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Abstract—In recent years, edge computing has attracted in-
creasing attention for its capability of facilitating delay-sensitive
applications. In the implementation of edge computing, however,
data confidentiality has been raised as a major concern because
edge devices may be untrustable. In this paper, we propose a
design of secure and efficient edge computing by linear coding.
In general, linear coding can achieve data confidentiality by
adding random information to the original data before they are
distributed to edge devices. To this end, it is important to carefully
design code such that the user can successfully decode the final
result while achieving security requirements. Meanwhile, task
allocation, which selects a set of edge devices to participate in a
computation task, affects not only the total resource consumption,
including computation, storage, and communication, but also
coding design. In this paper, we study task allocation and
coding design, two highly-coupled problems in secure coded edge
computing, in a unified framework. In particular, we take matrix
multiplication, a fundamental building block of many distributed
machine learning algorithms, as the representative computation
task, and study optimal task allocation and coding design to
minimize resource consumption while achieving information-
theoretic security.

I. INTRODUCTION

Edge computing, which allows computation to be done at

edge devices near end users, has become a viable solution

to support latency-sensitive applications, such as Internet-of-

Things (IoT), virtual/augmented/mixed reality (VR/AR/MR),

crowdsourcing, machine learning, and big data analytics [1].

In edge computing, the completion time of computation tasks

can be reduced since the long round-trip time of moving data

between users and backend datacenters is avoided [2]–[6].

In a typical edge computing scenario, a large number of

edge devices can be utilized to compute the same task. There-

fore, the completion time of a computation task can be further

reduced by dividing the whole task into small subtasks and
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(a) Traditional distributed computing.

(b) Secure coded distributed computing.

Fig. 1. Examples of distributed matrix multiplication in edge computing.

processing them on multiple edge devices simultaneously [7]–

[9]. For example, Fig. 1 (a) shows how matrix multiplication

can be performed in edge computing. In Fig. 1 (a), A is a

predefined matrix, e.g., a pre-trained deep learning model, and

is partitioned into three blocks A1, A2, and A3, each of which

is stored in an edge device. In this case, suppose a user has a

data vector x and wants to calculate y = Ax. It can first send

x to three computing devices and then obtain y by combining

the results from three devices.

Although such traditional distributed computing schemes

can be utilized in edge computing, there are still some chal-

lenges to be addressed. Firstly, edge devices in edge computing

are usually resource limited, i.e., limited storage space, com-

puting capability, and bandwidth. Thus, task allocation, which

is to identify a set of suitable edge devices for computing,

becomes important. Secondly, edge devices in an edge network

may belong to different service providers. They may be
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untrusted. Thus, data confidentiality must be provided. To ad-

dress both challenges, coded distributed computing (CDC) has

been exploited in different distributed computation scenarios,

e.g., matrix multiplication [3], [4], [8]–[13], which is a critical

and indispensable building block of many distributed machine

learning algorithms [3], [4], [8]–[10], [14].

For matrix multiplication, most existing studies for CDC

focus on the tradeoff between the latency and computing re-

sources [3]–[6]. Few efforts have been devoted to the security

aspects by fully utilizing linear coding. For instance, in [8], [9],

the authors proposed the secure matrix multiplication scheme

by exploiting staircase codes, with the objective of minimizing

the computation latency. In [10], the authors investigated

how to keep computing data confidential to edge devices. In

these studies, the authors utilized the random information and

the redundant computation resource to provide information-

theoretic security (ITS) without considering the communica-

tion, computation, and storage cost. In this paper, we address

the design of secure CDC for edge computing, with the

objective to minimize the total resource usage, which has not

yet been investigated in the literature.

Specifically, we consider a matrix multiplication model in

which matrix A is pre-defined in the cloud and coded blocks

of A are disseminated to edge devices in advance [8]–[10],

[15], [16], as shown in Fig. 1. Moreover, we aim to achieve

the confidentiality of A such that the coded block assigned

to each computing device cannot be used to compute any

linear combination of rows in A, which is the ITS requirement.

On the other hand, we assume that vector x is also a coded

version of the original data, which cannot be used by any

edge device to reveal the original data. In this paper, since the

security of all data is rather comprehensive, we will only focus

on how to achieve the confidentiality of A. In the literature,

homomorphic encryption can be exploited to compute directly

on the encrypted data, but it requires high computation over-

head and implementation complexity [17]–[19]. Specifically,

using the latest HElib library developed in 2018, the authors

in [19] demonstrated that the running time of multiplying a

628×628 dimensional matrix by a 628×1 dimensional vector

in homomorphic encryption mode is 2.2 second, which is

more than 2×103 times slower than directly multiplication on

two unencrypted matrix. Therefore, homomorphic encryption

may not be efficient for edge computing. In this paper, we

consider the secure coded edge computing by fully utilizing

the properties of the linear coding itself, which has lower

computation complexity.

To achieve the ITS of A, the cloud shall generate some

random blocks and linearly combine them with the blocks in

A, as shown in Fig. 1 (b). Certainly, adding random blocks

will lead to more resource usage. Therefore, in this paper,

we formulate an optimization problem to minimize the total

resource usage in Secure Coded Edge Computing (SCEC)

with ITS guarantee. In particular, we will jointly study the

optimal task allocation and coding scheme design for SCEC.

Our objectives include: 1) completing the computation task,

2) satisfying the security requirements, and 3) minimizing the

total cost of storage, computation, and communication. To the

best of the authors’ knowledge, no previous work has been

conducted to address such a Minimum Cost SCEC (MCSCEC)

problem for matrix multiplication by jointly studying the task

allocation and coding scheme design. The main contributions

of the paper are summarized as follows:

• We adopt linear coding to achieve secure edge computing

by exploiting the available resources of massive edge

devices in edge networks. To this end, we formally

define the Minimum Cost Secure Coded Edge Computing

(MCSCEC) problem.

• We conduct solid theoretical analysis to show the impacts

of the number of random vectors used in SCEC, the

number of coded vectors stored on each edge device,

and the number of edge devices selected to perform

computation tasks while fulfilling the aforementioned ob-

jectives. We also prove the lower bound of the MCSCEC

problem, which enables us to further design the optimal

task allocation schemes.

• We develop two efficient optimal algorithms to firstly

obtain a set of selected edge devices, i.e., task allocation,

and then design coded computing scheme, i.e., coding

design, to achieve the first two objectives of the MCSCEC

problem. Moreover, we also prove that the cost achieved

by the proposed scheme is the minimum. In both task

allocation and coding design, based on the aforemen-

tioned theoretical analyses, we present novel designs to

significantly reduce both the computational complexity

and decoding complexity.

• We conduct extensive simulation experiments in Sec. V

with five parameters to demonstrate the effectiveness of

the proposed task allocation and code design schemes.

For example, the total cost obtained by the proposed

MCSCEC scheme is less than 0.5% higher than the lower

bound. MCSCEC can save more than 26% in resource

consumption, compared to the baseline solutions, even

when the size of data matrix is very large (104 rows).

