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Abstract 

We suggest an improved version of the intermediate resolution implicit solvent model for 

lipids, LIME, that was previously developed for use with discontinuous molecular dynamics 

(DMD) simulations. LIME gets its geometrical and the energy parameters between bonded and 

nonbonded pairs of coarse-grained (CG) sites from atomistic simulations. The improved model, 

LIME 2.0, uses multiple square wells rather than the single square well used in original LIME to 

obtain intermolecular interactions that more faithfully mimic those from atomistic simulations. 

The multi-state iterative Boltzmann inversion (MS-IBI) scheme is used to determine the 

interaction parameters. This means that a single set of interaction parameters between coarse-

grained sites can be used to represent the lipid bilayers at different temperatures. The physical 

properties of CG DSPE lipid bilayer are calculated using CG simulations and compared to 

atomistic simulations results to verify the improved model. The phase transition temperature of 

the lipid bilayer is measured accurately and the lipid translocation phenomenon, “ flip-flop” is 

observed through CG simulation. These results suggest that CG parameterization using multiple 

square-well and the MS-IBI scheme is well suited to the study of lipid bilayers cross a range of 

temperatures with DMD simulations.   
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Introduction 

Lipid bilayers result from the self-assembly of two phospholipid leaflets1. When 

dispersed in water, lipid molecules spontaneously join together to form a lipid bilayer, hiding 

their hydrophobic tails from the surrounding water and exposing their hydrophilic heads1-2 in 

structures stabilized by intermolecular van der Waals interactions3-4. Lipid bilayers are a 

common component of cell membranes and are essential in the lives of living organisms5-6. They 

play important roles in many biological systems such as cell interior protectors and cell signaling 

7-11. Lipid bilayers can form closed spherical membrane structures called liposomes12-13, that are 

very similar to animal and plant cells14-15. For this reason they are often used in studies of cell 

membrane function16-17. The ease of adding functional groups to the constituent lipid molecules 

makes liposomes attractive for applications such as targeted drug delivery, long-circulating in-

vivo particles, and cellular-uptake enhancers18-20.   

Liposomes have recently attracted attention as drug delivery vehicles for use in treating a 

variety of diseases, especially cancer21-23. Many drugs, including DNA-based drugs, are not able 

to enter their target cell when administered directly into the bloodstream. An alternative is to 

internally store or electrostatically bind drugs to liposomes and then transport them directly to 

cells24-26. Hydrophilic drugs can be encapsulated in the aqueous phase of the liposome core and 

hydrophobic materials can be entrapped within the hydrophobic bilayer because of the lipids’ 

amphiphilic nature27. Fetterly et al. recently developed liposomes that incorporate paclitaxel, a 

well-known drug for cancer treatment28. Similarly, Felgner and colleagues first reported that 

cationic liposomes could be useful for gene transfer; they have been studying liposome-based 

gene therapy since 198729.  

Various simulation methods have been developed to model the behavior of lipid bilayers 

or liposomes. These range from atomistic (high-resolution) simulations to coarse-grained (low-

resolution) simulations. Atomistic simulations of lipid bilayers have been conducted to study the 

structure of lipid bilayers, the permeation of ions or molecules through a lipid membrane, and the 

interaction between lipid bilayers and various materials30-31. A limitation of atomistic simulations 

is that their detailed description of a molecular geometry and energetics makes them 

computationally intensive. Simulation efficiency can be improved by coarse-grained (CG) 

modeling in which groups of atoms are combined together into a single interaction unit32-33. 

Coarse-grained models are attractive for studying lipid bilayers because they can be used to 
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examine large systems of molecules at very long time scales. The most widely used coarse-

grained model for lipids is the Martini model developed by Marrink34-35. The Martini model is 

able to reproduce lipid bilayer structure, dynamic properties, thermodynamic properties, and so 

on in a short time frame.  

Another CG model for lipids is “LIME (Lipid Intermediate Resolution Model)” designed 

for use with discontinuous molecular dynamics (DMD) simulations36-37. LIME is an implicit 

solvent lipid model developed by Curtis and Hall to predict the assembly of 1,2-dipalmitoyl-

snglycero-3-phosphocholine (DPPC). The site-site potentials in LIME are all discontinuous 

functions of the separation between the CG sites. The model parameters in LIME were obtained 

by using a multiscale modeling procedure: the radial distribution functions (RDF) between 

bonded and nonbonded pairs of CG sites along the phospholipid chain were taken from atomistic 

simulations and then used to extract the LIME geometrical and the energetic simulation 

parameters. The extracted energy parameters are “potentials of mean force”, effective potentials 

(van der Waals interactions plus electrostatic interactions) between the groups of sites in water. 

