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ABSTRACT
Aslidingmodeobserver (SMO)designandconvergenceanalysis arepresented in this paper,which includes
a rigorous treatment to address multiple discontinuities in the resulting estimation error dynamics. In an
extensionof our previous SMO results, the currentwork provides a non-trivial reworkingof the SMOestima-
tion error system development and stability analysis that incorporates differential inclusions. The specific
contributions presented in this paper beyond the previouswork include: (1)Adifferential inclusions-based
analysis of the SMO, which incorporates the set-valued definition of the discontinuous signum function;
(2) An expanded derivation of the estimation error dynamics, which emphasises advantageous proper-
ties particular to our SMO structure; (3) A Lyapunov-based stability analysis of the SMO, that rigorously
incorporates the multiple discontinuities in the estimation error dynamics. The Lyapunov-based stability
analysis proves that the SMOachieves finite-timeestimationof the complete state vector,where theoutput
equation is in a nonstandardmathematical form. To test the performance of the SMO, numerical simulation
results are also provided, which demonstrate the capability of the SMO to estimate the state of a fluid flow
dynamic system using only a single sensor measurement of the flow field velocity.
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1. Introduction

Practical implementation of feedback control systems can be
significantly hindered by sensor limitations, unmeasurable
states, and sensor measurement noise and delays. Motivated
by these challenges, the design of observers (or estimators)
is an essential component in most control engineering appli-
cations to provide the state measurements required to design
stabilising feedback control laws. In light of this, plethora of
research has been done focusing on developing sliding mode
observers to generate state estimates for various classes of sys-
tems (Drakunov & Utkin, 1992; Shtessel, Edwards, Fridman,
& Levant, 2014; Utkin, 1978, 2013). But, SMO often utilise
high-bandwidth switching strategies to estimate the complete
state of a dynamic system using only the available sensor mea-
surements. In light of this several new SMO methods have
been shown to achieve superior state estimation performance
through the use of strategies such as twisting, super-twisting,
and higher-order SMO techniques (e.g. see Floquet & Bar-
bot, 2006, 2007; Fridman, Shtessel, Edwards, & Yan, 2008; Lev-
ant, 2003). The motivation of the current paper is to address the
specific challenges that can arise in practical control applications
where the resulting dynamic equations contain discontinuities
resulting from the use of the signum function as in standard
SMO methods and provide rigorous stability analysis for such
class of systems. To cope with the discontinuities and uncertain-
ties that can arise in the mathematical models of SMO estima-
tion error dynamics, differential inclusions provide a important
mathematical tool that can be applied to rigorously analyse the
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convergence performance of SMO. The differential inclusions
present a natural step in generalising study of systems where
discontinuities occur in the model or being introduced for con-
trol and estimation purposes. They allow expanding the class of
systems under consideration and address uncertainties in their
behaviour.

Differential inclusions have gained significant interest in
providing stability analyses for nonsmooth systems (Clarke,
Ledyaev, & Stern, 1998; Doris et al., 2008; Filippov, 2013;
Liu, Sun, Liu, & Teel, 2016; Sadikhov & Haddad, 2015;
Vijayakumar, 2018). The fundamental properties and solutions
of discontinuous systems are discussed in Filippov (2013). In
Clarke et al. (1998) the existence of smooth Lyapunov func-
tions for stable differential inclusions is discussed. In Sadikhov
and Haddad (2015), a feedback control law for discontinuous
systems is designed based on the existence of a nonsmooth Lya-
punov function. An invariance theorem for nonautonomous
delay differential inclusions is provided in Liu et al. (2016),
for the case where the candidate functional is bounded by a
continuous negative semi-definite function. Recently Vijayaku-
mar (2018), provided sufficient conditions for approximate con-
trolability for a nonlinear resolvent integro-differential inclu-
sions in Hilbert space.

Many researchers have paved the path for analysing the
theory of differential inclusions for various engineering appli-
cations: Robotics – (Paden & Sastry, 1987); Hybrid systems
– (Goebel, Sanfelice, & Teel, 2009); Under water Vehicle –
(Fischer, Hughes, Walters, Schwartz, & Dixon, 2014); Switched
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nonlinear systems - (Teel, Nešić, Lee, & Tan, 2016); Neural net-
works – (Matusik, Nowakowski, Plaskacz, & Rogowski, 2018;
Shi et al., 2019;Wang, Shi, Huang, Zhong, &Zhang, 2018); Chua
circuits (Shi et al., 2018). While the theory of differential inclu-
sions has been widely investigated to analyse the behaviour of
discontinuous systems, there remains a need for new theoreti-
cal tools to rigorously analyse the performance of discontinuous
SMO.

