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ABSTRACT

Differentially private data releases are often required to satisfy a
set of external constraints that reflect the legal, ethical, and logical
mandates to which the data curator is obligated. The enforcement
of constraints, when treated as post-processing, adds an extra phase
in the production of privatized data. It is well understood in the
theory of multi-phase processing that congeniality, a form of pro-
cedural compatibility between phases, is a prerequisite for the end
users to straightforwardly obtain statistically valid results. Conge-
nial differential privacy is theoretically principled, which facilitates
transparency and intelligibility of the mechanism that would oth-
erwise be undermined by ad-hoc post-processing procedures. We
advocate for the systematic integration of mandated disclosure into
the design of the privacy mechanism via standard probabilistic
conditioning on the invariant margins. Conditioning automatically
renders congeniality because any extra post-processing phase be-
comes unnecessary. We provide both initial theoretical guarantees
and a Markov chain algorithm for our proposal. We also discuss
intriguing theoretical issues that arise in comparing congenital dif-
ferential privacy and optimization-based post-processing, as well
as directions for further research.
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1 PRIVACY AS DATA PROCESSING
1.1 A blurry yet essential picture

The curation and dissemination of large-scale datasets benefits
science and society by supplying factual knowledge to assist discov-
eries, policy decisions, and promote transparency of information.
As more data become accessible to more entities, however, the un-
obstructed access to information collected from individuals poses
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the risk of infringing on their privacy. Differential privacy is a math-
ematical concept that quantifies the extent of disclosure of confi-
dential information in a database. It enjoys several advantages over
its previous counterparts in statistical disclosure limitation. Most
important of all, especially to data analysts who wish to conduct
statistical inference on privatized data releases, is the transparency
of the algorithm. The mechanism through which the privatized data
release is generated can be spelled out in full, with its statistical
properties fully understood. This enables analysts to incorporate it
as part of a model, hence permitting the statistical validity of the
resulting inference [12].

The protection of confidential data with differential privacy re-
lies on the careful design of a probabilistic mechanism, one that
can veil the microscopic identities of individual respondents while
preserving the macroscopic aspects of the data with high fidelity.
The probabilistic nature of the mechanism is necessary, and enables
a tradeoff as such to be made [4]. Typically, a differentially private
mechanism injects a random perturbation into an otherwise deter-
ministic query to be applied to the confidential database. One can
say, then, that differentially private releases are “blurry” versions
of the confidential data, just the same way a skilled Impression-
ist painter captures the essence of a pond of waterlilies without
sketching out the contour of every petal and leaf.

When randomness is involved, however, certain truthful aspects
of the data is invariably compromised, no matter how well-designed
the privacy algorithm may be. Imagine if a picture of waterlilies
was commissioned, not by an art collector, but by a botanist whose
sole purpose is to study the structural formation of the plant, such
as the exact length and width of its petals. She would be terribly
disappointed at the Impressionist painting, even if it was the work
of Claude Monet himself!

Circumstances in practice dictates that aspects of the data release
may be deemed as unfit to be tampered with. These are usually
key statistics reflecting the fundamental purpose of data collection,
as required by law, policy, or other external constraints as put
forth by the stakeholders. The data curator is mandated to disclose
these statistics accurately at any expense, while at the same time
shielding the remainder part of the data release with a veil of privacy.
This poses a challenge to the design of the privacy mechanism
subject to mandated disclosure. The central question is, how to
integrate data privatization, an inherently random act, with the
mandated disclosure of partial yet deterministic information, while
maintaining both the logical consistency of the overall data release
and the quality of the privacy protection.

1.2 Congenial privacy

In this work we conceptualize the privacy mechanism as one of the
many phases of data processing. The concept of congeniality, or
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rather uncongeniality [19], is then relevant. The theory of uncon-
geniality was developed for investigating a seemingly paradoxical
phenomenon discovered by researchers dealing with imputations
for the U.S. Decennial Census and similar public-use data files. Fay
[7] and Kott [17] found that one can have inconsistent variance
estimation for multiple imputation inference [20], even when both
the imputation model and analysis procedure are valid. The is-
sue turned out to be a mathematical incompatibility between the
imputation model and the analysis procedure, even if neither is
incompatible with the underlying model that generates the data.
In other words, there is no probabilistically coherent model that
can simultaneously imply the imputation model and the analysis
procedure, a situation termed uncongeniality by Meng [19]. To
make matters worse, the imputation model, such as adopted by
the Census Bureau, is typically not disclosed to the analyst of the
imputed data, or at least not fully (e.g., due to confidential infor-
mation used to help better predict the missing values). The lack of
transparency makes it impossible for the analyst to correct for the
uncongeniality, and worse, even to realize the problem.

The framework of uncongeniality was later generalized to the
multivariate setting [22] and to general multi-phase processing
[3], which covers the current application by the same overarching
principles. Two properties are critical for good privacy practice:
transparency and congeniality. When the protection of privacy
must observe mandated constraints, our proposal is to use con-
ditional distributions as derived from the original unconstrained
differential privacy mechanism conditioning on invariant margins.
This approach achieves both automatically. Transparency is auto-
matic, because the conditional distribution is determined by the
original unconstrained distribution and the invariant constraints,
both fully disclosed by design. Congeniality stipulates the use of
a single coherent probabilistic model to ensure both differential pri-
vacy and mandated disclosure. This requirement is automatically
satisfied when we use the conditional distribution derived from the
original differential privacy mechanism, restricted solely to obey
the mandated disclosure. A third advantage is that our proposal
does not need any additional choice of procedural ingredients, such
as projection distance, which is required by optimization-based
post-processing such as adopted by the Census TopDown algo-
rithm [1].

There is, however, no free lunch. The first price we pay for
congenial privacy is computational. Sampling from a distribution
truncated on some space, as determined by the invariant margins,
is generally not trivial, especially when the truncated region is
of irregular shape. The second price is that we may pay more
privacy loss budget than necessary, since the budget designed for
the original mechanism depends on the sensitivity of the query
measure on the unconstrained space, which is larger than that
for the constrained space. When deriving the appropriate class of
conditional distributions for the constrained mechanism, the new
privacy loss budget should ideally be calibrated directly according
to the query behavior on the constrained space, as opposed to
be inherited from the unconstrained mechanism, which ensures
a likely overly conservative level of privacy protection for the
entire space. When the analytical complexity and computational
requirements for the two approaches of budget calibration are
similar, we certainly recommend the former.

1.3 The mechanism of differential privacy

Let x = (x1,...,xn) denote a database consisting of n individ-
uals, and X the space on which it is defined. A query function
s : X — R embodies the knowledge contained in the database
that stakeholders - scientists, policy makers and the general pub-
lic - would like to learn. What determines the value of s (x) is of
course X, or equivalently all its component x; values, corresponding
to individual respondents included in the database. It is precisely
these individuals records, or the x;’s, that are the subject of privacy
protection. How can the data curator say useful things about s (x),
while saying barely anything about each of the x;’s?