The rest of the paper is organized as follows. Sec. II

introduces system model for the MCSCEC problem. We then

give theoretical analysis of the MCSCEC problem in Sec. III.

In Sec. IV we design efficient optimal schemes including

two task allocation algorithms and a secure code design.

Considerable simulations are conducted in Sec. V. Finally, we

conclude the paper in Sec. VI.

II. PROBLEM MODELING

In this section, we first introduce the SCEC model and then

present the attack model considered in this paper. At last,

we give the formal definition of the MCSCEC problem and

provide an overview of the framework solving the problem.

A. System Model

In this paper, we study an edge computing system S =
{s0, s1, · · · , sk}, in which s0 denotes a user device and

sj , ∀j ∈ {1, · · · , k}, k ≥ 2, represents the j-th edge device.

s0 needs to perform computations on a confidential data set
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represented by an m× l matrix A. Let A1,A2, · · · ,Am be m

row vectors of A, each with dimension 1 × l. In our study,

without loss of generality, we focus on the multiplication of

data matrix A with one input vector x. The schemes proposed

in this paper can also be applied to more general cases that

require multiplication of two matrices and/or multiplication of

a data matrix with different input vectors.

To compute Ax and achieve the information-theoretic se-

curity (ITS) requirement, A needs to be coded, divided into

blocks, and stored at edge devices. This pre-process can be

done by a cloud, e.g., a parameter server which has trained

a deep learning model. To code A, r random vectors with

dimension 1× l, represented as {R1,R2, · · · ,Rr}, need to be

generated and encoded with the row vectors of A into m+ r

coded vectors1. We note that r is a variable to be determined,

which has great impacts on not only the total resource usage

but also the existence of the secure linear coding scheme for

the edge computing. Let T =
[
A�1 , · · · ,A�m,R�1 · · · ,R�r

]�
and the (m+ r)× (m+ r) dimensional encoding coefficient

matrix B =
[
B�1 , · · · ,B�k

]�
, in which Bj is the encoding

coefficient matrix of the coded vectors to be stored on sj and
� denotes matrix transposition. Finally, coded vectors, i.e., the

row vectors of BjT, are distributed and stored on each edge

device sj , ∀j ∈ {1, · · · , k}. Let V (Bj) denote the number

of rows in Bj . The number of coded vectors stored on sj
is V (Bj). We note that the encoding coefficient matrix is an

empty matrix for an edge device which is not selected, i.e.,

none coded vector is stored on it.
∑k

j=1 V (Bj) = m+ r.

To compute Ax, s0 firstly sends the input vector x to the

selected edge devices. Each edge device sj then multiplies the

coded vectors, i.e., the row vectors of BjT, by x and sends

the intermediate results BjTx with length V (Bj) back to s0.

Then, s0 can decode Ax after receiving these intermediate

results. Specifically, since the user device s0 receives all the

BjTx, ∀j ∈ {1, · · · , k}, it can obtain BTx. If the encoding

matrix B is a full rank matrix, the user device can obtain Tx

by Gaussian elimination, in which Ax is composed by the

first m values of Tx. In Sec. IV-B, we give a secure linear

coding design with much lower decoding complexity, in which

the user device only needs to perform m subtractions on the

received m+ r intermediate results, i.e., values, to obtain the

final result y=Ax. To grantee that the user can decode the final

result y, we give the following availability condition.

Definition 1. (Availability Condition) φ(S, k,m, r) is an (m+
r) dimensional Linear Code for Edge Computing (LCEC) if

and only if the encoding coefficient matrix B is full rank.

In this paper, to minimize the storage, computation and

communication cost, we assume that all the edge devices

are available in SCEC, i.e., all the intermediate results

{B1Tx, · · · ,BkTx} will be correctly computed and transmit-

ted to the user device in a timely manner.

1In this paper, we use redundant vectors to assure security only. In a similar
way, redundant vectors can also be used to provide processing delay guarantee.

TABLE I
NOTATIONS

Notations Meaning

S
the set of edge devices and a user device,
S = {s0, s1 · · · , sk}.

A the m× l dimensional data matrix.

Rp the p-th random vector.

B the encoding coefficient matrix.

Bj the encoding coefficient matrix for edge device sj .

k the number of edge devices. K = {1, · · · , k}

m the number of row vectors in the data matrix A.
cj the unit cost of edge device sj .

r the number of random vectors to be encoded with the data
vectors.

V (·) the number of row vectors in a matrix.

Rank(·) the rank of a vector set or matrix.

A� the transposition of matrix A.

{·}∗b
the matrix composed by the set of row vectors with indexes
from a to b in a matrix.

(·)p,q the element in the p-th row and q-th column of a matrix.

L(·) the linear span space of row vectors of a matrix.

For each edge device sj , let the unit cost of storage be
csj . Let the unit cost of addition and multiplication be caj
and cmj respectively, where caj ≤ cmj . Let the unit cost of

communication from sj to s0 be cdj . Firstly, for storage,

sj needs to store l × 1 dimensional input vector x, V (Bj)
coded vectors, i.e., 1 × l dimensional row vectors of BjT
and V (Bj) intermediate results (values) BjTx. Therefore, the
storage cost is up to (l + V (Bj)l + V (Bj))c

s
j . Secondly, to

compute the multiplication between a V (Bj))× l coded data
matrix BjT and the l×1 input vector x, the total computation
cost is V (Bj)(lc

m
j + (l − 1)caj ). Thirdly, after completion

of the computing task, sj shall send V (Bj) intermediate

results (values) BjTx to s0, which will lead to up to V (Bj)c
d
j

communication cost. Therefore, the total cost on sj is:

k∑

j=1

(l + (l + 1)V (Bj))c
s
j + V (Bj)(lc

m
j + (l − 1)caj ) + V (Bj)c

d
j

=

k∑

j=1

(((l + 1)csj + lcmj + (l − 1)caj + cdj )V (Bj) + lcsj)

(1)

Let cj = (l + 1)csj + lcmj + (l − 1)caj + cdj be the unit

cost of each edge device sj . It reflects the involved storage,

computation, and communication cost for sj to handle one

row vector. Since l and csj are given values,
k∑

j=1

lcsj is fixed.

Therefore, the problem of minimizing the total cost shown

in Eq. (1) is equivalent to the problem of minimizing cost

c =
k∑

j=1

V (Bj)cj . Let C = {c1, · · · , ck}. Without loss of

generality, we assume 0 < cj1 ≤ cj2 if 1 ≤ j1 ≤ j2 ≤ k.

To facilitate the discussions, we define notations in Table I.

B. Attack Model and Secure Requirements

In this paper, we study the passive attack model in which

each edge device can be a passive attacker or compromised

by a passive attacker. Moreover, they do not collude with each
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other. A similar passive attack model has been investigated

in secure distributed computing [8]–[10], [15], [16]. In this

paper, we consider the case where each edge device may want

to know the information of data matrix A. For example, in

gradient-descent based algorithms, data matrix A is usually

the personal data and input vector x in each iteration is only

a temporary vector for obtaining the final weight vector [3],

[8], [9]. We note that similar ideas can also be extended to

protect both data matrix A and input vector x simultaneously,

which will be investigated in our future work.