DMD simulations of a system of 256 DPPC molecules using the LIME model led to the 

formation of lipid bilayers in short computation times. LIME predicted physical properties of 

lipid bilayers that were comparable to those predicted by the atomistic simulations. However, 

LIME has a few limitations: 1) the RDFs of the lipid bilayer calculated from the atomistic 

simulation do not match the RDFs from the coarse-grained simulation in detail, 2) the 

intermolecular attractions between coarse-grained sites is limited to a single square well 

potential, and 3) the set of coarse-grained parameters extracted from atomistic simulations at one 

temperature were not necessarily accurate at other temperatures. 

In order to overcome these limitations and obtain a more accurate CG lipid model for 

LIME, we use multiple square-well intermolecular potentials with iterative Boltzmann inversion 

(IBI) to find the interaction parameters. Models in which multiple square wells have been used in 

conjunction with DMD simulations are the following. Rutkowski et al. analyzed the phase 

behavior of dipolar colloidal rods by expressing the potential between the colloidal particles in 

terms of three square wells38. Benner et al. developed a CG model for chitosan using multiple 

square wells; the reproduced CG RDFs matched the RDFs from atomistic simulations almost 

exactly39. IBI derives coarse-grained potentials by optimizing a potential to match target RDFs 

from an atomistic simulation40. Recently, Moore et al. developed an extension to the IBI method 
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to include target RDFs from multiple states, adding constraints to the potential optimization 

process41. By adding these constraints, they succeeded in extracting a single set of universal 

interaction parameters applicable to multiple temperatures in their study.  

In this paper, we develop a more accurate set of LIME parameters by applying multiple 

square well intermolecular potentials and using multi-state iterative Boltzmann inversion (MS-

IBI) method to calculate the CG potentials. The improved LIME interaction parameters allow us 

to conduct CG/DMD simulations of lipid bilayers for drug delivery applications at a variety of 

temperatures. The model lipid for this study is 1,2-distearoyl-sn-glycero-3-phosphoethanolamine 

(DSPE). Unlike the previously-derived LIME force field, the improved LIME uses multiple 

square wells to more faithfully represent the shape of RDFs in atomistic simulations. In addition, 

MS-IBI is used to determine the interaction energies between CG sites, thereby expanding the 

ability of LIME to model lipid bilayers at any temperature. We show that the discontinuous 

molecular dynamics simulations using the improved LIME force field accurately represent the 

structure of a DSPE lipid bilayer over a given temperature range.  

Highlights of our results are the following: Different numbers of square wells are needed 

for each of the 6 distinct CG types on DSPE. Each intermolecular potential is expressed using 3 

or 4 square wells depending on the shape of the atomistic RDFs. Then the IBI method is 

extended to conduct multi-state optimization. The intermolecular energies are adjusted to achieve 

simultaneous convergence of CG RDFs from multiple states to RDFs from atomistic simulations. 

The values of the energies converged after 66 iterations. CG simulations of DSPE lipid bilayer 

using the potentials from MS-IBI are conducted at 310, 340, and 360 K. The characteristics of 

the lipid bilayer are well predicted at each temperature. The physical properties of the CG lipid 

bilayer are measured at various temperatures, and they are comparable to that of the atomistic 

lipid bilayer. Finally, the gel-liquid crystal phase transition temperature is predicted from 

CG/DMD simulations.  
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Model and method 

 

Figure 1. (a) United-atom and (b) coarse-grained representation of DSPE. The color scheme is: 

blue (ethanolamine); brown (phosphate group); red (ester linkage); cyan (alkyl tail group).  

 

The representation of a lipid molecule in the improved LIME model is the same as that 

used in the original LIME model. Six coarse grained types are used to represent the 190 atoms 

that compose a DSPE molecule. Figure 1 shows the united-atom and coarse grained 

representations of a DSPE molecule. The coarse graining scheme massively reduces the number 

of sites, so that the DSPE molecule finally has 16 coarse-grained types. The coarse-grained 

DSPE is composed of a polar head group which includes an ethanolamine (blue), phosphate 

group (brown), two ester linkages (red), nonpolar hydrophobic alkyl group and a terminal tail 
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group (cyan). The mass of each coarse-grained site is the sum of the atoms’ molar mass within 

each coarse grained site. Each CG site has a unique interaction potential that is different than 

those of the other sites. 

The CG parameters for the improved LIME model are extracted from the results of 

explicit-solvent NPT ensemble united-atom simulation. The simulation contains 128 DSPE lipids 

and 5888 water molecules. We used Gromacs simulation package (version 4.5.4) with the 

GROMOS96 53a6 force field42. The Lennard-Jones interaction parameters for DSPE lipid are 

taken from the simulation results of Qin et al.43. The restrained electrostatic potential (RESP) 

approach with Gaussian09 was used to derive the partial charges for DSPE. The initial 

configuration of the system was a pre-formed bilayer. The Berendsen thermostat was used to 

maintain the system temperature throughout the simulation with a time constant of 0.1 ps. 

