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Abstract—In recent years, edge computing has attracted in- A,
creasing attention for its capability of facilitating delay-sensitive A=| A, Cloud
applications. In the implementation of edge computing, however, A,
data confidentiality has been raised as a major concern because ,/ \ \
edge devices may be untrustable. In this paper, we propose a
design of secure and efficient edge computing by linear coding. Sy Sy Sy Sy Edgedevice
In general, linear coding can achieve data confidentiality by A A, As
adding random information to the original data before they are ! £ A
distributed to edge devices. To this end, it is important to carefully [ ’L/ </ Ax
design code such that the user can successfully decode the final Ax \ / AX A' User device
result while achieving security requirements. Meanwhile, task Tee-s - X[ AX *
allocation, which selects a set of edge devices to participate in a S Asx
computation task, affects not only the total resource consumption, (a) Traditional distributed computing.
including computation, storage, and communication, but also
coding design. In this paper, we study task allocation and
coding design, two highly-coupled problems in secure coded edge
computing, in a unified framework. In particular, we take matrix / J e \
multiplication, a fundamental building block of many distributed
machine learning algorithms, as the representative computation A,'=:+/Rl Az'=::sz+R, A‘,=\A/?+RI A,-\=:+ AUR,

task, and study optimal task allocation and coding design to
minimize resource consumption while achieving information-
theoretic security.

I. INTRODUCTION

Edge computing, which allows computation to be done at
edge devices near end users, has become a viable solution
to support latency-sensitive applications, such as Internet-of-
Things (IoT), virtual/augmented/mixed reality (VR/AR/MR),
crowdsourcing, machine learning, and big data analytics [1].
In edge computing, the completion time of computation tasks
can be reduced since the long round-trip time of moving data
between users and backend datacenters is avoided [2]-[6].

In a typical edge computing scenario, a large number of
edge devices can be utilized to compute the same task. There-
fore, the completion time of a computation task can be further
reduced by dividing the whole task into small subtasks and
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Examples of distributed matrix multiplication in edge computing.

(b) Secure coded distributed computing.

Fig. 1.

processing them on multiple edge devices simultaneously [7]—
[9]. For example, Fig. 1 (a) shows how matrix multiplication
can be performed in edge computing. In Fig. 1 (a), A is a
predefined matrix, e.g., a pre-trained deep learning model, and
is partitioned into three blocks A, Ay, and Ags, each of which
is stored in an edge device. In this case, suppose a user has a
data vector x and wants to calculate y = Ax. It can first send
X to three computing devices and then obtain y by combining
the results from three devices.

Although such traditional distributed computing schemes
can be utilized in edge computing, there are still some chal-
lenges to be addressed. Firstly, edge devices in edge computing
are usually resource limited, i.e., limited storage space, com-
puting capability, and bandwidth. Thus, task allocation, which
is to identify a set of suitable edge devices for computing,
becomes important. Secondly, edge devices in an edge network
may belong to different service providers. They may be
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untrusted. Thus, data confidentiality must be provided. To ad-
dress both challenges, coded distributed computing (CDC) has
been exploited in different distributed computation scenarios,
e.g., matrix multiplication [3], [4], [8]-[13], which is a critical
and indispensable building block of many distributed machine
learning algorithms [3], [4], [8]-[10], [14].

For matrix multiplication, most existing studies for CDC
focus on the tradeoff between the latency and computing re-
sources [3]-[6]. Few efforts have been devoted to the security
aspects by fully utilizing linear coding. For instance, in [8], [9],
the authors proposed the secure matrix multiplication scheme
by exploiting staircase codes, with the objective of minimizing
the computation latency. In [10], the authors investigated
how to keep computing data confidential to edge devices. In
these studies, the authors utilized the random information and
the redundant computation resource to provide information-
theoretic security (ITS) without considering the communica-
tion, computation, and storage cost. In this paper, we address
the design of secure CDC for edge computing, with the
objective to minimize the total resource usage, which has not
yet been investigated in the literature.

Specifically, we consider a matrix multiplication model in
which matrix A is pre-defined in the cloud and coded blocks
of A are disseminated to edge devices in advance [8]-[10],
[15], [16], as shown in Fig. 1. Moreover, we aim to achieve
the confidentiality of A such that the coded block assigned
to each computing device cannot be used to compute any
linear combination of rows in A, which is the ITS requirement.
On the other hand, we assume that vector X is also a coded
version of the original data, which cannot be used by any
edge device to reveal the original data. In this paper, since the
security of all data is rather comprehensive, we will only focus
on how to achieve the confidentiality of A. In the literature,
homomorphic encryption can be exploited to compute directly
on the encrypted data, but it requires high computation over-
head and implementation complexity [17]-[19]. Specifically,
using the latest HElib library developed in 2018, the authors
in [19] demonstrated that the running time of multiplying a
628 x 628 dimensional matrix by a 628 x 1 dimensional vector
in homomorphic encryption mode is 2.2 second, which is
more than 2 x 10% times slower than directly multiplication on
two unencrypted matrix. Therefore, homomorphic encryption
may not be efficient for edge computing. In this paper, we
consider the secure coded edge computing by fully utilizing
the properties of the linear coding itself, which has lower
computation complexity.

To achieve the ITS of A, the cloud shall generate some
random blocks and linearly combine them with the blocks in
A, as shown in Fig. 1 (b). Certainly, adding random blocks
will lead to more resource usage. Therefore, in this paper,
we formulate an optimization problem to minimize the total
resource usage in Secure Coded Edge Computing (SCEC)
with ITS guarantee. In particular, we will jointly study the
optimal task allocation and coding scheme design for SCEC.
Our objectives include: 1) completing the computation task,
2) satisfying the security requirements, and 3) minimizing the

total cost of storage, computation, and communication. To the
best of the authors’ knowledge, no previous work has been
conducted to address such a Minimum Cost SCEC (MCSCEC)
problem for matrix multiplication by jointly studying the task
allocation and coding scheme design. The main contributions
of the paper are summarized as follows:

o We adopt linear coding to achieve secure edge computing
by exploiting the available resources of massive edge
devices in edge networks. To this end, we formally
define the Minimum Cost Secure Coded Edge Computing
(MCSCEC) problem.