The design and analysis of control systems and observers
for multi-valued or discontinuous systems has been addressed
by several recent research results (Brogliato & Heemels, 2009;
Fischer, Kamalapurkar, &Dixon, 2013; Osorio &Moreno, 2006;
Tanwani, Brogliato, & Prieur, 2014). In Osorio and Moreno
(2006), an observer method is presented for a class of discon-
tinuous systems based on the dissipativity method, with a linear
time-invariant system in the feedforward path and a discontinu-
ous nonlinear system in the feedback path. The observer design
in Tanwani et al. (2014), Brogliato and Heemels (2009) cov-
ers systems in Lur’e form, with multivalued nonlinearities using
a high gain approach and with multivalued mappings in the
feedback path respectively. Two generalised corollaries to the
Lasalle–Yoshizawa theoremare presented in Fischer et al. (2013)
to address systems with discontinuous right hand sides. The
corollaries in Fischer et al. (2013) are used to develop a rigor-
ous analysis of a robust and adaptive nonlinear control method
that has a discontinuity in the closed-loop error dynamics. The
aforementioned research results have provided much insight
into analysing the behaviour of estimation and control systems
with discontinuities. The focus of this paper is on differential
inclusions-based stability analysis of a hierarchical SMO strat-
egy for which the resulting estimation error dynamics contain
multiple discontinuities.

A hierarchical SMO design and convergence analysis are
presented in this paper, which includes a rigorous treatment
to address multiple right-hand side (RHS) discontinuities in
the estimation error dynamics. By leveraging our previous
SMO results in Drakunov (1992), Kidambi, Ramos-Pedroza,
MacKunis, and Drakunov (2016), Kidambi, MacKunis, Ramos-
Pedroza, and Drakunov (2017), the current work provides a
non-trivial reworking of the error system development and
stability analysis using a Filippov solution. The specific con-
tributions presented in this paper beyond the previous work
include:

• A differential inclusions-based analysis of the SMO, which
utilises the set-valued definition of the discontinuous signum
function;

• An expanded derivation of the estimation error dynamics,
which emphasises advantageous properties particular to our
SMO structure;

• A Lyapunov-based stability analysis of the SMO, that rigor-
ously addresses themultiple discontinuities in the estimation
error dynamics.

To test the performance of the SMO, numerical simulation
results are also provided, which demonstrate the capability of
the SMO to estimate the state of a fluid flow dynamic sys-
tem using only a single sensor measurement of the flow field
velocity.

2. Preliminaries

In this section, we provide background on the mathematical
tools utilised to address the challenges involved in analysing
the behaviour of differential equations with discontinuous RHS.
While the generalised solutions of differential equations with
continuous RHS are well known, the presence of discontinu-
ities necessitates modified mathematical approaches to obtain
the solutions. In this paper, we utilise differential inclusions
to handle the challenge of analysing the stability of a SMO
method, where the equations of the error dynamics contain
discontinuities.

2.1 Mathematical definitions

Consider a nonlinear system defined as

ẋ = f (x, t), (1)

where x(t) ∈ X ⊂ R
n denotes the state vector, f : X × [0,∞)

→ R
n is Lebesgue measurable and essentially locally bounded,

uniformly in t; and X is an open and connected set. The
definition of a solution to (1) is well established for the case
where f is Lipschitz continuous; however, this basic definition is
not applicable if there exists a discontinuity in f at any point in
X . To address the case where f contains discontinuities, differ-
ential inclusions can be utilised to obtain the generalised solu-
tion of (1) at a point of discontinuity by analysing the behaviour
of the derivative of f at neighbouring points (Filippov, 1988;
Krasovskii, 1963).

Remark 2.1 (Stability of Systems with Discontinuous RHS):
The stability of closed-loop systems in the form of (1) with
continuous right-hand sides can be analysed using existing Lya-
punov theory (Khalil, 1996; Slotine & Li, 1991). However, these
theorems must be modified to analyse systems with discon-
tinuous RHS (Fischer et al., 2013; Guo & Huang, 2009). The
differences between Lyapunov analyses for systems with contin-
uous and discontinuous systems include: differential equations
are replacedwith differential inclusions, points are replacedwith
sets, and gradients are replaced by generalised gradients.

