Session 5A: Frameworks for
deep learning — Layering the ML cake.

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

DeepSniffer: A DNN Model Extraction Framework
Based on Learning Architectural Hints

Xing Hu!, Ling Liang!, Shuangchen Li', Lei Deng!?, Pengfei Zuo'?, Yu Ji*?, Xinfeng Xie!
Yufei Dingl, Chang Liu?, Timothy Sherwood!, Yuan Xie!

University of California, Santa Barbara

! Tsinghua University?

Huazhong University of Science and Technology® Citadel Securities*
{xinghu,lingliang,shuangchenli,leideng,xinfeng,yuanxie}@ucsb.edu,pfzuo@hust.edu.cn
jiyl15@mails.tsinghua.edu.cn,{yufeiding,sherwood}@cs.ucsb.edu,liuchang2005acm@gmail.com

Abstract

As deep neural networks (DNNs) continue their reach into a
wide range of application domains, the neural network ar-
chitecture of DNN models becomes an increasingly sensitive
subject, due to either intellectual property protection or risks
of adversarial attacks. Previous studies explore to leverage
architecture-level events disposed in hardware platforms to
extract the model architecture information. They pose the
following limitations: requiring a priori knowledge of victim
models, lacking in robustness and generality, or obtaining
incomplete information of the victim model architecture.
Our paper proposes DeepSniffer, a learning-based model
extraction framework to obtain the complete model architec-
ture information without any prior knowledge of the victim
model. It is robust to architectural and system noises intro-
duced by the complex memory hierarchy and diverse run-
time system optimizations. The basic idea of DeepSniffer is to
learn the relation between extracted architectural hints (e.g.,
volumes of memory reads/writes obtained by side-channel
or bus snooping attacks) and model internal architectures.
Taking GPU platforms as a showcase, DeepSniffer conducts
model extraction by learning both the architecture-level exe-
cution features of kernels and the inter-layer temporal asso-
ciation information introduced by the common practice of
DNN design. We demonstrate that DeepSniffer works exper-
imentally in the context of an off-the-shelf Nvidia GPU plat-
form running a variety of DNN models. The extracted models
are directly helpful to the attempting of crafting adversar-
ial inputs. Our experimental results show that DeepSniffer
achieves a high accuracy of model extraction and thus im-
proves the adversarial attack success rate from 14.6%~25.5%

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASPLOS 20, March 16-20, 2020, Lausanne, Switzerland

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7102-5/20/03...$15.00
https://doi.org/10.1145/3373376.3378460

385

(without network architecture knowledge) to 75.9% (with
extracted network architecture). The DeepSniffer project has
been released in Github!.

« Computer systems organization — Architectures;
« Computing methodologies — Machine learning; - Se-
curity and privacy — Domain-specific security and pri-
vacy architectures.

Keywords domain-specific architecture; deep learning se-
curity; machine learning

ACM Reference Format:

Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei Zuo, Yu
Ji, Xinfeng Xie, Yufei Ding, Chang Liu, Timothy Sherwood, Yuan
Xie. 2020. DeepSniffer: A DNN Model Extraction Framework Based
on Learning Architectural Hints. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS °20), March 16-20, 2020,
Lausanne, Switzerland. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3373376.3378460

1 Introduction

Machine learning approaches, especially deep neural net-
works (DNNs), are transforming a wide range of application
domains, such as computer vision [24, 45], speech recogni-
tion [61], and language processing [10, 48, 56]. Computer
vision, for example, has seen commercial adoption of DNNs
with impacts across the automotive industry, business ser-
vice, consumer market, agriculture, government sector, and
so forth [41]. Such maturing DNN technologies start to
power existing industries.

DNN model characteristics, especially, model architec-
tures (e.g., number of layers, layer connection topology, layer
types, and the layer dimension sizes) are critical informa-
tion for deep learning applications. By extracting such infor-
mation, attackers can not only counterfeit the intellectual
property of the DNN design, but also conduct more efficient
adversarial attacks towards the DNN system [28, 44]. Pre-
vious studies have confirmed that the details of the model
architecture information ultimately affect the success rate of

Ihttps://github.com/xinghu7788/DeepSniffer

Session 5A: Frameworks for
deep learning — Layering the ML cake.

adversarial attacks that induce DNNs to misclassify a well-
recognized output. The vulnerability to adversarial examples
becomes one of the major risks for applying DNNs in safety-
critical scenarios. Therefore, model extraction attacks, which
reveal the internal model characteristics information, be-
come an important attack model in DNN systems [44, 55, 57].

Previous algorithm-level studies mainly conduct model ex-
traction through detecting the decision boundary of the vic-
tim black-box DNN models [44]. However, such approaches
demand significant computational resources and huge time
overhead: given the pre-knowledge of the total number of lay-
ers and their type information, it still takes 40 GPU-days to
search a 7-layer network architecture with a simple chained
topology [44]. Even worse, this approach cannot accom-
modate state-of-the-art DNNs with complex topology, e.g.,
DenseNet [20] and ResNet [17], due to the enlarged search
space of possible network architectures.

Due to the limitation of the algorithm-level model extrac-
tion, some studies begin to explore architecture-level events
to extract model-related information. These architecture-
level events disposed in hardware platforms during the execu-
tion of DNN models are referred to as the architectural hints
in the rest of this paper. For instance, Insecure Render [32]
leverages a regression model to learn the number of input
neurons of the Rodinia backpropagation algorithm with per-
formance counter data on GPU. Cache Telepathy [62] focuses
on a specific implementation of DNN on CPU, i.e., GEMM,
and builds an analytical model to estimate the DNN layer
dimension with the number of GEMM calls and their argu-
ments. ReverseCNN [18] targets DNN hardware accelerators
and calculates the possible dimension sizes with the assump-
tion that full feature map and weight data trace are visible
across the memory bus.

Although previous studies provide a great leap as the
initial attempts to extract DNN model information with
architectural hints, they pose the following limitations: 1)
Requiring a priori model knowledge: They often work
with a priori knowledge of the victim models, such as layer
type or DNN architecture [32]. 2) Lack of generality and
robustness: They rely on detailed (ad hoc) characteriza-
tion and analytical modeling of dimension sizes and then
infer the layer type or layer topology based on predicted
dimension sizes. They may work under some specific im-
plementations, but not robust and generally applicable to
common scenarios with diverse runtime system optimiza-
tion and architecture-level noises [18, 62]. 3) Incomplete
model extraction: Their extraction methods obtain incom-
plete information about the DNN model architectures (i.e.,
either dimension sizes or neuron number). Thus, in terms of
effectiveness evaluation, there is no direct evidence to show
the relation between extracted information and end-to-end
attack effectiveness.

In this work, we propose DeepSniffer, a framework to
obtain the complete model architecture with no priori

386

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

knowledge of the victim model and it is robust to system-
level and architecture-level noises. The complete model ar-
chitecture extraction includes the following steps: run-time
layer sequence identification, layer topology reconstruction,
and dimension size estimation. Among these steps, the run-
time layer sequence identification is the most fundamental
one and is missing in previous work [18, 32, 62], since they
either take the layer type or neural network architecture as
known information or impractically assume that the single-
layer architecture hints can be easily distinguished. We map
the run-time layer sequence identification to a sequence-to-
sequence prediction problem and address it using learning-
based approaches. One of the most important differences
that DeepSniffer distinguishes from previous work is that
it decouples layer sequence prediction from dimension size
prediction, thus being more generally applicable and robust
to noises.