« We conduct solid theoretical analysis to show the impacts
of the number of random vectors used in SCEC, the
number of coded vectors stored on each edge device,
and the number of edge devices selected to perform
computation tasks while fulfilling the aforementioned ob-
jectives. We also prove the lower bound of the MCSCEC
problem, which enables us to further design the optimal
task allocation schemes.

o« We develop two efficient optimal algorithms to firstly
obtain a set of selected edge devices, i.e., task allocation,
and then design coded computing scheme, i.e., coding
design, to achieve the first two objectives of the MCSCEC
problem. Moreover, we also prove that the cost achieved
by the proposed scheme is the minimum. In both task
allocation and coding design, based on the aforemen-
tioned theoretical analyses, we present novel designs to
significantly reduce both the computational complexity
and decoding complexity.

« We conduct extensive simulation experiments in Sec. V
with five parameters to demonstrate the effectiveness of
the proposed task allocation and code design schemes.
For example, the total cost obtained by the proposed
MCSCEC scheme is less than 0.5% higher than the lower
bound. MCSCEC can save more than 26% in resource
consumption, compared to the baseline solutions, even
when the size of data matrix is very large (10* rows).

The rest of the paper is organized as follows. Sec. II

introduces system model for the MCSCEC problem. We then
give theoretical analysis of the MCSCEC problem in Sec. III.
In Sec. IV we design efficient optimal schemes including
two task allocation algorithms and a secure code design.
Considerable simulations are conducted in Sec. V. Finally, we
conclude the paper in Sec. VI.

II. PROBLEM MODELING

In this section, we first introduce the SCEC model and then
present the attack model considered in this paper. At last,
we give the formal definition of the MCSCEC problem and
provide an overview of the framework solving the problem.

A. System Model

In this paper, we study an edge computing system S =
{s0,81, "+ ,Sk}, in which sy denotes a user device and
sj, V5 € {1,--- k}, k > 2, represents the j-th edge device.
sp needs to perform computations on a confidential data set
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represented by an m x [ matrix A. Let A;, Ay, --- A, be m
row vectors of A, each with dimension 1 x [. In our study,
without loss of generality, we focus on the multiplication of
data matrix A with one input vector x. The schemes proposed
in this paper can also be applied to more general cases that
require multiplication of two matrices and/or multiplication of
a data matrix with different input vectors.

To compute Ax and achieve the information-theoretic se-
curity (ITS) requirement, A needs to be coded, divided into
blocks, and stored at edge devices. This pre-process can be
done by a cloud, e.g., a parameter server which has trained
a deep learning model. To code A, r random vectors with
dimension 1 x [, represented as {Ry,Ra, -+ ,R;.}, need to be
generated and encoded with the row vectors of A into m + r
coded vectors!. We note that r is a variable to be determined,
which has great impacts on not only the total resource usage
but also the existence of the secure linear coding scheme for

o
T T pT T
Al AL R - R]

the edge computing. Let T = [
(m + r) dimensional encoding coefficient

and the (m + ) X
matrix B = [BlT, e ,BZ]T, in which B; is the encoding
coefficient matrix of the coded vectors to be stored on s; and
T denotes matrix transposition. Finally, coded vectors, i.e., the
row vectors of B;T, are distributed and stored on each edge
device s;, Vj € {1,--- ,k}. Let V(B;) denote the number
of rows in B;. The number of coded vectors stored on s;
is V(B;). We note that the encoding coefficient matrix is an
empty matrix for an edge device which is not selected, i.e.,
none coded vector is stored on it. 2521 V(Bj) =m+r.

To compute Ax, sg firstly sends the input vector x to the
selected edge devices. Each edge device s; then multiplies the
coded vectors, i.e., the row vectors of B;T, by x and sends
the intermediate results B;Tx with length V' (B;) back to so.
Then, sg can decode Ax after receiving these intermediate
results. Specifically, since the user device sg receives all the
B;Tx, Vj € {1,---,k}, it can obtain BTx. If the encoding
matrix B is a full rank matrix, the user device can obtain Tx
by Gaussian elimination, in which Ax is composed by the
first m values of Tx. In Sec. IV-B, we give a secure linear
coding design with much lower decoding complexity, in which
the user device only needs to perform m subtractions on the
received m + r intermediate results, i.e., values, to obtain the
final result y=Ax. To grantee that the user can decode the final
result y, we give the following availability condition.

Definition 1. (Availability Condition) ¢(S, k, m,r) is an (m+
r) dimensional Linear Code for Edge Computing (LCEC) if
and only if the encoding coefficient matrix B is full rank.

In this paper, to minimize the storage, computation and
communication cost, we assume that all the edge devices
are available in SCEC, i.e., all the intermediate results
{B1Tx, -+ ,B;Tx} will be correctly computed and transmit-
ted to the user device in a timely manner.

'In this paper, we use redundant vectors to assure security only. In a similar
way, redundant vectors can also be used to provide processing delay guarantee.
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TABLE I

NOTATIONS
Notations| Meaning
S the set of edge devices and a user device,
S={s0,81-", 8k}
A the m x [ dimensional data matrix.
Ry the p-th random vector.
B the encoding coefficient matrix.
B; the encoding coefficient matrix for edge device s;.
k the number of edge devices. K = {1,--- ,k}
m the number of row vectors in the data matrix A.
Cj the unit cost of edge device s;.
r the number of random vectors to be encoded with the data
vectors.
V() the number of row vectors in a matrix.
Rank(-) | the rank of a vector set or matrix.
AT the transposition of matrix A.
Iy the matrix composed by the set of row vectors with indexes
b from a to b in a matrix
()p.q the element in the p-th row and g-th column of a matrix.
L(+) the linear span space of row vectors of a matrix.

For each edge device sj, let the unit cost of storage be
c¢i. Let the unit cost of addition and multiplication be cf
and c}” respectively, where c? < c;n Let the unit cost of
communication from s; to sg be cj Firstly, for storage,
s; needs to store I x 1 dimensional input vector x, V(B;)
coded vectors, i 1 x [ dimensional row vectors of B;T
and V(B;) mtermedlate results (values) B;Tx. Therefore, the
storage cost is up to (I + V(B;)l + V(B ))c;. Secondly, to
compute the multiplication between a V(B ])) x [ coded data
matrix B;T and the l x 1 input vector X, the total computation
cost is V(B;)(lc]* + (I — 1)cf). Thirdly, after completion
of the computing task, s; shall send V(B;) intermediate
results (values) B;Tx to so, which will lead to up to V(Bj)c?
communication cost. Therefore, the total cost on s; is:

=

Z(z+(z+1)v B;))cs + V(B;) (I + (I — 1)c?) + V (B;)c?

