, triggers once with delay O (at the logical start time of
execution), causing the reaction to t to be invoked at the
logical start time. That reaction sends two messages, both
timestamped with the same timestamp. Reactions to those
messages will be invoked at the same logical time. Timers
support periodic and one-time actions.

D. Scheduling

Reactions may share state with other reactions in the
same reactor. To preserve determinacy, reactions within one
reactor are invoked in a predefined order when there are
logically simultaneous input messages. Semantically, this ap-
proach follows the sequential constructiveness principle of
SCCharts [28]], which allows arbitrary sequential reads or
writes of shared variables during a synchronous-reactive tick.

If two distinct reactors receive logically simultaneous mes-
sages, then their reactions may be invoked in parallel unless
there is a direct dependency between them. In Fig. the
Relay reactor’s reaction to input r declares that it writes to
output out using the syntax on line 18. This means that there

is a direct feedthrough relationship from input r to output
out. At the level of the composite, this information can be
used to analyze dependencies within the composite and impose
scheduling constraints (an algebra for such analysis is given in
[29]). The purpose of these scheduling constraints is to ensure
the deterministic DE semantics even in the presence of parallel
and distributed execution.

One of the goals of LF is to abstract code written in the
target language. The code in between {= ... =} delimiters
is not even parsed, much less analyzed. In principle, it is
possible to infer the declared input/output dependencies from
that code if it were to be parsed. However, if the reading of
input messages or writing of output messages in a reaction
is data dependent, then whether a declared dependency is
actually a real dependency proves undecidable. Hence, even
the most sophisticated analysis will be conservative.

While declaring the dependencies statically comes at the
cost of a slight loss in the accuracy of the reporting of
causal dependencies, it facilitates the polyglot nature of Lingua
Franca. A variety of target languages can be supported by the
same model. For example, using C as a target language is
appropriate for resource constrained, deeply embedded sys-
tems, while Python may be a better choice for Al applications
and Java for enterprise-scale distributed applications. Because
target-language code is not analyzed in the LF compiler,
comparatively little effort is required to add support for new
target languages.

IV. DISTRIBUTED EXECUTION

Discrete-event models of computation, where time-stamped
events are processed in timestamp order, have been used
for simulation for a long time [23], [24)]. There is also a
long history of executing such simulations on parallel and
distributed platforms, where the primary challenge is main-
taining the timestamp ordering without a centralized event
queue. The classic Chandy and Misra approach [30] assumes
reliable eventual in-order delivery of messages and requires
that before any actor with two or more input ports process
any timestamped input message, that every input have at least
one pending input message. It is then safe to process the
message with the least timestamp. To avoid starvation, the
Chandy and Misra approach requires that null messages be
sent periodically on every channel so that no actor is blocked
indefinitely waiting for messages that will never arrive.

The Chandy and Misra approach is the centerpiece of
a family of so-called “conservative” distributed simulation
techniques. An alternative, first described by Jefferson [31]], is
to use speculative execution. Jefferson’s so-called “time warp”
approach relies on checkpointing the state of all actors and
the event queue and then handling time-stamped messages as
they become available. As messages are handled, the local
notion of “current time” is updated to match the timestamp
of the message. If a message later becomes available that has
a timestamp earlier than current time, then the simulation is
rolled back to a suitable checkpoint and redone from that point.

; Network Platform B

= Interface

)

® A Database

o reply
Web
Server

Database
Fig. 8. A distributed system using reactors with Ptides.
reactor WebServer () {

1
2 output out:string;

3 timer t (0);

4 action incoming:string;

5 reaction(t) -> incoming {=

6 set up server ...

7 startServer (function (query) {
8 schedule (incoming, query);
9 }) i
10 =1}

11 reaction (incoming) -> out {=
12 set (out, incoming);

13 =}

14}

Fig. 9. Sketch of a reactor for Web Server in Fig.

While both of these techniques are effective for simu-
lation, they have serious disadvantages for reactors, which
are intended to be used as system implementations, not as
simulations. In addition to the overhead of null messages,
the Chandy and Misra approach suffers the more serious
disadvantage that every node in a distributed system becomes a
single point of failure. If any node stops sending messages, all
other nodes will eventually grind to a halt, unable to proceed
while they wait for null or real messages. In addition to the
overhead of redoing execution, the time warp approach suffers
the more serious disadvantage that in a system deployment,
unlike a simulation, some actions cannot be rolled back.