The mechanism that can instill privacy into the curator’s release
appeals to randomness. A random query function M : X — R s
said to satisfy e-differential privacy [5], if for all pairs of neighboring
datasets (x,x") € X x X, we have that

P(M(x) € B) < exp(e)P (M (x’) € B) (1.1)

for all Borel-measurable sets B € A (Rd). In this work, the term

neighboring datasets means that x and x” differ by exactly one in-
dividual’s record, i.e. for some j = 1,...,n, x; # xj’. but for all
i # j,x;i = x|. Write d (x,x") = 1if x and x are neighbors. This
concept of neighbor is employed in the definition of e-bounded
differential privacy [1], and is distinct from the original formulation
which defined neighbors as a pair that differ from each other by
the addition or deletion of a single record. There are many ways to
design an e-differentially private algorithm M, among which the
most widely known and implemented are the Laplace and the Dou-
ble Geometric algorithms [5, 8], both are additive e-differentially
private mechanisms.

Definition 1.1 (Laplace mechanism). Let s : X — R? be a deter-
ministic query function. The Laplace mechanism is given by

M(x) :=s(x)+ (U,...,Uy), (1.2)

where U;’s are independent zero-mean Laplacian random variables
each with dispersion parameter ¢~V (s), and
V()= sup {[lsG)—s ()| :d(xx") =1}
(x,x")eXxX
is the global sensitivity of s. When the database consists of binary
records in an unrestricted domain, and s is the counting or his-
togram query, V (s) = 1.

Definition 1.2 (Double Geometric mechanism). A random query
mechanism M is called the Double Geometric mechanism if it has
the same functional form as (1.2), with U; random variables defined
on the integers with probability mass function
1-a
1+a
where the parameter a = a(e, s) = exp (—€/V (s)).

Note that the definition of either the Laplace or the Double
Geometric mechanism presents not just one, but a collection of
mechanisms that can be written as {M¢}, indexed by € > 0 the
privacy loss budget allocated to the mechanism in question. When
regarded as a sequence of statistical procedures, € serves as an
indicator of the statistical quality of the output (with larger e for
higher quality) that can be used to offer interpretation and to guide
its own choice. This point will be immediately useful in Section 1.4.

pi(ule) = alvl, (13)



1.4 Statistical intelligibility

An important reason that differential privacy is embraced by the
statistics community is that it defines privacy in the language of
probability, induced by the mechanism that injects randomness
in the data release. An impactful consequence is that the distribu-
tional specification of the mechanism can be made fully transparent
without sabotaging the promised protection. This opens the door
for systematic analysis of the statistical property of mechanisms,
which is in turn crucial to the accurate interpretation of statistical
inference from privatized data releases [10]. The clarity both in def-
inition and in implementation makes up the statistical intelligibility
of differential privacy as a data processing procedure.

We discuss the statistical interpretation of the privacy mech-
anism, which is what served as inspiration for the conditioning
approach to construct the invariant-respecting mechanism in the
first place. The degree of protection exerted by a privacy mecha-
nism on the confidential database is seen as a calculated limit on
the statistical knowledge it is able to supply, as a function of the
privacy loss budget allotted to the mechanism. Compare quantities

7(xj =w) and 7 (x; = w | M (x) € B), (1.4)

which are the analyst’s prior probability about the value of the
ith entry of the dataset, versus her posterior probability if an e-
differentially private query released a report B. Thus, the statistical
meaning of M can be explained as follows.

THEOREM 1.3. Letx = (-++ ,xj,+--) € X be the database, and
{M¢ : X > R, e > 0} aclass of e-differentially private procedures
operating on x. Then for every B € A (Rd), € > 0 and every prior
probability & the analyst harbors about x;,

m(xj =w | Me(x) € B) €
exp(—€)m (x; = w), exp(€)w(x; = w)]. (1.5)

Proor. The posterior probability 7 (x; = @ | M (x) € B) can be
written as
P(Me (x) € B| xj = w) 7 (xj = 0)
Yo P(Me (x) € B xi = ") 7 (xi = ')
The result then follows immediately from the fact that M is e-
private, which means that for any B € £ (Rd),

PMc(x)€B|xj =)
P(Me (x) € B| xi = w)

exp (—¢) < < exp (€).

]

Theorem 1.3 says that, any release generated by an e-differentially
private procedure sharpens the analyst’s knowledge about x; by at
most a factor of exp(e). This interpretation provides a direct link
between the differential privacy promise and the actual posterior
risk of disclosure due to the release of the random query Me.

Recall that the definition of the Laplace and the Double Geomet-
ric mechanisms are both well-defined for any € > 0. However, in
the limiting case of € — 0, i.e. the privacy loss budget becomes
increasingly restrictive, both algorithms amount to adding noise
with increasingly large variance to the confidential query. At e = 0,
neither mechanism remains well-defined since the distributions

of the noise component become improper due to the infinite car-
dinality of their respective domains. Nevertheless, the definition
of e-differential privacy allows for the expression with ¢ = 0. A
mechanism is 0-differentially private if one cannot gain any discrim-
inatory knowledge from its release about the underlying database
whatsoever. In other words, the analyst’s knowledge about the in-
dividual state of x; must remain the same as her prior. This notion
can be explained consistently with Theorem 1.3, by observing that

elighir(xi=w|Me(x)€B)=7r(x,~=w), (1.6)

where the limit is implied by (1.5). This inspires the following de-
liberate construction of My as a 0-differentially private procedure.

Definition 1.4 (0-differentially private procedure). For {Mc} a
class of e-differentially private procedures well-defined for € > 0
but not € = 0, define My as the 0-differentially private procedure
such that for every prior probability =,

7(xi = | My(x) € B) = 7 (xi = @), VBe%(Rd). 1.7)

Definition 1.4 grants conceptual continuity to My, a perfectly
meaningful object in the privacy sense but lacking statistical intelli-
gibility from the mechanistic point of view. For practical purposes,
My should be taken to mean the suppression procedure, which sup-
plies vacuous knowledge to the analyst about the state of affairs of
the database. Theoretically, the meaning of My as a probabilistic
mechanism cannot be supplied by ordinary probabilities, because
any probability specification represents a set of specific knowledge
about relative frequencies of any pair of states. However, its mean-
ing can be quantified precisely in the more general framework of
imprecise probability, as Section 5 will discuss.

2 CONSTRUCTING CONGENIAL PRIVACY

2.1 Privacy with invariants

While privacy protection is called for, the data curator may be
simultaneously mandated to disclose certain aspects of the data
as they are exactly observed, without subjecting them to any pri-
vacy protection. This collection of information is referred to as
invariant information, or invariants. In practice, invariants are often
defined according to a set of exact statistics calculated based on the
confidential database [2]. For example, suppose s is the histogram
query which tabulates the population residing in each county of
the state of New Jersey from the 2020 U.S. Census. When produc-
ing a differentially private version of the histogram, the Census
Bureau is constitutionally mandated to report the total popula-
tion of each state as enumerated. This means that the privatized
histogram M(x*) must possess the same total population size as
s(x*), where x* the confidential Census microdata; or in notation,
1M I = ls ()]

Suppose that the Double Geometric mechanism is to be applied
to the histogram query s. Due to the random nature of the per-
turbations, a single realization of the mechanism will with high
probability produce ||M (x*)|| # ||s (x*)||. Furthermore M (x*) has
a positive probability of consisting negative cell counts, which is
logically impossible of the confidential query s (x*). The challenge
of privacy preservation under mandated disclosure is thus to find
an alternative mechanism, say M, such that every realization of



M meets all the requirement of mandated information disclosure,
while preserving the promise of differential privacy.