[}

(D
k
= (4 1)e + e + (1 = 1)cf + )V (By) + lc3)
j=1
Let ¢; = (I + 1)c5 + 1" + (I — 1)c + ¢4 be the unit
cost of each edge device s;. It reflects the involved storage,
computation, and communication cost for s; to handle one
row vector. Since ! and cj are given values, Z lej is fixed.

=1
Therefore, the problem of minimizing the total cost shown

in Eq. (l) is equivalent to the problem of minimizing cost
Z V( )C] Let C = {Cla

generahty, we assume 0 < ¢;, <¢j, if 1 <j; <jo < k.
To facilitate the discussions, we define notations in Table 1.

, ¢ }. Without loss of

B. Attack Model and Secure Requirements

In this paper, we study the passive attack model in which
each edge device can be a passive attacker or compromised
by a passive attacker. Moreover, they do not collude with each

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 31,2020 at 16:48:41 UTC from IEEE Xplore. Restrictions apply.



other. A similar passive attack model has been investigated
in secure distributed computing [8]-[10], [15], [16]. In this
paper, we consider the case where each edge device may want
to know the information of data matrix A. For example, in
gradient-descent based algorithms, data matrix A is usually
the personal data and input vector x in each iteration is only
a temporary vector for obtaining the final weight vector [3],
[8], [9]. We note that similar ideas can also be extended to
protect both data matrix A and input vector x simultaneously,
which will be investigated in our future work.

Let H(-) be entropy and H (-|-) be conditional entropy. K =
{1,---,k}. We give the definition of the information-theoretic
security (ITS) requirement [8], [9], [20] as follows:

Definition 2. (Security Condition) An (m + r) dimensional
LCEC ¢(S,k,m,r) satisfies the requirements of ITS iff

H(A|B;T) = H(A),Vj € K. 2)

Let E,,, be the m x m dimensional identity matrix and O, 4
be the p x ¢ dimensional zero matrix. Let A = [ E,, 1 Op.r ]
and L(-) be the span space of row vectors of a matrix.
According to [20], Definition 2 is equivalent to: dim(L(B;) N

LX) =0,Vj € K.

C. Problem Definition

In this paper, we study the Minimum Cost Secure Coded
Edge Computing (MCSCEC) problem as follows:

Definition 3. Given an edge computing system S, the costs
of edge devices C, and an m x | dimensional data matrix A,
the MCSCEC problem is to find a subset of edge devices to
store the coded vectors and compute matrix multiplication, i.e.,
task allocation, and design a linear coded computing scheme,
i.e., coding design, that satisfies the availability and security
conditions, to minimize the total cost c.

D. The MCSCEC Framework

In this section, we provide an overview of the framework
to solve the MSCSEC problem where the key components in
the framework will be elaborated in the following sections.

o Task Allocation. In this step, the cloud shall first deter-
mine two parameters: r (the number of random vectors to
be encoded with data vectors) and ¢ (the number of edge
devices to participate in the SCEC). We will elaborate on
this in Sec. IV-A.

o Coded Data Distribution. As explained in the system
model, the cloud shall first generate r random vectors
{R1,Rg, -+ ,R,}, then generate encoding coefficient
matrix B = [BI,--- ,B;r ]T. Finally, for each edge
device s;, the cloud computes and then distributes B;T
to it. We will present the design of B in Sec. IV-B.

o Coded Edge Computing. After user device sg sends
the input vector x to each edge device s;, s; multiplies
the coded data matrix B;T by x. Then, s; sends the
intermediate results B;Tx back to sq.

« Original Result Recovery. When user device s( receives
all the B;Tx, Vj € {1,---,¢}, it can obtain BTx. In

Sec. IV-B, we will discuss how to use BTx to efficiently
calculate the desired result Ax.

III. THEORETICAL ANALYSIS

In this section, we first show the necessary condition
(Lemma 1) and existence (Lemma 2) of the optimal solution
of the MCSCEC problem. After that, we give a lower bound
(Theorem 1) of the MCSCEC problem and the condition
(Corollary 1) that the lower bound can be achieved.

Lemma 1. Ifan LCEC ¢*(S, k, m,r) is the optimal solution of
the MCSCEC problem, then for each edge device sj, V(B;) <
r, Vj e K.

Proof. Firstly, we prove that Rank(B;) < r, Vj € K.
Since LCEC ¢*(S, k, m,r) satisfies the ITS requirements,

dim(L(B;) N L(X)) = 0. We have

dim(L(B;)) + dim(L(X))

= dim(L(B;) + L(X)) + dim(L(B;) N L(X))
)

B
= dim(L(B;) + L(X)) = Rank( {P’XJ} ),

Rank( [1;]} ) < m+7. Since dim(L(B,)) + dim(L(X)) =

Rank(B;) + m = Rank( li’}) < m + r, we have

Rank(B;) < r, for Vj € K.

Next, we use a proof by contradiction to show that, in an
optimal ¢*, V(B;) < r for all j. If there exists an edge device
s; that V/(B;) > r, since Rank(B;) < r, the row vectors in B;
are linearly dependent. Suppose that matrix B; is composed by
the rows in the maximum independent set of the row vectors in
B;. We can obtain a new solution ¢’ as follows. Suppose that
B’ is the encoding coefficient matrix of solution ¢'. Let B =
Bj,, for Vj; # j, and B} = Bj. Since L(B}) = L(B;) =
L(B;), Rank(B) = Rank(B’) = m + r. Therefore, solution
¢' satisfies the availability condition. Moreover, since L(B’;) =
L(B;),Vj € K and ¢* satisfies the ITS requirements, solution
¢ also satisfies the ITS requirements. Since Rank(B;) < r
in ¢*, V(B}) = Rank(B;) < r < V(B;). Since V(B})) =
V(Bj,), for ji # j, and ¢j; > 0, the cost of ¢’ is smaller than
¢. It contradicts with the assumption that ¢* is the optimal
solution. Therefore, we have V(B;) < r, for Vj € K. O

Remark 1. Although Lemma 1 addresses the security aspect,
it also shows that the task allocated to each device is limited
to r. Therefore, the completion time is bounded with certain
probability, which can guarantee the processing time [3].
Nevertheless, due to limited space, the discussions about delay
will be skipped in the rest of this paper

Based on Lemma 1, we can obtain the following lemma.
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Lemma 2. There exists an optimal solution ¢*(S, k, m,r) of
the MCSCEC problem, which satisfies that V(B}) = r,Y0 <
§< TV (B ary) = = (2551~ 2)r, and V(B;) =
0,V[™E] < j < k!