We further propose and experimentally demonstrate end-
to-end attacks in the context of an off-the-shelf Nvidia GPU
platform with full system stacks, which urges the demand
to design secure architecture and system to ensure the DNN
security. In summary, we make the following contributions:

e We observe that complex system stack, run-time dy-
namics, and optimized memory hierarchy systems in-
troduce both system-level and architecture-level noises
in architectural hints. Previous studies are not feasible
enough to handle such issues.

e We map the fundamental step of model extraction, i.e,
run-time layer sequence identification, to a sequence-
to-sequence prediction problem and adopt learning-
based approaches to conduct accurate and robust run-
time layer sequence prediction.

e We showcase the effectiveness of DeepSniffer to con-
duct model extraction with two sets of architectural
hints under two attack scenarios. We experimentally
demonstrate our methodologies on an off-the-shelf
GPU platform. With the easy-to-get off-chip bus com-
munication information, the extracted network archi-
tectures exhibit very small differences from those of
the victim DNN models.

e We conduct an end-to-end attack to show that the ex-
tracted neural network architectures boost adversarial
attack effectiveness, improving the attack success rate
from 14.6%~25.5% to 75.9% compared to cases without
neural network architecture knowledge. DeepSniffer
project has been released in the Github.

2 Background and Challenges

In this section, we introduce the background of DNN
model characteristics and existing model extraction tech-
niques at architectural perspective.

Session 5A: Frameworks for
deep learning — Layering the ML cake.

2.1 Model Characteristics

Model extraction attacks aim to explore the model charac-
teristics of DNNs for establishing a near-equivalent DNN
model [55], which is the initial step for further attacks. The
model characteristics that an adversary may extract include
the following: (1) network architecture consists of layer
depth and types, connection topologies between layers, and
layer dimensions (including the number of channels, fea-
ture map size, weight kernel size, stride, and padding in each
layer). (2) parameters include the weights, biases, and Batch
Normalization (BN) parameters. They are updated during the
stochastic gradient descent (SGD) in the training process. (3)
hyper-parameters refer to the configurations during train-
ing, including the learning rate, regularization factors, and
momentum coefficients, etc.

Model extraction is the initial step for further adversarial
attacks. With the extracted model characteristics, the adver-
sary is able to build the substitute models for adversarial
examples generation and then use these examples to attack
the victim black-box model [2, 14, 38, 50]. Among all of the
model characteristics, the network architecture is the most
fundamental one for DNN security. Previous studies demon-
strate that with the knowledge of the network architecture,
the adversary is able to explore the extraction of model pa-
rameters, hyper-parameters, and even training data [55, 57].
In addition, previous work [28, 44] also observe that the
network architecture similarity between the substitute and
victim models plays a very important role for the success of
adversarial attacks. Hence, this work mainly focuses on the
neural network architecture extraction.

2.2 Model Extraction Techniques

Due to the importance of the neural network architecture,
some initial studies are proposed to extract model architec-
ture from an architectural perspective [18, 32, 62]. Insecure
Render [32] infers the neuron number with GPU perfor-
mance counter information for the specific algorithm (Ro-
dinia Backpropagation) with the knowledge of the victim
model. ReverseCNN [18] and CacheTelepathy [62] analyti-
cally compute the potential dimension spaces based on ar-
chitectural hints in DNN accelerator and CPU cache. Then,
they infer the layer type and topology based on the predicted
dimension sizes.

These studies pose the following limitations: 1) Require
knowledge or information of the victim model [32], which
raises the difficulty for common use. 2) Rely on accurate
dimension estimation for layer type and topology predic-
tion, which is neither robust nor general applicable. Rever-
seCNN [18] assumes that all the feature maps and weight
data are visible in the memory bus, which is not true in
CPU/GPU platforms with complex system stack. Cache Telepa-
thy [62] considers the scenario that all the Conv and FC
layers are implemented with basic GEMMs (general matrix

387

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

multiply). In GPU platforms, such an assumption is not prac-
tical considering there are many diverse implementations
for Conv layers, such as Winograd or FFT-based approaches.
In addition, accurate dimension estimation is extremely chal-
lenging in general purpose platforms with the existence of
both system-level and architecture-level noises (more details
in Section 4). 3) Extract imprecise or incomplete model ar-
chitecture and it lacks evidence to show the effectiveness
of such extracted information. Insecure Render [32] merely
infers the neuron number. ReverseCNN and CacheTelepathy
rely on the dimension sizes to predict the architecture and
only obtain the potential network architecture candidate
space. With the increasing complexity and depth of victim
models, such candidate space may get too large for effective
attacks.

To this end, we propose DeepSniffer, a learning-based
framework to obtain the model architecture with no pri-
ori knowledge of the victim model. It decouples the layer
sequence identification and topology reconstruction from
dimension size prediction, thus being more robust to both
system-level and architecture-level noises and applicable to
more common cases. We also experimentally conduct an end-
to-end attack to show the model extraction effectiveness.

3 Attack Model and Arch-Hints

The methodology of DeepSniffer can leverage available ar-
chitectural hints to conduct model extraction. In this work,
we showcase the adoption of DeepSniffer in GPU platforms.
The threat model of this showcase is as shown in Figure 1,
which mainly focuses on edge security where the adversary
is able to physically access the victim platform. Specifically,
the attacker can physically access one GPU platform encap-
sulating a victim DNN model for model extraction. Such a
physical access based attack is practical and harmful, because
the adversary is able to attack all the other devices sharing
the same DNN model with the extracted model information
from one device. Note that, we consider a threat model in
which the adversary does not have any knowledge about the
victim models including what family the DNN models belong
to, what software code those models are implemented with,
or any other information about the operation of the device
under attack that is not directly exposed through externally
accessible connections. The extraction attack is fully passive
and only has the ability to observe architectural side-channel
information over time.

To understand what architectural hints can be obtained in
the hardware platforms, we first illustrate the overview of
commonly-used GPU platforms in Figure 1b [42]. The CPU
and GPU are connected by the PCle bus, and the host and
device memories are attached to the CPU and GPU through
DDR and GDDR memory buses, respectively. This architec-
ture is widely used in many real industrial products, includ-
ing most of the existing L3 autopilot systems [53, 58].

Session 5A: Frameworks for
deep learning — Layering the ML cake.

We consider the following two attack scenarios according
to the obtained architectural hints. Table 1 summarizes the
available architectural hints and the extracted DNN model
types under these two scenarios:

1) Scenario-1 (Side-channel attack): Previous studies show
electromagnetic (EM) emanations can easily obtain the off-
chip events [6] and even perform memory profiling [13].
Therefore, we can obtain the read and write memory access
volume (R,, W,,) by EM side-channel attacks. The kernel
execution time (Exep,;) can be obtained either by EM side-
channel attacks on interconnections between host and GPU
or co-locating CUDA spy [32]. Under such a attack scenario,
DeepSniffer is able to reconstruct DNN models with simple
chained topology.

