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Abstract

This paper examines network prominence in a co-prescription network as an indicator of
opioid doctor shopping (i.e., fraudulent solicitation of opioids from multiple prescribers).
Using longitudinal data from a large commercially insured population, we construct a net-
work where a tie between patients is weighted by the number of shared opioid prescribers.
Given prior research suggesting that doctor shopping may be a social process, we hypothe-
size that active doctor shoppers will occupy central structural positions in this network. We
show that network prominence, operationalized using PageRank, is associated with more
opioid prescriptions, higher predicted risk for dangerous morphine dosage, opioid overdose,
and opioid use disorder, controlling for number of prescribers and other variables. Moreover,
as a patient’s prominence increases over time, so does their risk for these outcomes, com-
pared to their own average level of risk. Results highlight the importance of co-prescription
networks in characterizing high-risk social dynamics.

Introduction

Prescription drug abuse is an unmitigated public health crisis that has been developing for
decades [1], despite increasing regulatory efforts. Drug overdose was responsible for more
than 70,000 deaths in the U.S. in 2017, making the current drug epidemic the deadliest in his-
tory [2]. The Centers for Disease Control (CDC) reports that opioids are the leading cause of
overdose mortality, and more than 40% of opioid overdoses are attributable to prescription
opioids [3].

One of the primary means of obtaining prescription opioids is through “doctor shopping”
[4], or soliciting prescriptions for controlled substances from multiple clinicians by over-
reporting or manufacturing symptoms. Among those with prescription drug dependence,
nearly 40% are estimated to engage in doctor shopping [5]. Moreover, compared to people
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who abuse prescription drugs but do not shop doctors, doctor shoppers are more likely to
experience drug-related hospital admission [6], non-fatal opioid overdose [7], and opioid
overdose fatalities [8,9]. Thus, doctor shopping is a critical mechanism that contributes to opi-
oid misuse trajectories [7].

In response to the increasing prevalence of prescription drug abuse and diversion, all fifty
states and Washington D.C. have created prescription drug monitoring programs (PDMPs) to
discourage doctor shopping and to reduce inappropriate prescribing and dispensing [10].
While PDMP implementation has recently been associated with modest decreases in rates of
prescription opioid prescribing, diversion, and poisoning in some geographic areas, evidence
overall is mixed [11]. Moreover, the U.S. continues to see increases in opioid dependence and
related morbidity and mortality [12-15]. These findings suggest that although PDMPs may
have reduced egregious drug-seeking and prescribing behavior, they have not addressed opi-
oid misuse initiation and early patterns of abuse that fall short of detection criteria used to
identify fraudulent behavior.

Doctor shopping has historically been difficult to characterize [15]. A common method of
measurement uses multiple provider episodes (MPE), defined as obtaining controlled sub-
stances from some minimum number of prescribers and/or pharmacies in a given period of
time. Although commonly used MPE thresholds have low false positive rates [7, 16, 17], this
approach is crude and may be overly conservative. For example, people who engage in low lev-
els of doctor shopping or those who doctor shop heavily for a brief period are unlikely to be
correctly classified. Therefore, it is critical to explore alternative methods for characterizing
prescription drug seeking behaviors to facilitate early intervention and prevention.

Recent research suggests that social processes may be a critical element of doctor shopping
[16, 18, 19]. First, doctor shopping is clustered around particular at-risk prescribers. Doctor
shoppers systematically seek out physicians who are complicit, easily manipulated, or unlikely
to monitor electronic data [19]. For instance, a previous study estimated that the majority of
doctor shopping is concentrated around 13% of clinicians who prescribed any opioids, and
only about 2% of prescribers were used by heavy doctor shoppers [16]. Second, qualitative
research indicates that information about prescriber behavior is disseminated through social
networks [19].

This line of research raises an important question: Do doctor shoppers occupy distinctive
structural positions in a network of patients and prescribers? In particular, we hypothesize that
doctor shoppers—or high-risk individuals more generally—occupy central positions in the co-
prescription network, where patients are connected to other patients if they share the same
prescribers. First, by definition, they receive prescriptions from multiple prescribers and thus
are likely to be connected to many other patients through those prescribers. Second, their pre-
scribers tend to be at-risk prescribers who are targeted by other doctor shoppers. In other
words, the prescribers who are connected to a doctor shopper are probably more likely to be
connected to many other doctor shoppers. If doctor shoppers in isolation tend to occupy more
central positions in the network, then doctor shoppers are more likely to be connected to
other central nodes (other doctor shoppers), further strengthening the prominence of their
structural positions. Third, simply being at a central position in the network may reflect high-
risk conditions, such as being embedded in a social network of doctor shoppers or living in a
community at risk for opioid misuse.

We test the hypothesis that prominence in a patient co-prescription network is an indicator
of opioid misuse and related adverse outcomes using a large claims database of over 500,000
patients. Consistent with our expectations, we find that network prominence is associated with
number of opioid prescriptions and risk for high morphine dosage, overdose, and opioid use
disorder.
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Methodology

We use deidentified health claims from a large commercially insured population of about 19
million patients for the period of June 2015 through December 2016. Data are observed quar-
terly at the patient level and linked across administrative and health data. Patients are demo-
graphically representative of the US population with respect to gender and age, and
representative of the commercially-insured population on all other measurable characteristics.
However, because data are observational and retrospective, statistical inferences and any
related conclusions should be made with caution.