The following definitions are provided to facilitate the sub-
sequent analysis.

Definition 2.1 (Filippov Solution Filippov, 1988; Shevitz
& Paden, 1994): A function x(t) is called a solution to (1) on the
interval [0,∞) if x(t) is absolutely continuous and for almost all
t ∈ [0,∞)

ẋ = K[f ](x(t), t), (2)

where K[f ](x(t), t) denotes an upper semi-continuous, non
empty, compact and convex valued map on X , defined as

K[f ] (x (t) , t) � ∩
ε>0

∩
μN=0

cof (B (x (t) , ε) − N, t) , (3)

where ∩
μN=0

denotes the intersection over sets N of Lebesgue

measure zero, and co denotes convex closure. In (3), B(x(t), ε)
is the open set defined as

B (x (t) , ε) �
{
v ∈ R

n| ‖x (t) − v‖ < ε
}
. (4)
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A simple example to illustrate the definitions in (2)–(4) is
provided in the subsequent Section 2.2.

Definition 2.2 (Directional Derivative Kaplan, 1991): The
right directional derivative of a function f : Rm → Rn, at x ∈
R
m in the direction of v ∈ Rm is defined as

f ′(x, v) = lim
t→0+

f (x + tv) − f (x)
t

. (5)

The generalised directional derivative of f at x in the direction
of v is defined as

f 0(x, v) = lim
y→x

sup
t→0+

f (y + tv) − f (y)
t

. (6)

Definition 2.3 (Regular Function Clarke, 1983): A function
f : Rm → Rn is regular at x ∈ Rm, if the right directional deriva-
tive of f at x in the direction of v exists ∀v ∈ Rm, and f ′(x, v) =
f 0(x, v).

Definition 2.4 (Clarke’s Generalized Gradient Clarke, 1983):
Given a functionV : Rn × [0,∞) → R, whereV(x, t) is locally
Lipschitz in (x, t), the generalised gradient of V at (x, t) is
defined as

∂V(x, t) = co {lim∇V(xi, ti)| (xi, ti) → (x, t) , (xi, ti) �∈ �V} ,
(7)

where�V denotes the set of measure zero where the gradient of
V is not defined [Rademacher’s theorem-(Nekvinda & Zajíček,
1988)].

Lemma 2.1 (Chain Rule Paden & Sastry, 1987; Shevitz & Paden,
1994): Let V : Rn × [0,∞) → R be a regular, Lipschitz func-
tion. If x(t) a Filippov solution of ẋ = f (x, t), then d

dt V(x(t), t)

exists almost everywhere (a.e.) for t ≥ 0, and V̇(x(t), t)
a.e.∈

˙̃V(x(t), t) where

˙̃V(x(t), t) � ∩
ξ∈∂V(x(t),t)

ξT
[
K[f ](x(t), t)

1

]
. (8)

Proof of Lemma 2.1 can be found in Shevitz and Paden (1994) and
Paden and Sastry (1987) and is omitted for brevity.

2.2 Simple example of differential inclusion

The concept of Filippov’s solution is illustrated using a simple
scalar differential equation (Paden & Sastry, 1987)

ẋ = −sgn(x); x(0) = 1. (9)

The state is 1 at time 0 andmoves at constant velocity−1 until it
reaches 0 and remains at the point of discontinuity in the right
hand side of (9). In fact, this is Filippov’s solution to (9). Since
B(0, ε), ε > 0, an open interval containing the origin, intersects
both (−∞, 0) and (0,∞) on the sets of positive measure, we
have that K[−sgn](0) = co{−1, 1} = [−1, 1]. For general x, the

differential inclusion (2) and (4) becomes

ẋ ∈ −SGN(x), (10)

where SGN is the set-valued sign function defined as Paden
and Sastry (1987)

SGN (x) �

⎧⎪⎨
⎪⎩

{1} if x > 0
[−1, 1] if x = 0
{−1} if x < 0

. (11)

3. Observer design

This section presents a SMO design for a class of autonomous,
nonlinear systems. Specifically, a rigorous analysis is utilised to
derive a set of estimation error dynamic equations, the right-
hand side of which contains discontinuities resulting from the
use of the sgn(·) function in the SMO equation. A detailed
analysis is also provided to define the sets within which discon-
tinuities exist.