Proof. We prove this statement in a constructive way. Let
LCEC ¢'(S, k,m,r) be one of the optimal solutions for the
MCSCEC problem and the minimum cost be ¢. Based on the
given r in ¢’, we can obtain an LCEC ¢* (S, k, m, r) proposed
in Sec. IV-B, in which the encoding coefficient matrix B* is
shown in Eq. (8). Based on this B*, we let i = [~ and we
can allocate coded vectors B;T to 55, V1 < 7 <i—1,in which
V(Bj) = r. For device s;, we have V(B]) = m+r—(i—1)r.
Finally, we can observe that V(B}) = 0,Vi < j < k.

In Theorem 3, we prove that ¢*(S,k,m,r) is a feasible
solution because it satisfies both the avallablllty and security

condition. The cost of ¢* is c* Z V(B})cj + V(B )e: =

(m+r — (i — 1)r)e;. According to Lemma 1, for

i—1
> e+
i=1

the optimal ¢', V(B) < r. Since Z V(B)) = Z V(B}) =

m+r and ¢;, <c¢j,, if 1< gy <J2<k: Wehavec <.
On the other hand, since ¢’ is an optimal solution of the
MCSCEC problem while ¢* is a feasible solution of the
MCSCEC problem, we have ¢/ < ¢*. Consequently, ¢* = ¢/,
i.e., ¢* is also an optimal solution of the MCSCEC problem.
Therefore, there exists an optimal solution ¢*(S,k, m,r) of
the MCSCEC problem, which satisfies that V(B}) = r,V0 <
§< TV (B se) = m — ([2E5] — 2)r, and V(B) =
0,V[™E] < j < k. m

Remark 2. Lemma 2 shows the existence of an optimal
solution of the MCSCEC problem which satisfies a special
constraint. It will be used to design task allocations shown in
Sec. IV-A.

Before we show the lower bound of the MCSCEC problem,
we present and prove the following Lemma 3 — Lemma 5.
To simplify the notations in the proof, we assume that

%2 . ¢; = 0 when j; > jo. Let i* be the maximum 4

J=j1 X
that satisfies Z;;ll ¢; > (i—2)¢, Vi € {1,--- ,k}. We
have 2 < ¢* < k. Based on the definition of *, Lemma 3

— Lemma 5 show inequalities on the unit costs of the set of
edge devices, which will be used to prove Theorem 1.

> (o — 2)cix, when 2 < o < 0%
> (a—2)cq, when 2 < a <i*;
< (a—2)cq, wheni* +1<a<k;

Proof. When 2 < a < 4%, according to the definition of ¢*,
i*—1
we have > ¢; > (i* —2)
j=1
it—1 it—1 it—1
have ) ¢; < (i* — &)c;». Therefore, > ¢; — Y ¢; >
Jj=1 Jj=«

Jj=a

Lemma 3. 27 16

ci=. Since a < 7%, ¢y < ¢i+. We

a—1
(i* = 2) = —(I*—a)cr, 1., D ¢ > (@—2)¢ > (—2)cq,
j=1

2 <o <7*,
When o« = * + 1, according to the definition of ¢,
i a—1
we have Y ¢; < (1" —1) ¢y, 16, Y ¢ < (v — 2)cq
j=1 j=1

ok
7

Similarly, when a > i* 4+ 1, we have ) ¢; < (i* — 1) ¢j=41.

j=1
a—1

Since Y ¢ < (a0 — 4" — 1)cq—1 and coo1 > G,
j=it+1

Z a—1

Z P+ Z c; < (’L* — 1) Cix41 + (Oé — 7 = 1)Ca_1 <

j=1 Jj=i*+1

a—1
(v — 2)eq—1, we have Y ¢; < (@ —2)ca—1 < (@ — 2)cq,
j=1
rF+1<a<k. O
Lemma 4. When 2 < o < 4%, ¢ Z;‘zl ¢ > 23:1 ¢

- 1
Proof. When 2 < o < ¢*

«
m Z m
i — ——
a—1 4 |
Jj=1

, we have

>
P

%
[e3 K3

:% (i*,a);cjf(afl)j:za;lcj 3)
:m 2| 2 e - @=Dergn

Jj2=1 \Jj1=1

Since a < %, we have a4+ 1 < ¢*. According to Lemma 3,

> ¢ > (oD

Jji=1
We have Z cjy —

x> 2andcj >0V1 < j < k, from Eq. (3), we have
— S e 20 =
j=1

. Since ¢* > i —j2 + 1, Ci* > Ci* —jo41-

(a—=1)¢_jp41 > 0. Since m > 1, a > 2,

+1 < a < k 2 ?:_1lcj>

Lemma 5. When * a—3

P 23:1 Cj-

Proof. When i* +1 < a < k, we have

a—1 7"
m m
Q,QZ j_i*,lzcﬂ

Jj= J=1
m a—1 i*

B CEIaE) (=1 > —(a—i"=1)> ¢

j=it+1 j=1

m a—i*—1 i

e | = | Ve = D

Jj2=1 ji=1

-

7
according to Lemma 3, Y ¢; < (" —

Since 7* + 1 > i,
Jj1=1

1)(27; 41 Since i +1 <" 4o, (i**l)ci*+1 < (i**l)ci*_;,_jz.

We have Z ¢y < (P =1)cieqjp, Vio € {1, ,a—i* —1}.

Consequently, whenm > 1,a>¢* >2and¢; >0,V1 <5<
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a—1 7" a—1
m . : m .
k, we have _™5 Z c; 1 Z c; >0,ie., %5 Z cj >
j=1 j=1 j=1
e
m
1*—1 < Cj- O
J=1

Remark 3. Based on Lemma 2 — Lemma 5, we derive the

lower bound of the MCSCEC problem in Theorem 1 and the

condition that the lower bound can be achieved in Corollary 1.

Theorem 1. The cost of the optimal solution of the MCSCEC
e

problem is no less than c* =

bound of the MCSCEC problem.