2) Scenario-2 (Bus snooping attack): The adversary pas-
sively monitors the memory bus and PCle events. By observ-
ing the memory access trace through the GDDR memory bus,
the adversary obtains the kernel read/write access volume
(R,/W,) and memory address traces. Since there are control
messages passing through the PCle bus when a kernel is
launched and completed, the adversary can determine the
kernel execution latency (Exerq;) by monitoring the time
between kernel launching and completing. Under this attack
scenario, DeepSniffer is able to reconstruct DNN models
with complex topology, as presented in Section 5.2.

Bus snooping is a well understood, practical, and low-cost
attack that has been widely demonstrated [1, 5, 19, 21]; some
mature prototypes and toolkits have already been developed,
such as HMTT-v4 [1]. We assume that the adversary cannot
access the data passing through buses, can only access the
addresses, and thus the adversary described above can work
even when data is encrypted. The address snooping is also
much easier than the data snooping because of its lower
frequency in GDDRS5.

Hardware Platform

PCIE GDDR5 Device
== ‘e.» o) GPU I Memory
\ \f Atta er . Snooped Bus Info

\
:7

TN Network Architec hm of the Victim model
(a) (b)

Figure 1. Illustration of the attack model. (a) Hack-one,
attack-all-others with the extracted model. (b) GPU platform
overview.

Table 1. Available architectural hints.

Available Architectural Hints | Victim Model
Scenario-1 Exeras, Ry, Wy Chained DNN
Scenario-2 | Exer g, Ry, Wy, mem address trace | Complex DNN

4 Observation and Design Overview

Understanding the transformation from computational graphs

of DNN models to architectural hints is the initial step to
learn how DeepSniffer works. In the following, we first

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

present the workflow of DNN system stack dealing with
a DNN model inference, which transforms the DNN compu-
tational graphs to architectural hints. We then present our
observations about the available architectural hints when
executing this flow. Motivated by these observations, we
finally present the design overview of DeepSniffer.

DNN System Stack Noises: The detailed workflow is
shown in Figure 2a. The computational graph of a DNN
model is processed by the deep learning framework, hard-
ware primitive libraries, and hardware platform. First, the
deep learning framework optimizes the network architecture
of the DNN model to form a framework-level computational
graph of layers that is a representation of a composite func-
tion as a graph of connected layer operations. The framework
then transforms this high-level computational graph abstrac-
tion to hardware primitives of run-time layer execution se-
quence. Then, the run-time hardware primitive libraries,
such as cuDNN library [36], launch the well-optimized ker-
nel sequence according to the layer type. Finally, such kernel
sequences are executed on the hardware platform, which
exhibit architectural hints, including the memory access pat-
tern and the kernel execution latency.

It is challenging to recover the model architecture based
on kernel sequences of architectural hints, because of the
existence of architectural and system noises. Architectural
noise: The comprehensive memory system optimization,
such as the shuffling address mapping and complex mem-
ory hierarchy, raises the difficulty to obtain and identify the
complete memory traces for accurate dimension size estima-
tion. System noise: System run-time dynamics introduces
the noises to architectural hint sequence in the further step.
DNN layers are transformed into GPU-kernels dynamically
during run-time, with various implementations (e.g. Wino-
grad and FFT). The dynamic, not one-to-one correspondence
mapping between layers and kernels makes it difficult to
even figure out the number of layers and layer boundary in
a kernel sequence, not to mention the corresponding layer
dimension size.

Observations: To analyze the influence of such dynamics,
we perform experiments on an off-the-shelf GPU platform
with PyTorch [40] and cuDNN [36]. Figure 2b shows the
transformations from the layer sequence of DNN models to
the run-time kernel sequence, taking the VGG and Inception
as illustrative examples. We have the following two observa-
tions. OB-1): Run-time kernel implementations vary across
different models and even across time for the same model.
For example, in the run-time kernel sequence of Figure 2b,
the blue bars represent Conv kernels. The boxed two sets
of Conv kernels in the VGG kernel sequence are different
from each other with different implementions. OB-2): The
kernel sequences of different layers have a static execution
order related to the original computational graph of a DNN
model. Such a characteristic exists in different DNN mod-
els with either a chained topology (e.g., VGG) or a complex

Session 5A: Frameworks for
deep learning — Layering the ML cake.

Network
architecture

- DNN Model h

of layers

/
l Computational graph !
1

Pytorch '
Tensorflow Framework
mxnet

J Run-time

layer sequence i n-time kernel sequence

| OB-1: Different mplememahon

uonoenx3
21n129)1Y21Y NN

Hardware
Primitive

Ccupa
OpenCL

ESCY]
. wayshs+ .

Run-time
kernel sequence

CPU 295 gpy $20%5 Device Hardware
oY Platform
Leakage Architecture Hints
Arch-hint vector sequence

(@)

OB-2: Simple scheduling strategy
Run-time kernel sequence

asIoN
|eanjoaNydIY+

(b)

1
1
1
1
1
1
1
1
1
1
1
i
1 Run-time Iayer sequence (Inception)
1
1
1
1
1
1
1
1
1
1
1
1
1

|||||||||||||||||||IIMIIIIIIIIIIIIIIIIHIIHHIIHIHIIIIIHIII

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

DeepSniffer

Run-time Layer Sequence Identification
Run-time Layer Sequence

Kernel Sequence
———

_ Run-time Layer |
Sequence ldentifier

Exe
[l [[l

Layer Topology Reconstruction Mem Addr
. : Trace
Scenario1 Scenario2 §
[Chained Topology Reconstruction] [Complex Topology Reconstruction]

Conv 1-1

SI0J0BA WIH-YoIY
SI0}J08A WUIH-YOIY

>
3
z
=
El
<
2
S
9
3

y

[Dimension Size Estimation]

(c)

Figure 2. (a) Computational graph transformations through DNN system stack. (b) System noise during run-time layer
sequence to kernel sequence transformations. (c) DeepSniffer overview.

topology (e.g., Inception). For instance, the highlighted In-
ception block in Figure 2b has 8 layer operations with branch
topology. It is observed that the kernel sequence of every
branch is executed in order when running on the GPU plat-
form. Hence, such simple scheduling method of run-time
layer sequence provide the opportunity to extract the victim
model architecture.

Design Overview: The design overview of DeepSniffer
is shown in Figure 2c. DeepSniffer proposes a run-time layer
sequence identification methodology which learns the single
kernel feature of architectural hints during kernel execution
and inter-kernel/layer context probability for higher predic-
tion accuracy. With the predicted layer sequence, DeepSniff
then conducts the layer topology reconstruction and dimen-
sion size estimation to get the complete DNN architecture.

As the most fundamental step, run-time layer sequence
identification translates the kernel-grained architectural hint
sequence back to run-time layer sequence. Based on the
observation that it can be mapped to a typical sequence-to-
sequence translation problem, we propose a run-time layer
sequence identification methodology based on deep learning
techniques which learns both the single kernel feature and
inter-kernel/layer context association for high prediction
accuracy. Unlike previous work [18, 62], the run-time layer
sequence prediction does not rely on the exact calculation
of the dimension size parameters and is hence more robust
and generally applicable.

Layer topology reconstruction is conducted based on mon-
itoring the read-after-write (RAW) memory access pattern
under the bus snooping attack scenario. To note, such method-
ology only needs partial memory traces for layer dependency
analysis instead of the complete memory trace, which is
much more practical than ReverseCNN [18].