To address these concerns, Zhao et al. introduced Ptides, a
programming model for distributed real-time system realiza-
tions (not simulations) that is compatible with reactors [32].
Ptides was later independently reinvented at Google, where it
became the backbone of a globally distributed database system
called Spanner [12]].

Ptides and Spanner make two key assumptions about the
execution platform. First, they assume that each node in the
distributed system has a physical clock that is synchronized
with that of all other nodes, and that there is a bound F
on the clock synchronization error. Second, they assume that
every network connection between nodes has a bound L on
the latency for message delivery.

We can use Spanner’s database application in a simple
scenario depicted in Fig. [8| to explain how these two assump-

tions enable efficient and deterministic distributed execution.
Consider a distributed database where the data is replicated on
two different platforms, A and B in the figure. Assume that
the two copies of the database are initially identical and that
an update query arrives through Web Server on Platform A
that makes a change to a record in the database.

Web Server can be realized as a reactor like that sketched
in Fig. [0 At the logical start time of the execution, the first
reaction sets up the server to listen for incoming messages,
and then starts the server, providing a callback function to
invoke when there is an incoming query. When an incoming
query arrives, the schedule function is invoked to request
that the action named incoming be triggered at the next
available logical time. As explained in [27], this action will
timestamp the action using its local physical clock and trigger
the second reaction at a logical time equal to that timestamp.
The second reaction will forward the timestamped message to
the Database reactor. The Dat abase reactor will broadcast
to all other replicas of the database the update to the record,
as indicated by the dashed line. That broadcast incurs network
latency that is assumed to not exceed some number L.

At around that same time that Platform A receives the
update query, suppose that Platform B receives a query for
the value of the same record being updated at Platform A.
How should the system respond? In Spanner (and Ptides),
this query at Platform B will also be timestamped using the
local physical clock, and the semantics of the system defines
the correct response to depend on the numerical order of the
timestamps of the two queries. If the query at Platform A has
an earlier or equal timestamp to that at Platform B, then the
correct response is the updated record value. Otherwise, the
correct response is the value before the update.

Suppose that Platform B, at the Database reactor, has
an input message with timestamp ¢. Can it safely handle that
message? To be safe, it has to be sure that it will not later
receive a message on its update port with a timestamp earlier
than or equal to ¢. How can it be sure?

Such a distributed system could use the Chandy and Misra
approach, which would require Platform A to periodically
send timestamped null messages to Platform B. Then, at
Platform B, the Database reactor will repeatedly receive
null messages on its update port with steadily increasing
timestamps. As soon as one of those timestamps exceeds ¢, it
can handle the message on its query port that has timestamp
t and send a reply back to WebServer. However, as we have
pointed out, the Chandy and Misra approach has high overhead
and is vulnerable to node failures.

In Ptides and Spanner, the approach instead is to watch the
local clock, and when it exceeds t+E+ L, process the query
message. If the clock synchronization error indeed does not
exceed E, and the network latency indeed does not exceed L,
then the query message is safe to process. No message with
a timestamp earlier than or equal to ¢ will later arrive.

The same strategy could be applied to correct the non-
determinism in Fig. 2] In that example, the messages are
all logically simultaneous (they bear the same timestamp). If

the three actors are executed on distributed machines, then
when the machine executing X receives a timestamped incr
message with timestamp ¢, it should not invoke the message
handler until the local clock exceeds t+FE+2L. The 2L in this
threshold is a consequence of structure of the model, where
two network traversals are involved. The use of hierarchy
ensures that there is a software entity, the container for the
three actors, that “knows” the topology, and the use of ports
with causality interfaces ensures that the dependency analysis
required to derive this threshold can be performed.

The cost of determinism in this case is increased latency
because the machine executing X must wait for physical
time to pass. If this cost is too high, and nondeterminism
is tolerable, then the program can be rewritten using the
pattern in Fig. 0] to receive messages from the network. In
that pattern, an incoming message is assigned a new timestamp
upon being received, and no waiting is required to process the
message. The principle we advocate is that the system designer
should choose to make the system nondeterministic, rather
than having this decision forced by the framework. Moreover,
once a timestamp is assigned, the behavior of the system
is deterministic. As a consequence, even a nondeterministic
design becomes testable because input test vectors can include
the assigned timestamps as part of the test vector.

V. PERFORMANCE AND ROBUSTNESS

The above example assumes that execution times of re-
actions and network interfaces are negligible. In Spanner’s
database application, this may be a reasonable assumption.
A system requirement might be, for example, that Platform B
should respond to any query arriving at Web Server within
30ms. In this case, the system requirement is that £+ L, plus
any execution times involved, be less than 30ms. The execution
times here are indeed likely to be negligible compared to 30ms,
so they can be safely neglected.