Let X* C X be the set of x’s that obey the given invariants. In
turn, X* defines the set of values that the query must satisfy as

S* = {s(x)eRd:xex*}. 2.1)

Note that implicitly, S* = S* (x*) is a set-valued function of the
confidential dataset x*, because the invariant knowledge we intend
to impose on the private release is implied by x™.

A random mechanism M satisfies the mandated disclosure if

M(x) € 8%, Vx e X*. (2.2)
That is, whenever applied to a database conformal to the mandated
disclosure, with mathematical certainty M is also conformal to the
mandated disclosure. The size and complexity of the restricted S*
(and X™) relative to their original spaces are crucial to the overall
extent to which privacy of the residual information in the database
can be protected, a point we will revisit in Section 5.1.

There may be many ways to construct a random mechanism M,
but all are not equally desirable. We argue that M should be con-
structed in a principled manner, and a constructive way to achieve
that is to use conditional distributions of unconstrained privacy
mechanisms. The resulting mechanism can be easily tuned to retain
its differential privacy promise, while ensuring its congenial inte-
gration into the data processing pipeline, preserving the statistical
intelligibility of its releases.

2.2 Imposing invariants via conditioning

Let M be a valid e-differentially private mechanism, which gener-
ates outputs that typically do not obey the invariant requirement
M (x) € 8%, evenif x € X*. A natural idea to force the requirement
onto M is via conditioning. Define a modified privatization mecha-
nism M*, such that the probability distribution it induces is the same
as the conditional distribution of M subject to the constraint that
M (x) € 8*. For what’s next, we’ll use the notation Z £ W to mean
Z and W are identically distributed, and M (x) | M (x) € S* denotes
a well-specified conditional distribution P(M (x) | M(x) € S*).
Also assume for now P(M (x) € 8*) > 0. We have the following
theorem.

THEOREM 2.1. Let x* € X be the confidential database, and
X* C X the invariant subset to which x* conforms. The deterministic

function's : X — RY is a query, and the implied S* € B (Rd)
is defined by (2.1). Let M be an e-differentially private mechanism
based on s, and M* be a constrained mechanism such that

M* () £ M) | M(x) € S*. (2.3)

Then for all invariant-conforming pairs of datasets that are k-neighbors,
ie(x,x") € X**xX* suchthatd (x,x’) = k, there exists a real-valued

v € [-1,1] such that for all B € % (Rd),

P (M*(x) € B) < exp((1+y)ke) P (M* (x’) € B). (2.4)

Proor. For a pair of k-neighboring and S*-conforming datasets
(x,x’") and any B € # (Rd),

P(M*(x)€B) _ P(M(x)€B|M(x) € S*)
P(M*(x')e B)  P(M(x') € B| M(x’) € S*)
_ P(M(x) eBNS") PM((x)eS)
TPM(')eBNS*) PM(x)eS*)’

Clearly each of the last two ratios above is bounded above by
exp (ke) and below by exp (—ke) because M is e-differentially pri-
vate. Consequently, if we let

v = o PME) €57 (2.5)

ke B |(ex)exxx: P(M(x) €S |’

d(x,x")=k
then y* € [0, 1] and it is a known constant because S* is public.
Then, (2.4) holds for any y € [y*, 1], and certainly for y = 1. O

Our proof above might create an impression that only y > 0 is
permissible, but Sections 4 and 5.1 will supply two examples both
with y < 0. Negative y may sound paradoxical, for it seems to
suggest that better privacy protection can be achieved by disclosing
some information. However, we must be mindful that differential
privacy is not about protecting privacy in absolute terms. Rather, it
is about controlling the additional disclosure risk from releasing the
privatized data to the users (or hackers), relative to what they know
before the release. The presence or absence of mandated invariants
would ex ante constitute two different bodies of knowledge, hence
any additional privacy protection would carry different interpreta-
tions too. We also emphasize that Theorem 2.1 generalizes to cases
where P(M(x) € 8*) = 0, such as when it is a linear subspace of R4
and the privacy mechanism is continuous. The proof is a bit more
involved in order to properly define P(M (x) | M (x) € S8*), which
we will discuss in future work. However, this complication is not a
concern for discrete privatization mechanisms, such as within the
Census TopDown algorithm [1].

Theorem 2.1 holds broadly for arbitrary kinds of e-differentially
private mechanisms, as well as any deterministic invariant infor-
mation about either the database or the query function that can
be expressed in a set form. It lends itself to the same kind of poste-
rior interpretation enjoyed by unconstrained differentially private
mechanisms. Specifically, if M} is the constrained differentially pri-
vate procedure constructed based on the unconstrained procedure
Me, according to the specifications of Theorem 2.1, then for all
x € X* such that 3x’ € X* so that d(x,x’) = 1, and VB € £ (S*),
the analyst’s posterior probability 7 (x; = @ | x € X*, M (x) € B)
is bounded in between

exp(—(1+y)e)r(xi =w|x€X),

exp(l+y)e)m(xi=w|xeX)|.

This an interval that bears structural resemblance to (1.5), thanks
to the conditional nature of M* which allows for statistical infor-
mation from privacy mechanisms, constrained or otherwise, to be
interpreted in the same (hence congenial) way.



The definition of e-differential privacy has the property that, if a
mechanism M is e;-differentially private, then for all 2 > €1, M is
also ep-differentially private. If the invariant information does not
substantially disrupt the neighboring structure of the sample space
of the database, a notion we will make precise later in Section 5,
what Theorem 2.1 says is that enforcing the invariant X* onto the
unconstrained mechanism M via conditioning costs (1 + y) times —
and at most twice since y can always be set to 1 — the privacy loss
budget allotted to M. When a more cost-effective value of y is hard
to determine, a simplest way to ensure privacy loss budget € for
M* is to use a budget of €y = €/2 for the unconstrained mechanism
M to begin with; see Section 3.

2.3 An Monte Carlo Implementation

Let p denote the probability distribution, either a mass function
or a density function, induced by the unconstrained differentially
private algorithm M which depends on the confidential query s*.
Further denote p* to be the corresponding conditional distribution
of p constrained on the invariant set S*. The constrained privacy
mechanism requires samples from p*. A simplest, though often
inefficient or event impractical, method is rejection sampling. Since

) { cp(s) ifs e S*

0 otherwise,

where ¢ = /S* p (s)ds, one can opt for a proposal density q with
support S* such that sup; ¢ g+ [p(s)/q(s)] < R, and accept a sample
s ~ q with probability p(s)/Rq(s). This encompasses the option
to set ¢ = p, the unconstrained privacy kernel itself, and keep
sampling until the sample falls into S*. This strategy is clearly
inefficient in general, and impossible when ¢ = 0.