We focus our study on the area most affected by the opioid crisis [20], the Appalachian
region of the US. While prescription opioid misuse is a nation-wide concern, the Appalachian
region of the United States has historically been the epicenter of the crisis [20, 21]. High rates
of opioid prescribing early in the epidemic, economic stressors, and densely-knit social net-
works that facilitate drug diversion and distribution contributed to prescription drug misuse
and, later, heroin initiation and abuse in Appalachia and other rural areas [22-24].

There is considerable disagreement about which states constitute Appalachia, with geo-
graphic, cultural, and political definitions providing unique but overlapping boundaries. Fol-
lowing Williams [25], we use the core region comprised of six states that have been included in
the most influential government and scientific definitions of Appalachia-Georgia, North
Carolina, Tennessee, Kentucky, Virginia, and West Virginia. Given its prominent status in the
opioid epidemic (including being the probable epicenter), we add a seventh state, Ohio, which
is included in the larger regional boundaries defined by the Appalachian Regional Commis-
sion [26]. To reduce the data to a manageable number of patients for SNA, we restrict our
analysis sample to patients in this seven-state region who received one or more opioid pre-
scriptions during the study period. Models using the larger ARC definition of Appalachia yield
substantively identical results, but require more computing resources to converge. This pro-
cess results in a sample of 526,914 patients who contribute 2,107,656 quarterly observations.

To conduct SNA, we construct a patient co-prescription network in which a tie between
patients indicates that they were prescribed one or more opioids by the same prescriber (as
identified with a unique provider identification number). For this process, we omit opioid
agents used exclusively or primarily for medication assisted treatment (MAT; e.g., buprenor-
phine). This strategy reduces concerns that network centrality measures were an artifice of net-
work clustering due to sparsely located MAT-licensed providers in medically underserved areas.
Network ties are undirected and weighted by the number of unique providers from which opi-
oid co-prescriptions (minus MATs) were obtained. For example, if Patient A and Patient B were
prescribed opioids by a set of the same three unique providers, the weight of their tie is three.
Ties are also pooled across three quarters (T-2, T-1, and T) to account for potential lags in infor-
mation diffusion and to offset the unnatural cut points imposed by quarterly observation.

We conduct two sets of sensitivity analyses to assess the robustness of results to different
network specifications. First, because the network is sparse and contains many isolates, we rep-
licate all models after omitting patients who had no more than one unique opioid prescriber
per quarter. This provides an assessment of the extent to which network prominence captures
variation among moderate and high-risk patients rather than simply identifying those that are
clearly not doctor shoppers. Second, we conduct sensitivity analyses using bipartite, or two-
mode, network measures. This is accomplished using the generalized Co-HITS algorithm
developed by Deng and colleagues [27]. This algorithm produces a PageRank score for patients
that is based on both their own structural position and the prominence of the prescribers to
which they are directly and indirectly connected. Many different weighting strategies are possi-
ble in the context of Co-HITS, but here we constrain all weights to be 1. In future research, we
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will explore different weighting strategies in attempt to improve bipartite measures of promi-
nence in prescription networks.

Measures

The PageRank algorithm is used to measure each patient’s prominence or influence in the co-
prescription network. PageRank, originally developed to measure the importance of web pages
[28], roughly measures the probability that an actor who randomly traverses the network
through ties will arrive at a particular node. More specifically, PageRank is a stationary proba-
bility distribution over all nodes in a network that satisfy the following equation:

1—-d w,PR(j)
PR(i)=——+4d J
0 N ,-;@ s

Where PR(i) is the PageRank of node 7, N is the number of nodes, d is a damping factor
(d = 0.85), M(i) is the set of the nodes that have an edge pointing to i, w;; is the weight of the
edge from j to i, and 57" is the strength of node j (the sum of the weights from node j). In our

case, the patient-patient network does not have directed edges, and thus each undirected edge
is treated as two directional edges. Although PageRank is similar to Eigenvector centrality in
that both measure prominence, PageRank does not exhibit the critical localization problem of
Eigenvector centrality [29].

A patient with high PageRank is someone who received opioids from health professionals
who also prescribed opioids to other prominent patients (i.e., those with high PageRank). Note
that a patient could have low PageRank and still visit a large number of prescribers, as long as
those prescribers did not simultaneously provide opioids to many other prominent patients;
Conversely, a patient could have high PageRank and still visit a small number of prescribers
since PageRank takes into account the network positions of other nodes. For the current analy-
sis, we convert the raw score for patient PageRank to a percentile value to address pronounced
positive skew and to increase the interpretability of PageRank. We conduct sensitivity analyses
using other specifications of PageRank and other network centralities and find that they pro-
duce similar results. These are presented in Tables 3-6.