Let H(·) be entropy and H(·|·) be conditional entropy. K =
{1, · · · , k}. We give the definition of the information-theoretic

security (ITS) requirement [8], [9], [20] as follows:

Definition 2. (Security Condition) An (m + r) dimensional

LCEC φ(S, k,m, r) satisfies the requirements of ITS iff

H(A|BjT) = H(A), ∀j ∈ K. (2)

Let Em be the m×m dimensional identity matrix and Op,q

be the p×q dimensional zero matrix. Let λ =
[

Em Om,r

]
and L(·) be the span space of row vectors of a matrix.

According to [20], Definition 2 is equivalent to: dim(L(Bj)∩
L(λ)) = 0, ∀j ∈ K.

C. Problem Definition

In this paper, we study the Minimum Cost Secure Coded

Edge Computing (MCSCEC) problem as follows:

Definition 3. Given an edge computing system S, the costs

of edge devices C, and an m× l dimensional data matrix A,

the MCSCEC problem is to find a subset of edge devices to

store the coded vectors and compute matrix multiplication, i.e.,

task allocation, and design a linear coded computing scheme,

i.e., coding design, that satisfies the availability and security

conditions, to minimize the total cost c.

D. The MCSCEC Framework

In this section, we provide an overview of the framework

to solve the MSCSEC problem where the key components in

the framework will be elaborated in the following sections.

• Task Allocation. In this step, the cloud shall first deter-

mine two parameters: r (the number of random vectors to

be encoded with data vectors) and i (the number of edge

devices to participate in the SCEC). We will elaborate on

this in Sec. IV-A.

• Coded Data Distribution. As explained in the system

model, the cloud shall first generate r random vectors

{R1,R2, · · · ,Rr}, then generate encoding coefficient

matrix B =
[
B�1 , · · · ,B�i

]�
. Finally, for each edge

device sj , the cloud computes and then distributes BjT

to it. We will present the design of B in Sec. IV-B.

• Coded Edge Computing. After user device s0 sends

the input vector x to each edge device sj , sj multiplies

the coded data matrix BjT by x. Then, sj sends the

intermediate results BjTx back to s0.

• Original Result Recovery. When user device s0 receives

all the BjTx, ∀j ∈ {1, · · · , i}, it can obtain BTx. In

Sec. IV-B, we will discuss how to use BTx to efficiently

calculate the desired result Ax.

III. THEORETICAL ANALYSIS

In this section, we first show the necessary condition

(Lemma 1) and existence (Lemma 2) of the optimal solution

of the MCSCEC problem. After that, we give a lower bound

(Theorem 1) of the MCSCEC problem and the condition

(Corollary 1) that the lower bound can be achieved.

Lemma 1. If an LCEC φ∗(S, k,m, r) is the optimal solution of

the MCSCEC problem, then for each edge device sj , V (Bj) ≤
r, ∀j ∈ K.

Proof. Firstly, we prove that Rank(Bj) ≤ r, ∀j ∈ K.

Since LCEC φ∗(S, k,m, r) satisfies the ITS requirements,

dim(L(Bj) ∩ L(λ)) = 0. We have

dim(L(Bj)) + dim(L(λ))

= dim(L(Bj) + L(λ)) + dim(L(Bj) ∩ L(λ))

= dim(L(Bj) + L(λ)) = Rank(

[
Bj

λ

]
),

where the (V (Bj) + m) × (m + r) dimensional matrix[
Bj

λ

]
is formed by the row vectors in Bj and λ. We have

Rank(

[
Bj

λ

]
) ≤ m+ r. Since dim(L(Bj))+ dim(L(λ)) =

Rank(Bj) + m = Rank(

[
Bj

λ

]
) ≤ m + r, we have

Rank(Bj) ≤ r, for ∀j ∈ K.

Next, we use a proof by contradiction to show that, in an

optimal φ∗, V (Bj) ≤ r for all j. If there exists an edge device

sj that V (Bj) > r, since Rank(Bj) ≤ r, the row vectors in Bj

are linearly dependent. Suppose that matrix Bj is composed by

the rows in the maximum independent set of the row vectors in

Bj . We can obtain a new solution φ′ as follows. Suppose that

B′ is the encoding coefficient matrix of solution φ′. Let B′j1 =

Bj1 , for ∀j1 �= j, and B′j = Bj . Since L(B′j) = L(Bj) =
L(Bj), Rank(B) = Rank(B′) = m + r. Therefore, solution

φ′ satisfies the availability condition. Moreover, since L(B′j) =
L(Bj), ∀j ∈ K and φ∗ satisfies the ITS requirements, solution

φ′ also satisfies the ITS requirements. Since Rank(Bj) ≤ r

in φ∗, V (B′j) = Rank(Bj) ≤ r < V (Bj). Since V (B′j1) =
V (Bj1), for j1 �= j, and cj1 > 0, the cost of φ′ is smaller than

φ. It contradicts with the assumption that φ∗ is the optimal

solution. Therefore, we have V (Bj) ≤ r, for ∀j ∈ K.

Remark 1. Although Lemma 1 addresses the security aspect,

it also shows that the task allocated to each device is limited

to r. Therefore, the completion time is bounded with certain

probability, which can guarantee the processing time [3].

Nevertheless, due to limited space, the discussions about delay

will be skipped in the rest of this paper.

Based on Lemma 1, we can obtain the following lemma.
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Lemma 2. There exists an optimal solution φ∗(S, k,m, r) of

the MCSCEC problem, which satisfies that V (B∗j ) = r, ∀0 <

j < �m+r
r
	, V (B∗

�m+r

r
�
) = m− (�m+r

r
	− 2)r, and V (B∗j ) =

0, ∀�m+r
r
	 < j ≤ k.

Proof. We prove this statement in a constructive way. Let

LCEC φ′(S, k,m, r) be one of the optimal solutions for the

MCSCEC problem and the minimum cost be c′. Based on the

given r in φ′, we can obtain an LCEC φ∗(S, k,m, r) proposed

in Sec. IV-B, in which the encoding coefficient matrix B∗ is

shown in Eq. (8). Based on this B∗, we let i = �m+r
r
	 and we

can allocate coded vectors B∗jT to sj , ∀1 ≤ j ≤ i−1, in which

V (B∗j ) = r. For device si, we have V (B∗i ) = m+r−(i−1)r.

Finally, we can observe that V (B∗j ) = 0, ∀i < j ≤ k.

In Theorem 3, we prove that φ∗(S, k,m, r) is a feasible

solution because it satisfies both the availability and security

condition. The cost of φ∗ is c∗ =
i−1∑
j=1

V (B∗j )cj + V (B∗i )ci =

i−1∑
j=1

rcj + (m + r − (i − 1)r)ci. According to Lemma 1, for

the optimal φ′, V (B′j) ≤ r. Since
k∑

j=1

V (B′j) =
k∑

j=1

V (B∗j ) =

m+ r and cj1 ≤ cj2 , if 1 ≤ j1 ≤ j2 ≤ k, we have c∗ ≤ c′.