Efficient algorithm tailor-made to specifications of S* are pos-
sible. Here, we present in Algorithm 1 a generic approach based
on Metropolized Independent Sampling [MIS; 18], for the most
common case in which the mandated invariants are expressed in
terms of a consistent system of linear equalities and inequalities

S*Z{seRd:As:a,Bst}.

Here A and B are dg X d and dg X d matrices with ranks d4 < d
and dp < d respectively, and a and b vectors with length d4 and
dp respectively. The algorithm requires a proposal index set 7, a
subset of {1,...,d} of size d — d4 such that rank (A[Ic]) = dga,
where A[ ] is the submatrix of A consisting of all columns whose
indices belong to . For each A, the choice of 7 may not be unique,
and can have a potential impact on the efficiency of the algorithm.

This algorithm is applicable to both discrete and continuous data
and privatization schemes, and it does not require the normalizing
constant for p*. In Section 3 below, we use it to construct a mech-
anism for differentially private demographic contingency tables
subject to both linear equality and inequality invariant constraints.

3 CONTINGENCY TABLE WITH INVARIANTS

The table we consider is of dimension 2X 23, with rows representing
sex (male/female), and columns representing age bucketed roughly
every four years, with finer buckets around key age ranges such as
18, 21 and 60. This data structure corresponds to the 2010 Census

Algorithm 1 Metropolized Independent Differentially Private Sam-
pler with Invariants

Input: unconstrained privacy mechanism p,
confidential query s*, invariant parameters (A, a, B, b),
proposal distribution g, proposal index set 7,
initial value s e S*, integer nsim;
Iterate: for t = 0,1,...,nsim—1,at ¢t + 1:
step 1, propose $:
1-1. sample § ~ g;
1-2. solve for Syc in A| )81 + A[1¢157c = @
1-3. write § = (S7,S7c);

(#) ) = mi —_———t
step 2, compute a(s'*/,§) = min <1, FCRrEs

step 3, set s+ = § with probability a(s(t), s),
otherwise set sU/t1) = s(1),
Output: a set of draws {s(t)}, t=1,...,nsim.

P(S)1(Bs zb)q(sy)) }

Table #P12 and 2020 Census Table #P7 [21], one of the most ref-
erenced type of contingency table releases by the Census Bureau
at various geographic levels. For the purpose of computational il-
lustration, this example will use simulation to construct synthetic
datasets that represent the confidential Census demographic data.

Let s be a vector of length 46, denoting the row-vectorized con-
tingency table. The constraints to be imposed on the differentially
private table include

(1) total population;

(2) proportion of female population;

(3) total voting age population (18+ age); and

(4) nonnegative table entries.
Items (1) to (3) constitute equality constraints, and item (4) inequal-
ity constraints. The unconstrained privacy mechanism that serves
as the basis of our construction is the Double Geometric mechanism,
with distribution function

46
p(s) = rlpi (si—sile),
i=1

where p; is as defined in (1.3), and the privacy loss budget set
to € = 0.5 per cell. The proposal distribution is set to be of the
same family as does the unconstrained privatization algorithm,
but it is given a distinct dispersion parameter € to tune for best
algorithmic performance, in this case the acceptance probability
of the algorithm. The proposal distribution function for Sz, the
(d — da)-length subvector of the kth proposal s, is

q(s) = rlpi (si—silé),
iel
where 7 is chosen to be {2,...,22,24,...45}. The remainder coor-
dinates of the kth proposal, § ¢, is solved according to the equality
constraint AS = a.

Table 1 displays a simulated confidential table (top) and a con-
strained differentially private table (bottom) based on the confi-
dential table, where the draw is produced by Algorithm 1. In this
case, setting € = 0.6 yields the best acceptance probability, with
acceptance probability at 1.68%, as shown in Figure 2 in Appendix C



<5 6-10 11-15 16-17 18-19 20 21 22-24 25-29 30-34 35-39 40-44 45-49 50-54
Female 8 6 3 6 4 4 4 8 5 7 7 6 1 5
Male 3 4 5 8 6 4 5 5 5 6 10 7 3 2
55-59 60-61 62-64 65-66 67-69 70-74 75-79 80-84 85+ Total
Female 4 4 9 6 2 8 8 8 7 130
Male 5 11 6 4 7 4 5 3 8 126
Voting 43 213 256
<5 6-10 11-15 16-17 18-19 20 21 22-24  25-29 30-34 35-39 40-44 45-49 50-54
Female 6 6 4 3 2 10 2 5 6 7 5 6 0 5
Male 9 4 5 6 3 4 5 5 3 4 7 8 5 3
55-59 60-61 62-64 65-66 67-69 70-74 75-79 80-84 85+ Total
Female 4 5 10 8 3 8 8 12 5 130
Male 2 23 8 2 6 3 0 3 8 126
Voting 43 213 256

Table 1: A confidential sex X age contingency table (top) and a corresponding constrained differentially private (bottom) release,
subject to total population, proportion female population and voting age population constraints (bold).

alongside traceplots for the second and the first cells of the table,
with the former index belonging to 7 and the latter not.
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Figure 1: Average L; (top) and L, (bottom) distances of a sim-
ulated confidential dataset from its privatized releases using
four different processing methods.

We compare the outputs of our congenial mechanism with the un-
constrained privacy mechanism, with and without post-processing
via nonnegative Ly minimization onto the invariant set S* defined
by (1)-(4). A total of 20 confidential contingency tables are simu-
lated, each with cells following

s iid. Negative Binomial (100, .05),

which has mean E(s;) = 5.26 and variance Var(s;) = 5.54. For each
confidential table, 100 privatized releases were created using each
of the following methods:

a) the unconstrained (raw) Double Geometric mechanism with
privacy loss budget € = 1 per cell;

b) the above mechanism followed by nonnegative Ly (NNL2)
minimization onto the subspace defined by the four con-
straints, i.e. S*;

¢) Our proposed S*-conditional algorithm per Algorithm 1,
constructed based on an unconstrained Double Geometric
mechanism with €y = 0.5; and

d) the same unconstrained Double Geometric mechanism as in
(a), but with € = 0.5 per cell.

The L distance and L, distance between a confidential table s
and S, a privatization of s, are given respectively by

Ll(s,§)=Z|si—§i| and Ly (s,3) = /Z(si—gi)z. (3.1)

For each of the four types of privatization and processing mecha-
nisms, we compute averages of both distances over 100 realizations
of 5. Figure 1 displays the box plots of these average distances
over the 20 simulated copies of private table s. We observe that
the conditional mechanism, constructed from an unconstrained
mechanism with €y = 0.5, exhibits a degree of variability between
the unconstrained mechanisms with privacy loss budget € = 0.5
and € = 1. On the other hand, the nonnegative Ly projection of the
unconstrained mechanism with € = 1 achieves a level of accuracy
mostly on par with it. Note that this observation should not be taken
as a suggestion of relative accuracy between the nonnegative L
minimization and the constrained mechanism, because the effective
privacy guarantee that either mechanism enjoys is undetermined,
an issue we will discuss further at the end of Section 4. That said,
by Theorem 2.1 that the conditional mechanism inflates the privacy
loss budget of a unconstrained algorithm by (1 + y), the empirical



observation suggests that the effective y may be somewhere in
between 0 and 1. In the following sections, we will see examples
where y = 0 or even y < 0.