Atomistic simulations were performed at 310, 340, and 360 K as reference systems for the MS-

IBI process. At 310 and 360 K, the lipid bilayer is considered to be in the gel (or solid) phase and 

in the liquid phase, respectively; 340 K is the temperature at which the transition between the 

two phases occurs. The simulations were run for 100 ns with a time step of 0.001 ps. The 

pressure was kept at 1.0 bar. The trajectories of all atoms were collected for the final 40 ns with a 

time step of 0.001 ps and used to calculate the centers of mass for each CG site to convert the 

atomistic coordinates to a CG representation. The trajectory was saved every 4000 steps, thereby 

a total of 10000 frames was used for the calculation. The physical properties of the atomistic 

lipid bilayer model were measured using the converted trajectories as well.  
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Figure 2. Radial distribution function from atomistic simulation (black) and square well 

boundaries marked with red dashed lines (a, b, and c indicate the first, second, and third well 

width in order) describes the intermolecular interaction between CG types 1 and 4.  

 

The intermolecular interactions between the CG sites on DSPE are represented using hard 

spheres and multiple square wells (or shoulders). The hard sphere diameter, σ, and square-well 

widths, λ, are determined from averages of the RDFs between pairs of nonbonded coarse-grained 

sites obtained at three different temperatures (310, 340, and 360 K) in the atomistic simulations, 

gA,ave(r), where A and ave stand for atomistic simulation and average value, respectively. Figure 

2 shows the average intermolecular radial distribution function of the three different 

temperatures from atomistic simulation (black) for the pairwise interaction between CG types 1 

and 4. In general, hard sphere diameters for each pair of interaction sites were chosen by locating 

the minimum nonzero separation distance between the two sites. Since our goal was to obtain 

one parameter set that is applicable to various temperatures, we calculated nonzero distances at 

three different temperatures and selected the smallest value as the hard sphere diameter for that 

pair of interacting sites (σ in Figure 2). 
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The number of square wells or shoulders for each CG pair is set so that the RDFs of the 

CG simulations can reproduce the RDFs of the atomistic simulations and this number depends on 

the shape of the RDFs. Although there may be multiple peaks in the RDF graph, we focused only 

on the first peak as this approach appeared to be sufficient to describe the intermolecular 

interaction empirically. Figure 2 illustrates the well boundaries marked with red dashed lines for 

the first peak of the RDF between types 1 and 4. The first well width is selected to cover the 

range from the hard-sphere diameter to the smallest value of r at which gA,ave (r) is approximately 

30 - 70% of the maximum height of the first peak (“a” in Figure 2). The second well width is 

selected to cover the range from the end of the first well to the smallest distance (larger than the 

maximum peak distance) at which gA,ave (r) is approximately 30 - 70% of the maximum value of 

the first peak (“b” in Figure 2). The third well width is selected to be the location at which gA,ave 

(r) is the first local minimum (“c” in Figure 2). Although the criterion for deciding the first and 

second well widths is somewhat ambiguous (the locations are at 30 -70% of the maximum peak 

height), this is because the shapes of peaks are not perfectly symmetrical. We found that 

abnormally narrow or wide well widths could be set if a single criteria were applied. Thus, 

slightly different criteria are applied depending on the shape of the peak. All intermolecular pairs 

of CG site have 3 separate square well potentials except for the interaction between types 1 and 

3. Because the average atomistic RDF between types 1 and 3 has a second peak very near to the 

first peak, one more square well was used to obtain a more detailed representation. All the shapes 

of atomistic RDFs are shown in Supplementary Material. If the atomistic RDFs do not have 

noticeable local maximum, the interaction between the CG pair is represented using the hard-

sphere potential. The determined hard sphere diameter and square well widths for all pairs of CG 

types are in Table S.1. 

The square well depth (or shoulder height) , ε, between CG sites are determined by an IBI 

scheme modified for discontinuous potentials developed by Benner and Hall39. In the IBI method 

for a single temperature, the potential between the CG sites is chosen such that the RDFs of the 

CG simulations match the RDFs of the atomistic simulation. Those discontinuous potentials 

(square well depth) are updated according to  

 𝑈𝐶𝐺
(𝑖+1)

(𝑟) = 𝑈𝐶𝐺
(𝑖)

(𝑟) −  𝑘𝐵𝑇 ln
𝑔𝐶𝐺

(𝑖)
(𝑟)

𝑔𝐴(𝑟)
 , (1) 
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where UCG (r) is the coarse-grained potential, i represents the current iteration, kB is the 

Boltzmann constant, T is the absolute temperature, r is the separation between particles, gCG(r) is 

the CG RDF, and gA(r) is the RDF between pairs of nonbonded coarse-grained sites in the 

atomistic simulations. The IBI method for multiple temperatures is similar to that for a single 

temperature, but it has to be modified to cover N states (i.e. MS-IBI). The potentials are updated 

according to  

 𝑈𝐶𝐺
(𝑖+1)

(𝑟) = 𝑈𝐶𝐺
(𝑖)

(𝑟) −  
1

𝑁
∑ 𝑘𝐵𝑇𝑗 ln

𝑔𝐶𝐺,𝑗
(𝑖)

(𝑟)

𝑔𝐴,𝑗(𝑟)

𝑁
𝑗=1  , (2) 

where j represents the state, gCG,j (r) is the CG RDF for the jth state, and gA,j (r) is the atomistic 

RDF in the jth state41.  