In many embedded control applications, however, execution
times will not be negligible. In such cases, the threshold for
a message with timestamp ¢ to be safe to process becomes
t+ E + L+ T, where T is a bound on the execution time
of all code in the path from Web Server at Platform A and
the Database reactor at Platform B. At considerable cost in
effort, and with many caveats, these execution times could
be bounded using well-established worst-case-execution-time
(WCET) analysis [33]. Or the system could be realized using
PRET machines [34], in which case extremely high confidence
in the bounds on the execution times becomes achievable.

The correctness of the Ptides/Spanner message handling
depends on assumptions about the underlying execution plat-
form. Of course, this is true of any engineered system, and
it is always possible for assumptions to be violated in the
field. One key advantage of the Pitdes/Spanner approach is that
such violations are observable when they lead to violations of
the discrete-event semantics. Suppose that at Platform B, the
Database reactor has processed a message with timestamp ¢
and issued a reply, and it then later receives an update message
with timestamp ¢’ < t. At this point, the runtime system at

Platform B knows that one of the assumptions was violated.
Either the real-time clocks have a discrepancy higher than F,
the network latency exceeds L, or the execution times are not
negligible. It is impossible to tell which of these assumptions
was violated, but we can be sure that one of them was violated,
and the system can declare a fault condition. At this point, the
system has to switch to fault handling mode.

How to handle faults depends on the application. In Spanner,
which is a distributed database application, a transaction
schema is overlaid on the Ptides approach. When faults are
detected, transactions are rejected, and the state is rolled back.
In real-time control applications, rollback may not be possible,
so faults may be much more costly. For such applications, the
assumptions about F, L, and execution times need to be more
conservative and fault handlers need to be more aggressive.

VI. RELATED WORK

The use of synchronous-reactive principles to determin-
istically coordinate concurrent software has a long history,
with notable contributions like Reactive C [35]], SL [36],
SyncCharts [37]], and ReactiveML [38]. A modern variant of
SyncCharts, SCCharts [39], composes finite state machines un-
der a synchronous semantics. It has been recently augmented
with a semantic notion of time [40] based on the concept of
dynamic ticks [41]]. Like reactors, components can inform the
scheduler at what logical time to trigger reactions.

Also related are a whole family of so-called “active object”
languages [42]. These languages approach the problem of
concurrent execution by generalizing object-oriented program-
ming with asynchronous method calls and (sometimes) futures,
techniques that allow for parallel and distributed execution.
Ensuring determinacy, however, is not a priority, and even
support for avoiding the common pitfalls of threads [43] is
sparse in some of these languages.

The concept of “reactive isolates” [44] (later also called
“reactors”) was introduced by Prokopec and Odersky to mod-
ularly combine different communication protocols inside the
same actor. Their implementation is the Scala-based Reac-
tors.IO framework [45]. A key difference with Hewitt actors
is that reactive isolates have separate channels for receiving
messages from other actors and internal event streams to
compose reactions. Their channels are analogous to our input
ports. They have no analogy to our output ports, however. A
channel in reactive isolates is a direct reference to an isolate
that other isolates can send messages to. Like classic actors,
reactive isolates do not feature a semantic notion of time, and
their communication is asynchronous with no guarantees on
message arrival order.

VII. CONCLUSION

Reactors are a variation on actors that leverage logical
time, following classical synchronous-reactive principles, to
achieve determinism locally. The reactor model also relates
logical time to physical time, which allows for the speci-
fication of real-time constraints, as well as the preservation
of determinism across distributed systems via the application

of safe-to-process analysis known from Spanner and Ptides.
While the emphasis of reactors is on determinacy, asynchrony
and nondeterminism can be realized, when needed by an
application, via the dynamic scheduling of sporadic events.

ACKNOWLEDGMENT

The authors thank Andrés Goens for comments on an earlier
version of this paper.

[1]
[2]

[3]

[4]
[5]

[6]

[7]

[8]
[9]

[10]

(1]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

C. Hewitt, “Viewing control structures as patterns of passing messages,”
Journal of Artificial Intelligence, vol. 8, no. 3, pp. 323-363, 1977.

G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott, “A foundation
for actor computation,” Journal of Functional Programming, vol. 7,
no. 1, pp. 1-72, 1997.

P. Haller and M. Odersky, “Scala actors: Unifying thread-based and
event-based programming,” Theoretical Computer Science, vol. 410, no.
2-3, pp. 202-220, 2009.