4 CURATOR’S POST-PROCESSING MAY NOT
BE INNOCENT PROCESSING

A common practice to ensure unconstrained differentially private
releases respect the mandated disclosure requirements is through
optimization-based post-processing, which takes the general form

f (M;87) = argmingc g-A (M, s). (4.1)

That is, f is the element in S* that is the closest to M according
to some discrepancy measure A, typically a distance, such as the
two given in (3.1). In the case of the Census Bureau’s TopDown
algorithm, f is a composite post-processing procedure consisting of
first a nonnegative Ly minimization followed by an L1 minimization
onto the integer solutions; see [1].

In the literature of differential privacy, there is a widely ref-
erenced theorem which establishes that differentially privatized
releases are “immune” to post-processing [6]. The theorem states
that if M is an e-differentially private mechanism and g is an arbi-
trary function, then g o M is still e-differentially private. Indeed for
any g-measurable set B,

P(g(M(x)) € B) = P(M (x) € g_'(B)). (4.2)

Thus for every x € X, the maximal increased risk of disclosure
from releasing g(M(x)) cannot exceed that from releasing M(x) (but
the reversed is guaranteed only when g is one-to-one). Intuitively,
further blurring an already blurred picture can only make it harder,
not easier, to see what is in the original picture.

This intuition, however, is based on the assumption that the fur-
ther blurring process does not use any knowledge about the original
picture. We need to make clear here that imposing invariants on dif-
ferentially private releases via optimization-based post-processing,
in the sense of the operation discussed here, does not in general
fall under the jurisdiction of the post-processing theorem. This is
because f, the function used to impose invariants on the uncon-
strained output M (x), is implicitly dependent on the confidential
dataset x*, with the dependence induced via S*, or equivalently
X* to which x* belongs. Since S* supplies information about the
confidential database, whereas the unconstrained mechanism M
is by design not preferential towards S*, any further processing
of M that makes nontrivial use of S8* risks violating the privacy
guarantee that M deserves.

The post-processing theorem guarantees that no loss of privacy
will be induced to the privatized query via any functional transfor-
mation that may be carried out by an ordinary analyst or data user.
However, imposing invariants is the kind of post-processing that
only the data curator — one who has access to the confidential data -
is capable of performing. In the extreme scenario (see Example 5.2)
that the invariant forces the privatized disclosure to be precisely
equal to the confidential query, for the data curator to achieve this
algorithmically is as simple as taking the privatized query M and
projecting it to the single point in R9 defined by the confidential
value s (x*). But this is impossible for a data user who do not know
what s (x*) is.

One may wonder the following question. While the invariant
S* has a dependence on the confidential x*, itself is nevertheless
public information. Doesn’t that make f(-;S*) a fully specified
function, just like g in the post-processing theorem? The answer is
no in general, and the distinction here is a subtle one. When talking
about the value of the invariants, it suffices to regard S* merely
as an announced description of the confidential data. However as
alluded to previously, S* is a set-valued map from the database
space to subsets of the query space, i.e. $* : X — Z(R?). Almost
always is the case in practice that the functional form of map of
S* is a priori determined, but its value — namely S* (x*) - can be
calculated only after the confidential data is observed. Indeed, the
actual specification of S* would almost certainly change if x* were
observed differently. This means for an f-measurable set B and a
database x € X, the equivalent events in the f and the M spaces
are now

f(M(x);8*(x)) eB & M(x)e f!(B;S*(x)), (4.3)

noting that the inverse function f~!(-; S*(x)) now depends on x.
To see the complication caused by this dependence, write B(x) =
f1(B; S*(x)) and f(x) = f(M (x); S*(x)). We then have

P(f(x) € B) _ P(M(x) € B(x))
P(f(x") € B)  P(M(x’) € B(x"))’

(4.4)

Although both B(x) and B(x’) are measurable sets, they are not
necessarily the same when x’ # x. Hence we cannot use (1.1) to
conclude that the right hand side of (4.4) is bounded above by
exp (€). This does not necessarily imply that the post-processing f
as defined in (4.1) is not e-differentially private. Indeed, we prove
in Appendix A that both Ly and (a class of) L; post-processing
in Example 4.1 below is e-differentially private. But it does imply
that in general, the statistical and privacy properties of f are not
straightforwardly inherited from that of M, and hence they need
to be established on a case by case basis.

Another major drawback of using optimization-based methods to
impose invariants is that the statistical intelligibility of differential
privacy is obscured. The post-processing function f is often proce-
durally defined, hence a complex and confidential data-dependent
map from the unconstrained query space to the constrained query
space, with almost impenetrable statistical properties, and certainly
so for any given database. In contrast, using conditioning to re-
alize differential privacy with mandated disclosure, despite often
computationally demanding by construction, preserves the sta-
tistical intelligibility of the privacy mechanism. The constrained
privacy mechanism is distributionally — as opposed to procedurally
- constructed, preserving the possibility of transparent downstream
analysis. It furthermore delivers privacy guarantee in the same
format as does differential privacy without constraints, offering a
congenial statistical interpretation that resembles the original.

Below we use an example to compare congenial privacy with
two approaches of post-processing for a same query function. The
example is simple enough for analytical derivations of the distribu-
tions of post-processing mechanisms to be possible. As we will see,
the three approaches to impose invariant constraints yield distinct
theoretical behaviors.



Example 4.1 (A two-bin histogram with constrained total). Sup-
pose the confidential database x is a binary vector, and the query
of interest tabulates the number of 0 and 1 entries in x, i.e.

s(x) = (s1 (%), 52 (x)) = (Z”x" :0),Zl<x,- = 1)).

Employ the Laplace mechanism as the unconstrained privatization
mechanism to protect the two-bin histogram, i.e.

M(x) = (my = sy +upmy = sp +uz), u; =% Lap(2¢7h),

expending in total € privacy loss budget. The induced probability
density of M is
€\2 €
p(my,my) = (Z) exp {—5 (Imy = s1| + [mg —szl)} :
Suppose the invariant to be imposed is that the total of the
privatized histogram shall be the same as that the the confidential
query itself. That is, for any given x, the associated invariant set is

S*(x) = {(a1,a2) € R? 1 a1 +az = 51 (x) + 52 (x)} . (4.5)

In the calculations below, a certain database x is fixed, and we write
the invariant total n = ||x||, the length of x.