3.1 Dynamicmodel and properties

Consider a class of nonlinear systems given by

ẋ = f (x), (12)

y = h(x), (13)

where x : [0,∞) → R
n denotes the state vector, and y : Rn →

R is the system output (e.g. sensor measurement). In (12)
and (13), f : Rn → R

n and h : Rn → R are sufficiently smooth
vector functions as described in the subsequentAssumption 3.1.

To facilitate the subsequent observer design and conver-
gence analysis, an auxiliary measurement vector H : Rn →
R
n is defined as Drakunov (1992), Kidambi et al. (2016),

Kidambi et al. (2017), Kidambi, Ramos-Pedroza, MacKunis,
and Drakunov (2019)

H(x) �
[
h1 (x) · · · hn (x)

]T , (14)

where

h1(x) = h(x), (15)

hi+1(x) = ∂hi(x)
∂x

f (x). (16)

The function hi+1(x) is the ith Lie (directional) derivative of h(x)
along the trajectories of the system described in (12). Thus, the
elements of H(x) can be expressed as

hi(x) = Li−1
f h(x). (17)

Based on (12) and (15) it follows that, if x is a solution of (12),
then

d
dt
hi(x) = hi+1(x). (18)

Assumption 3.1: If x(t) ∈ L∞, the first n− 1 partial deriva-
tives of f (x) and first n partial derivatives of h(x) exist and are
bounded in the sense that ∂n−1f (x)

∂xn−1 ∈ L∞ and ∂nh(x)
∂xn ∈ L∞.
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The differentiabilty requirements described in Assumption
1 stem from the use of repeated Lie derivatives in the observer
structure as defined explicitly in Equations (15)–(18), along
with the subsequent bounding conditions in Inequality (33).
AlthoughAssumption 1 is fairly restrictive, our subsequent Sim-
ulation Results section presents an example of a practical system
(i.e. reduced-order fluid flow dynamic model) which satisfies
Assumption 1. Future work will investigate extensions of the
current observer design, in which Assumption 1 can be relaxed
or eliminated.

Assumption 3.2: For a given domainX0 ⊂ R
n of initial condi-

tions of the system (12), all solutions of (12) belong to the open
one-component domain X ⊂ R

n, for all t ∈ [0,∞).

Condition 3.1 (Observability): The JacobianO � ∂H(x)
∂x of the

continuous mapH(x) is nondegenerating inX in the sense that

|detO| ≥ δ > 0

for some δ and for every x ∈ X .

FromCondition 3.1, the JacobianmatrixO is invertible. This
fact will be utilised in the subsequent SMO design.

3.2 Observer design

Under Condition 3.1, an observer that estimates the full state x
of the system in (12) using only output measurements y can be
designed as

·
x̂ = f (x̂) + O−1 (

x̂
)
M

(
x̂
)
sgn

(
�(t) − H(x̂)

)
, (19)

where O(·) is introduced in Condition 3.1, and x̂ : [0,∞) →
R
n denotes the estimate of the state x in (12). In (19 ) sgn(·)

operates element-wise on the vector argument so that sgn(ζ ) �
[sgn(ζ1) sgn(ζ2) ··· sgn(ζn)]T ∀ζ ∈ R

n. Also in (19), M :
R
n → R

n×n denotes a diagonal matrix with positive elements
defined as

M(x̂) = diag
(
m1(x̂), . . . .,mn(x̂)

)
, (20)

where mi : Rn → R
+, for i = 1, . . . , n, denote control gains,

which could be constant or could depend on x̂ in general.
In (19), � : [0,∞) → R

n is defined as

�(t) = [φ1(t), . . . .,φn(t)]T , (21)

where the elements φi(t) are defined via the recursive
relationship

φ1(t) = y(t) (22)

φi+1(t) = mi(x̂)sgn
(
φi(t) − hi(x̂)

)
(23)

for i = 1, . . . , n − 1.

Remark 3.1 (Measurable Auxiliary Signals): Based on (22),
φ1(t) is simply the measurable output of the system in (12)
and (13). Further, the recursion relation in (23) ensures that
the auxiliary signals φ2(t), φ3(t), ··· , φn(t) are also measurable

throughout observer operation. Indeed, it follows from (23) that
the auxiliary signals depend only on y(t) and x̂(t).