After the first two steps, the skeleton of the DNN architec-
ture is obtained. In observing that the ReLU kernels usually
exhibit very large read cache misses, we estimate the dimen-
sion sizes based on ReLU read volume. The dimension size
prediction is not precise in our work, but we take the dimen-
sion size prediction as a less important step than the other

389

two and showcase a highly effective end-to-end adversarial
attack with imprecise dimension sizes.

5 DeepSniffer Design

This section introduces the three steps of model extraction
in DeepSniffer: run-time layer sequence identification, layer
topology reconstruction, and dimension size estimation, as
summarized in Figure 2c.

5.1 Run-time Layer Sequence Identification

After comprehensively investigating modern DNN models,
we consider the following layers in this work: Conv (con-
volution), FC (fully-connected), BN (batch normalization),
ReLU (rectified linear unit), Pool (pooling), Add, and Con-
cat (concatenation), because most of the state-of-art neural
network architectures can be represented by these basic lay-
ers [17, 45, 49, 52, 63, 64]. Note that it is easy to integrate
other layers into DeepSniffer if necessary.

5.1.1 Problem Formalization

Formally, the run-time layer sequence identification problem
can be described as follows: We obtain the architectural hint
vectors of kernel sequence X with temporal length of T as
an input. At each time step t, kernel feature X; (0 <t < T)
can be described as a multiple-dimension tuple of architec-
tural hints. Note that this tuple can be extended if the attack
scenarios expose more architectural hints. The label space is
a set of layer sequences comprised of all typical layers. The
goal is to train a layer sequence identifier h to predict the
run-time layer sequence (L) having the minimal distance to
the ground-truth layer sequence (L*).

The run-time layer sequence identification involves two
internal correlation models: kernel model and layer-sequence
model. The kernel model correlates the relationship between
the architectural hints and the kernel type. The layer sequence
model correlates the probabilistic distribution between the
layers. We observe that the process of predicting the run-
time layer sequence is similar to that of the speech recogni-
tion, as shown in Figure 3, which also involves two parts: an
acoustic model converting acoustic signals to phonemes and

Session 5A: Frameworks for
deep learning — Layering the ML cake.

11 l)/lf—lxml 111
p—

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

Sequence Searching

Run-time
Kernel Sequence Architectural Hint Vectors [Kt = Rrono Pretr s Prodinn| [Peonvialfed, PGretusyslconvy)..] Run-time kernel seq in GPU
M GPU Kernel feature frames X Kernel probability Sequence probability CTC _ Layer I 0§ xBxalx-0 1
decoder seq —
Exe o T P(poolyyzlrelugyy) - P(relugyilconvy) - P(convy)
Rv | Wy [RW]kdd [] []— - P(pooly, ,
-. Kernel Model Squence Model) P(conviyslrelujyy) - P(relujyi|convy) - P(conv;)
speech ___ P(convyslreluiyy) - I’(r;(‘(uu,\/z,) - P(fcp)
Audio Sequence Acoustic Signal Vectors _oo_h_y_eaah P("yeah"|"oh") i
9 X ‘ I | (_CTC decoder (beam search))
m Acoustic feature frames . Character probability Sequence probability c1C Words TMAX!
ecoder P(pooly,y|relu;, 1) P(relu,|conv) P(conv;)
D D D e e D [Acoustic Model] [Squence Model] L = Conv, ReLU, Pool

(a)

(b)

Figure 3. Context-aware layer sequence identification. (a) Identification flow (map the layer sequence identification to a
speech recognition problem); (b) CTC decoder searches the sequence with highest probability.

a language model computing sequence probabilistic distri-
bution on the words or sentences. Therefore this problem
can be mapped to a speech recognition problem due to the
high similarity of these two problems. Based on this insight,
DeepSniffer leverages the auto speech recognition (ASR)
techniques [15, 16] as a tool for run-time layer sequence
identification. In the following subsection, we first show the
intrinsic features of these two models.

5.1.2 Kernel and Layer Features

Architectural Hints of A Single Kernel. During DNN
model execution, every layer conducts a series of kernel op-
eration(s) for the input data and delivers output results to
the next kernel(s), thus dataflow volume through kernels
and the computation complexity constitutes the major parts
of kernel features. As introduced in Section 3, we can deter-
mine the following architecture hints in Attack Scenario-1:
1) Kernel execution time (Exep,t); 2) The kernel read volume
(Ry) and write volume (Wy) through the memory bus; We
can also calculate: 3) Input/output data volume ratio (Iy/Oy)
of each kernel, where the output volume (O,) is equal to the
write volume of this kernel and input volume (I,,) is equal
to the write volume of the previous executed kernel. For the
bus snooping attack scenario, we additionally use 4) kernel
dependency distance (kdd) to indicate the topology influ-
ence. kdd is defined as the maximum distance between this
kernel and the previous dependent kernels during the kernel
sequence execution, which is a metric to encode the layer
topology information in the kernel features. We regard this
tuple (Exeras, Ry, Wy, I,/ Oy, kdd) as one frame of kernel
features.

We observe that although the kernels of different layers
have their own features according to their functionality, it
is still challenging to predict which layer a kernel belongs
to, based on kernel model only. Our experiment results show
that, on average, 30% of kernels are identified incorrectly
with the executed features only and this error rate increases
drastically with deeper network architectures (above 50%).
The details of the experimental results are shown in Sec-
tion 6.2.5. In summary, it is challenging to accurately predict

390

layer sequence by considering single kernel architectural
features only.

Inter-Layer Sequence Context. We observe that the tem-
poral association of the layer sequence offers the opportunity
for the better model extraction. Specifically, given the previ-
ous layer, there is a non-uniform likelihood for the following
layer type, which is referred to as the inter-layer context. Such
temporal association information between layers (aka. layer
context) is inherently brought by the DNN model design phi-
losophy. For example, there is a small likelihood that an FC
layer follows a Conv layer in DNN models, because it does
not make sense to have two consecutive linear transforma-
tion layers. Recalling the design philosophy of some typical
NN models, e.g., VGG [45], ResNet [17], GoogleNet [49], and
DenseNet [20], there are some common empirical evidences
in building the network architecture: 1) the architecture con-
sists of several basic blocks iteratively connected, 2) the basic
blocks usually include linear operation first (Conv, FC), pos-
sibly following normalization to improve the convergence
(BN), then non-linear transformation (ReLU), then possible
down-sampling of the feature map (Pool), and possible tensor
reduction or merge (Add, Concat).

Although DNN architectures evolve rapidly, the basic de-
sign philosophy remains the same. Even for the state-of-
the-art autoML technical direction of Neural Architecture
Search (NAS), which uses the reinforcement learning search
method to optimize the DNN architecture, it also follows
the similar empirical experience [64]. Therefore, such layer
context generally exists in the network architecture design,
which can be leveraged for layer identification.

5.1.3 Context-aware Layer Sequence Identification

Based on the analysis of kernel and inter-layer features, we
adopt the Long Short-Term Memory (LSTM) model with
a Connectionist Temporal Classification (CTC) decoder to
build the context-aware layer sequence identifier 4. The com-
bination of LSTM model and CTC decoder is commonly used
in the automatic speech recognition [15, 16]. As shown in
Figure 3, given the input sequence X = (X, .., XT), the object
function of training layer sequence identifier A is to minimize

Session 5A: Frameworks for
deep learning — Layering the ML cake.

the CTC cost for a given target layer sequence L*. The CTC
cost is calculated as follows:

cost (X) = —logP (L*|h (X)) (1)

where P (L*|h (X)) denotes the total probability of an emis-
sion result L* in the presence of input X.