R. Roestenburg, R. Bakker, and R. Williams, Akka In Action. Manning
Publications Co., 2016.

P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
W. Paul, M. L. Jordan, and I. Stoica, “Ray: A distributed framework
for emerging Al applications,” CoRR, vol. abs/1712.05889, 2017.

C. Varela and G. Agha, “Programming dynamically reconfigurable open
systems with SALSA,” ACM SIGPLAN Notices, vol. 36, no. 12, pp. 20—
34, 2001.

M. Sirjani, A. Movaghar, A. Shali, and F. S. de Boer, “Modeling and
verification of reactive systems using Rebeca,” Fundam. Inform., vol. 63,
no. 4, pp. 385-410, 2004.

H. C. Baker Jr and C. Hewitt, “The incremental garbage collection of
processes,” ACM Sigplan Notices, vol. 12, no. 8, pp. 55-59, 1977.
NASA Engineering and Safety Center, “National highway traffic safety
administration Toyota unintended acceleration investigation,” NASA,
Technical Assessment Report, January 18 2011.

P. Koopman, “A case study of Toyota unintended acceleration and
software safety,” 2014. [Online]. Available: http://betterembsw.blogspot.
com/2014/09/a- case- study- of- toyota-unintended.html

E. A. Lee, Plato and the Nerd — The Creative Partnership of Humans
and Technology. MIT Press, 2017.

J. C. Corbett et al., “Spanner: Google’s globally-distributed database,”
ACM Transactions on Computer Systems (TOCS), vol. 31, no. 8, 2013.
G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Proc. of the IFIP Congress 74. North-Holland Publishing
Co., 1974, Conference Proceedings, pp. 471-475.

G. Kahn and D. B. MacQueen, “Coroutines and networks of parallel
processes,” in Information Processing, B. Gilchrist, Ed. North-Holland
Publishing Co., 1977, Conference Proceedings, pp. 993-998.

J. B. Dennis, “First version data flow procedure language,” MIT Labo-
ratory for Computer Science, Report MAC TM61, 1974.

W. A. Najjar, E. A. Lee, and G. R. Gao, “Advances in the dataflow
computational model,” Parallel Computing, vol. 25, no. 13-14, pp. 1907—
1929, December 1999.

E. A. Lee and E. Matsikoudis, “The semantics of dataflow with firing,”
in From Semantics to Computer Science: Essays in memory of Gilles
Kahn, G. Huet, G. Plotkin, J.-J. Lévy, and Y. Bertot, Eds. Cambridge
University Press, 2009.

B. D. Theelen, M. C. W. Geilen, T. Basten, J. P. M. Voeten,
S. Gheorghita, and S. Stuijk, “A scenario-aware data flow model for
combinedlong-run average and worst-case performance analysis,” in For-
mal Methods and Models for Co-Design, 2006, Conference Proceedings.
A. Benveniste and G. Berry, “The synchronous approach to reactive
and real-time systems,” Proceedings of the IEEE, vol. 79, no. 9, pp.
1270-1282, 1991.

S. A. Edwards and E. A. Lee, “The semantics and execution of a syn-
chronous block-diagram language,” Science of Computer Programming,
vol. 48, no. 1, pp. 21-42, 2003.

G. Berry and E. Sentovich, “Multiclock Esterel,” in Correct Hard-
ware Design and Verification Methods (CHARME), vol. LNCS 2144.
Springer-Verlag, 2001, Conference Proceedings.

L. Sha, A. Al-Nayeem, M. Sun, J. Meseguer, and P. Olveczky, “PALS:
Physically asynchronous logically synchronous systems,” Univ. of Illi-
nois at Urbana Champaign (UIUC), Report Technical Report, 2009.

(23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

B. Zeigler, Theory of Modeling and Simulation. New York: Wiley Inter-
science, 1976, DEVS abbreviating Discrete Event System Specification.
C. G. Cassandras, Discrete Event Systems, Modeling and Performance
Analysis. Irwin, 1993.

E. A. Lee and H. Zheng, “Leveraging synchronous language principles
for heterogeneous modeling and design of embedded systems,” in
EMSOFT. ACM, 2007, Conference Proceedings, pp. 114 — 123.

X. Liu, E. Matsikoudis, and E. A. Lee, “Modeling timed concurrent
systems,” in CONCUR 2006 - Concurrency Theory, vol. LNCS 4137.
Springer, 2006, Conference Proceedings, pp. 1-15.