 The MS-IBI procedure has been modified to find square well (or shoulder) depths for 

CG/DMD simulations. An in-house DMD simulation code is used to perform all simulations. 

Each CG simulation has the same box size as the atomistic simulations. A pre-formed lipid 

bilayer consisting of 128 DSPEs is used as the initial configuration in the CG simulations. The 

Anderson thermostat was used to maintain the temperature constant; in this method, the velocity 

of a CG bead is adjusted to keep the system’s Maxwell–Boltzmann velocity distribution 

consistent with the set temperature. The initial approximations for all CG square-well depths are 

set to be random numbers between -1.0 and 1.0. The square-well depths are updated every 200 

million collisions. When the ratio of the average CG RDF of three states to the corresponding 

atomistic RDF for the same range of intermolecular distances is less than 1, the well depth is 

updated to have a stronger interaction. When the ratio is greater than 1, the well depth is updated 

to weaken the interaction. The details of the updating criteria are as follows. If the ratio of the 

average value of the CG RDF to the average value of atomistic RDF for a particular square well 

is smaller than 0.25 or greater than 1.75, the square well depth is updated by -0.10 or +0.10. If 

the ratio is between 0.25 and 0.75 or between 1.25 and 1.75, the well depth is adjusted by -0.05 

or +0.05. If it is between 0.75 and 0.90 or between 1.10 and 1.25, the well depth is updated by -

0.005 or +0.005 for careful adjustment. When the ratio of the average value of CG RDF to the 

average value of atomistic RDF in the corresponding region is between 0.90 and 1.10, the CG 

RDF is considered as “converged” and the value of the square well depth remains the same 

without updating. The simulations continue until all the CG RDFs converge to atomistic RDFs.  
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Figure 3. Intramolecular bond distribution functions for coarse-grained sites between 3 (ester 

group, type 3) and 5 (alkyl tail group, type 5). 

 

To maintain the connectivity and stiffness of CG DSPE, three types of bonds are used; 

covalent bonds, pseudobonds to maintain bond angles, and pseudobonds to maintain torsional 

angles. The covalent bond indicates a real bond between adjacent DSPE CG sites. The bond 

angle is maintained via a pseudobond, an invisible bond between a CG site and its next nearest 

neighbor CG site along the DSPE chain. The torsional angle is maintained via a pseudobond 

between a CG and its second nearest neighbor CG site. The lengths of all real bonds and 

pseudobonds fluctuate between maximum and minimum values. An infinite repulsion force is 

exerted so that the distance between the CG sites does not fall outside of the minimum or 

maximum distances associated with each bond length. 

A total of 45 covalent bonds and pseudobonds between CG sites along DSPE are defined. 

The minimum and maximum bond lengths for those bonds are calculated from atomistic 

simulation results for the center of mass distance between bonded CG sites. In CG/DMD 

simulations, distributions for covalent bonds and pseudobonds similar to those in atomistic 
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simulations can be achieved by limiting the minimum and maximum distance to an appropriate 

range. The average bond distributions at three different temperatures for bonded pairs are used to 

find the CG bond length as in Figure 3. The minimum bond length (label “min” in Figure 3) was 

selected by finding the smallest distance at which the average bond distribution function reaches 

5-10% of its maximum peak value. The maximum bond length (label “max” of Figure 3) was 

determined by finding the smallest distance (larger than the maximum peak distance) where the 

average bond distribution function reaches 5-10% of its maximum peak value. The determined 

minimum and maximum bond lengths for all bonded CG sites are in Table S.2. 
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Results and discussion 

 

Figure 4. (a) The accuracy vs. the number of iterations and (b) the values of the second square 

well (or shoulder) depth as the iterations progress during MS-IBI. 

 

The CG interaction energies were determined using the new MS-IBI approach. MS-IBI is 

executed to find a single set of potentials that can well represent the target structure data at three 

different temperatures. Figure 4a shows the accuracy of MS-IBI over the number of iterations. 
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The accuracy is defined as the number of CG RDFs that converge to their atomistic RDF 

counterparts divided by the total number of square wells considered. Note that the first square 

wells for all the paired interactions are not included in the accuracy calculation because it takes a 

very long time to converge and the CG RDFs in the first well are always comparable to the 

atomistic RDFs in the corresponding region regardless of the change in the square well depth. As 

described in the methods section, the initial values for the square well depths are assigned to be 

random numbers between -1.0 to 1.0, so the accuracy at the beginning is only 22.6% (Figure 4b). 