Congenial privacy. Under the constraint of histogram total, our
congenial M* (x) is obtained from the conditional distribution

(s1+ut,s2+up) | ug +uy =0.
It turns out that the probability density of M* is
€
P(m1=m,mz=n—m)=5exp{—e|m—sl|} (4.6)

and 0 otherwise; see Appendix A. That is, our congenial mecha-
nism M* is simply to draw a u from Lap(e™!), and then release
(my = s1 + u, my = s — u). Clearly, the privacy property of M* is
the same as its first component, call it M}, which protects s; by
releasing my because setting my = n — my is a deterministic step
with no implication on privacy when n is known. But M is simply
the Laplace mechanism with € budget. Consequently, our conge-
nial mechanism maintains the same e guarantee as the original
unconstrained mechanism, even though the meaning of protection
is different, as we emphasized in Section 2.2.

Post-processing with Ly minimization. Here we minimize the Ly
distance between M (x) and the post-processed histogram release,
denoted f7,, subject to its sum being n. The solution is

fi, (M(x),8%) = argmin g [|M (x) = sll, = (% + @, % — @),

where # is the average of two independent Laplace random vari-
ables with scale 2¢71. As can be easily seen (for example from its
characteristic function), # is not a Laplace random variable, but in
fact follows distribution

1 1
ELap(efl) + ESgnGamma(Z, eh), (4.7)

that is a 50-50 mixture of a Laplace distribution with scale ! and
a signed Gamma distribution (i.e. a regular Gamma distribution
multiplied by a fair random sign) with shape k = 2 and scale e ™!; see
Appendix A for derivation. It is worth noting that since a signed
Gamma distribution of shape k = 2 can be written as the sum
of two independent Laplace distributions of the same scale, @ is
more variable than a single independent Laplace random variable

E(m1, ma)
M (s1(x), ()T &
fr, G@.5)T &
fr, (s1(x),s2(x)T

Table 2: Differentially private two-bin histogram with in-
variant total: expectation and first-component variance of
the conditional (M*) and post-processed (f;, and f7,) his-
tograms.

of the same scale. Hence for any x, the privatized release using ff,
will be more variable than that of the congenial privatization M*.
Intuitively, this suggests that f1, should not do worse than M* in
terms of privacy protection. Indeed as we will show in Appendix A,
f1, also achieves the same e-differentially private guarantee.

Post-processing with L1 minimization. If we change the Ly norm
to L1 norm in the above, the privatization mechanism is no longer
unique. There will be infinitely many solutions in the form of

fr, (M(x),8%) = argmingc g |M (x) = 5]l := 5,n=3),
where § only needs to satisfy

§ € [min{s; +ui,n—(sp +up)}, max {s; + u1,n— (sz + uz)}]
L .
= [s1 + min (ug, up), 51 + max (ug, up)],

where min (u1, u2) and max (u1, uz) are the minimum and the maxi-
mum of two ii.d. Laplace random variables. In particular, choosing
any convex combination of u; and uz as the additive noise term to
the first entry constitutes a solution, i.e., §1 = s1+ fug +(1— f)uy for
some f € [0, 1], and then set S = n — §;. For the rest of the article,
L post-processing refers to this convex combination strategy.

For ease of reference, Table 2 collects a comparison of the con-
strained differentially private histogram M* and two the post-
processing approaches, f7, and f7,, in terms of the expectation
and variance of the resulting release for a given database x € X
and confidential query s. All expectations are taken with respect to
the relevant mechanism.

We can see that our congenial mechanism has the smallest vari-
ance. Because the congenial mechanism and f7, both carry the
same e-privacy guarantee which cannot be further improved, we
can comfortably declare that fj, is inadmissible because it is domi-
nated by the congenial mechanism, providing less utility (in terms
of statistical precision) without the benefit of increased privacy
protection. However, we cannot say that the congenial mechanism
dominates f, even though it still leads to smaller variance. This is
because, as we will prove in Appendix A, the attained level of pri-
vacy guarantee of f7, is €/(2max{f, 1 — $}), which is never worse
than e. Hence the increased variance under f7, might be acceptable
as a price for gaining more privacy protection. In general, com-
paring the utility of two privatization mechanisms with the same
nominal but different actual privacy loss budget is as thorny an
issue as comparing the statistical power of two testing procedures
with the same nominal, but different actual, Type I error rates.



5 DISCUSSION

5.1 Finding better y

While Theorem 2.1 always holds with y = 1, it likely sets a loose
bound on the ratio between P (M* (x) € B) and P (M* (x”) € B),
hence declaring an overly “conservative” nominal level of privacy
loss induced by M*. Depending on how the invariant S* interacts
with the distributional property of the unconstrained mechanism
M in a specific instance, y can be shown to take smaller values,
adding more “bang of the buck” to the privacy loss budget, so to
speak. Three examples are given below.

Example 5.1 (trivial invariants). Consider the trivial case where
the set of invariants does not actually impose any restriction, i.e.,
X* = X. It is then necessarily true that S* = S, and the “con-
strained” differentially private mechanism is identical in distribu-

. . % L . *
tion to the unconstrained one: M* = M. In this case, y = 0 and M"
is e-differentially private.

Example 5.2 (rounding and secrecy). Let x be a binary vector of
length n indicating a group of individuals’ possession of a certain
feature (yes 1/no 0), and the query of interest is s(x) = [} x;/10],
or the number of groups of size 10 that can be formed by people
who possesses the feature. A Double Geometric mechanism M(x) =
s(x) + U is used to protect the query, with a privacy loss budget of
€ (under the global sensitivity of V(s) = 1).

Suppose the following invariant set is mandated for disclosure:

X* = {(xl,...,xn) e{0.1)": Y xi e [41,50]},

or equivalently, S* = {5} is the singleton set that contains nothing
but the true value s(x*) = 5. In this case, the implied constrained
privacy mechanism M* is equivalent to a degenerate distribution:
P(M* (x) = 5) = 1 for all x € X*. Furthermore, for all neighboring
datasets (x,x”) € X* x X*, and any B a measurable subset of N,

1 if5€ B

P (M" (x) € B) = exp (0) P (M" (x’) € B) = { 0 otherwise

Therefore in this particular instance, M* is in fact 0-differentially
private, corresponding to y = —1 in Theorem 2.1. This means that
for those databases conformal to the invariant X*, M* supplies no
discriminatory information among them whatsoever. Indeed, if the
value of the supposedly private query is already public knowledge,
no mechanism can further increase its disclosure risk, therefore
achieving complete differential privacy.

Our third example is a less trivial example of y < 0, which
is actually provided by the congenial mechanism in Example 4.1.
There, although the guaranteed privacy loss budget is still €, in
applying Theorem 2.1, k must be set to 2 or greater, because under
the constraint of fixed sum, the nearest neighbors among binary
vectors (x, x”) must have d(x, x”) = 2. Hence the € privacy bound
implies k(1 +y) = 2(1 + y) = 1, yielding y = —0.5.