An Example for Layer Sequence Prediction. The layer
sequence prediction workflow is simplified as shown in Fig-
ure 3a. For the (i)th frame of the kernel sequence, its kernel
architectural hint vectors are X;. The layer sequence identi-
fier first conducts the kernel classification based on X; and
obtains its probability distribution K; of being Conv, ReLU,
BN, Pool, Concat, Add, and FC.

Ki= {Pconv’ Pretus Ppn, Ppools Peoncat> Padds Pfc}i (2)

The layer sequence identifier then uses a sequence model
to estimate the conditional probability with the probability
distribution of prior kernels: (Ky, K1, ..., K;). With the whole
kernel feature sequence, the CTC decoder uses the beam
search to find out the layer sequence with the largest condi-
tional possibility as output (L). The layer sequence predictor
has better prediction accuracy when there is less difference
between the predicted layer sequence (L) and the ground-
truth layer sequence (L*). The experimental details of the
model training, validation, and testing are introduced in Sec-
tion 6.1.

In the further step, we illustrate the detailed working
mechanisms of a simplified CTC decoder in Figure 3b. In the
monitor window (X;, Xj11, Xj+2), the CTC decoder searches
throughout the searching space containing all of the poten-
tial layer sequences, such as (Conv, ReLU, Pool), (FC, ReLU,
Conv), (Conv, Conv, Conv), etc. Then it outputs the layer se-
quence with the largest probability as output, which is (Conv,
ReLU, Pool) in this case. In real cases, the CTC decoder is
more complex and it considers the reduplication removing
and adopts advanced searching algorithms [15, 16].

5.2 Layer Topology Reconstruction

DeepSniffer reconstructs the layer topology by monitoring
the memory access pattern of the layers. Under the Attack
Scenario-1, i.e. side-channel attack, the adversary obtains
memory access events without detailed memory traces. Deep-
Sniffer can reconstruct DNN models with chained topology.
For chained DNN models without shortcut and concat in-
terconnections, the neural network layer topology can be
constructed naturally by connecting the layers in the pre-
dicted layer sequence. Under the Attack Scenario-2 (i.e., bus
snooping attack), by obtaining the memory address trace
in addition to kernel execution latency and read/write vol-
umes, DeepSniffer can reconstruct DNN model architecture
with much more complex topology. In this subsection, we
show how the memory traffic reveals the interconnections
between layers.

In the computational graph of a neural network architec-
ture, if the feature map data of layer a is fed as the input

391

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

of layer b, there should be a directed topology connection
from a to b. Since this work focuses on the inference stage,
there is only forward propagation across the whole network
architecture. We first analyze the cache behaviors of feature
map data and report the following observations:
Observation-1: Only feature map data (activation data) can
introduce read-after-write (RAW) memory access pattern in the
memory bus. There are several types of memory traffic data
during the DNN inference: input images, weight parameters,
and feature map data. Only feature map data is updated
during inference. Feature map data is written to the memory
hierarchy and read as the input data of the following layer(s).
The input image and parameter data are not updated during
the entire inference procedure. Therefore, the RAW memory
access pattern is introduced only by the feature map data.
Observation-2: Feature map data has a very high possibility
to introduce RAW access pattern, especially for the convergent
and divergent layers. We examine the read cache misses of
the feature map data in kernels of convergent and divergent
layers at branches. The convergent layer receives feature
map data from layers in different branches. For example,
Add and Concat are the main convergent layers in neural
network models. The read cache-miss rate of an Add layer is
more than 98% and that of a Concat layer is more than 50%,
as shown in Figure 4. The divergent layer outputs feature
map data to several successor layers on different branches.
We observe that GPU kernels execute the layers through
one branch by one branch manner. Moreover, the memory
traffic volume in the convergent layer and the successors of
divergent layers have much higher memory traffic volume
than the ground-truth weight data size. Since the CUDA
library implements extreme data reuse optimizations that
prioritize the weight tensor, the feature map needs to be
flushed into memory and then read again due to a long reuse
distance [42].

These two observations indicate that the RAW access pat-
tern can be used to determine the interconnections among
different layers. We propose a layer topology reconstruction
scheme as follows: DeepSniffer scans all the layers in the
run-time layer sequence. For layer i, all the addresses of its
read requests constitute ReadSet; and that of write requests
constitute WriteSet;. DeepSniffer searches all its antecedent
layers layer; € (layery, layer,, ..., layer;_;) in the sequence
and checks whether ReadSet; N WriteSet; = 0. If it is not 0,
DeepSniffer adds the connection between layer i and layer j.
At the end, DeepSniffer checks whether there is any layer
that doesn’t have any successors in the topology, and elim-
inates the orphan layers by adding the connection to their
following layer in the run-time layer sequence.

Note that, we do not require the complete memory address
trace of all the feature map data, but only partial segments
in order to identify the connections between different layers,
which is robust to the memory traffic filtering.

Session 5A: Frameworks for
deep learning — Layering the ML cake.

‘ ® conv relu ® bn © pool add e fc e concat‘

1’-?‘(« I
2 \ . ||
5 J‘ mw ‘u U ;\ w,m
g i MHT““W\‘\W i M
EOSﬁW”MﬁM‘“MNVH
S W‘ ¢ [
S |l L& ulr} l

0

0 20 40 60

ResNet

Cache-miss rate

150

200
Inception

250 300 350

Figure 4. Read cache-miss rate of kernels in VGG11,
ResNet18, and Inception.

5.3 Dimension Size Estimation

After completing the first two steps, we obtain the skeleton of
the neural network architecture, based on which the dimen-
sion size estimation is conducted. Dimension size estimation
includes the following two steps: 1) Layer feature map size
prediction; 2) Dimension space calculation. In this section,
we explain how to estimate the dimension size parameters
according to the memory read and write volume.

We first characterize the cache miss rate in the GPU plat-
form. For most DNN models, ReLU kernels have a stable high
cache miss rate, surpassing 98%, as shown in Figure 4. Hence,
the read volume through the bus R,, is almost the same as
the input feature map size of the DNN model. Then the write
volume W, can be estimated which is equal to R,,. Based on
this observation, we can obtain the input and output sizes
of ReLU layers. Dimension parameters of DNN models are
estimated based on the sizes of ReLU layers.

Step-1: Layer feature map size prediction. In neural net-
works, the previous layer’s feature map output acts as the
feature map input of the current layer, and thus the feature
map output size (the feature map height/width and channel
number for Conv or neuron number for FC) of the previous
layer is equal to the feature map input size of the current
layer. Hence, given the input size of a ReLU layer, the output
size of the previous BN/Add/Conv/FC layer and the input
size of the next Conv/FC layer can be estimated. Since the
ReLU layer is almost a standard layer in every basic block,
the feature map sizes of the layers in the victim model can
be estimated by broadcasting the ReLU size to their adjacent
layers. Add and Concat, which are the convergent layers and
only exist in DNN models with complex interconnections,
conduct element-wise add and concatenate operations for
input feature map from different branches. After reconstruct-
ing the layer topology, output size of an Add operation is
calculated as the input feature map size in each branch and
that of a Concat operation is the sum of input feature map
sizes in branches.