Through judicious design of the gain matrix M, it can be
shown that the observer in (19) estimates the state x(t) in a finite
time interval. The choice ofM is based on the regionX0 of initial
conditions for the system (12) and on the upper bounds of hi(x).
This proof is provided via Lyapunov-based stability analysis in
the subsequent Section 5.

4. SMO estimation error dynamics

4.1 Objective

Under Condition 3.1, the map H in (14) is a diffeomorphism
(i.e. there is a one-to-one correspondence between x and H).
Since H is a diffeomorphism, it follows that H(x) − H(x̂) → 0
⇒ x − x̂ → 0. Thus, to quantify the estimation objective, it is
sufficient to define the estimation error as

e(t) = H(x) − H(x̂), (24)

where e(t) � [e1(t) ··· en(t)]T represents the estimation error.
The estimation objective can therefore be mathematically
stated as

‖e (t)‖ → 0, (25)

where ‖ · ‖ in (25) denotes the standard Euclidean norm (or 2-
norm). Note that the choice to use the 2-norm is arbitrary, and
the subsequent stability analysis could be used to prove con-
vergence of the observer error using the p-norm definition in
general.

4.2 Estimation error dynamics

The estimation error dynamics can be obtained by taking the
time derivative of (24) as

·
e (t) = ∂H (x)

∂x
ẋ − ∂H(x̂)

∂x
˙̂x. (26)

After using (1) and (19), the estimation error dynamics can be
expressed as

ė(t) = ∂H (x)
∂x

f (x) − ∂H
(
x̂
)

∂x
f
(
x̂
)

− M
(
x̂
)
sgn

(
�(t) − H(x̂)

)
, (27)

where the fact thatO(x̂) = ∂H(x)
∂x |x=x̂ was utilised.

Remark 4.1: Note that the estimation error dynamic equation
in (27) is in the form of (1), where the RHS includes discon-
tinuities resulting from the use of the sliding mode observer
introduced in (19). The use of differential inclusions provides
for existence of solutions, and the subsequent estimator con-
vergence analysis will be provided utilising the definition of the
Filippov solution presented in Section 2.

To facilitate the subsequent Lyapunov-based stability analy-
sis, the definitions in (15) and (16) will be used to rewrite the
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error dynamics in (27) as
⎡
⎢⎢⎢⎣
ė1 (t)
ė2 (t)
...

ėn (t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

h2 (x) − h2
(
x̂
)

h3 (x) − h3
(
x̂
)

...
hn+1 (x) − hn+1

(
x̂
)

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎣
m1

(
x̂
)
sgn (σ1)

m2
(
x̂
)
sgn (σ2)
...

mn
(
x̂
)
sgn (σn)

⎤
⎥⎥⎥⎦
(28)

where σi : Rn → R denote sliding surfaces for the ith estimation
error that are defined explicitly as

σi � φi (t) − hi
(
x̂
)

(29)

for i = 1, . . . , n, where φi(t) are defined in (22) and (23). The
estimation error dynamic equations in (28) can be rewritten in
the compact form

ėi (t) = hi+1 (x) − hi+1
(
x̂
) − mi

(
x̂
)
sgn (σi) (30)

for i = 1, . . . , n.

Property 1 (Sliding Surface Definition): Based on the defi-
nitions in (13), (15), (22) and (29), it follows by definition
that

σ1 (t) = e1 (t) . (31)

Property 1 will be utilised in the subsequent convergence anal-
ysis of the proposed SMO.

4.3 Hierarchical analysis of estimation error dynamics

The motivation for expressing the estimation error dynamics
in the forms given in (28) and (30) is based on the recursive
structure of the auxiliary signals in (22) and (23). The decou-
pling between the individual elements of the estimation error
dynamics for ei(t), for i = 1, . . . , n, is highlighted in (30) to
facilitate the hierarchical strategy of the convergence analysis in
the subsequent Stability Analysis Section.