As the iteration progresses, the accuracy gradually increases. After 66 iterations, the percentage 

reaches 100%. Note that the number of iterations could be varied depending on system 

conditions, such as the total number of potentials, the total number of atoms, and the temperature 

range. Figure 4b shows the change in the values of the second square well depths for several 

coarse-grained types over the course of the iterations. Almost all of the values of the square well 

depths have reached a plateau at the end of the iteration procedure, which means that the values 

have evolved to their optimum values under given conditions. The final set of intermolecular CG 

potentials is listed in Table S.3.  

 

  

Figure 5. Comparison of atomistic (black) and CG (red) RDFs between CG types 1 and 4 at 

(b) 310 K, (b) 340 K, and (c) 360 K. 

 

Figure 5 compares the atomistic and CG RDFs between CG types 1 and 4 at (a) 310 K, 

(b) 340 K, and (c) 360 K. The atomistic RDFs are obtained from Gromacs simulations and the 

CG RDFs are obtained at the end of the MS-IBI. The black line and red dots represent the RDFs 

of atomistic simulations and those of CG/DMD simulations, respectively. The comparison 

clearly reveals the characteristics of the two different simulation methods; it can be seen that the 



15 
 

atomistic RDFs are smoothly connected, while the CG RDFs are disconnected at the well 

boundaries, as expected. The change in the shape of the CG RDFs with temperature is 

demonstrated as is that of the atomistic RDFs. The amplitude of the first peak in the atomistic 

model gradually decreases as the temperature increases while the location of the peak remains 

nearly constant. Similarly, the height of the peak in the CG RDFs decreases as the temperature 

increases. Interestingly, even though our CG intermolecular potentials are set to match only the 

first peak of the atomistic RDFs, the CG RDFs of the remaining parts were nearly identical. The 

other CG RDFs are also in good agreement with the atomistic RDFs, and data on this 

comparison can be found in the Supplementary Material. It is apparent that the CG 

intermolecular potential parameters from the MS-IMI method well represent the distinctive 

characteristics from atomistic simulations in the various states.  
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Figure 6. Snapshots of a DSPE lipid bilayer in atomistic representation at (a) T = 310 K, (b) T 

= 340 K, and (c) T = 360 K. Snapshots of DSPE lipid bilayer in CG representation at (d) 

T=310 K, (e) T=340 K, and (f) T=360 K.  

 

The conformations of the CG lipid bilayers in three different states (310, 340, and 360 K) 

obtained from the MS-IBI were compared to those in the corresponding atomistic simulations. 

The lipid bilayers at 310, 340, and 360 K represent the lipid assembled in the gel state, the 

transition between the gel and liquid crystalline states, and the liquid crystalline state of DSPE 

lipid, respectively. Figure 6 shows snapshots of the lipid bilayer formed in atomistic and coarse-

grained resolutions at the three temperatures. Blue and brown spheres indicate CG sites 1 and 2, 

which are ethanolamine and phosphate, respectively. Red and cyan colors represent ester 

linkages and hydrophobic tails. At 310K, the DSPE lipid chains in both atomistic and CG 

representations are well organized, this is one of the gel state configurations of lipid bilayer. In 

addition, a clear boundary between the upper and lower leaflets is identifiable. The snapshot at 

340K shows a bilayer configuration that is very similar to that of the gel state. The tail 

arrangement of lipids did not change much from the arrangement at 310 K. The boundary 

between the upper and the lower layers is still observed, but the cohesion of the head group is 

weakened and the arrangement is disturbed. Finally, at 360K, the hydrocarbon tails are 

disordered and lose their regular arrangement. In addition, the interface between the upper and 

lower layers has vanished. As a result of visual observation of the model, it appears that the CG 

lipid bilayer models from MS-IBI mimic the atomistic models well at each temperature.  
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Figure 7. (a) The bond numbers and their positions. (b) Orientation order parameter of lipid 

tails for the different bonds at three different temperatures. 

 

The orientation order parameter for the lipid tail is used to further investigate how closely 

the structure properties of the coarse-grained lipid bilayers match those of the atomistic lipid 

bilayer. The orientation order parameter is defined to be  

𝑆𝑏𝑜𝑛𝑑 =
1

2
< 3𝑐𝑜𝑠2𝜃 − 1 > 

where θ is the angle between the vector along a coarse-grained bond and the z-axis (bilayer 

normal). The value of Sbond is -0.5 for a perpendicular alignment and 1.0 for a parallel alignment 

to the bilayer normal. When bonds are in a completely disordered state, the value will be close to 

zero. There are 12 bonds in a CG DSPE lipid that correspond to the tails, and the bond numbers 

and their positions are shown in Figure 7a. The alkyl chain containing bonds 1 to 6 is called sn1 

and the alkyl chain containing bonds 7 to 12 is called sn2. We compare the order parameter of 

atomistic and CG models at three different states (310, 340, and 360 K) and present the results in 
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Figure 7b. The order parameter value varied from 0.2 to 0.9 depending on the temperature: it is 