We model four dependent variables. First, number of opioid prescriptions is a count of the
number of unique prescriptions for opioids obtained in a given quarter across all prescribers.
Second, overdose potential is measured using maximum daily morphine milligram equivalents
(MME). MME is a value assigned to opioid medications to standardize relative potency. It was
developed to assess dosing safety by facilitating calculation of the total potency of consumed
drugs [30]. Daily MME is calculated by: 1) determining the total daily amount of each opioid
prescribed; 2) multiplying the dose for each opioid by the CDC conversion factor; and 3) total-
ing MMEs for all prescriptions. We then use the maximum daily MME during a quarter to
operationalize a patient’s highest risk for overdose. High MME could also be an indicator of
diversion potential. In our data, 1.46% of patients in the top tenth percentile for PageRank had
a maximum daily MME greater than 500 mg-over 500% of the CDC’s threshold for high over-
dose potential. Because doctor shopping for the purposes of diversion may not be associated
with personal risk for opioid misuse outcomes (e.g., overdose, opioid use disorder), this is a
potential source of unexplained variation. A binary variable is equal to 1 (else 0) if maximum
daily MME is greater than 90 mg, consistent with CDC prescribing guidelines defining this as
the threshold for high overdose risk [30]. Third, drug overdose is indexed using ICD-10 diag-
nostic codes for accidental drug poisoning in a given quarter. We calculate a measure for acci-
dental poisoning by opioids exclusively (including synthetic opioids, e.g., fentanyl), and a
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separate measure that indexes poisoning by opioids or “unspecified” drugs. Although findings
are consistent, we present model results based on the more inclusive measure. This decision is
based on research suggesting that use of nonspecific language to classify drug poisoning leads
to overuse of the “unspecified” code and undercounting of opioid overdoses [31-33]. Fourth,
we create a binary indicator of opioid use disorder based on the presence of ICD-10 diagnostic
codes for opioid abuse or dependence in a given quarter.

Our models also include a number of controls. We add gender (1 = female; 0 = male), age
in years, and type of insurance. The latter is coded into three binary categories representing
the most restrictive plans (health maintenance organizations, or HMOs), the least restrictive
plans (point of service plans, or POSs), and other plans falling between these on a continuum
of restrictiveness. Insurance plan is included to control for any patterns of health services utili-
zation (i.e., which specific prescribers were accessed) that are due to plan restrictions rather
than social network processes such as information sharing. To adjust for high opioid volume
associated with hospice care, which may be correlated with patient PageRank percentile, we
add a control for any cancer diagnosis during the study period. Finally, because our intention
is to capture the relational pattern of drug seeking through prescribers rather than the sheer
volume of doctor shopping, we control for each patients’ number of unique prescribers in a
given quarter. This ensures that any effects of patient PageRank percentile are attributable to
the position of the node in a network of co-prescription ties over and above any effect of visit-
ing a large number of prescribers.

Analysis

Longitudinal analyses are conducted using multivariate mixed effects logistic and negative
binomial regression models with random intercepts at the person level to adjust for correlation
of observations within patients over time. Models regress opioid use outcomes on network
prominence (i.e., PageRank percentile) and control variables. We employ variance decomposi-
tion to model the effects of PageRank percentile on outcomes. Specifically, we split the vari-
ance in PageRank percentile into between-person and within-person estimates, where BP is
the person mean (i.e., the mean value across four quarters) and WP is the difference between
the current quarter and the person mean. The BP effect conveys information about how a
patient’s average network prominence is associated with their average number of opioid pre-
scriptions, for example, comparing across patients. The WP effect reflects how being more or
less prominent than usual is associated with obtaining a higher or lower number of prescrip-
tions than usual, comparing a patient to him or herself across quarters. The latter estimate is
analogous to a fixed effects model, and controls for all measured and unmeasured heterogene-
ity at the patient level that is time invariant [34].

We also include state fixed effects to control for all unobserved heterogeneity at the state
level, reducing concerns about confounding effects of differences across states in PDMP moni-
toring, prescription drug policies, and health care systems. Sensitivity analyses using United
States Post Office city groups (based on zip code) in lieu of state fixed effects produce identical
results. All models control for gender, age, type of insurance, any cancer diagnosis, and num-
ber of unique opioid prescribers. Figures of predicted counts or probabilities are presented to
convey the magnitude of the effects. In figures, the y-axis range is set to +/-1 standard devia-
tion. All data and Stata code needed to replicate these analyses will be archived in Dryad.

Results

Our dataset contains 526,914 patients who contributed 2,107,656 quarterly prescription entries
in 2016. In the patient co-prescription network, a tie between patients indicates that they were
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Table 1. Sample descriptive statistics.

N % Mean SD
Patients (n = 526,914)

Female 309,115 58.67
Age (years) 55.98 17.17
Insurance type

HMO 89,173 16.92

POS 226,903 43.06

Other 210,838 40.01
State

Georgia 165,982 31.50

Kentucky 16,333 3.10

North Carolina 143,668 27.27

Ohio 99,646 18.91

Tennessee 54,388 10.32

Virginia 43,950 8.34

West Virginia 2,947 0.56

Obs (n = 2,107,656)

Cancer diagnosis 290,877 13.80
Number of prescribers
Degree 29.25 51.79
PageRank %ile 50.01 28.34
# opioid prescribers 0.59 0.75
# opioid prescriptions 1.26 2.22
Opioid use disorder 24,475 1.16
Max daily MME>90 169,976 8.06
Any overdose 3,360 0.16

https://doi.org/10.1371/journal.pone.0223849.t001

prescribed one or more opioids (excluding medication-assisted treatment) by the same pre-
scriber. On average, each patient is connected to 29 other patients through opioid co-prescrip-
tion in the same 90-day period (see Table 1). However, the degree distribution is heavily
skewed and there are a small number of hub patients with very large degree (range: 0-1,178).
The mean number of opioid prescriptions per quarter is 1.26 and the mean number of opioid
prescribers is 0.59. About 8% of patients have high overdose potential (i.e., a max daily MME
greater than 90mg) in a given quarter, and 0.16% experience an opioid overdose.