Theorem 4.1 (Sliding Surface Convergence): The hierarchical
definition of the auxiliary signals φi(t), for i = 1, . . . , n, in (22)
and (23) can be used along with (29) and (30) to show that

ei (t) = 0 ⇒ σi+1 (t) = ei+1 (t) (32)

for i = 1, . . . , n, provided the observer gains mi(x̂), for i =
1, . . . , n, are selected to satisfy the sufficient condition

mi
(
x̂
)

>
∣∣hi+1 (x) − hi+1

(
x̂
)∣∣ . (33)

Proof: By using (30), the following can be obtained
immediately:

ei(t) = 0 ⇒ ėi(t) = 0 ⇒ (34)

hi+1(x) = mi(x̂)sgn(σi). (35)

Based on the recursive definition of φi(t) in (23), it follows
from (35) that φi+1(t) = hi+1(x). Thus, σi+1(t) = hi+1(x) −
hi+1(x̂) from (29). Hence, (32) can be obtained from (24). This
proves Theorem 4.1. �

5. Stability analysis

Theorem 5.1 (Observer Convergence): For the class of nonlin-
ear systems described by Equations (12) and (13), the observer
described in (14), (19)–(21) ensures that all system states and
estimates remain bounded and that finite-time estimation of the
complete system state x(t) is achieved in the sense that

‖e(t)‖ ≡ 0 for t ≥ tn < ∞ (36)

using only measurements y(t), provided the observer gains mi, for
i = 1, ldots, n, are selected to satisfy Inequality (33), and where
tn ∈ L∞ are (finite) calculable time instants that are explicitly
derived in the appendix.

Proof: Let Vi : R × [0,∞) → R, for i = 1, . . . , n, be locally
Lipschitz, positive definite, Lyapunov candidate functions
defined as

Vi = 1
2
e2i . (37)

After taking the time derivative of (37), V̇i(ei)
a.e.∈ ˙̃Vi(ei) and

˙̃Vi(ei, t) � ∩
ξi∈∂Vi(ei,t)

ξTi K
[
ėi
1

]
(ei, t). (38)

Given that the Lyapunov candidate function in (37) is contin-
uously differentiable, the generalised gradient reduces to the
standard gradient (Fischer et al., 2013), and thus, (38) can be
expressed as

˙̃Vi ⊂ ∇iVT
i K[ėi](ei) ⊂ eTi K[ėi], (39)

where ∇i � ∂/∂ei, for i = 1, . . . , n. By using (30), the equation
in (39) can be rewritten as

˙̃Vi ⊂ eTi
(
hi+1(x) − mi(x̂)K

[
sgn(σi(t))

])
(40)

for i = 1, . . . , n, where K[sgn(·)] = SGN(·) denotes the set-
valued signum function defined in (11).

To complete the stability proof,Property 1 andTheorem1will
be leveraged, and the proof will be carried out sequentially. To
this end, consider the casewhere i = 1, for which the expression
in (40) becomes

˙̃V1 ⊂ eT1
(
h2(x) − m1(x̂) SGN (e1)

)
, (41)

where the definition in (31) of Property 1was utilised. The scalar
inequality in (41) can be reduced and upper bounded as

˙̃V1 ≤ − (
m1

(
x̂
) − |h2 (x)|) |e1| . (42)

The reduction of the set in (41) to the scalar inequality in (42)
results from the fact that the set-defined term K[sgn(e1)] is
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multiplied by e1. Thus, when e1 = 0, it follows that

(0) SGN (0) = {0} . (43)

By selecting the gainm1(x̂) according to the sufficient condition
in (33), the upper bound in (42) can be expressed as

˙̃V1 ≤ −κ1 |e1| (44)

where κ1 ∈ R
+ is a known bounding constant. Inequality (44)

can now be used along with (37) to prove finite-time conver-
gence of e1(t) in the sense that

|e1| ≡ 0, for t ≥ t1,

where t1 ∈ L∞ can be computed.
Given that e1(t) ≡ 0 for t ≥ t1, (32 ) of Property 2 can be

used to show that σ2(t) = e2(t), and thus, the set (40) for i = 2
can be expressed as

˙̃V2 ⊂ eT2
(
h3(x) − m2(x̂)SGN (e2)

)
. (45)

The scalar inequality in (45) then reduces to

˙̃V2 ≤ − (
m2

(
x̂
) − |h3 (x)|) |e2| . (46)

By again using the sufficient gain condition in (33), (46) can be
expressed as

˙̃V2 ≤ −κ2 |e2| (47)

where κ2 ∈ R
+ is a known bounding constant. The inequality

in (47) can be used along with (37) (for i = 2) to prove that

|e2| ≡ 0, for t ≥ t2,

where t2 ∈ L∞ is calculable. Continuing in this sequentialman-
ner, and leveraging Theorem 4.1, it follows that

|ei| ≡ 0, for t ≥ ti

for i = 3, . . . , n, provided the sufficient condition in (33) is sat-
isfied. Thus, the objective in (36) of Theorem 5.1 is proved. �

Remark 5.1 (Implementation of the SMO): It should be noted
that, although the convergence proof of the proposed SMO was
provided in a sequentialmanner, the SMO implementation does
not require any special treatment. The sequential analysis used
for the proof in this section was provided for clarity of the pre-
sentation only. Indeed, the simulation results in the following
sectionwere obtained by implementing the estimatorwith a sin-
gle fixed set of observer gains mi, for i = 1, . . . , n, which was
selected a single time at observer initialisation.