This example also reminds us that a major cause of information
leakage due to invariants is the structural erosion to the underly-
ing data space, such as making d(x,x’) = 1 (as measured on the
original space X) impossible. In reality, the unconstrained data
space X is typically regular, and contains X* as a proper subset. We
should expect to find many x € X*, and many (if not many more)

x" € X\X* such that x and x’ are neighbors, near or far. Know-
ing that the confidential dataset must belong to X* categorically
rules out the possibility that all the x”’s can be the confidential
dataset, weakening the differential privacy promise by eliminating
the neighbors. If the invariant is sufficiently restrictive such that
X" becomes topologically small relative to X, it may be the case
that for some x € X*, all of its original immediate neighboring
datasets are not in X™:

{(x,x') EX X X*:d(x,x") = 1} =0,

in which case we say that the neighboring structure of the original
data space of the database is substantially disrupted, as seen in
Example 4.1. If the disruption is so substantial that neighbors of
any distance cease to exist, we say that the neighborhood structure
is completely destroyed:

{(x,x") e X*x X" :d (x,x") 21} = 0.

Then, even for the constrained mechanism M*, the e-differential pri-
vacy promise becomes vacuously true, since no possible neighbor-
ing pairs remain for which the concept of privacy is applicable. How-
ever, Example 5.2 demonstrates that vacuous privacy promise can
occur without the neighborhood structures completely destroyed.

In general, it is conceptually difficult to parse out the share of
responsibility on privacy attributable to the data curator under any
scenario of mandated disclosure. If certain information is made
public, then any information that it logically implies cannot be
expected to be protected, either. The best that we can expect any
privacy mechanism to deliver, then, is protection over information
that truly remains. Notions that serve the equivalent purposes as
X* and 8* have been proposed in the literature for expositions of
new notions of differential privacy, including blowfish and pufferfish
privacy [14, 16], where the privacy guarantee is re-conceptualized
on the restricted space modulo any structural erosion to the original
sample space due to external or auxiliary information available to
an attacker. When interpreting the promise of Theorem 2.1, we
shall pay due diligence to the case in which immediate neighbors
no longer exists, and talk about the e-differential privacy guarantee
only for those k-neighbors that actually do.

5.2 Other interpretations of privacy

The literature has seen other lines of work that offer interpretations
of differential privacy in statistical terms. Notably, the posterior-
to-posterior semantics of differential privacy [2, 4, 15] explains the
effect of privacy also in the vocabulary of Bayesian posteriors. The
posterior-to-posterior semantics establishes differential privacy
as a bound for the ratio of posterior probabilities assigned to an
individual confidential data entry, when the private mechanism is
applied to neighboring datasets that differ in only one entry. The
said ratio is between the two quantities

I=w|Mc(x)eB) and 7 (x] =w | Me (x) €B), (5.1)

7 (x;
where x and x” are neighboring datasets. What varies between the
two posterior quantities is the confidential dataset on which the
private query is applied. The datasets x and x’ are neighboring
datasets, one of which presumably (but not necessarily) contains
the true value of the ith confidential data entry x;‘, and the other

contains a fabricated value of it.



The comparison in (5.1) raises the question of what it means by
the conditional probability of x} given a private query constructed
from a database that does not contain this true value, as this con-
ditional probability hinges on external knowledge about how a
fabricated database may inform the actual confidential database.
Our prior-to-posterior semantics formulated in Theorem 1.3 takes a
practical point of view and avoids such conceptual complication.
We compare the disclosure risk before and after an actual release,
reflecting the core idea behind differential privacy.

5.3 Full privacy or vacuous knowledge

As alluded to in Section 1.4, the notion of vacuous knowledge
cannot be appropriately captured by ordinary probabilities. The
defect reflects a fundamental inability of the language of probability
in expressing a true lack of knowledge, a central struggle in the
Bayesian literature that motivated endeavors in search for the so-
called “objective priors” [9]. Neither the uniform distribution nor
any other reference distributions are truly information-free, as they
all invariably invoke some principle of indifference in relation to
a specific criterion (such as the Lebesgue measure, the counting
measure, or the likelihood function) which is subject to debate.

To supply the rigorous definition needed to define probabilisti-
cally My(x) in Section 1.4, we invoke the concept of lower proba-
bility functions, and as a special case belief functions [see e.g. 11],
both generalized versions of a probability function which amounts
to a set of probability distributions on a given space. The statistical
information contained in My is represented by the vacuous lower
probability function, denoted P, which takes the value P(B) = 1
only when B = R4, and 0 everywhere else. Equivalently stated in
terms of its conjugate upper probability function P(B) = 1 — P(B°),

1 ifB e%(Rd)\{w},

P(B) =
0 if B=0.

(5.2)

That is, the statistical information contained in My can be (but is not
known to be) concordant with any Borel-measurable probability
function, thus the probability of any B is as low as 0 and as high as
1, as long as B is neither the full set nor the empty set.

Generally, the conditioning operation involving lower probabil-
ity functions is not trivial, and it is not unique due to the existence
of several applicable rules. But if the lower probability functions
being conditioned on is vacuous, there is consensus among differ-
ent rules as to what posterior distribution should result, namely
precisely as stated in (1.7). See [13] for an extended exposition of
conditioning rules involving lower probability and belief functions.

5.4 Future directions

This work points to several future directions of pursuit. On the
computational front, how do we construct efficient algorithms to
realize congenial privacy, by drawing possibly high-dimensional
releases subject to complex constraints? When we use non-perfect
Markov chain Monte Carlo to accomplish this task, how do we
ensure the declared privacy guarantee is not destroyed because
a chain cannot run indefinitely? On the privacy front, for every
constrained mechanism constructed through conditioning, how to
find the best y value that tracks as closely as possible the effective

privacy loss budget, which in turn enables fair performance compar-
isons among invariant-respecting algorithms? Furthermore, how
to achieve an orthogonal decomposition of the public, invariant
information from the free, residual information that remains in the
confidential microdata, in a logical sense without having to resort
to the probabilistic vocabulary of statistical independence?
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A PRIVACY GUARANTEES FOR CONGENIAL,
L, AND L, METHODS

We first derive the conditional distribution of two i.i.d. Laplace
random variables, given that their sum is zero. Let uj, uz iid.

Lap (26_1) and denote v = u1, w = ug + uz. Since (v, w) is linear in
(u1,u2), their joint probability density function is given by.

p,w) o« plu(v,w),uz (v, w))
o exp(—0.5¢ |v| — 0.5¢ |w —v|),
This implies that
pw|lw=0) o« p(v,w=0)
o« exp(-€v]) ~ Lap(e”!),

which leads to (4.6).