Table 2 provides results from the regression of number of opioids prescribed per quarter on
PageRank percentile. Patients with higher PageRank are predicted to have higher numbers of
opioid prescriptions compared to those with lower PageRank, controlling for the number of
prescribers and other factors (See Model 1). A 10-percentile increase in between-person (BP)
PageRank is associated with a predicted 18% increase in the odds of obtaining an additional
opioid prescription (p < .001), adjusting for controls. Similarly, when patients have higher
PageRank than usual, they also obtain more prescriptions than is typical for them. A 10-per-
centile increase in within-person (WP) PageRank over time is associated with a 15% increase
in the odds of having an additional opioid prescription (p < .001), even after controlling for
the number of unique opioid prescribers in a quarter.

Results from the regression of high overdose potential (>90mg maximum daily MME) on
PageRank percentile are provided in Model 2 of Table 2. Patients with higher average PageR-
ank are at greater risk for being prescribed dangerous doses of opioids compared to those with
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Table 2. Mixed effects regression’ of opioid outcomes on between-person and within-person patient PageRank percentile and controls (n = 526,914; n
obs = 2,107,656) .

1: Num Rx 2: MME>90 3: Overdose 4: OUD
IRR (CD) OR (CD OR (Cn OR (Cn

Female 1.017** (1.01-1.02) 0.54"** (0.53-0.56) 0.99 (0.92-1.08) 0.67°** (0.62-0.71)
Age (10 years) 1.06*** (1.05-1.06) 0.93*** (0.92-0.95) 1.01 (0.98-1.05) 0.72%** (0.71-0.74)
Insurance type’

POS 0.80"** (0.79-0.80) 0.38"** (0.37-0.40) 0.51*** (0.45-0.58) 0.427** (0.39-0.46)

HMO 0.92*** (0.91-0.93) 0.63"** (0.60-0.66) 0.86" (0.77-0.97) 1.40%** (1.27-1.53)
State’

Kentucky 0.94** (0.91-0.97) 1.25 (0.97-1.63) 1.55 (0.70-3.40) 0.91 (0.57-1.45)

Virginia 0.87*** (0.85-0.90) 0.96 (0.75-1.23) 1.24 (0.58-2.66) 0.41%** (0.26-0.65)

Tennessee 0.96* (0.93-0.99) 1.58"** (1.23-2.02) 1.35 (0.63-2.89) 3.717 (2.40-5.74)

Ohio 0.92%** (0.89-0.95) | 0.93 (0.73-1.19) | 1.85 (0.87-3.92) | 0.52** (0.34-0.80)

North Carolina 1.01 (0.98-1.04) 2.44%%% (1.91-3.11) | 1.38 (0.65-2.93) | 0.62* (0.40-0.95)

Georgia 0.92%** (0.89-0.95) | 0.81 (0.63-1.03) | 1.30 (0.61-2.76) | 1.03 (0.67-1.59)
Cancer diagnosis 1.02+%* (1.02-1.02) 1.57%* (1.52-1.62) 2,46+ (2.26-2.67) | 1.05 (0.98-1.12)
# opioid prescribers 227 (2.27-2.28) 7.53"** (7.40-7.66) 1.99"** (1.92-2.07) 1.86"*" (1.82-1.91)
Network prominence

BP PageRank (10%ile) 1.18** (1.18-1.18) 1.88"** (1.86-1.90) 1.20"** (1.18-1.23) 2.00"** (1.97-2.04)

WP PageRank (10%ile) 1.15%%* (1.15-1.15) 1.27%* (1.27-1.28) 1.10%** (1.08-1.13) 1117 (1.09-1.12)

ICC 0.65 0.83 0.57 0.82
BIC 4,636,263 659,547 44,533 182,155

"Random intercept models adjusted for state fixed effects; incidence rate ratios or odds ratios and confidence intervals are presented
*Omitted category = Other

*Omitted category = West Virginia

* p<0.05

** p<0.01

% p<0.001

https://doi.org/10.1371/journal.pone.0223849.t002

lower PageRank. A 10-percentile increase in BP PageRank predicts a 88% higher odds of hav-
ing a maximum daily MME>90mg (p < .001). Also, as a patient’s own PageRank increases, so
does their predicted odds of high MME, net of controls. A 10-percentile increase in PageRank
predicts a 27% increased odds of overdose over time (p < .001).

Model 3 of Table 2 presents results from the regression of opioid overdose on PageRank per-
centile. Higher average PageRank is associated with elevated risk of overdose compared to
patients with lower PageRank. A 10-percentile increase in BP PageRank predicts a 20% higher
odds of overdose (p < .001). Also, as a patient’s own PageRank increases, so does their predicted
odds of overdose, adjusting for number of prescribers and other control variables. A 10-percen-
tile increase in WP PageRank over time is estimated to increase overdose risk by 10% (p < .001).