On the other hand, since φ′ is an optimal solution of the

MCSCEC problem while φ∗ is a feasible solution of the

MCSCEC problem, we have c′ ≤ c∗. Consequently, c∗ = c′,

i.e., φ∗ is also an optimal solution of the MCSCEC problem.

Therefore, there exists an optimal solution φ∗(S, k,m, r) of

the MCSCEC problem, which satisfies that V (B∗j ) = r, ∀0 <

j < �m+r
r
	, V (B∗

�m+r

r
�
) = m− (�m+r

r
	− 2)r, and V (B∗j ) =

0, ∀�m+r
r
	 < j ≤ k.

Remark 2. Lemma 2 shows the existence of an optimal

solution of the MCSCEC problem which satisfies a special

constraint. It will be used to design task allocations shown in

Sec. IV-A.

Before we show the lower bound of the MCSCEC problem,

we present and prove the following Lemma 3 – Lemma 5.

To simplify the notations in the proof, we assume that∑j2
j=j1

cj = 0 when j1 > j2. Let i∗ be the maximum i

that satisfies
∑i−1

j=1 cj ≥ (i− 2) ci, ∀i ∈ {1, · · · , k}. We

have 2 ≤ i∗ ≤ k. Based on the definition of i∗, Lemma 3

– Lemma 5 show inequalities on the unit costs of the set of

edge devices, which will be used to prove Theorem 1.

Lemma 3.
∑α−1

j=1 cj

⎧⎨
⎩
≥ (α− 2)ci∗ , when 2 ≤ α ≤ i∗;

≥ (α− 2)cα, when 2 ≤ α ≤ i∗;

< (α− 2)cα, when i∗ + 1 ≤ α ≤ k;

Proof. When 2 ≤ α ≤ i∗, according to the definition of i∗,

we have
i∗−1∑
j=1

cj ≥ (i∗ − 2) ci∗ . Since α ≤ i∗, cα ≤ ci∗ . We

have
i∗−1∑
j=α

cj ≤ (i∗ − α)ci∗ . Therefore,
i∗−1∑
j=1

cj −
i∗−1∑
j=α

cj ≥

(i∗ − 2) ci∗−(i
∗−α)ci∗ , i.e.,

α−1∑
j=1

cj ≥ (α−2)ci∗ ≥ (α−2)cα,

2 ≤ α ≤ i∗.

When α = i∗ + 1, according to the definition of i∗,

we have
i∗∑
j=1

cj < (i∗ − 1) ci∗+1, i.e.,
α−1∑
j=1

cj < (α − 2)cα.

Similarly, when α > i∗ + 1, we have
i∗∑
j=1

cj < (i∗ − 1) ci∗+1.

Since
α−1∑

j=i∗+1

cj < (α − i∗ − 1)cα−1 and cα−1 ≥ ci∗ ,

i∗∑
j=1

cj +
α−1∑

j=i∗+1

cj < (i∗ − 1) ci∗+1 + (α − i∗ − 1)cα−1 ≤

(α − 2)cα−1, we have
α−1∑
j=1

cj < (α − 2)cα−1 ≤ (α − 2)cα,

i∗ + 1 ≤ α ≤ k.

Lemma 4. When 2 ≤ α < i∗, m
α−1

∑α

j=1 cj ≥
m

i∗−1

∑i∗

j=1 cj .

Proof. When 2 ≤ α < i∗, we have

m

α− 1

α∑
j=1

cj −
m

i∗ − 1

i∗∑
j=1

cj

=
m

(α− 1)(i∗ − 1)

⎛
⎝(i∗ − α)

α∑
j=1

cj − (α− 1)

i∗∑
j=α+1

cj

⎞
⎠

=
m

(α− 1)(i∗ − 1)

⎛
⎝i∗−α∑

j2=1

⎛
⎝ α∑

j1=1

cj1 − (α− 1)ci∗−j2+1

⎞
⎠
⎞
⎠ .

(3)

Since α < i∗, we have α+1 ≤ i∗. According to Lemma 3,
α∑

j1=1

cj1 ≥ (α− 1)ci∗ . Since i∗ ≥ i∗− j2 +1, ci∗ ≥ ci∗−j2+1.

We have
α∑

j1=1

cj1−(α−1)ci∗−j2+1 ≥ 0. Since m ≥ 1, α ≥ 2,

i∗ ≥ 2 and cj > 0, ∀1 ≤ j ≤ k, from Eq. (3), we have

m
α−1

α∑
j=1

cj −
m

i∗−1

i∗∑
j=1

cj ≥ 0.

Lemma 5. When i∗ + 1 < α ≤ k, m
α−2

∑α−1
j=1 cj >

m
i∗−1

∑i∗

j=1 cj .

Proof. When i∗ + 1 < α ≤ k, we have

m

α− 2

α−1∑
j=1

cj −
m

i∗ − 1

i∗∑
j=1

cj

=
m

(α− 2)(i∗ − 1)

⎛
⎝(i∗ − 1)

α−1∑
j=i∗+1

cj − (α− i∗ − 1)
i∗∑
j=1

cj

⎞
⎠

=
m

(α− 2)(i∗ − 1)

⎛
⎝α−i∗−1∑

j2=1

⎛
⎝(i∗ − 1)ci∗+j2 −

i∗∑
j1=1

cj1

⎞
⎠
⎞
⎠ .

Since i∗ + 1 > i∗, according to Lemma 3,
i∗∑

j1=1

cj1 < (i∗ −

1)ci∗+1. Since i∗+1 ≤ i∗+j2, (i∗−1)ci∗+1 ≤ (i∗−1)ci∗+j2 .

We have
i∗∑

j1=1

cj1 < (i∗−1)ci∗+j2 , ∀j2 ∈ {1, · · · , α− i∗−1}.

Consequently, when m ≥ 1, α > i∗ ≥ 2 and cj > 0, ∀1 ≤ j ≤
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k, we have m
α−2

α−1∑
j=1

cj −
m

i∗−1

i∗∑
j=1

cj > 0, i.e., m
α−2

α−1∑
j=1

cj >

m
i∗−1

i∗∑
j=1

cj .

Remark 3. Based on Lemma 2 – Lemma 5, we derive the

lower bound of the MCSCEC problem in Theorem 1 and the

condition that the lower bound can be achieved in Corollary 1.

Theorem 1. The cost of the optimal solution of the MCSCEC

problem is no less than cL = m
i∗−1

i∗∑
j=1

cj , which is a lower

bound of the MCSCEC problem.

Proof. From Lemma 2, there exists an optimal solution

φ∗(S, k,m, r) of the MCSCEC problem. We let i = �m+r
r
	.

In the above φ∗, we have V (Bj) = r, for ∀1 ≤ j ≤ i − 1,

V (Bi) = m− (i− 2)r, and V (Bj) = 0, for ∀i < j. Since i =
�m+r

r
	 < m+r

r
+1, we have V (Bi) > m−(m+r

r
+1−2)r = 0.