392

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

Step-2: Dimension Space Calculation. With the constructed
layer topology and input/output size of every layer, we cal-
culate the following dimension space: the input (output)
channel size IC; (OC;), the input (output) height IH; (OH;),
the input (output) width IW; (OW;), the weight size (K X K),
and the convolution padding P and stride S.

Based on the fact that the input size of each layer is the
same as the output size of the previous layer, and there are
some tensor constraints during computation as shown in
Table 2, we are able to search the possible solution for every
layer. Since we target the computer vision applications, the
ICy = 3. We assume the feature map height and weight are
the same and stride=1 (which are the common configuration
in lots of DNN models). By iterating over possible kernel
sizes (1, 3, 5 ..), we can estimate the other configuration

parameters with the constraints in Table 2.
Notice that, we neither assure nor aim to obtain the pre-

cise dimension size parameters. Instead, we randomly select
the possible sets of dimension parameters which satisfy the
constraints in Table 2 as the configuration of the extracted
DNN architecture. We conduct empirical experiments show-
ing that with the neural network sequence and topology,
we can achieve good attack effectiveness even though the
dimension parameters are different from the victim model
(More analysis in Section 6.4.2).
Table 2. Dimension space calculation.

Layer OP Constraints & Estimation
Conv OH; = [(IH; +2P-K)/S] + 1
OW; = [(IW; + 2P -K)/S] +1
OH; X OW; X OC; = O;/N
Pool OH; = [(IH; +2P-K)/S] + 1
OW; = [(IW; +2P -K)/S] +1
OC; = IC;, OH; X OW; X OC; = O;/N
FC OC; = Oi/N
BN OH; = IH;, OW; = IW;, OC; = IC;
RelLU OH; = IH;, OW; = IW;, OC; = IC;
Add OH; = IH;,, OW; = IW;;, OC; = IC;,
Concat | OH; —IH,J,OW IW;;,, 0Ci = %; IC

6 Experimental Results

In this section, we evaluate the accuracy and robustness of
the proposed network architecture extraction under side-
channel attack and bus snooping attack scenarios.

6.1 Evaluation Methodology

To validate the feasibility of stealing the memory informa-
tion during inference execution, we conduct the experiments
on the hardware platform equipped with Nvidia K40 GPU
[35]. The DNN models are implemented based on PyTorch
framework [40], with CUDAS8.0 [60] and cuDNN optimiza-
tion library [36]. We use the GPU performance counter [34]
to emulate bus snooping for kernel execution latency, kernel
write, and read access volume information collection.

As an initial step for network architecture extraction, we
first train the layer sequence identifier based on an LSTM-
CTC model for layer sequence identification. The detailed
training procedure is as follows.

Session 5A: Frameworks for
deep learning — Layering the ML cake.

Training: In order to prepare the training data, we first
generate 8500 random computational graphs of DNN models
and obtain the kernel architectural features. Two kinds of
randomness are considered during random graph genera-
tion: topological randomness and dimensional randomness.
At every step, the generator randomly selects one type of
block from sequential, Add, and Concat blocks. The sequen-
tial block candidates include (Conv, ReLU), (FC, ReLU), and
(Conv, ReLU, Pool) with or without BN. The FC layer only
occurs when the feature map size is smaller than a threshold.
The Add block is randomly built based on the sequential
blocks with shortcut connection. The Concat block is built
with randomly generated subtrack number, possibly within
Add blocks and sequential blocks. The dimension size pa-
rameters — such as the channel, stride, padding, and weight
size of Conv and neuron size of FC layer — are randomly
generated to improve the diversity of the random graphs.
The input size of the first layer and the output size of the last
layer are fixed during random graph generation, considering
that they are usually fixed in one specific target platform. We
randomly select 80% of the random graphs as the training
set and other 20% as the validation set to validate whether
the training is overfitting or not.

Testing: To verify the effectiveness and generalization of
our layer sequence identifier framework, we examine various
commonly-used DNN models as the test set, including VGG
[45], ResNet [17], and Nasnet [64] to cover the representative
state-of-the-art DNN models.

6.2 Layer Sequence Identification Accuracy

In this section, we first evaluate the layer sequence identi-
fication accuracy. Then we analyze the importance of the
layer context information and the influence of noises in ar-
chitectural hints.

6.2.1 Evaluation Metric

We quantify the prediction accuracy with the layer predic-
tion error rate (LER), similar to those being used in speech
recognition problems. It is the mean normalized edit distance
between the predicted sequence and label sequence which
quantifies the prediction accuracy [15, 16]. The detailed pre-
diction calculation is as follows [15].

ED (I;, L))
L]

where ED (L, L*) is the edit distance between the predicted

layer sequences L and the ground-truth layer sequence L*,

i.e. the minimum number of insertions, substitutions, and

deletions required to change L into L*. |L¥| is the length of

ground-truth layer sequence.

LER =

6.2.2 Side-Channel Attack Scenario

We first evaluate the accuracy on the randomly generated

DNN models, as the blue bars shown in Figure 5a. For DNN
models with chained topology only, the average prediction

393

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

error rate of layer sequence identification is about 0.06. For
neural networks with shortcut and concat topology, the av-
erage LER of layer sequence identification is about 0.07 and
0.12. We then evaluate the accuracy of the typical sequential
DNN models. The LER of AlexNet and VGG19 are 0.02 and
0.017 respectively, as shown in Table 3. Such results indicate
that, under the side-channel attack, the proposed methodol-
ogy can accurately identify the layer sequence. The LER is a
little higher for DNN models with more complex topology.

1 1

Side Channel 08
08 Bus Snooping ’
X o6 o6
- |
o4 204
<
0.2 0.2

0 =
Chain

Shortcut

- 0
Complex

Noise

5% 10% 20% 30%

Figure 5. (a) Average prediction error rate of layer sequence
identification under side-channel and bus snooping attacks.
(b) Robustness to architectural hint noise under bus snooping

attack scenario.

Table 3. Prediction error rate on typical networks.
Side-Channel
AlexNet | VGG19
0.020 | 0.017

Bus Snooping
ResNet101 | ResNet152
0.067 0.068

ResNet34
0.040

Nasnet_large
0.144

6.2.3 Bus Snooping Attack Scenario

Under the bus snooping attack scenario, the adversary has
additional kernel dependency distance statistics since they
can obtain memory address traces. Therefore, the adversary
can achieve more accurate identification than that under side-
channel attack scenario. As the red bars shown in Figure 5a,
the average LER of layer sequence identification for random
generated sequential models with chained layer topology,
shortcut models with Add operations, and complex DNN
models with Add and Concat is 0.06, 0.06 and 0.1 respectively.

Furthermore, we evaluate the accuracy in identifying sev-
eral state-of-the-art DNN models, as shown in Table 3. For
ResNet families, the prediction LER is lower than 0.07. For
NasNet, the LER increases slightly due to the much deeper
and complex connections. We take ResNet34 as an example
to present the detailed results in Table 4. In summary, our
proposed method is generally effective in correctly identi-
fying the layer sequence. There may exist small deviation
between the predicted sequence and ground-truth sequence.
Thus we conduct end-to-end experiments in the Section 6.4,
which shows that the extracted neural network architecture,
although having a little deviation from the victim architec-
ture, can still boost the attacking effectiveness.