Finally, as shown in Model 4 (See Table 2), PageRank is associated with being diagnosed
with an opioid use disorder (OUD). A 10-percentile increase in average PageRank predicts a
200% higher odds of OUD, comparing across patients (p < .001). At the same time, as a
patient’s own PageRank increases, so too does their risk for being diagnosed with OUD. A
10-percentile increase in WP PageRank over time is associated with an 11% increase in the
predicted odds of OUD.

Predicted counts or probabilities of adverse opioid outcomes as a function of network
prominence are presented in figures. As shown in Fig 1, patients with the lowest PageRank
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Fig 1. Predicted number of prescriptions as a function of within-person and between-person PageRank percentile
(n =526,914; n obs = 2,107,656).

https://doi.org/10.1371/journal.pone.0223849.9001

percentile are predicted to obtain an average of 0.769 (CI: 0.756-0.783) opioid prescriptions
per quarter, compared to 2.098 (CI: 2.082-2.113) opioid prescriptions among those with the
highest PageRank percentile. Likewise, in quarters where a patient experiences an extreme

decrease in PageRank percentile over time, they are predicted to obtain 0.431 (CI: 0.416-

0.447) opioid prescriptions. In comparison, following a large increase in PageRank percentile,

predicted number of prescriptions increases to 2.104 (CI: 2.090-2.118).

Predicted probabilities of maximum daily MME>90mg are presented in Fig 2. Comparing
across patients, those with the lowest PageRank percentile have a predicted probability of only

0.027 (CI: 0.027-0.028) of dangerously high MME, compared to 0.185 (CI: 0.183-0.187)

0.25

0.20

0.15

Pr(MME>90)

0.10

0.05

0.00

Max Daily MME>90

— Within-person

—Between-person

-60 -40 -20 0 20 40 60

20 40 60 80 100
PageRank Percentile

Fig 2. Predicted probability of MME>90 as a function of within-person and between-person PageRank percentile
(n =526,914; n obs = 2,107,656).

https://doi.org/10.1371/journal.pone.0223849.g002
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Fig 3. Predicted probability of overdose as a function of within-person and between-person PageRank percentile
(n =526,914; n obs = 2,107,656).

https://doi.org/10.1371/journal.pone.0223849.9003

among those in the most prominent network positions. There is a more pronounced effect of
network prominence between patients compared to within patients—a pattern consistent with
the fairly high correlation of observations within patients over time (ICC = 0.83). That is,
patients taking high doses of opioids tend to continue taking them over time. Nonetheless, the
predicted probability of high MME ranges from 0.044 (CI: 0.043-0.045) when a person experi-
ences a large decrease in PageRank percentile to 0.121 (CI: 0.120-0.123) in quarters when they
experience the greatest increase over time.

Fig 3 presents predicted probabilities of opioid overdose. A patient with the lowest PageR-
ank percentile has a predicted probability of overdose of 0.00077 (CI: 0.00070-0.00084) rela-
tive to 0.00305 (CI: 0.00281-0.00328) for those with the highest average PageRank. Over time,
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Opioid Use Disorder
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Fig 4. Predicted probability of opioid use disorder as a function of within-person and between-person PageRank
percentile (n = 526,914; n obs = 2,107,656).

https://doi.org/10.1371/journal.pone.0223849.9004
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Table 3. Mixed effects regression’ of opioid outcomes on between-person and within-person patient PageRank percentile and controls among high-risk patients
with more than one prescriber per quarter (n = 68,401; n obs = 273,604).

1: Num Rx 2: MME>90 3: Overdose 4: OUD
IRR (CDn OR (CDn OR (CD OR (CDn

Female 1.00 (0.99-1.01) | 0.42"** (0.39-0.46) 1.00 (0.88-1.14) 0.78"** (0.71-0.85)
Age(10 years) 0.99*** (0.99-1.00) 0.62"** (0.60-0.64) 0.92** (0.87-0.97) 0.69"** (0.66-0.71)
Insurance type’

POS 0.85"** (0.84-0.87) 0.317** (0.28-0.35) | 0.66** (0.54-0.79) 0.74"** (0.65-0.83)

HMO 0.88"** (0.87-0.89) 0.47°** (0.43-0.52) | 0.81* (0.69-0.96) 1.12* (1.00-1.25)
State’

Kentucky 0.93 (0.86-1.01) 1.51 (0.79-2.88) | 0.87 (0.54-1.41) 1.16 (0.53-2.56)

Virginia 0.91** (0.84-0.98) | 3.51 (2.76-4.47) 1.04 (0.80-1.36) | 0.48 (0.22-1.04)

Tennessee 0.92* (0.85-0.99) 1.40 (1.10-1.78) | 0.97 (0.77-1.22) 3.92%** (1.85-8.29)

Ohio 0.98 (0.91-1.05) | 2.14 (1.67-2.73) | 1.33** (1.09-1.60) | 0.54 (0.26-1.15)

North Carolina L11%* (1.03-1.19) | 1.23 (0.96-1.58) | 1.08 (0.93-1.26) | 0.75 (0.36-1.59)