Consequently, we have m−(i−2)r > 0, i.e., r < m
i−2 . On the

other hand, according to Lemma 1, V (Bi) ≤ r, so we have

m− (i− 2)r ≤ r, i.e., r ≥ m
i−1 . Together, we have

m

i− 1
≤ r <

m

i− 2
. (4)

Next, we consider the cost of the optimal solution φ∗:

c∗ = r

i−1∑
j=1

cj + (m− (i− 2)r)ci

= r

⎛
⎝i−1∑

j=1

cj − (i− 2)ci

⎞
⎠+mci.

(5)

Since m > 0, r > 0, i = �m+r
r
	 ≥ 2, there are totally k

edge devices and the number of vectors allocated on each of

them is no more than r in φ∗, k ≥ �m+r
r
	 = i. Therefore,

2 ≤ i ≤ k. We now consider i in two cases. First, if 2 ≤ i ≤

i∗, according to Lemma 3, we have
i−1∑
j=1

cj ≥ (i− 2)ci. In this

case, the cost shown in Eq. (5) increases with the increase of

r. Therefore, the cost of the optimal solution φ∗ satisfies:

c∗ ≥
m

i− 1

⎛
⎝i−1∑

j=1

cj − (i− 2)ci

⎞
⎠+mci =

m

i− 1

i∑
j=1

cj . (6)

From Ineq. (6) and Lemma 4, we have

c∗ − cL ≥
m

i− 1

i∑
j=1

cj −
m

i∗ − 1

i∗∑
j=1

cj ≥ 0.

From Ineq. (6), we note that, if i = i∗, then

c∗ − cL ≥
m

i∗ − 1

i∗∑
j=1

cj −
m

i∗ − 1

i∗∑
j=1

cj = 0.

Secondly, if 2 ≤ i∗ < i ≤ k, according to the definition of

i∗, we have
i−1∑
j=1

cj < (i− 2)ci, then the cost shown in Eq. (5)

decreases with the increase of r. Therefore, we have

c∗ >
m

i− 2

⎛
⎝i−1∑

j=1

cj − (i− 2)ci

⎞
⎠+mci =

m

i− 2

i−1∑
j=1

cj . (7)

Furthermore, when i = i∗ + 1, from Ineq. (7), we have

c∗ − cL >
m

i∗ − 1

i∗∑
j=1

cj −
m

i∗ − 1

i∗∑
j=1

cj = 0.

When i∗ + 1 < i ≤ k, from Ineq. (7) and Lemma 5, we

have

c∗ − cL >
m

i− 2

i−1∑
j=1

cj −
m

i∗ − 1

i∗∑
j=1

cj > 0.

Therefore, ∀i, 2 ≤ i ≤ k, the minimum cost c∗ achieved by

optimal solution φ∗(S, k,m, r) satisfies that c∗ ≥ cL, i.e., cL

is the lower bound of the MCSCEC problem.

We next prove that the lower bound can be achieved.

Corollary 1. If m is divisible by i∗−1, there exists an optimal

solution φ∗(S, k,m, r) achieves the lower bound cL, in which

r = m
i∗−1 .

Proof. If r = m
i∗−1 and r is an integer, then i = �m+r

r
	 = i∗

and r = m
i−1 in Eq. (5) and Eq. (4). According to Eq. (6), we

know that c∗ = cL. Moreover, based on i and r, as shown in

Sec. IV-B an LCEC scheme φ∗(S, k,m, r) can be designed to

achieve the total cost c∗ i.e., the total cost of φ∗(S, k,m, r)
equals to the lower bound.

IV. THE MCSCEC SCHEMES

In this section, we will show the optimal strategy for the

MCSCEC problem, which can be divided into two stages, task

allocation and coding design respectively. In task allocation

shown in Sec. IV-A, we try to determine the number of edge

devices needed to participate in the SCEC, i.e., i, and the

number of random vectors to be encoded with data vectors,

i.e., r. Based on the task allocation, in Sec. IV-B, we give a

linear coding scheme for SCEC which satisfies the availability

and security conditions, and achieves the minimum total

cost. Moreover, in Sec. IV-C, we prove that these proposed

algorithms are optimal.

A. Task Allocation Algorithms

In this subsection, we will present two task allocation algo-

rithms, namely, TA1 and TA2, respectively, from two different

points of view. Specifically, in TA1, based on Lemma 3 and

Corollary 1, we first determine the set of edge devices which

participate in the SCEC. Based on the set of edge devices, we

obtain the number of coded vectors to be allocated on each

of the selected edge devices. In TA2, based on Lemma 2 and

Theorem 2, we first determine the range of r, and then find the

optimal value of r based on the exhaustive method. Finally, we

obtain the set of edge devices which participate in the SCEC.
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Algorithm 1: Task Allocation Algorithm 1 (TA1)

Input: m, k,C
Output: r, i, c∗

1 if k = 2 then
2 i∗ = 2;
3 else if k > 2 then
4 i∗ = 2;
5 c′ = c1;
6 while i∗ ≤ k do

7 c′ = c′ + ci∗ ;
8 if c′ < (i∗ − 1)ci∗ then
9 break;

10 else
11 i∗ = i∗ + 1;
12 if � m

i∗−1
� < � m

k−1
� then

13 r =
⌈

m
i∗−1

⌉
;

14 else

15 r = � m
i∗−1

� and i = �m+r
r
�;

16 cE = r
∑i−1

j=1
cj + (m+ r − (i− 1)r)ci;

17 r = � m

i∗−1
� and i = �m+r

r
�;

18 cF = r
∑i−1

j=1
cj + (m+ r − (i− 1)r)ci;

19 if cE ≤ cF then

20 r =
⌊

m
i∗−1

⌋
;

21 else if cE > cF then

22 r =
⌈

m
i∗−1

⌉
;

23 i = �m+r
r
�;

24 return r, i, and c∗ = r
∑i−1

j=1
cj + (m− (i− 2)r)ci.

Before we find the optimal values of i and r in TA1

algorithm and TA2 algorithm, we first theoretically analyze

the range of the values of r by the following theorem.

Theorem 2. In the optimal solution φ∗(S, k,m, r) of the

MCSCEC problem, in which V (Bj) = r, ∀0 < j < �m+r
r
	,

V (B�m+r

r
�) = m−(�m+r

r
	−2)r, and V (Bj) = 0, ∀�m+r

r
	 <

j ≤ k, r satisfies � m
k−1	 ≤ r ≤ m.

Proof. In the above φ∗, we let i = �m+r
r
	. According to our

system model, we have m ≥ 1, r ≥ 1, and i ≥ 2. Next, since

the total number of coded vectors allocated to all edge devices

is m+ r, and the number of coded vectors allocated to each

edge device is no more than r (according to Lemma 1), we

have rk ≥ m + r. Since k is an integer, k ≥ �m+r
r
	 = i.

Therefore, 2 ≤ i ≤ k.