close to 1 at 310 or 340 K and to zero at 360 K. This result confirms that our CG lipid model can 

represent the vertical alignment of the lipid bilayer at lower temperatures. The orientation order 

parameter values from CG models and the atomistic models are fairly similar. The percent error 

is the difference between the CG and the atomistic order parameter values divided by the 

atomistic order parameter value, multiplied by 100. The average value of each bond’s percent 

error is 5.9 %, but it varies by temperature and location. The average errors are different at 

different temperatures: 4.45 % at 310 K, 3.42 % at 340 K, and 9.79 % at 360 K. The error 

increases as the temperature increases. The average error for the sn1 chain is 4.90%, but it 

increases to 6.88% for the sn2 chain. The CG model replicates the atomistic model quite well, 

but the discrepancies at high temperature and for the sn2 chain cause the error to increase.  

 

 

Figure 8. The number density profiles for the CG types between the CG and Gromacs 

simulations at (a) 310, (b) 340, and (c) 360 K. 

 

 A comparison of the number density profiles for the CG types between the CG and 

Gromacs simulations is shown in Figure 8. The number density is defined as the number of 

average atoms per unit volume at a distance (z) from the bilayer normal. The number density 

profile describes the probability that an atom (CG bead) of a specific type will be present at a 

specific location. It is useful to map out the structure of lipid bilayers by mapping out the 

probability that each atom will be at a given position. The density profiles for the atomistic 

simulations are obtained by coarse-graining the Gromacs simulation trajectories and that for the 

CG simulations are obtained by running DMD simulations for 100 million collisions. The 
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density profiles of all coarse-grained types are compared at three different temperatures. At 360 

K, the height of the peaks of CG density profiles are almost perfectly matched to that of the 

atomistic profiles, but at the other temperatures, the heights are slightly underestimated. 

However, it is important to note that the peak locations of the density profiles differ by no more 

than 2 Å from those of atomistic density profiles at all temperatures. In general, the CG density 

profiles align well with atomistic density profiles, which tells us that our CG parameters are 

suitable to represent the position of the atoms in the lipid bilayers.  
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Figure 9. (a) Change in the bilayer thickness of CG DSPE with temperature. (b) Average 

potential energy per bead for CG type 5 at different temperatures. Red dashed lines represent 

the region at which the phase transition occurs. 

 

We simulated the DSPE lipid bilayers at various temperatures other than 310, 340, and 

360 K using the parameters obtained by MD-IBI and used the simulation data to estimate the 

phase transition temperature. In order to predict the phase transition temperature, the bilayer 

thickness and the average intermolecular potential energy per bead for CG type 5 are computed. 

The simulations are conducted at 310, 320, 330, 340, 350, 360, and 370 K for 1 billion collisions, 

and the trajectory of the last 100 million collisions is used to generate the necessary data. The 

bilayer thickness is measured at each temperature. The bilayer thickness is defined to be the 

mean distance between phosphate atoms in the upper and lower layers. In the case of atomistic 

simulations, the thickness is directly determined according to the definition. However, in CG 

simulation, the thickness is measured using the locations of the CG sites containing phosphate. 

Figure 9a shows the DSPE lipid bilayer thickness in the CG simulations using parameters 

obtained from MS-IBI. As shown in the figure, the lipid bilayer thickness is high at temperatures 

between 310 to 340 K, reflecting the characteristic thickness of the lipid bilayer in the gel state. 

The thickness decreases rapidly at 340K, and then decreases a little more slowly.  

To help us quantify the temperature of the phase transition, the intermolecular potential 

energy per bead at various temperatures (Figure 9b) associated with the CG beads of type 5, 

which is the alkyl chain CG bead, was computed. Type 5 (the tail of lipid) was chosen for this as 

it plays a significant role in the phase transition. (Even though the RDF is a way to see the 

structural change of the lipid bilayer, it is hard to understand the phase transition simply by 

examining the RDFs. ) The average intermolecular potential energy per bead between the beads 

of CG type 5 is lowest at 310 K, which means that a large number of beads are located around a 

central bead. As the temperature increases, the energy increases until 340 K, at which point the 

slope of the curve significantly increases. After 350 K, the slope is not as large. The bilayer 

thickness and potential energy per bead change drastically in the region of 340-350 K, allowing 

us to predict that the phase transition occurs in this temperature range. Actually, the 

experimentally measured phase transition temperature for DSPE lipids is 347 K44. It is apparent 
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that the set of intermolecular potential parameters obtained through MS-IBI is well suited for CG 

simulations at various temperatures, and that it is able to predict the known phase transition 

temperature.  

 

 

Figure 10. A series of snapshots from CG/DMD simulation of a DSPE bilayer at 370 K 

showing the translocation of a phospholipid (yellow) from upper to lower leaflet.   