Georgia 0.91* (0.85-0.98) | 0.74 (0.39-1.41) [omitted] | 1.26 (0.60-2.65)
Cancer diagnosis 1.03%* (1.02-1.03) L51%%* (1.43-1.59) 2.50%* (2.20-2.84) | 1.05 (0.97-1.14)
# opioid prescribers 1.35"** (1.35-1.35) 2.897* (2.83-2.96) 1.49"** (1.41-1.56) 1.297** (1.26-1.33)
Network prominence

BP PageRank (10%ile) 1.04** (1.04-1.04) 1.68"** (1.64-1.73) 1.08** (1.03-1.13) 1.45"* (1.40-1.50)

WP PageRank (10%ile) 1.04%*+ (1.04-1.05) 1.20%** (1.18-1.21) 1.09%* (1.03-1.14) 1.14%%+ (1.11-1.16)

ICC 0.71 0.85 0.54 0.73

BIC 1,115,970 218,590 17,629 79,097

"Random intercept models adjusted for state fixed effects; incidence rate ratios or odds ratios and confidence intervals are presented

*Omitted category = Other
*Omitted category = West Virginia
* p<0.05

** p<0.01

% p<0.001

https://doi.org/10.1371/journal.pone.0223849.t003

a patient experiencing a large decrease in PageRank percentile compared to usual is expected
to have a 0.00089 (CI: 0.00075-0.00102) probability of overdose, while predicted probability of
overdose is 0.00262 (CI: 0.00229-0.00294) when increases in PageRank are large.

Finally, comparing across patients, those with the lowest PageRank percentile have a pre-
dicted probability of OUD of 0.0018 (CI: 0.0017-0.0019), compared to 0.0468 (CIL: 0.0451-
0.0485) among those in the most prominent network positions (See Fig 4). Like high dosage
prescription regimens, OUD is highly correlated over time within patients (ICC = 0.82). Con-
sequently, there is a more pronounced effect of network prominence between patients com-
pared to within patients. The predicted probability of receiving a diagnosis of OUD ranges
from 0.0080 (CI: 0.0076-0.0084) when a person experiences a large decrease in PageRank per-
centile to 0.0155 (CI: 0.0149-0.0162) in quarters when they experience the greatest increase
over time.

Results from sensitivity analyses are presented in Tables 3-6. First, we replicate all models
after omitting patients who had no more than one unique opioid prescriber per quarter. Find-
ings are consistent with those using the full sample (See Table 3), suggesting that network
prominence may be useful for distinguishing between gradations of moderate to high-risk
patient behavior. Specifically, within-person and between-person PageRank percentile are sig-
nificantly associated with number of opioid prescriptions, high-risk MME volume, overdose,
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Table 4. Mixed effects regression’ of opioid outcomes on between-person and within-person patient bipartite PageRank percentile and controls (n = 526,914; n

obs = 2,107,656).

IRR

Female 1.02"**
Age(10 years) 1.06"**
Insurance type’

POS 0.75"**

HMO 0.92°**
State’

Kentucky 1.00

Virginia 0.95**

Tennessee 1.07***

Ohio 1.05%*

North Carolina 1.16**

Georgia 1.13%**
Cancer diagnosis 0.99***
# opioid prescribers* 2.417%*
Network prominence

BP Bip PageRank (10%ile) 1.10"**

WP Bip PageRank (10%ile) 1.12%**

ICC

BIC

1: Num Rx 2: MME>90 3: Overdose 4: OUD
(CID) OR (CI) OR (CI) (CI)
(1.01-1.02) 0.58*** (0.57-0.60) 1.00 (0.92-1.08) 0.70%** (0.66-0.75)
(1.06-1.06) 0.96*** (0.95-0.97) 1.02 (0.98-1.05) 0.77*** (0.75-0.79)
(0.74-0.75) 0.30%** (0.29-0.32) 0.47*** (0.42-0.53) 0.32%** (0.29-0.35)
(0.91-0.92) 0.63*** (0.60-0.66) 0.85"* (0.76-0.96) 1.29%** (1.18-1.41)
(0.97-1.04) 1.51%* (0.80-3.84) 1.75 (0.80-3.84) 1.13 (0.72-1.77)
(0.92-0.98) 1.23 (0.96-1.58) 1.47 (0.69-3.15) 0.60* (0.39-0.93)
(1.04-1.11) 2.147%* (1.67-2.73) 1.70 (0.80-3.64) 5.63"** (3.69-8.59)
(1.02-1.09) | 1.40** (1.10-1.78) 2.33* (1.10-4.95) | 0.93 (0.61-1.41)
(1.13-1.20) | 3.51*** (2.76-4.47) 1.88 (0.89-3.99) | 1.18 (0.78-1.80)
(1.10-1.17) | 1.50*** (1.18-1.92) 1.95 (0.92-4.14) | 2.55*** (1.67-3.87)
(0.98-0.99) LA41%% (1.36-1.44) 2.28%** (2.09-2.48) | 0.95 (0.89-1.01)
(241-242) | 11.07*** (10.86-11.27) | 1.97*** (1.90-2.05) | 2.27*** (2.21-2.33)
(1.10-1.10) 127+ (1.25-1.28) L.21%%+ (1.18-1.23) | 1.47*** (1.45-1.50)
(1.12-1.12) 1.08*** (1.07-1.08) L11** (1.08-1.14) | 1.02** (1.01-1.03)
0.65 0.83 0.57 0.83
4,703,998 677,120 44,565 187,576