6.2.4 Robustness to Hint Noises

We conduct experiments to analyze the accuracy sensitivity
of the identifier taking in the kernel features with noises.
Taking the bus snooping attack as an example, When kernel

Session 5A: Frameworks for

deep learning — Layering the ML cake.

Chain

Shortcut

(®)

Complex

Figure 6. (a) Average prediction error rate comparison be-
tween single-kernel identifier and context-aware identifier
during training process. (b) Average prediction rate compar-

ison with different victim DNNs

Table 4. Identification results

DNN
Model

Ground-truth Sequence

Predicted Sequence

ResNet18
(ErrorRate
0.032)

Conv BN ReLU MaxPool Conv
BN ReLU Conv BN ADD ReLU
Conv BN ReLU Conv BN ADD
ReLU Conv BN ReLU Conv
BN Conv BN Add ReLU Conv
BN ReLU Conv BN ADD ReLU
Conv BN ReLU Conv BN Conv
BN Add ReLU Conv BN ReLU
ConvBN ADD ReLU Conv BN
ReLU Conv BN Conv BN Add
ReLU Conv BN ReLU Conv
BN FC

Conv BNReLU MaxPool Conv
BN ReLU Conv BN ADD ReLU
Conv BN ReLU Conv BN ADD
ReLU Conv BN ReLU Conv
BN Conv BN Add ReLU Conv
BN ReLU Conv BN ADD ReLU
Conv BN ReLU Conv BN Conv
BN Add ReLU Conv BN ReLU
Conv BN ADD ReLU Conv BN
ReLU Conv BN Conv BN Add
ReLU Conv BN ReLU Conv
BN ReLU FC

execution feature statistics are affected by random noises
within 5%, 10%, 20%, or 30% of amplitude, the average error
rate of the layer prediction increases from 0.08 to 0.16, as
shown in Figure 5b. The results indicate that the layer se-
quence identifier is not sensitive to architectural hint noises.

6.2.5 Why is Inter-Layer Context Important?

To analyze the importance of inter-layer context information
in this section, we compare the prediction error rate of two
methods: a context-aware identifier considering layer con-
text in our work (bus snooping scenario) and a single-kernel
identifier based on multi-layered perception model. The key
difference between these two identifiers is whether including
the sequence model in Figure 3.

We compare both the prediction error rate along the identi-
fier training processes from the 1st to 100th epochs (Figure 6a
and prediction error rate for DNN models with different ar-
chitectures (Figure 6b). We draw two conclusions from this
experiment: 1) DeepSniffer can achieve much better predic-
tion accuracy with considering the layer context informa-
tion. The results show that the average LER of context-aware
identifier is three times lower than the single-layer identi-
fier (Figure 6a). 2) Layer context information is increasingly
important when identifying more complex network archi-
tectures. As shown in Figure 6b, compared to the simple
network architecture with only chain typologies, the more
complex architectures with remote connections (e.g. Add or
Concat) cause higher error rates. For the single-layer iden-
tifier, the LER dramatically increases when the network is
more complex (from 0.18 to 0.5); while, for the context-aware

394

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

identifier, the average LER demonstrates a non-significant in-
crease (from 0.065 to 0.104). The experimental results indicate
that the layer context with inter-layer temporal association
is a very important information source, especially for the
deeper and more complex neural networks.

6.3 Model Size Estimation

In this section, we show the feature map size estimation
results of the input and output for every layer, which is the
prerequisite for dimension space estimation. For both the

side-channel and bus snooping attacks, the input and output
feature map sizes of every layer in DNN model are calculated

based on the ReLU memory traffic volume. Therefore, we
show estimation accuracy under bus snooping scenario as
an example in Figure 7, which is calculated as 1 minus the
deviation between the estimated size and actual size. For
Conv, BN, ReLU, Add, and Concat, the estimation accuracy
can reach up to 98%. The FC presents lower accuracy since
the FC layer is usually at the end of the network and the
neuron number decreases. Thus, the activation data of the
ReLU layer may be filtered, and it is not accurate to use ReLU
read transactions to estimate the FC size. We use the read
access volume to predict the input and output sizes of FC
layers instead. The dimension size prediction results may be
platform-dependent. However, we take the dimension size
prediction as the less important step than the other two and
experimentally validate the effectiveness of the extracted
architectures with imprecise dimension sizes.

1 M Input Size Output Size
508
Sos
S04
<02
0
Conv FC BN ReLU Pool Add Concat

Figure 7. Layer input and output feature map size estimation
(normalized to the ground-truth size).

6.4 How Effective are the Extracted Models?

The extracted network architecture can be used to con-
duct further-step attack. In this work, we use the adversarial
attack, one of the most common attacks in the domain of neu-
ral network security, as an end-to-end attack case to show
the effectiveness of the extracted network architecture.

6.4.1 Adversarial Attack with Extracted DNN Archs

In the adversarial attack, the adversary manipulates the
output of the neural network model by inserting small per-
turbations into the input images that remain almost imper-
ceptible to human vision [14]. The goal of adversarial attack
is to search the minimum perturbation on input that can mis-
lead the model to produce an arbitrary (untargeted attack)

Session 5A: Frameworks for
deep learning — Layering the ML cake.

()
Substitute Substitute
Model 1 Model 2

@ Ensembled Model

Substitute Substitute
Model 3 Model 4
J . J
¥
~)

Ve

.)
aseline

Existing model zoo:

Inception/VGG/ResNet Family ...

Substitute Candidates
Our Work ¢

Extracted network architectures

.
(o \)
Vi Adversarial Adversarial Example
Black-box e Examples e Generation
Model
N\ / \ d

Figure 8. Adversarial attack flow.
[14] or a pre-assigned (targeted attack) [3, 25, 51] incorrect

output. To conduct the adversarial attack against a black-box
model, the adversary normally builds a substitute model first
by querying the input and output of the victim model. Then
the adversary generates the adversarial examples based on
the white-box substitute model [37, 39, 51]. Finally, they use
these adversarial examples to attack the black-box model.
In summary, the transfer-based adversarial attack flow is
illustrated in Figure 8, which consists of the following steps:
1): Build substitute models. In our work, we train substi-
tute models with the extracted network architectures, while
baseline selects the typical network architectures to build
the substitute model, as shown in Figure 8 .
2): Generate adversarial examples. The state-of-art solu-
tion [28] uses an ensembled method to improve the attacking
success rate based on the hypothesis that if an adversarial
image remains adversarial for multiple models, it is more
likely to be effective against the black-box model as well. We
follow the similar techniques to generate adversarial images
for the ensemble of multiple models.
3): Apply the adversarial examples As the final step, the
adversary attacks the black-box model using the generated
adversarial examples as input data.

6.4.2 Adversarial Attack Efficiency

In this section, we show that the adversarial attack efficiency
can be significantly improved with the extracted network
architectures. We follow the same adversarial attack method-
ology in the previous work [28], which achieves better at-
tacking success rate based on the ensemble of four substitute
models. The only difference of our work is that we use the
predicted network architectures to build the substitute mod-
els, as illustrated in the Figure 8.