 

Our CG simulations also predicted the translocation of phospholipids (known as “flip-

flop”), which is defined to be the trans-bilayer movement of a phospholipid from one leaflet to 

another. “Flip flop” plays an important role in many cellular activities and in the drug delivery 

process. We examined the trajectory files obtained at each simulation to see if this phenomenon 

occurred. Translocation of a lipid was only observed in the simulation at 370 K, which is the 

liquid phase. Figure 10 displays a series of snapshots in which a lipid (yellow) in the bilayer 

moves from the upper layer to the bottom layer. Two interesting features are noticeable in the 

snapshots. The first is that the lipid moves from one leaflet to another when the two tails of a 

lipid are in tight contact. Figure 10 a, b and c are snapshots of the morphological change of a 

lipid when the positional interchange occurs. Two alkyl chains are far away from each other 



22 
 

initially, but the tails become closer just before the translocation occurs. The second is that a 

lipid coming from the opposite leaflet changes its orientation at the bilayer surface (Figure 10 d, 

e and f). This phenomenon is found at very high temperatures because the average distance 

between the lipid must necessarily be sufficient for the lipid to move freely.  

Conclusion 

We have developed an improved version of the LIME model for DSPE lipids that can be 

used in coarse grained (CG) simulation with discontinuous molecular dynamics (DMD) 

simulation. This was accomplished by using more than one square well to describe each CG 

interaction and by using the multi-state iterative Boltzmann inversion (MS-IBI) to calculate the 

CG parameters. Like the original LIME, the improved LIME extracts the parameters for the CG 

simulation from radial distribution functions (RDFs) based on the atomistic simulation results. In 

the original LIME, the intermolecular interactions between CG sites are represented using a 

single square well potential, and a simple single-step Boltzmann inversion technique to extract 

the intermolecular potentials between CG sites. Those simplifications led to some discrepancies 

between the RDFs formed in CG simulations and those in atomistic simulations. However, the 

improved model has multiple square wells which gives us a CG RDF that better reflects the 

atomistic RDF. In addition, in the original LIME the CG parameters were extracted from 

atomistic simulation results at a single temperature, which meant that the parameters were likely 

only valid at that temperature. CG-DMD simulations at a different temperature should in 

principle have different parameter sets. To overcome this drawback, we introduced a MS-IBI 

process to calculate a single set of intermolecular parameters that can be applied at various 

temperatures.  

Using the parameters obtained through MS-IBI, the CG DSPE lipid bilayer was 

simulated at various temperatures from 310 to 370 K. The accuracy of the improved model is 

confirmed by comparing physical properties of the CG and atomistic models. The phase 

transition temperature is measured accurately and translocation of a single lipid molecule is 

found in high temperature simulations. Thus, the obtained parameters are well suited for use in 

systems where CG simulations need to be performed at various temperatures, such as lipid 

bilayer phase behavior. This study indicates that CG parameterization using the multi square-

well and MS-IBI is highly appropriate for study of lipid bilayers with DMD simulations.  
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Even though our method is well suited for representing the multi-phase behaviors of lipid 

bilayers, future research could be directed towards improving the approach so as to obtain a 

coarse grained potential that more faithfully represents the atomistic potential that it is designed 

to mimic. This could be done by adding new square wells to represent the second and higher 

peaks that are observed in the RDFs. Note however that we did observe the second and the third 

peaks in the RDFs of the CG simulation even though those peaks were not included in defining 

the force field parameters. This result seems to suggest that the peaks other than the first peak is 

not that important in determining the intermolecular potential functions. It may be that the 

appearance of those peaks in RDFs is mainly a reflection of the structural characteristics of the 

lipid bilayer in which molecules are densely packed. Nevertheless, using square wells that 

accounting for more than the first peak could lead to accurate representation of pairwise 

interactions.   

The second suggestion is to refine the force field parameters by conducting MS-IBI 

several times. Theoretically, MS-IBI for our CG/DMD system could produce many force field 

parameter sets satisfying the convergence tolerance int the iteration process. Because we 

performed MS-IBI process once, it was possible that our force field parameters were determined 

to have a better representation at a particular temperature. This could be the reason that our CG 

simulations did not accurately reproduce the structures of lipid bilayers at some temperatures. 

We believe that more optimized force field parameter set producing accurate simulation results 

at all temperatures could be obtained by averaging force field parameters sets from many MS-

IBI.  

Another possible future direction is to expand the coarse-graining approach to other 

biomolecular systems. We have already developed CG force fields for DNA,45 peptides46, and 

biocompatible polymers39, 47, so we could expand our approach to multicomponent systems such 

as DNA – lipid bilayer, peptide – lipid bilayer, hydrogel – lipid bilayer interactions. It might, for 

example, be of interest to apply such an approach to the case of amyloidogenic peptides, 

immersed in a lipid membrane as this could help explain the origin of cell toxicity in amyloid 

diseases48 or the effect of Leucine zipper lipopeptides modulating on lipid membrane phase 

transition temperature for drug delivery49. 
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Figure S1. Comparison of atomistic (black) and CG (red) RDFs for each pair of CG sites at 310 

K. 
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Figure S2. Comparison of atomistic (black) and CG (red) RDFs for each pair of CG sites at 340 

K. 
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Figure S3. Comparison of atomistic (black) and CG (red) RDFs for each pair of CG sites at 360 

K. 
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Table S.1. Hard sphere diameter and square well widths for each pair of CG type.  