"Random intercept models adjusted for state fixed effects; incidence rate ratios or odds ratios and confidence intervals are presented

*Omitted category = Other
*Omitted category = West Virginia

*Number of prescribers truncated at 4 in Model 2 to allow convergence

* p<0.05
** p<0.01
% p<0.001

https://doi.org/10.1371/journal.pone.0223849.t1004

and opioid use disorder. Findings are smaller in magnitude in the restricted samples, as would
be expected with reduced variation to explain, but the direction and significance of effects are
robust. Second, we replicate models using a variety of different methods for operationalizing
network centrality. These include employing a bipartite network of patients and prescribing
physicians in lieu of a projected one-mode network of patients (See Table 4); standardized raw
PageRank rather than PageRank percentile (See Table 5); and logged degree centrality instead
of PageRank (See Table 6). All of these findings broadly provide support for a network
approach to measuring drug seeking. That is, network metrics are significantly and positively
associated with adverse drug use outcomes across all models.

Conclusions

In this study, we examine whether structural position in a co-prescription network could pro-
vide insight into high-risk drug-seeking. We find that patients in positions of prominence in a
co-prescription network disproportionately experience adverse opioid outcomes, even after
controlling for the number of unique opioid prescribers visited. Moreover, as a patient’s own
prominence increases over time, so does their risk for these outcomes, compared to their own
average level of risk. These results are consistent with a pattern of information sharing among
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Table 5. Mixed effects regression’ of opioid outcomes on between-person and within-person patient standardized PageRank and controls (n = 526,914; n

obs = 2,107,656).

1: Num Rx 2: MME>90 3: Overdose 4: OUD
IRR (CD OR (Cn OR (CDn OR (Cn

Female 1.02%** (1.01-1.02) 0.55"** (0.54-0.57) 1.00 (0.92-1.09) 0.68"** (0.64-0.72)
Age(10 years) 1.06*** (1.06-1.06) 0.95*** (0.94-0.96) 1.03 (0.99-1.06) 0.77*** (0.75-0.78)
Insurance type’

POS 0.79*** (0.78-0.79) 0.37°** (0.35-0.39) 0.49** (0.44-0.56) 0.40"** (0.36-0.44)

HMO 0.92** (0.91-0.92) 0.62"** (0.59-0.65) 0.85"* (0.76-0.96) 1.30"** (1.19-1.43)
State’

Kentucky 0.93*** (0.90-0.97) 1.23 (0.96-1.59) 1.56 (0.71-3.43) 0.90 (0.57-1.42)

Virginia 0.87*** (0.84-0.89) 0.91 (0.71-1.16) 1.24 (0.58-2.67) 0.40"** (0.26-0.62)

Tennessee 0.94*** (0.91-0.97) 1.45** (1.13-1.84) 1.34 (0.63-2.89) 3.32% (2.17-5.08)

Ohio 0.92%** (0.89-0.95) | 0.90 (0.71-1.14) 1.87 (0.88-3.99) | 0.52** (0.34-0.80)

North Carolina 0.97 (0.94-1.01) 2,114 (1.66-2.68) 1.36 (0.64-2.90) | 0.55** (0.36-0.84)

Georgia 0.89*** (0.87-0.92) 0.73%* (0.57-0.92) 1.28 0.60-2.73) | 0.92 (0.60—1.40)
Cancer diagnosis 1.02%* (1.02-1.03) 1.53%%* (1.49-1.58) 2,474 (2.27-2.69) | 1.05 (0.98-1.12)
# opioid prescribers* 2.497** (2.49-2.50) 8.817"" (8.65-8.97) 2.07°** (1.98-2.15) 1.837* (1.78-1.87)
Network prominence

BP Std PageRank 1.327%* (1.32-1.33) 9.61°** (9.21-10.03) 1.31** (1.25-1.36) 4.027** (1.06-1.77)

WP Std PageRank 1.137** (1.13-1.13) 1.217* (1.16-1.26) 1.07* (1.01-1.13) 1.18"* (1.13-1.32)

ICC 0.60 0.83 0.59 0.83

BIC 4,724,401 663,720 44,725 183,534

"Random intercept models adjusted for state fixed effects; incidence rate ratios or odds ratios and confidence intervals are presented

*Omitted category = Other
*Omitted category = West Virginia

*Number of prescribers truncated at 4 in Model 2 to allow convergence

* p<0.05
** p<0.01
% p<0.001

https://doi.org/10.1371/journal.pone.0223849.t005

networked, drug-seeking patients about effective targets for doctor shopping [19], or localized
prescription drug diversion coalitions [35]. Alternatively, observable attributes (e.g., being
located in a pain clinic, being isolated from other providers) may make particular prescribers
vulnerable to doctor shopping, even in the absence of direct information sharing.