6. Simulation study: flow field velocity estimation

A numerical simulation was created to test the performance of
the proposed SMO. The simulation is based on the observer
design described in (19)–(23). The simulation tests the capa-
bility of the proposed SMO to estimate the complete state of a
fluid flow dynamic system using only sensor measurements of
the flow field velocity.

6.1 Reduced-ordermodel derivation

A challenge in designing an observer for such systems is that
fluid flow dynamics are governed by complex models such as
the Burgers’ equations or Navier–Stokes equations, which are
partial differential equations (PDEs). In this example, we will
consider the Navier–Stokes equations, which can be expressed
as

∇ · υ = 0,
∂υ

∂t
= −(υ · ∇)υ + 1

Re
∇2(υ) − ∇p, (48)

where υ(s, t) : � × [0,∞) ∈ R
3 denotes the velocity of the flow

field over a spatial domain s ∈ � ⊂ R
3, where 1

Re is kinematic
viscosity.

Proper orthogonal decomposition (POD)-based model
order reduction is utilised to recast the PDE dynamic model
into a finite set of ordinary differential equations (ODEs). In
the POD modal decomposition technique, the flow field veloc-
ity υ(s, t) is expanded as a weighted sum of PODmodes defined
in the spatial domain � as

υ(s, t) = υ0 +
n∑
i=1

xi(t)ψi(s). (49)

In (49), ψi(s) ∈ R
3, denote the POD modes and xi(t), i =

1, . . . , n, denote unknown, time-varying coefficients resulting
from themodal decomposition. By substituting the velocity field
expansion (49) into (48), the POD-based reduced-order model
of the Navier–Stokes equations is obtained as

ẋk(t) = Lkx(t) + xT(t)Qkx(t) + bk, k = 1, . . . , n (50)

Lk(s) ∈ R
1×n, Qk(s) ∈ R

n×n, and bk ∈ R, denote constant
parameter matrices, which can be explicitly obtained from a
given set of experimental or high-fidelity simulation data. The
expression in (50) represents a system of nonlinear ordinary
differential equations resulting from POD-based model order
reduction. The system of ODEs in (50) can be expressed in
the general form given in (12). For additional details on POD-
based model order reduction, readers are referred to Holmes,
Lumley, and Berkooz (1996), Chatterjee (2000), MacKunis,
Drakunov, Reyhanoglu, and Ukeiley (2011). Further details on
the POD-based modal decomposition from (48) → (50) can
be found in Kidambi et al. (2019), MacKunis et al. (2011). The
reduced-order model resulting from POD contains an unmea-
surable state vector containing the time-varying coefficients
from Galerkin projection.

The flow field observer design presented here is based on the
standard assumption that one or more sensor measurements
are available. By using the similar POD modal decomposition
analysis the output measurement equation can be expressed as
Holmes et al. (1996), Chatterjee (2000)

y(t) = Cx(t), (51)

where y(t) ∈ R, and C ∈ R
1×n is a vector of known constants,

and x(t) = [x1(t), x2(t), . . . , xn(t)]T is introduced in (50). Phys-
ically, the expression in (51) can be interpreted as the measured
velocity at a predefined location as approximated in terms of the
POD modes. Specifically, the plant model in (50) and the out-
put equation in (51) can be expressed in the form given in (12)
and (13).
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Table 1. Parameters used in the simulation plant model (Gordeyev & Thomas,
2013).

Linear terms Quadratic and cubic terms

b1 = 557.7 L11 = −86.1 Q111 = 1.8 Q414 = 2.9
b2 = 1016.9 L22 = −392.4 Q121 = −2.2 Q424 = −9.8
b3 = 41.0 L23 = 263.9 Q131 = −2.3 Q434 = 6.3
b4 = −628.9 L32 = −218.3 Q141 = −6.8 Q444 = −7.3

L33 = −7.6 Q212 = 75.0
L41 = 43.4 Q313 = 5.0 t2 = −2.5
L44 = −113.5 Q314 = 3.9 t3 = −0.2

Figure 1. Time evolution of the states and the estimates using the observer in (19).