 

CG type i CG type j σ (Å) λ1 (Å) λ2 (Å) λ3 (Å) λ4 (Å) 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

3 

3 

3 

3 

4 

4 

4 

5 

5 

6 

1 

2 

3 

4 

5 

6 

2 

3 

4 

5 

6 

3 

4 

5 

6 

4 

5 

6 

5 

6 

6 

3.655 

3.375 

3.385 

3.135 

3.545 

3.625 

3.855 

3.275 

3.285 

3.575 

3.415 

3.285 

3.015 

3.365 

3.395 

3.035 

3.205 

3.245 

3.465 

3.435 

3.325 

4.585 

4.025 

4.165 

3.795 

 

 

5.035 

4.625 

4.045 

 

 

4.245 

4.005 

4.325 

 

3.915 

4.235 

 

4.315 

4.305 

4.085 

6.025 

5.395 

5.295 

5.285 

 

 

7.495 

6.475 

5.815 

 

 

6.445 

6.145 

6.425 

 

6.005 

5.935 

 

6.325 

6.165 

6.025 

6.625 

6.195 

6.965 

6.125 

 

 

8.495 

7.075 

6.875 

 

 

7.945 

7.435 

7.635 

 

7.505 

6.695 

 

7.515 

7.225 

7.235 

 

 

7.655 
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Table S.2. Minimum and maximum bond lengths for all bonded CG sites. 

 

CG site i CG site j Minimum (Å) Maximum (Å) 

1 

1 

1 

1 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 

4 

4 

4 

4 

4 

5 

5 

5 

5 

6 

6 

6 

7 

7 

8 

10 

10 

10 

11 

11 

11 

12 

12 

12 

13 

13 

13 

14 

14 

15 

2 

3 

4 

10 

3 

4 

5 

10 

11 

4 

5 

6 

10 

11 

12 

5 

6 

7 

10 

11 

6 

7 

8 

10 

7 

8 

9 

8 

9 

9 

11 

12 

13 

12 

13 

14 

13 

14 

15 

14 

15 

16 

15 

16 

16 

3.155 

5.005 

6.555 

5.535 

3.305 

6.405 

9.495 

4.845 

7.555 

3.325 

5.975 

9.065 

2.605 

4.695 

6.705 

3.275 

6.735 

9.265 

4.355 

4.595 

3.245 

6.765 

9.555 

5.585 

3.345 

6.665 

8.575 

3.285 

5.445 

2.715 

2.805 

5.765 

8.295 

3.655 

6.015 

9.465 

2.715 

6.215 

9.425 

3.665 

6.795 

8.745 

3.175 

5.505 

2.735 

3.755 

7.855 

11.555 

9.725 

4.975 

8.735 

12.295 

6.725 

9.825 

4.015 

7.785 

11.535 

4.105 

6.795 

10.345 

4.075 

7.765 

11.815 

6.985 

7.945 

3.975 

7.745 

11.505 

10.365 

3.995 

7.715 

10.865 

3.905 

7.145 

3.365 

3.545 

7.825 

10.735 

4.305 

7.315 

11.535 

3.075 

7.305 

11.025 

4.385 

8.105 

11.325 

3.965 

7.145 

3.255 

 

 

 

 

 



31 
 

Table S.3. Square well depths for each pair of CG type.  

 

CG type i CG type j ε1 (eV) ε2 (eV) ε3 (eV) ε4 (eV) 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

3 

3 

3 

3 

4 

4 

4 

5 

5 

6 

1 

2 

3 

4 

5 

6 

2 

3 

4 

5 

6 

3 

4 

5 

6 

4 

5 

6 

5 

6 

6 

4.5850 

0.2050 

2.7050 

1.8600 

0.0000 

0.0000 

5.2050 

0.7950 

1.1350 

0.0000 

0.0000 

1.2450 

2.2900 

2.0700 

0.0000 

1.6400 

1.9450 

0.0000 

2.8250 

2.2600 

2.6900 

1.2365 

-1.8797 

0.0872 

-0.6104 

 

 

1.2828 

-0.2266 

-0.6448 

 

 

-1.4037 

-0.4751 

-0.7651 

 

-0.4701 

-0.3751 

 

-0.6250 

-0.4259 

-0.4294 

0.6250 

-0.4750 

-0.4050 

-0.2100 

 

 

0.5850 

0.1750 

-0.2600 

 

 

-0.4000 

-0.2500 

-0.1700 

 

-0.2250 

-0.1150 

 

-0.0900 

-0.0750 

-0.1500 

 

 

-0.0800 
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