We now consider two types of i. In the first case, i = 2,

so 2r ≥ m + r and r ≥ m. On the other hand, since φ∗ is

optimal, r ≤ m. Therefore, in this case r = m.

In the second case, 3 ≤ i ≤ k. Since i = �m+r
r
	, m+r

r
≤

i < m+r
r

+ 1. Therefore, we have m
i−1 ≤ r < m

i−2 . Since

3 ≤ i ≤ k and r is an integer, � m
k−1	 ≤ r < m.

Therefore, in the optimal solution φ∗, � m
k−1	 ≤ r ≤ m.

1) Task Allocation Algorithm 1 (TA1) : In Corollary 1, we

have proved that if m is divisible by i∗ − 1, and r = m
i∗−1 ,

then the lower bound cL can be achieved. Therefore, in Task

Allocation 1 (TA1) algorithm, we first determine the value of

i∗ according to its definition shown in Sec. III. Specifically,

as shown in Lemma 3, if 2 ≤ α ≤ i∗,
α−1∑
j=1

cj ≥ (α− 2) cα.

Algorithm 2: Task Allocation Algorithm 2 (TA2)

Input: m, k,C
Output: r, i, c∗

1 r = � m
k−1

�, i = �m+r
r
�;

2 c∗ = r
∑i−1

j=1
cj + (m+ r − (i− 1)r)ci;

3 r∗ = r + 1;
4 while r∗ ≤ m do

5 i′ = �m+r∗

r∗
�;

6 c = r∗
∑i′−1

j=1
cj + (m+ r∗ − (i′ − 1)r∗)ci′ ;

7 if c < c∗ then

8 r = r∗, i = i′ and c∗ = c;
9 r∗ = r∗ + 1;

10 return r, i, and c∗.

Therefore, we can find the value of i∗ by using the search

method (line 1 to 14 in Algorithm 1).

Then, if m
i∗−1 is an integer, we set i = i∗ and r = m

i∗−1 .

The number of coded vectors allocated on each edge device

with index no larger than i∗ is r and totally i∗r = m + r

coded vectors are allocated on the first i edge devices. In this

case, according to Corollary 1, the minimum cost m
i∗−1

i∗∑
j=1

cj

can be achieved.

On the other hand, if m
i∗−1 is not an integer, when 
 m

i∗−1� ≤
� m
k−1	 ≤ �

m
i∗−1	, since r ≥ � m

k−1	, we set r = � m
i∗−1	. When


 m
i∗−1� > �

m
k−1	, we consider two cases in which r = 
 m

i∗−1�
and r = � m

i∗−1	, respectively. In both cases, the number of

edge devices selected to participate the SCEC is i = �m+r
r
	,

where the first i− 1 edge devices are allocated with r coded

vectors and edge device si is allocated with m+r−(i−1)r =
m− (i− 2)r coded vectors.

According to previous discussions, the cost of the task

allocation is r
i−1∑
j=1

cj + (m − (i − 2)r)ci. We denote cE

as the cost when r = 
 m
i∗−1� and cF as the cost when

r = � m
i∗−1	, respectively. We then compare cE and cF to

choose the optimal solution. Specifically, if cE ≤ cF , then we

set r = 
 m
i∗−1� and i = �m+r

r
	. Otherwise, if cE > cF , we set

r = � m
i∗−1	 and i = �m+r

r
	. The TA1 algorithm are shown

in Algorithm 1, in which the time complexity is O(k).
2) Task Allocation Algorithm 2 (TA2) : According to

Lemma 2, there exists an optimal solution φ∗(S, k,m, r). Let

i = �m+r
r
	. In φ∗, V (Bj) = r, ∀0 < j < i, V (Bi) =

m − (i − 2)r and V (Bj) = 0, ∀j > i. The total cost of

φ∗(S, k,m, r) is c∗ = r
i−1∑
j=1

cj + (m − (i − 2)r)ci. From

Theorem 2, we know the value range of r in the optimal

solution φ∗(S, k,m, r). To minimize c∗, according to the value

range of r, we can obtain the optimal r by exploiting the

exhaustion algorithm. After that, we obtain the number of edge

devices which participate in the SCEC, i.e., i = �m+r
r
	. The

details of TA2 algorithm are shown in Algorithm 2. The time

complexity of Algorithm 2 is O(m+ k).

B. Secure Linear Coding Design

From the task allocation algorithms in Sec. IV-A, we have

determined the number of edge devices needed to participate
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in the SCEC, i.e., i, and the number of random vectors to be

encoded with data vectors, i.e., r. In this subsection, we give

secure linear coding design based on the task allocation. Let

Et be a t× t dimensional identity matrix and let Em,r be an

m× r dimensional matrix

Em,r =

⎡
⎢⎢⎢⎣

Er

...

Er

{Er}
1
m−(i−2)r

⎤
⎥⎥⎥⎦ .

Specifically, the first (i− 2)r rows of Em,r are composed by

i − 2 identity matrices Er and the last m − (i − 2)r rows

of it are composed by the first m − (i − 2)r rows of r × r

dimensional identity matrix Er.

Let Op,q be the p × q dimensional zero matrix. We define

the (m+r)×(m+r) dimensional encoding coefficient matrix

B as follows.

B =

[
Or,m Er

Em Em,r

]
. (8)

Therefore, we have B1 =
[

Or,m Er

]
, Bj =

{B}
(j−1)r+1
jr =

[
{Em}

(j−2)r+1
(j−1)r Er

]
, ∀j ∈ {2, · · · , i−1},

and Bi = B
(i−1)r+1
m+r =

[
{Em}

(i−2)r+1
m {Er}

1
m−(i−2)r

]
.

Next, we prove that the LCEC, designed based on encoding

coefficient matrix B, satisfies the availability and security

conditions. Let (B)p,q is the p-th row q-th column element

of B, we have the following theorem:

Theorem 3. If the encoding coefficient matrix of an LCEC

φ(S, k,m, r) is B defined above, then the LCEC φ(S, k,m, r)
satisfies the availability and security conditions.

Proof. Let B′ =

[
Em Em,r

Or,m Er

]
. Rank(B) = Rank(B′).

Since B′ is an upper triangular matrix and (B′)p,p = 1, ∀p ∈
{1, · · · ,m+ r}, B′ is full rank. Therefore, B is full rank and

the LCEC φ(S, k,m, r) satisfies the availability condition.

For each selected edge device sj , we have 1 ≤ j ≤ i.

When j = 1, since all the elements in the 1-th to m-

th column of matrix B1 are 0, B1T are linear combinations

of random vectors, i.e., s1 cannot obtain any nonzero vector

which is the linear combination of row vectors of A.

When 2 ≤ j ≤ i, let λ =
[

Em Om,r

]
. We have

dim(L(Bj)) + dim(L(λ))

= dim(L(Bj) + L(λ)) + dim(L(Bj) ∩ L(λ))

= Rank(B′j) + dim(L(Bj) ∩ L(λ)),

in which B′j =

[
λ

Bj

]
.

For 2 ≤ j < i, since dim(L(Bj)) = r and dim(L(λ)) =
m, we have dim(L(Bj) ∩ L(λ)) = m+ r −Rank(B′j).