Figure 2. Zoomed plots showing the initial convergence phase of the states and the estimates using the observer in (19).

6.2 Simulation results

The flow field dynamic reduced-order model in this simulation
can be expressed as Gordeyev and Thomas (2013)

ẋ1 = b1 + L11x1 + Q141x1x4 + Q111x21
+ Q121x1x2 + Q131x1x3,

ẋ2 = b2 + [
L22 + t2

(
x22 + x23

)]
x2 + L23x3 + Q121x1x2,



8 K. B. KIDAMBI ET AL.

Figure 3. Time evolution of the error in each state over the entire simulation time.

ẋ3 = b3 + L32x2 + [
L33 + t3

(
x22 + x23

)]
x3

+ Q313x1x3,+Q314x1x4

ẋ4 = b4 + L41x1 + L44x4 + Q444x24 + Q414x1x4
+ Q424x2x4 + Q434x3x4 (52)

with a measurement (i.e. output) equation given by

y = x1 + x2 + x3 + x4. (53)

Thus, based on (52) and (53), the simulation plant model is in
the form of (12) and (13), where x : [0,∞) → R

4 and y : R4 →
R. For completeness in defining the simulation plant model, the
values of the constant parameters bi, Lij,Qijk for i, j, k = 1, . . . , 4
are provided in Table 1.

The initial values for the states and estimates were
selected as

x1 = 0.01, x2 = 0.5, x3 = 0.1, x4 = 0.1

x̂1 = 0, x̂2 = 0, x̂3 = 0, x̂4 = 0

Figures 1, 2 and 3 show the observer performance for esti-
mator gains selected as (see (19) and (20))

m1 = 7, m2 = 7, m3 = 7, m4 = 2.

Figure 1 shows that the SMOreliably estimates the true states,
even under the highly oscillatory state response. To clarify the
results, Figure 2 shows the initial transient response of SMO sys-
tem and Figure 3 shows the time evolution of the error. The

results demonstrate the capability of the proposed SMO design
to reliably estimate the unmeasurable state of the system.

7. Conclusion

A rigorous error system development and stability analysis
are presented, which are based on a hierarchical SMO strat-
egy containing multiple discontinuities. The hierarchical struc-
ture of the SMO is shown to achieve finite-time estimation
of the complete state vector using a single scalar measure-
ment, which could be a nonlinear function of the state in
general. The challenge involved in analysing the convergence
behaviour of the estimation error dynamic equations with dis-
continuous RHS is addressed through the use of differential
inclusions in a Lyapunov-based framework. The result is a
Lyapunov-based stability analysis that proves finite-time state
estimation, while also incorporating a formal treatment of the
multiple discontinuities inherent in the SMO design. Numer-
ical simulation results are provided to demonstrate the capa-
bility of the SMO to estimate the full state of a fluid flow
dynamic system using only a single available sensor measure-
ment. Future work will address a rigorous analysis of the SMO
as part of a closed-loop nonlinear control system under model
uncertainty.
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Appendix
This appendix provides a detailed derivation of the time instants tn for i =
1, . . . , n, which are introduced in Equation (36) of Theorem 5.1.

The Lyapunov candidate function defined in Equation (37) is given as

Vi = 1
2
e2i ⇒ |ei| =

√
2Vi. (A1)

By generalising the expression in (44), ∀i = 1, 2, ..n, which is given as

V̇i ≤ −κi|ei| (A2)

dVi ≤ κi|ei|dt, (A3)

http://orcid.org/0000-0002-7266-3765
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integrating on both sides, by using Equation (A1)
∫ Vi(t)

Vi(0)

1√
2Vi

dVi ≤
∫ ti

0
κi dt (A4)

1√
2

[
2
√
Vi(t) − 2

√
Vi(0)

]
≤ −κi[ti − 0] (A5)

√
2Vi(t) ≤ κiti +

√
2Vi(0) (A6)

|ei(t)| ≤ |ei(0)| − κiti (A7)

ti = |ei(0)|
κi

, for i = 1, . . . , n. (A8)
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