M. Lohstroh, M. Schoeberl, A. Goens, A. Wasicek, C. Gill, M. Sirjani,
and E. A. Lee, “Actors revisited for time-critical systems,” in Proceed-
ings of the 56th Annual Design Automation Conference 2019, DAC 2019,
Las Vegas, NV, USA, June 02-06, 2019. ACM, 2019, pp. 152:1-152:4.
R. von Hanxleden, B. Duderstadt, C. Motika, S. Smyth, M. Mendler,
J. Aguado, S. Mercer, and O. O’Brien, “SCCharts: Sequentially con-
structive Statecharts for safety-critical applications,” in ACM SIGPLAN
Conf. on Programming Language Design and Implementation (PLDI).
New York, NY, USA: ACM, 2014, pp. 372-383.

Y. Zhou and E. A. Lee, “Causality interfaces for actor networks,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 7, no. 3,
pp- 1-35, 2008.

K. M. Chandy and J. Misra, “Distributed simulation: A case study
in design and verification of distributed programs,” IEEE Trans. on
Software Engineering, vol. 5, no. 5, pp. 440452, 1979.

D. Jefferson, “Virtual time,” ACM Trans. Programming Languages and
Systems, vol. 7, no. 3, pp. 404-425, 1985.

Y. Zhao, E. A. Lee, and J. Liu, “A programming model for time-
synchronized distributed real-time systems,” in Real-Time and Embed-
ded Technology and Applications Symposium (RTAS). IEEE, 2007,
Conference Proceedings, pp. 259 — 268.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenstr, “The worst-case
execution-time problem - overview of methods and survey of tools,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 7,
no. 3, pp. 1-53, 2008.

E. A. Lee, J. Reineke, and M. Zimmer, “Abstract PRET machines,” in
IEEE Real-Time Systems Symposium (RTSS), December 5 2017.

F. Boussinot, “Reactive c¢: An extension to ¢ to program reactive
systems,” Software Practice and Experience, vol. 21, no. 4, pp. 401-
428, April 1991.

F. Boussinot and R. de Simone, “The SL synchronous language,” IEEE
Tr. on Software Engineering, vol. 22, no. 4, pp. 256-266, April 1996.
C. André, “SyncCharts: A visual representation of reactive behaviors,”
University of Sophia-Antipolis, Report RR 95-52, April 27 1996.

L. Mandel, C. Pasteur, and M. Pouzet, “ReactiveML, ten years later,”
in Int. Symp. on Principles and Practice of Declarative Programming
(PPDP), July 14-16 2015, Conference Proceedings.

R. von Hanxleden, “SyncCharts in C,” Department of Computer Sci-
ence, Christian-Albrechts-Universitaet Kiel, Technical Report Bericht
Nr. 0910, May 2009.

A. Schulz-Rosengarten, R. Von Hanxleden, F. Mallet, R. De Simone,
and J. Deantoni, “Time in SCCharts,” in 2018 Forum on Specification
Design Languages (FDL), Sep. 2018, pp. 5-16.

R. Von Hanxleden, T. Bourke, and A. Girault, “Real-time ticks for
synchronous programming,” in 2017 Forum on Specification and Design
Languages (FDL). 1EEE, 2017, pp. 1-8.

F. S. de Boer, V. Serbanescu, R. Hihnle, L. Henrio, J. Rochas, C. C.
Din, E. B. Johnsen, M. Sirjani, E. Khamespanah, K. Fernandez-Reyes,
and A. M. Yang, “A survey of active object languages,” ACM Computing
Surveys, vol. 50, no. 5, pp. 76:1-76:39, 2017.

E. A. Lee, “The problem with threads,” Computer, vol. 39, no. 5, pp.
33-42, 2006.

A. Prokopec and M. Odersky, “Isolates, channels, and event streams
for composable distributed programming,” in 2015 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Program-
ming and Software (Onward!). New York, NY, USA: ACM, 2015, pp.
171-182.

A. Prokopec, “Pluggable scheduling for the reactor programming
model,” in Programming with Actors: State-of-the-Art and Research
Perspectives, A. Ricci and P. Haller, Eds. Springer International
Publishing, 2018, pp. 125-154.

http://betterembsw.blogspot.com/2014/09/a-case-study-of-toyota-unintended.html
http://betterembsw.blogspot.com/2014/09/a-case-study-of-toyota-unintended.html

	Introduction
	Achieving Determinism
	Determinism for Software
	Coordination for Determinism

	Reactors
	Ports
	Hierarchy
	Logical Time
	Scheduling

	Distributed Execution
	Performance and Robustness
	Related Work
	Conclusion
	References