B′j =

[
Em Om,r

{Em}
(j−2)r+1
(j−1)r Er

]
.

Since B′j is a lower triangular matrix and (B′j)p,p = 1, ∀p ∈
{1, · · · ,m + r}, Rank(B′j) = m + r. Therefore, we have

dim(L(Bj) ∩ L(λ)) = m+ r − (m+ r) = 0.

For j = i. Since dim(L(Bi)) = m − (i − 2)r and

dim(L(λ)) = m, we have dim(L(Bi) ∩ L(λ)) = 2m− (i−
2)r −Rank(B′j).

B′j =

[
Em Om,r

{Em}
(i−2)r+1
m {Er}

1
m−(i−2)r

]

=

[
Em Om,m−(i−2)r Om,(i−1)r−m

{Em}
(i−2)r+1
m Em−(i−2)r Om−(i−2)r,(i−1)r−m

]
.

Rank
(
B′j

)
= Rank

([
Em Om,m−(i−2)r

{Em}
(i−2)r+1
m Em−(i−2)r

])
.

[
Em Om,m−(i−2)r

{Em}
(i−2)r+1
m Em−(i−2)r

]
is a (2m − (i − 2)r) ×

(2m − (i − 2)r) dimensional lower triangular matrix.

Rank(B′j) = 2m− (i− 2)r. Thus, dim(L(Bi) ∩ L(λ)) = 0.

Therefore, for ∀1 ≤ j ≤ i, dim(L(Bj) ∩ L(λ)) = 0, i.e.,

L(Bj) does not include any m+r dimensional nonzero vector

in L(λ). Bj satisfies the H(A|BjT) = H(A) as shown in

Definition 1. Therefore, B satisfies the security condition.

Based on the encoding coefficient matrix B, the coded data

matrix BjT is migrated and stored on each edge device sj ,

∀j ∈ {1, · · · , i}. There is no coded data matrix stored on

{si+1, · · · , sk}. After user device s0 sends the input vector

x to each edge device sj , ∀j ∈ {1, · · · , i}, sj multiplies the

coded data matrix BjT by x. Then, it sends the intermediate

results BjTx back to s0. After the user device receives the

intermediate results {B1Tx, · · · ,BiTx} from i edge devices,

it can obtain BTx =

⎡
⎢⎣

B1Tx
...

BiTx

⎤
⎥⎦. Then, it can decode and

recover the required result Ax = [A1x, · · · ,Amx]�, in which

Apx = (BTx)r+p,1 − (BTx)p−(� p

r
�−1)r,1, ∀1 ≤ p ≤ m. For

the computational complexity of decoding operations in the

user device, we note that in the proposed SCEC scheme, the

user device only needs to perform subtractions m times on

the received m+ r intermediate results, in order to obtain the

result of Ax, which is much lower than that when Ax is locally

computed at the user device.

C. Optimality Analysis

In this subsection, we will prove that the proposed task

allocation in Sec. IV-A and coding design in Sec. IV-B are

optimal.

Theorem 4. The solution composed by TA1 algorithm and

secure coding scheme proposed in Sec. IV-B is the optimal

solution of MCSCEC problem.

Proof. From Lemma 2, there exists an optimal solution that

satisfies V (Bj) = r, ∀0 < j < ir, V (Bir ) = m+r− (ir−1)r
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and V (Bj) = 0, ∀j > ir, in which ir = �m+r
r
	. We have the

total cost of the optimal solution is

c(r) = r

ir−1∑
j=1

cj + (m+ r − (ir − 1)r)cir .

When r is not determined, we can treat the total cost c(r) as

the function of r. Let ir−1 = �m+r−1
r−1 	 and ir+1 = �m+r+1

r+1 	.
We have 2 ≤ ir+1 ≤ ir ≤ ir−1 and

c(r+1) − c(r) = (r + 1)

ir+1−1∑
j=1

cj

+ (m+ r + 1− (ir+1 − 1)(r + 1))cir+1

− r

ir−1∑
j=1

cj − (m+ r − (ir − 1)r)cir .

(9)

If ir = ir+1,

c(r+1) − c(r) =

ir+1−1∑
j=1

cj − (ir+1 − 2)cir+1
. (10)

If ir = ir+1 + 1,

c(r+1) − c(r) =

ir+1−1∑
j=1

cj

− (r − (m+ r + 1− (ir+1 − 1)(r + 1)))cir+1

− (m+ r − (ir − 1)r)cir ,

(11)

in which the sum of coefficients of cir+1
and cir is −(r−(m+

r+1−(ir+1−1)(r+1)))+(m+r−(ir−1)r) = −(ir+1−2).
If ir ≥ ir+1 + 2,

c(r+1) − c(r) =

ir+1−1∑
j=1

cj

− (r − (m+ r + 1− (ir+1 − 1)(r + 1)))cir+1

− r

ir−1∑
j=ir+1+1

cj − (m+ r − (ir − 1)r)cir ,

(12)

in which the sum of coefficients of {cir+1
, cir+1+1, · · · , cir}

is −(r− (m+ r+1− (ir+1− 1)(r+1)))+ r(ir− 1− ir+1−
1 + 1) + (m+ r − (ir − 1)r) = −(ir+1 − 2).

According to Eq. (10)-Eq. (12), since cir+1
≤ cir , we have

c(r+1) − c(r) ≥

ir+1−1∑
j=1

cj − (ir+1 − 2)cir . (13)

When r ≥ � m
i∗−1	, we have i∗ ≥ m+r

r
. Since i∗ is an

integer, i∗ ≥ �m+r
r
	 = ir ≥ ir+1. According to Lemma 3,∑ir+1−1

j=1 cj ≥ (ir+1−2)ci∗ ≥ (ir+1−2)cir . Therefore, when

r ≥ � m
i∗−1	, c

(r+1) − c(r) ≥ 0.

According to Eq. (10) - Eq. (12), with similar analysis, since

cir ≤ cir−1
, we have

c(r) − c(r−1) ≤
ir−1∑
j=1

cj − (ir − 2)cir . (14)

When r ≤ 
 m
i∗−1�, we have i∗ ≤ m+r

r
≤ �m+r

r
	 = ir.

When i∗ = ir, we have m
i∗−1 = r. From Corollary 1, cir is

the lower bound cL. When i∗ < ir, according to Lemma 3,∑ir−1
j=1 cj < (ir−2)cir . Therefore, when r ≤ 
 m

i∗−1�, we have

c(r) − c(r−1) < 0.

From the above theoretical analysis, when r ≤ 
 m
i∗−1�, c

(r)

decreases as r increases and when r ≥ � m
i∗−1	, c

(r) increases

as r increases. From Theorem 2, we have the value range

of r is � m
k−1	 ≤ r ≤ m. Since i∗ ≥ 2, � m

i∗−1	 ≤ m. If


 m
i∗−1� < �

m
k−1	 < �

m
i∗−1	, the total cost can get the optimal

value when r = � m
i∗−1	. If 
 m

i∗−1� ≥ �
m

k−1	, since 
 m
i∗−1� =

� m
i∗−1	 or 
 m

i∗−1� + 1 = � m
i∗−1	, the minimum total cost is

the lower cost achieved when we select r = 
 m
i∗−1� or r =

� m
i∗−1	. According to the above theoretical analysis, we can

find the minimum total cost by line 15 to 29 in Algorithm 1.