Our findings have important implications for evolving social responses to policy change.
Specifically, relationships between network prominence and risk for opioid misuse and over-
dose were not attributable to the sheer number of prescribers, as this variable was held con-
stant in regression models. Rather, in characterizing doctor shopping behavior, our findings
indicate that which prescribers a patient targets (i.e., their relative network centrality) may be as
critical as how many. Supply-side interventions to reduce prescription drug misuse (e.g., pre-
scription limits and guidelines, mandatory prescription monitoring, prescriber incentives to
reduce volume) have typically used the latter approach to measure and mitigate fraud and
abuse [36, 37]. Thus, cooperation and information sharing may increasingly be essential strate-
gies for procuring opioids in today’s policy environment. While existing research has focused
on the turn toward black-market alternatives to prescription opioids (e.g., heroin, fentanyl)
[22, 38-40], our findings highlight collaborative and calculated doctor shopping as another
potential behavioral response to supply-side interventions. If true, social network analysis is
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Table 6. Mixed effects regression’ of opioid outcomes on between-person and within-person patient logged degree centrality and controls (n = 526,929; n

obs =2,107,716).

1: Num Rx 2: MME>90 3: Overdose 4: OUD
IRR (CD OR (CD) OR (Cn OR (Cn

Female 1.02%** (1.02-1.03) 0.56"** (0.55-0.58) 1.00 (0.92-1.09) 0.69"** (0.65-0.74)
Age(10 years) 1.05%** (1.05-1.05) 0.91*** (0.90-0.92) 1.01 (0.97-1.04) 0.70"** (0.68-0.72)
Insurance type’

POS 0.85"** (0.84-0.85) 0.47** (0.45-0.50) 0.54"* (0.48-0.61) 0.53"** (0.49-0.59)

HMO 0.92°** (0.91-0.93) 0.64"** (0.6-0.67) 0.86* (0.77-0.97) 1.477* (1.33-1.61)
State’

Kentucky 0.82"** (0.80-0.85) 0.77 (0.60-1.01) 1.39 (0.63-3.04) 0.62* (0.39-0.98)

Virginia 0.72%** (0.70-0.74) 0.48*** (0.38-0.62) 1.05 (0.49-2.25) 0.23"** (0.15-0.36)

Tennessee 0.73*** (0.71-0.76) 0.61%** (0.47-0.78) 1.06 (0.50-2.27) 1.57* (1.02-2.43)

Ohio 0.71%* (0.68-0.73) 0.37*** (0.29-047) | 1.49 (0.70-3.16) 0.23%* (0.15-0.35)

North Carolina 0.67*** (0.65-0.69) 0.58*** (0.45-0.74) | 0.96 (0.45-2.04) 0.16** (0.10-0.24)

Georgia 0.54*** (0.52-0.55) 0.12%** (0.09-0.15) | 0.81 (0.38-1.72) 0.17+* (0.11-0.27)
Cancer diagnosis 1.03%* (1.03-1.04) 1.64"%* (1.59-1.69) 2,514 (231-2.74) | 1.10** (1.03-1.17)
# opioid prescribers 226" (2.26-2.27) 7.62°** (7.49-7.75) 2.04"** (1.97-2.11) 1.88"** (1.83-1.92)
Network prominence

BP degree logged 1.417** (1.41-1.42) 3.58"** (3.52-3.64) 1.407** (1.35-1.45) 3.68""* (3.57-3.79)

WP degree logged 1.40%** (1.39-1.40) 1.93*** (1.90-1.96) 1.227** (1.17-1.28) 1.337** (1.30-1.37)

ICC 0.65 0.83 0.57 0.82

BIC 4,581,141 652,846 44,502 181,025

"Random intercept models adjusted for state fixed effects; incidence rate ratios or odds ratios and confidence intervals are presented

*Omitted category = Other
*Omitted category = West Virginia
* p<0.05

** p<0.01

% p<0.001

https://doi.org/10.1371/journal.pone.0223849.t006

likely to become an increasingly essential tool for characterizing prescription drug misuse,
including diversion.

A limitation of our analysis is that social mechanisms underlying network structure are not
directly observed and must be inferred. However, it is reassuring that findings are robust to
different specifications of network centrality, and that we are able to rule out alternative expla-
nations for network clustering, including cancer-related pain management, shortages of
licensed medication-assisted therapy (MAT) prescribers, type of insurance, and state or county
of residence. Also, because our data are derived from claims billed through commercial insur-
ance carriers, we are unable to observe cash transactions and Medicaid claims. Since self-pay-
ment is a strategy for avoiding detection of doctor shopping behavior [41], our findings may
underestimate the effects of social network prominence and should be replicated using PDMP
data.

In sum, while existing research suggests that social mechanisms facilitate doctor shopping,
we are aware of no prior large-scale analysis using social network methods to characterize this
behavior. These results are significant because they underscore the potential of network
approaches to improve measurement, and also to expose social dynamics underlying the opi-
oid epidemic that are not discoverable with traditional threshold approaches (e.g., number of
prescribers). Future research should explore these possibilities. For example, the predictive
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value of social network indicators of doctor shopping should be tested against traditional mea-
sures for identifying early and intermittent opioid misuse, or for distinguishing high-volume
personal use from fraud and diversion. A network approach might also be used to identify
social or geographic “hot spots” for intervention (e.g., increased harm reduction efforts) or for
early prediction of unmet substance abuse treatment need.
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