We then derive the density for & = fu; + (1 — f)ug, where
B € (0,1) (the case of f = 0 or 1 is trivial). This covers the L;
projection case, where any f € [0, 1] is acceptable, and the L,
projection case, where 8 = 1/2. Since u; = 7 ![ii — (1 — B)uz], the
Jacobian from (i, uz) to (u1, up) is 1. Consequently,
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To derive p (i), we assume without loss of generality # > 0. Con-
sider pe (i) = /pe (4, u2) dug on three regions:

L(p) = 16ﬁ/ XP{——ﬁ(u—uz)}duz— exp{—ﬁu}
L(p) = léﬁ/

bl o]
() = 16/5/ { uz—u]}duz eexp{

Summing up these terms and noting the symmetry of p., we obtain

s|pe =it} - a-prew {5l

(1-p) _
- 1)Lap(z(l Pe 1). (A1)

pe (,uz) = Xp {—%[Iﬁ—(l—ﬁ)uzl +ﬂ|uz|]}~

{—— [a+(2p - l)uz]} duy

21-p) —ﬁ) }

Pe(ﬁ) =

€
426 -1)
Lap (2p¢7") -

i
" (26-D)

Remark I. The expression (A.1) is fascinating. It shows that the
density of a convex combination of i.i.d. Laplace random variables
is a “mixture” but non-convex combination of two Laplace densities
with different scale parameters, because

B +[_<1—/3>2
-0 |"@-1

That is, although the two weights add up to one, they always take
the opposite sign when f # 1/2.

Remark II. When f# = 1/2, the expression (A.1) is of 0/0 appear-
ance, but is well-defined once taking the limit § — 1/2 and using
the L’Hospital’s rule, yielding

pe(u) = [1 + eli|] exp {—elul} . (A2)

This can be written as

1 1 €

2+ Sexp{elil} + 5 - S il exp {~elil)
1 ) 1 .

ELap (e ) + ESgnGamma (2, € ),

p@ =

suggesting that it is more variable that Lap(e~!). We now prove
that (A.2), moreover the entire family of distributions given by
(A.1) as indexed by f € (0, 1), is e-differentially private. In fact, they
attain a level of privacy protection more stringent than € whenever
B # 1/2. Our proof relies on the following general result, which
can be useful for verifying differential privacy guarantees in other
situations.

THEOREM A.1. Suppose f(x) is a positive real-valued function on
a normed vector space X, with its norm denoted by |x|. Suppose f(x)
has the following properties:
(i) f(x) is monotone decreasing in |x|;
(i) ga(x) = f(x)e“|x| is monotone increasing in |x|, where a is
a positive constant.

Then for any a € X and b € X, we have

fx=a) _ ala-b|

S b S (&-3)

Proor. Forany x € X, if |x—a| > |x—b|, then f(x—a) < f(x-b)
by (i) and hence (A.3) holds trivially. If |x — a| < |x — b|, then
ga(x —a) < go(x — b) by (ii), and hence

flx—a)
fx=b)

_ 9alx = al) a(jx-b|-Ix-al)
 gal(lx - bl)
< ea(\x b|-|x—al) < ealafbl.

O

To apply this result, we first note that for pe(x) of (A.1) with
x > 0, its derivative is given by
- -— 0
ol <o

dpe(x) € .
dx 8(2ﬁ— l) “2(1-p)
for any § # 1/2. For = 1/2, we can directly verify from (A.2) that
dpe) __€

dx 4

Hence, condition (i) holds for (A.1) for all § € (0, 1).

To establish condition (ii), the choice « is the key since it directly
governs the degree of privacy guarantee. From the expression (A.3),
we want the smallest @ such that condition (ii) holds, which gives us
the tightest bound hence better privacy guarantee. A good strategy
here is to start with & = ce and let the mathematics tell us how to
minimize over c. We start with the simplest case with f = 1/2. From

xexp {—ex} <0,



the expression (A.2), the smallest ¢ that can make g, monotone
increasing is clearly 1. The resulting g, also has the property that
Ja(lx —al) _

—_ =1. A.
o g b)) (A.4)

This implies that the bound e€/4=| can be approached arbitrarily
closely by letting |[x| — oo, which means that the privacy loss
budget € cannot be reduced. For our current application, this means
the post-processing by Ly projection is also differentially private at
level €, but not more stringent than that.

When f # 1/2, we assume without loss of generality f > 1/2.
Then for g4 (x) = €°€Xlp. (x), it is easy to verify that for any x > 0,

dga(x) _ €

=— [wc exp {&ex} +[we +¢']exp {—Mex}] s
dx 8(28-1) 2p 2(1-p)

where we = 2¢f — 1 and ¢’ = 2(1 — ¢). Our job is to seek the
smallest ¢ such that this derivative is non-negative regardless of
the value of x. Clearly the positivity holds when we set w, = 0,
thatisc = (2,[3)_1 < 1, and hence ¢’ > 0. To show that this is the
smallest possible ¢, we see that when setting a = €/(2f), we have

ga(lx—al) _ p—(1-p)exp{-z|x —al}
ga(lx =bl) B —(1-p)exp{-tlx—b|}’

where 7 = (2 - 1)/(2f(1—-p)) > 0. Clearly as |x| — oo, the
ratio above goes to 1 regardless of the value a and b as long as
they are fixed. Consequently, the same implication from (A.4) fol-
lows, that the bound e%!4=?! can be approached arbitrarily closely
with @ = €/(2), hence it cannot be further improved. That is, for
post-processing via L; projection, the actual differential privacy
protection achieved is €/(2f) when > 1/2 (and €/(2(1 — f)) when
B < 1/2). This makes intuitive sense. For example, when § = 1
the injected noise is drawn from a single Lap(2¢~1!) distribution,
corresponding to a privacy loss budget of €/2.

In summary, for any f € [0, 1], the attained privacy loss budget
for M(x) = s(x) + &t is /(2 max{f, 1 — B}).

B SAMPLING SCHEME FOR THE DOUBLE
GEOMETRIC DISTRIBUTION

The Double Geometric mechanism, as introduced in Definition 1.2,
utilizes additive noise whose cumulative mass function is given by

a4

- u<o,
Fu)=P({U <u) = { 1+a%+1
1- Tra u>0,
with quantile function

—log v—log(1+a) 1
Fl(v)= log(a) VS Tig

v)= log(1-v)+log(1+a) o> L
log(a) 1+a-

Hence, one way to sample a Double geometric random variable is
via inverse probability sampling. That is,

FLU) ~pi(-e),

where p; is given by (1.3). This method is implemented for all
numerical examples illustrated in this paper.

Ui ~ Unif (0,1),
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Figure 2: Algorithm 1 acceptance rate as a function of the
proposal parameter €.
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Figure 3: Traceplots of 10,000 draws from Algorithm 1 of the
second (left) and the first (right) cell of the constrained dif-
ferentially private contingency table.

C PERFORMANCE DIAGNOSTICS OF THE
MIS ALGORITHM

The acceptance rate of Algorithm 1 rate is shown in Figure 2 as a
function of the proposal inverse scale parameter € . The acceptance
rate is the highest in this example when € is set to 0.6, just slightly
larger than the privacy loss budget of the unconstrained privacy
mechanism (¢ = 0.5 per cell). The acceptance rate achieved is about
1.68%.

Figure 3 shows traceplots of 10,000 draws from Algorithm 1
of respectively the second (in proposal index set 1) and the first
(not in proposal index set I) cells of the constrained differentially
private contingency table, when € = 0.6.
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