Therefore, the solution composed by TA1 algorithm and the

coding scheme proposed in Sec. IV-B is the optimal solution

of MCSCEC problem.

Theorem 5. The solution composed by TA2 algorithm and

secure coding scheme proposed in Sec. IV-B is the optimal

solution of the MCSCEC problem.

Proof. According to Lemma 2, there exists an optimal solution

φ∗(S, k,m, r), in which V (Bj) = r, ∀0 < j < �m+r
r
	,

V (B�m+r

r
�) = m − (�m+r

r
	 − 2)r and V (Bj) = 0, ∀j >

�m+r
r
	. Given the value of r and i = �m+r

r
	, the total cost

of it is c = r
∑i−1

j=1 cj + (m − (i − 2)r)ci, which can be

achieved by the coding design shown in Sec. IV-B. From

Theorem 2, we know the value range of r in the optimal

solution φ∗(S, k,m, r) is � m
k−1	 ≤ r ≤ m. Therefore, the

minimum value of total cost c can be obtained by exhaustively

selecting the values of r in its range and computing the total

cost. Therefore, the solution composed by TA2 algorithm and

coding scheme proposed in Sec. IV-B is optimal.

Theorem 4 and Theorem 5 show that both the TA1 algo-

rithm and the TA2 algorithm can derive the optimal values of

i and r.

As shown in Sec. IV-A, the computational complexity of

TA1 algorithm is O(k), where k is the number of edge

devices. On the other hand, the computational complexity

of TA2 algorithm is O(k + m), where m is the number of

rows in data matrix A. In practice, the cloud can select the

task allocation algorithm with lower computational complexity

according to k and m. For the user device, as shown in

Sec. IV-B, to decode and obtain the final result, the user

device only needs to perform subtraction operation m times

on the received m + r intermediate values. Therefore, the

proposed task allocation and secure linear coding design have

low computational complexity and decoding complexity.

V. NUMERICAL EXPERIMENTS

In this section, we conduct simulation to evaluate the per-

formance of the proposed solution for the MCSCEC problem.

In particular, we compare the performance of the proposed
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Fig. 2. Total costs when changing different parameters: m, k, cmax, σ and μ.

solution for the MCSCEC problem with the lower bound

shown in Theorem 1 and the following baseline algorithms.

• Task Allocation without Security consideration (TAw/oS)

algorithm where a total of m row vectors of data matrix

A are equally allocated on the i∗ edge devices without

security consideration.

• MaxNode algorithm where we set r = � m
k−1	, which

is the smallest value of r as shown in Theorem 2, and

i = �m+r
r
	. In this case, the maximum number of edge

devices are selected.

• MinNode algorithm where we let r = m, which is the

largest value of r as shown in Theorem 2 and i = 2. In

this case, only two edge devices with the lowest unit cost

are selected.

• Random Node selection (RNode) algorithm where the

value of r is randomly selected from its range � m
k−1	 ≤

r ≤ m and i = �m+r
r
	.

Since the total costs achieved by both the TA1 algorithm

and the TA2 algorithm are the same, we denote the optimal

scheme composed by the two algorithms and coding scheme

as the MCSCEC algorithm. In the simulation, we consider

the following five parameters: (1) m which is the number of

row vectors in data matrix A; (2) k which is the number of

edge devices; (3) cmax where we consider that C (the set

of unit costs of edge devices) obeys a uniform distribution

U(1, cmax); (4) μ and (5) σ where we assume that C follows

a normal distribution N (μ, σ2). The default values of these

parameters are: m = 5000, k = 25, cmax = 5, μ = 5 and

σ = 1.25. For each combination of parameters, we generate

1000 instances and report the average results.

In Fig. 2 (a)-(e), it shows that MCSCEC always outperforms

the MaxNode, MinNode and RNode algorithms. Specifically,

in Fig. 2 (a)-(c), it shows that, compared with these three

algorithms, the MCSCEC algorithm can reduce the total cost

by more than 43%, 18%, and 13%, respectively, when m,

k and cmax are sufficiently large. In Fig. 2 (b), although

the larger the number of edge devices, the total cost will be

reduced, but in practice multiple edge devices participate in the

calculation, which will bring additional communication costs

and communication delays, especially in dynamic networks. In

Fig. 2 (d), when σ is 0.01, the unit costs of all the edge devices

are almost the same. In this case, the more that edge devices

are utilized, the lower the total cost is achieved. Therefore,

in this case, the total cost of MaxNode is almost the same as

the minimum total cost achieved by MCSCEC. On the other

hand, when σ is 2.5, a lower total cost can be achieved when

selecting a small number of edge devices with the lowest unit

costs. Therefore, the total cost of MinNode can lead to the

minimum total cost achieved by MCSCEC. We can see in the

figure that the lines of MaxNode and MinNode have a cross.

Specifically, to the left of the cross, MaxNode outperforms

MinNode and to the right of the cross, MinNode outperforms

MaxNode. In Fig. 2 (e), when μ increases and σ is fixed,

the relative difference of costs between different edge devices

becomes smaller, which has the same effect as the case that

μ is fixed and σ decreases.

In Fig. 2 (a)-(e), it also shows that the performance of

MCSCEC is very close to the LB, and the relative difference

between the total cost of MCSCEC and LB is less than 0.5%
when all the paramters are sufficiently large. In this case, to

provide security, random vectors should be involved in the

computation task. Although the cost of MCSCEC is larger

than TAw/oS, the cost only increases less than 26%, 19% and

14%, respectively, even when m, k and μ are sufficiently large.

When cmax and σ increase, the relative differences of costs

between different edge devices become larger. To reduce the

total cost, smaller number of edge devices will be selected in

MCSCEC. Therefore, more random vectors should be utilized,

which leads to the increase in the relative differences of costs

between MCSCEC and TAw/oS. The ratio is no more than

36% and 48%, respectively, even when cmax and σ become

sufficiently large.

VI. CONCLUSION

In this paper, we address the design of secure coded

distributed computing in edge computing, with the objective to

minimize the total resource usage. For this fundamental issue,

we theoretically analyze the necessary conditions and the

lower bound of the problem. Based on the theoretical analysis,

we develop optimal algorithms for task allocation which is to

select a set of edge devices for computing and assign a certain

number of coded row vectors of the matrix to each of them.

We then design an efficient secure coded computing scheme

to achieve information theoretical security with minimal cost

and low decoding complexity. Finally, we conduct extensive

simulation experiments, which demonstrate the effectiveness

of the proposed schemes. We will consider implement the

proposed MCSCEC scheme in real edge computing systems

and study a more general case that more than one edge devices

can attack cooperatively.
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