=07 > ¢j, which is a lower
Jj=1

Proof. From Lemma 2, there exists an optimal solution
¢*(S, k,m,r) of the MCSCEC problem. We let i = [
In the above ¢*, we have V(B;) = r, for V1 < j < i —1,
V(B;) =m— (i—2)r, and V(B;) =0, for Vi < j. Since i =
[mhr] < mAr 4] we have V (B;) > m— (m+r+1 2)7" =0.
Consequently, we have m — (i —2)r > 0, i.e., r < 7%5. On the
other hand, according to Lemma 1, V/(B;) < r, so we have
m— (i —2)r <, ie, r > /. Together, we have
m

1Sy “@
Next, we consider the cost of the optimal solution ¢*:

C—TE(,J
E:CJ

Since m > 0,7 > 0, i = [™] > 2, there are totally &
edge devices and the number of vectors allocated on each of
them is no more than r in ¢*, k > [F"] = i. Therefore,
2 < i < k. We now consider ¢ in two cases First, if 2 <7 <

(i —2)c;. In this

— (1 =2)r)e;
(&)

(i —2)e; | +me;.

*, according to Lemma 3, we have Z cj >
Jj=1
case, the cost shown in Eq. (5) increases with the increase of

r. Therefore, the cost of the optimal solution ¢* satisfies:

172

ch =D e (6

From Ineq. (6) and Lemma 4, we have

*

i
m m
" —cl > - ch—,*izcjzo.
z—l_l ¥ —1
i=

j=1

From Ineq. (6), we note that, if ¢ = ¢*, then

- L
2 2

= i*njlzcj_%zcjzo'

j=1 j=1
Secondly, if 2 < ¢* <1 <k, according to the definition of

i—

, we have Z e < (i
=1
decreases w1th the increase of r. Therefore, we have

=t

— 2)¢;, then the cost shown in Eq. (5)

i1 i1
* m
<> ]E,lcj (i —2)e; | +me; = mjglcj.

Furthermore, when ¢ = ¢* + 1, from Ineq. (7), we have

- Lk
2 1

%ch—i*%ch:O.

" —cl > -
j=1 j=1

When i* +1 < i < k, from Ineq. (7) and Lemma 5, we
have

Zq Zq>0

Therefore, Vi,2 < i < k, the minimum cost ¢* achieved by
optimal solution ¢*(S, k, m,r) satisfies that ¢* > c*, ie., c*
is the lower bound of the MCSCEC problem. O

We next prove that the lower bound can be achieved.

Corollary 1. If m is divisible by i* — 1, there exists an optimal
solution ¢* (S, k, m,r) achieves the lower bound c*, in which

— m
T = 1
Proof. If r = Ll and 7 is an integer, then i=[mE] =
and 7 = ;"5 i we

know that c* = c”. Moreover, based on ¢ and r, as shown in
Sec. IV-B an LCEC scheme ¢*(S, k, m,r) can be designed to
achieve the total cost ¢* i.e., the total cost of ¢*(S,k,m,r)
equals to the lower bound. O

IV. THE MCSCEC SCHEMES

In this section, we will show the optimal strategy for the
MCSCEC problem, which can be divided into two stages, task
allocation and coding design respectively. In task allocation
shown in Sec. IV-A, we try to determine the number of edge
devices needed to participate in the SCEC, i.e., i, and the
number of random vectors to be encoded with data vectors,
i.e., . Based on the task allocation, in Sec. IV-B, we give a
linear coding scheme for SCEC which satisfies the availability
and security conditions, and achieves the minimum total
cost. Moreover, in Sec. IV-C, we prove that these proposed
algorithms are optimal.

A. Task Allocation Algorithms

In this subsection, we will present two task allocation algo-
rithms, namely, T'A; and T A, respectively, from two different
points of view. Specifically, in T'A;, based on Lemma 3 and
Corollary 1, we first determine the set of edge devices which
participate in the SCEC. Based on the set of edge devices, we
obtain the number of coded vectors to be allocated on each
of the selected edge devices. In T'As, based on Lemma 2 and
Theorem 2, we first determine the range of 7, and then find the
optimal value of r based on the exhaustive method. Finally, we
obtain the set of edge devices which participate in the SCEC.
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Algorithm 1: Task Allocation Algorithm 1 (T°A;)

Algorithm 2: Task Allocation Algorithm 2 (T'As)

Input: m, k,C
Output: 7,7, c"
1 if £k = 2 then
2 | =2
3 else if £ > 2 then
4 it =2
5 d =ci;
6 while i* < k do
7 d=cd+ Ci* )
8 if ¢ < (i* — 1)c; then
9 | break;
10 else
11 | ="+ 1
2 if [725] < [k'”l] then
. \ r=
14 else
15 = |#5] and i= [
16 =ry_ Yo (mtr — (i - Dr)es
17 r:[ 11 al’ldl*l—erT.l
18 =r> ¢+ (m+r—(i-Dre;
19 f ce <cp then
) \ ==
21 else if cg > cr then
22 ‘ r= [72‘*77111;

23 4= [T

24 return r, 7, and ¢* = rzz;ll ¢; + (m—(i—2)r)c.

Before we find the optimal values of ¢ and r in TA;
algorithm and T A, algorithm, we first theoretically analyze
the range of the values of r by the following theorem.

Theorem 2. In the optimal solution ¢*(S,k,m,r) of the
MCSCEC problem, in which V(B;) = r,¥0 < j < [™£],
V(Braeey) = m— ([] ~2)r, and V(B;) = 0,9] 2] <
j <k, r satisfies [%] <r<m.

Proof. In the above ¢*, we let i = [™+]. According to our
system model, we have m > 1, r > 1, and 7 > 2. Next, since
the total number of coded vectors allocated to all edge devices
is m + r, and the number of coded vectors allocated to each
edge device is no more than r (according to Lemma 1), we
have vk > m + r. Since k is an integer, k > [mT”] = 3.
Therefore, 2 < i < k.

We now consider two types of . In the first case, ¢ = 2,
so 2r > m + 7 and r > m. On the other hand, since ¢* is
optimal, 7 < m. Therefore, in this case r = m.

