Achieving Determinism in Adaptive AUTOSAR

Christian Menard*, Andrés Goens*, Marten Lohstroh! and Jeronimo Castrillon*
* Center for Advancing Electronics Dresden (cfaed), TU Dresden, Dresden, Germany
{christian.menard, andres.goens, jeronimo.castrillon} @tu-dresden.de
f Department of EECS, UC Berkeley, USA
marten @ berkeley.edu

Abstract—AUTOSAR Adaptive Platform (AP) is an emerging
industry standard that tackles the challenges of modern auto-
motive software design, but does not provide adequate mech-
anisms to enforce deterministic execution. This poses profound
challenges to testing and maintenance of the application software,
which is particularly problematic for safety-critical applications.
In this paper, we analyze the problem of nondeterminism in
AP and propose a framework for the design of deterministic
automotive software that transparently integrates with the AP
communication mechanisms. We illustrate our approach in a
case study based on the brake assistant demonstrator application
that is provided by the AUTOSAR consortium. We show that
the original implementation is nondeterministic and discuss a
deterministic solution based on our framework.

Index Terms—automotive engineering, reliability and testing,
software and system safety, software engineering

I. INTRODUCTION

Designing and developing software for automotive applica-
tions is challenging due to stringent safety and real-time re-
quirements. New use cases like the self-driving car have caused
a dramatic increase in complexity and computational demands

int main () {
s = ServiceProxy(); 0.4
=
= 0.3
s.set_value(l); S
s.add (2) ; g 0.2
result = s.get_value () ; O 01 .
std::cout << result.get(); 0.0
return O; o 1 2 3
} Printed Value

Figure 1. A nondeterministic AUTOSAR Adaptive Platform (AP) client/server
application. The client manipulates the server’s state variable in a series of
(non-blocking) procedure calls. The client prints out one of four different
results, distributed as shown in the graph on the right.

into physical damage, injury, or even loss of life. For this
reason, the nuclear, aeronautics, and railways industries often
rely on synchronous languages like LUSTRE [2], Esterel [3],
and SCADE [4] to rule out nondeterminism in their designs
of safety-critical software [3].

In the latest iteration of i1ts well established CP standard,
the AUTOSAR consortium introduced support for the logical
execution time (LET) paradigm [6], [7]. This can be used to

Tai13951d AAatastrr vty cdan covEtsvrentem 117t lAa Avxvrsv)l Attt +lha v 11 AT A san