In the second case, 3 < i < k. Since ¢ = [m‘” , m;LT <

i < ™A 4 1. Therefore, we have ;7 ™. Since

zl— i—

3 <i<kandris an integer, [77] <7 < m.
Therefore, in the optimal solutlon ol ,71] <r<m. O

1) Task Allocation Algorithm 1 (T'Ay) : In Corollary 1, we

have proved that if m is divisible by i* — 1, and 7 = "1,

then the lower bound ¢ can be achieved. Therefore, in Task
Allocation 1 (T Ay) algorithm, we first determine the value of

*

i according to its definition shown in Sec. III. Specifically,

a—1

> > (o —2)ca.
j=1

as shown in Lemma 3, if 2 < o < 7%,

Input: m, k,C
Output: 7,1, c*
vr =i = [

2 c" = 1‘2;;11 ¢+ m+r—(>G—1r)es

3rt=r+1;

4 while r* < m do

5 i = [ T*,

6 c=r Z Sleimdrt =@ = D ews
7 ifc<c” then

8 | r=r"i=iand " =¢

9 rf=r"+1;

10 return r, i, and c*.

Therefore, we can find the value of ¢*
method (line 1 to 14 in Algorithm 1).

Then, if 775 is an integer, we set 7 = i* and r = 775.
The number of coded vectors allocated on each edge device
with index no larger than ¢* is r and totally ¢*r = m + r
coded vectors are allocated on the first ¢ edge devices. In this

1201

by using the search

case, according to Corollary 1, the minimum cost

can be achieved.
On the other hand, if =™ is not an integer, when | =7 | <
[#25] < [#25], since r 2 [+27 1, we set r = [ =25 ]. When

= _1j > [k J we consider two cases in which 7 = | =% |

edge dev1ces selected to part1c1pate the SCEC is ¢ = [0,
where the first ¢ — 1 edge devices are allocated with r coded
vectors and edge device s; is allocated with m+r— (i —1)r =
m — (i — 2)r coded vectors.

According to previous discussions, the cost of the task

i—1
allocation is 7 > ¢; + (m — (i — 2)r)c;. We denote cp
Jj=1
as the cost when r = |="7] and cp as the cost when

r = [=25], respectively. We then compare cp and cp to
choose the optimal solution. Specifically, if cg < cp, then we
set 7 = | 725 and i = [™F]. Otherwise, if ¢ > ¢, we set
r=[z27] and i = [m;*"] The T'A; algorithm are shown
in Algorithm 1, in which the time complexity is O(k).
2) Task Allocation Algorithm 2 (T As) : According to
Lemma 2, there exists an optimal solution ¢*(S, k,m,r). Let
M) In ¢*, V(B,) = nV0 < j < i, V(B;) =
m — (¢ —2)r and V(B ) = 0,Vj > i. The total cost of

&* (S, k,m,r) is ¢* = T‘ZCJ (m — (i — 2)r)e;

Theorem 2, we know the value range of r in the optimal
solution ¢* (S, k, m, ). To minimize ¢*, according to the value
range of r, we can obtain the optimal r by exploiting the
exhaustion algorithm. After that, we obtain the number of edge
devices which participate in the SCEC, i.e., 1 = (mT"'T] The
details of T'As algorithm are shown in Algorithm 2. The time
complexity of Algorithm 2 is O(m + k).

. From

B. Secure Linear Coding Design

From the task allocation algorithms in Sec. IV-A, we have
determined the number of edge devices needed to participate
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in the SCEC, i.e., 7, and the number of random vectors to be
encoded with data vectors, i.e., 7. In this subsection, we give
secure linear coding design based on the task allocation. Let
E; be a t x ¢t dimensional identity matrix and let E,, ;. be an
m X r dimensional matrix

{Er}vlnf(z?Q)r

Specifically, the first (i — 2)r rows of E,, . are composed by
i — 2 identity matrices E, and the last m — (i — 2)r rows
of it are composed by the first m — (i — 2)r rows of r x r
dimensional identity matrix E,..

Let O, 4 be the p x ¢ dimensional zero matrix. We define
the (m+r) x (m+r) dimensional encoding coefficient matrix
B as follows.

Ormi E'r‘
Therefore, we have B; = [Oﬂm}ET ], B, =
By = (BT R, | e (2, Lim ),

andB _B’E:Hj‘)TJrl |: {E }(Z o : { T}m (i— 2)’J

Next, we prove that the LCEC, designed based on encoding
coefficient matrix B, satisfies the availability and security
conditions. Let (B), , is the p-th row ¢-th column element
of B, we have the following theorem:

Theorem 3. If the encoding coefficient matrix of an LCEC
&(S, k,m,r) is B defined above, then the LCEC &(S, k,m,r)
satisfies the availability and security conditions.

Em : E?VL T

Proof. Let B = [ ———————— e ’4—}. Rank(B) = Rank(B’).

Since B’ is an upper triangular matrix and (B),, = 1,Vp €
{1,--- ,m+r}, B is full rank. Therefore, B is full rank and
the LCEC ¢(S, k, m, ) satisfies the availability condition.

For each selected edge device s;, we have 1 < j <.

When j = 1, since all the elements in the 1-th to m-
th column of matrix B; are 0, B;T are linear combinations
of random vectors, i.e., S; cannot obtain any nonzero vector
which is the linear combination of row vectors of A.

When 2 < j <14, let A = [ E,. 1 O, ] We have

dim(L(B;)) + dim(L(X))
= dim(L(B;) + L(X)) + dim(L(B;) N L(X))
= Rank(Bj}) + dim(L(B;) N L(X)),

in which B/, = {A}

For 2 < j < i, since dim(L(B;)) = r and dim(L(X)) =
m, we have dim(L(B;) N L(A)) = m + r — Rank(B).

2)r+1
{Entgo

Since B’ is a lower triangular matrix and (B )pp =1,Vp €
{1,---,m +r}, Rank(B}) = m + 7. Therefore we have
dim(L(Bj) NLA)=m+7r—(m+r)=0.

For j = 4. Since dim(L(B;)) = m — (i — 2)r and
dim(L(X)) = m, we have dim(L(B;) N L(X)) = 2m — (i —
2)r — Rank(B).

B = {EEzm2)'r’+1{E}(1)mr ””” ]

m fm r (i—2)r
N E,  Omm—(i=2)r | Omi=Dr=m
_{ {Em = En—(i—2)r ' Om—(i—2)r,(i=1)r—m ]

{Em m . E v —(i—2)r
E’m : Om,m— i—2)r . .
[{E} ;2’)741’7”5”’((”; } is a (2m — (i = 2)r) x
mfm ! m—(i—2)r
(2m — (¢ — 2)r) dimensional lower triangular matrix.

Rank(B);) = 2m — (i — 2)r. Thus, dim(L(B;) N L(X)) = 0.

Therefore, for V1 < j < i, dim(L(B;) N L(X)) = 0, ie.,
L(B;) does not include any m+r dimensional nonzero vector
in L(X). B; satisfies the H(A|B;T) = H(A) as shown in
Definition 1. Therefore, B satisfies the security condition. [

Based on the encoding coefficient matrix B, the coded data
matrix B;T is migrated and stored on each edge device sj,
Vj € {1,---,i}. There is no coded data matrix stored on
{Sit1, -, Sk} After user device sy sends the input vector
X to each edge device s;, Vj € {1,---,i}, s; multiplies the
coded data matrix B;T by x. Then, it sends the intermediate
results B;Tx back to sqg. After the user device receives the
intermediate results {B1Tx,--- ,B;Tx} from ¢ edge devices,

BlTX

it can obtain BTx = . Then, it can decode and

B,;TX

recover the required result Ax = [A;X,--- ,A,,X]T, in which
Apx = (BTX),4p1 — (BTX), (21-1),1,V1 < p < m. For
the computational complexity of decoding operations in the
user device, we note that in the proposed SCEC scheme, the
user device only needs to perform subtractions m times on
the received m + r intermediate results, in order to obtain the
result of Ax, which is much lower than that when Ax is locally
computed at the user device.

C. Optimality Analysis
In this subsection, we will prove that the proposed task

allocation in Sec. IV-A and coding design in Sec. IV-B are
optimal.

Theorem 4. The solution composed by T Ay algorithm and
secure coding scheme proposed in Sec. IV-B is the optimal
solution of MCSCEC problem.

Proof. From Lemma 2, there exists an optimal solution that
satisfies V(B;) = r,V0 < j < i, V(B;,) = m+r— (i, —1)r
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and V(B;) = 0,Vj > 4,, in which i, = |
total cost of the optimal solution is

m4r
T

1. We have the

ir—1

=7 Z cj +
j=1

When 7 is not determined, we can treat the total cost ¢() as
the function of r. Let i, 1 = M=) and 4,y = [MEEEL.
We have 2 < 4,41 <i4p < 4p_1 and

i1 —1

D oM = (r41) Z ¢

Jj=1

(m~+7r—(ir — 1)r)e,.

+m+r+1=(ppq1— D +1e,, O
ip—1
—r Z ¢ —(m+r— (i, —1)r)c,.
j=1
If iy =441,
irg1—1
D — e = Ny — (i1 — 2)ci, - (10)
j=1
If iy = ipyr + 1,
iri1—1
R C P o S
=t an
—(r—(m+r+1—_(ipq1—1)(r+1))ci,,,
—(m+r— (i, —r)e,,
in which the sum of coefficients of ¢;,,, and ¢;, is —(r—(m+
r+1—(i,41—1)(r+1))+(m—+r—(ir—1)r) = —(i,41—2).

If Z'7' > Z'7'+1 + 29

irp1—1

) = Z ¢
j=1

—(r—(m+r+1—_(ipq1— 1) +1))c,,, 12)

ir—1

—r E cj —

J=tr+1+1

)

(m+r—(ir

- l)r)ci.«a

in which the sum of coefficients of {c;,,,,¢i, 41, ,¢i, }
is—(r—(m+r+1—(Grp1—D0r+1D))+r(r—1—ipp1—
1+ +(m+r— (i, —1)r) = —=(irs1 — 2).

According to Eq. (10)-Eq. (12), since c¢;,,, < ¢;,, we have

-
D — e > N = (i — 2)c, (13)
j=1
When r > [ ’fl], we have i* > m” Since ¢* is an
integer, i* > [™E] =, > d.y. Accordlng to Lemma 3,
Z;’*f Te (z,+1 —2)¢i > (41 — 2)c;, . Therefore, when
7“2[1, T“)fc(r)z().

According to Eq. (10) - Eq. (12), with similar analysis, since

¢i,. <ci,_,, we have

ip—1

o) (”)<ZC*

(14)

i e
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When r < |75 ], we have i* <

m:rr < [mTM—I = 1.

When i* = i,, we have =5 = r. From Corollary 1, ¢;, is
the lower bound ¢X. When i* < i,, according to Lemma 3,
Z?T_ll ¢j < (ir—2)c,. 7 |, we have
e — =1 < 0.

From the above theoretical analysis, when r < | 2 |, ¢(")
decreases as r increases and when r > [ 2], (™) increases

as r increases. From Theorem 2, we have the value range
of ris [2] < r < m. Since i* > 2, [27] < m. If
] < fkmﬂ < [#25]. the total cost can get the optimal
value when r = [ 25 ]. If LZ* 7] > [ 1] since | =71 ]

wig] or |75 ] 4+ 1 = [Z25], the minimum total cost is
the lower cost achieved when we select r = = |z2g) orr =
[ 727 ]. According to the above theoretical analy51s we can
find the minimum total cost by line 15 to 29 in Algorithm 1.
Therefore, the solution composed by T'A; algorithm and the
coding scheme proposed in Sec. IV-B is the optimal solution

of MCSCEC problem. O

Theorem 5. The solution composed by T As algorithm and
secure coding scheme proposed in Sec. IV-B is the optimal
solution of the MCSCEC problem.

Proof. According to Lemma 2, there exists an optimal solution
¢*(S,k,m,r), in which V(B;) = rV0 < j < [Z],
V(B[@W) =m — ([™] — 2)r and V(B;) = 0,Vj >
[™£7]. Given the value of 7 and i = [™£"], the total cost
of it is ¢ = rz ,1 ¢; + (m — (i — 2)r)c;, which can be
achieved by the codlng design shown in Sec. IV-B. From
Theorem 2, we know the value range of r in the optimal
solution ¢*(S,k,m,r) is [;™7] < r < m. Therefore, the
minimum value of total cost ¢ can be obtained by exhaustively
selecting the values of r in its range and computing the total
cost. Therefore, the solution composed by T'As algorithm and
coding scheme proposed in Sec. IV-B is optimal. O

Theorem 4 and Theorem 5 show that both the T'A; algo-
rithm and the T'As algorithm can derive the optimal values of
7 and 7.

As shown in Sec. IV-A, the computational complexity of
TA; algorithm is O(k), where k is the number of edge
devices. On the other hand, the computational complexity
of T'Ay algorithm is O(k + m), where m is the number of
rows in data matrix A. In practice, the cloud can select the
task allocation algorithm with lower computational complexity
according to k and m. For the user device, as shown in
Sec. IV-B, to decode and obtain the final result, the user
device only needs to perform subtraction operation m times
on the received m + r intermediate values. Therefore, the
proposed task allocation and secure linear coding design have
low computational complexity and decoding complexity.

V. NUMERICAL EXPERIMENTS

In this section, we conduct simulation to evaluate the per-
formance of the proposed solution for the MCSCEC problem.
In particular, we compare the performance of the proposed

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 31,2020 at 16:48:41 UTC from IEEE Xplore. Restrictions apply.



x10% x10% x10%

x10% 10°

3 [ [~ MaxNode| 3 - Maxode 31 [~ MaxNode|
25| ~® MinNode ~@- MinNoda -~ MinNode
5| |~ ANode 25 FRNode . 257 | A= RNode
® o || ¥-Mcscec @ =¥~ MCSCEC 7] ~W- MCSCEC|
38 —-LB 8 2 _-;-_ ‘}i s 8 ol =18
515 —4- TAw/oS = w/o: K] - TAw/oS
° ° O 1.
e, o1 S
05 1
[X

0 05
00011 2 3 4 5 6 7 8 9 10 25 10 15 20 25 30 35 40 45 50

m

a) k= 25, Cmaz = 5 b) m = 5000, ¢raz = 5

12 3 45 6 7 8 9 1011
c

‘max

) k = 25,m = 5000

—8- MaxNode]
-~ MinNode
—A- RNode 4
-¥- MCSCEC

-8
—4- TAw/oS

~~ MaxNode |
~&- MinNode
—&- ANode

@
o

T

»

Total Cost
™

Total Cost

&

k

0
20 25 3.0 35 4.0 45 50 55 6.0 65 7.0
1

d) k=25,m=5000,u=5 e)k=25m=5000,0=1.25

05
0.010.25050.75 1 1.251.51.75 2 22525
o

Fig. 2. Total costs when changing different parameters: m, k, ¢maz. o and p.

solution for the MCSCEC problem with the lower bound
shown in Theorem 1 and the following baseline algorithms.

o Task Allocation without Security consideration (TAw/0S)
algorithm where a total of m row vectors of data matrix
A are equally allocated on the ¢* edge devices without
security consideration.

MaxNode algorithm where we set r = [Z;], which
is the smallest value of » as shown in Theorem 2, and
i =[], In this case, the maximum number of edge
devices are selected.

e MinNode algorithm where we let 7 = m, which is the
largest value of  as shown in Theorem 2 and 7 = 2. In
this case, only two edge devices with the lowest unit cost
are selected.

Random Node selection (RNode) algorithm where the
value of r is randomly selected from its range [ =] <
r<mandi= [T,

Since the total costs achieved by both the T'A; algorithm
and the T Ay algorithm are the same, we denote the optimal
scheme composed by the two algorithms and coding scheme
as the MCSCEC algorithm. In the simulation, we consider
the following five parameters: (1) m which is the number of
row vectors in data matrix A; (2) k£ which is the number of
edge devices; (3) Cpmar Where we consider that C (the set
of unit costs of edge devices) obeys a uniform distribution
U1, cmaz); @) wand (5) o where we assume that C follows
a normal distribution N (u,0?). The default values of these
parameters are: m = 5000, k = 25, ¢pae = 5, ¢ = 5 and
o = 1.25. For each combination of parameters, we generate
1000 instances and report the average results.

In Fig. 2 (a)-(e), it shows that MCSCEC always outperforms
the MaxNode, MinNode and RNode algorithms. Specifically,
in Fig. 2 (a)-(c), it shows that, compared with these three
algorithms, the MCSCEC algorithm can reduce the total cost
by more than 43%, 18%, and 13%, respectively, when m,
k and ¢4, are sufficiently large. In Fig. 2 (b), although
the larger the number of edge devices, the total cost will be
reduced, but in practice multiple edge devices participate in the
calculation, which will bring additional communication costs
and communication delays, especially in dynamic networks. In
Fig. 2 (d), when o is 0.01, the unit costs of all the edge devices
are almost the same. In this case, the more that edge devices
are utilized, the lower the total cost is achieved. Therefore,
in this case, the total cost of MaxNode is almost the same as
the minimum total cost achieved by MCSCEC. On the other

hand, when o is 2.5, a lower total cost can be achieved when
selecting a small number of edge devices with the lowest unit
costs. Therefore, the total cost of MinNode can lead to the
minimum total cost achieved by MCSCEC. We can see in the
figure that the lines of MaxNode and MinNode have a cross.
Specifically, to the left of the cross, MaxNode outperforms
MinNode and to the right of the cross, MinNode outperforms
MaxNode. In Fig. 2 (e), when p increases and o is fixed,
the relative difference of costs between different edge devices
becomes smaller, which has the same effect as the case that
1 is fixed and o decreases.

In Fig. 2 (a)-(e), it also shows that the performance of
MCSCEC is very close to the LB, and the relative difference
between the total cost of MCSCEC and LB is less than 0.5%
when all the paramters are sufficiently large. In this case, to
provide security, random vectors should be involved in the
computation task. Although the cost of MCSCEC is larger
than TAw/0S, the cost only increases less than 26%, 19% and
14%, respectively, even when m, k and p are sufficiently large.
When ¢,,., and o increase, the relative differences of costs
between different edge devices become larger. To reduce the
total cost, smaller number of edge devices will be selected in
MCSCEC. Therefore, more random vectors should be utilized,
which leads to the increase in the relative differences of costs
between MCSCEC and TAw/oS. The ratio is no more than
36% and 48%, respectively, even when ¢;,4, and o become
sufficiently large.

VI. CONCLUSION

In this paper, we address the design of secure coded
distributed computing in edge computing, with the objective to
minimize the total resource usage. For this fundamental issue,
we theoretically analyze the necessary conditions and the
lower bound of the problem. Based on the theoretical analysis,
we develop optimal algorithms for task allocation which is to
select a set of edge devices for computing and assign a certain
number of coded row vectors of the matrix to each of them.
We then design an efficient secure coded computing scheme
to achieve information theoretical security with minimal cost
and low decoding complexity. Finally, we conduct extensive
simulation experiments, which demonstrate the effectiveness
of the proposed schemes. We will consider implement the
proposed MCSCEC scheme in real edge computing systems
and study a more general case that more than one edge devices
can attack cooperatively.
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