Setup: In these experiments, we use ResNet18 [17] as the
victim model for targeted attacks. Our work adopts the ex-
tracted neural network architecture to build the substitute
models. For comparison, the baseline examines the substi-
tute models established from following networks: VGG fam-
ily [45] (VGG11, VGG13, VGG16, VGG19), ResNet family [17]
(ResNet34, ResNet50, ResNet10@1, ResNet152), DenseNet
family [20] (DenseNet121, DenseNet161, DenseNet169,

DenseNet201), SqueezeNet [23], and Inception [49].
Extracted DNN Architectures: Based on the architectural

hints of ResNet18, we extract DNN architectures following

395

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

the three steps: run-time sequence identification, layer topol-
ogy reconstruction, and dimension estimation, as shown
in the Figure 9. In the run-time layer sequence identifica-
tion, DeepSniffer accurately predicts the layer sequence with
small errors in red color. In dimension size estimation, we
randomly selects four dimension sets from the potential di-
mension space which satisfy the layer size and constraints in
Table 2. The four dimension sets are different from the origi-
nal victim ResNet18. Therefore, we validate the effectiveness
of these extracted neural network models that are slightly
different from the original victim model in the following.

Extracted DNN Architectures
@ Run-time Layer Seq Identifiation2(@) _Layer Topology Reconstruction

:

BI—55 B2, Bl_g%j@
222z le .22 B 2.22.2]2
2z22z1p)7 Ez22zlp 222222197
38338 D> —wsEgsE D> —w3EgsaEy O

Feature map size
BO 1

o FM1
FM2:25280

(B0: Conv (BN) ReLU MaxPool
B1: Conv BN ReLU Conv BN ADD Rel U

B2: Conv BN ReLU Conv BN Conv BN
Add RelLU

RelLU

Bl

B3: Conv BN ReLU Conv BN RelLU
Add RelLU

F1: AvgPool FC

B0 B1B1B2B1B2B1B2B3 F1

FM2:50440

L Dimension Size Estimation DNN Arch No.1, DNN Arch No.2, DNN Arch No.3, DNN Arch No.4)

Figure 9. Extracted DNN architectures.

Adversarial Attack Effectiveness Results: First, we ran-
domly select 10 classes, each class with 100 images from
ImageNet dataset [12] as the original inputs for targeted
attack tests. Then, we compare the attack effectiveness of ad-
versarial examples generated by the following five solutions:
ensembled substitute models from VGG family, DenseNet
family, Mix architectures (squeezeNet, inception, AlexNet,
DenseNet), ResNet family, and from extracted architectures
using our proposed model extraction.

The attack success rate results are shown in Table 5. We
report several observations: 1) The attack success rate is
generally low for the cases without network architecture
knowledge. The adversarial examples generated by substi-
tute models with VGG family, DenseNet family, and Mix
architectures only complete successful attacks in 14%-25.5%
of the cases. 2) With some knowledge of the victim architec-
ture, the attack success rate is significantly improved. For
example, the substitute models within ResNet family achieve
the attack success rate of 43%. 3) With our extracted network
architectures — although it still has differences from the orig-
inal network - the attack success rate is boosted to 75.9%.
These results indicate that our model extraction significantly
improves the success rate of consequent adversarial attacks.

In a further step, we take a deep look at the targeted
attack which leads the images in Class-755 to be misclassi-
fied as Class-255 in the ImageNet dataset. We explore the
effectiveness of ensembled models with various substitute
combinations, by randomly picking four substitute models
from the candidate model zoo. The results are shown in the
blue bars of Figure 10. We also compare the results to the
cases using substitute models 1) from VGG family; 2) from
DenseNet family; 3) from squeezeNet, inception, AlexNet,
and DenseNet ‘Mix’ bar in the figure); 4) from ResNet family;

Session 5A: Frameworks for
deep learning — Layering the ML cake.

and 5) from extracted cognate ResNet18 model (our method)
to generate the adversarial examples. As shown in Figure 10,
the average success rate of random cases is only 17% and the
best random-picking case just achieves the attack success
rate of 34%. We observe that all good cases in random-picking
(attack success rate > 20%) include substitute models from
ResNet family. Our method with accurate extracted DNN
models performs best attack success rate across all the cases,
40% larger than the best random-picking case and ResNet
family cases. To summarize, with the help of the effective
and accurate model extraction, the consequent adversarial
attack achieves a much better attack success rate. Therefore,
it is extremely important to protect the neural network ar-
chitectures in the DNN system stack, which can boost the
adversarial attack effectiveness.

Table 5. Success rate with different substitute models.

VGG | DenseNet | Mix | ResNet | Extracted
family | family family DNN
Success rate | 18.1% 25.5% 14.6% 43% 75.9%

m attack w/ random model
m attack w/ VGG
Lo0% attack w/ DenseNet
® attack w/ mixed Model
= attack w/ ResNet

Our Method

S
@
3
=

N
&
=

@
3
X

I
S
=

Attacking Success R:

3
X

0% L —
Figure 10. Explore the targeted attack success rate across
different cases. Our method performs best.

7 Discussion

The standardization through the whole stack of neural net-
work system facilitates such DNN architecture extraction.
The standardized hardware platforms, drivers, libraries, and
frameworks are developed to help machine learning indus-
trialization with user-friendly interfaces. Transforming from
the input neural network architecture to final hardware code
depends on the compilation and scheduling strategies of
DNN system stacks, which can be learned under the simi-
lar execution environment. Therefore, the adoption of these
hardwares, frameworks, and libraries in the development
workflow gives adversary an opportunity to investigate the
execution pattern and reconstruct the network architecture
based on architectural hints.

7.1 Approach Generality

The root cause of hacking the network architecture is to
learn the transformations between framework-level compu-
tational graphs and kernel feature sequence. We discuss the
general applicability of DeepSniffer techniques in terms of
the following perspectives:

1) Different neural network architectures. Our method-

ology is generally applicable to various CNN models with
different neural network architectures. During the training

396

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

for the layer sequence predictor, we build the training set
based on random graphs with basic operations provided by
pytorch framework. Hence, the trained layer sequence pre-
dictor can be used to analyze any DNN models that are built
based on the basic operations provide by framework (such as
Conv2d, ReLU, and MaxPool2d, etc in pytorch). In addition,
the predictor can be retrained with the extended training set
that includes the other operations if necessary.

2) Different platforms. The overall model extraction
methodology can be applied to other deep learning frame-
works. As explained in Section 4, the kernel scheduling strate-
gies of the framework give the opportunity to reverse en-
gineer the computation graph of victim DNN models. We
evaluate TensorFlow and Caffe2 (backend of the new Py-
torch version), two other broadly-used frameworks, observ-
ing that they also use the similar scheduling methodology.
The sequence-model-based method can be adopted in these
scenarios because DeepSniffer does not rely on the exact
dimension size that may differ in different frameworks, but
learns the execution pattern in the target deep learning sys-
tems. Validating the proposed methods in mobile GPU plat-
forms would be our future work.

3) Other attack models. In this work, we consider model
extraction based on the minimum information that the ad-
versary can get in the edge devices. In some other scenarios,
such as machine learning cloud services [32, 62], other ar-
chitectural hints may be obtained that include the API calls
and GPU performance counters. DeepSniffer framework can
leverage such architectural hints to explore the model ex-
traction potentialities.

4) Algorithm optimization influence. Recently, many
network quantization techniques are proposed for perfor-

mance and energy optimization [22, 54]. Adopting low-precision

data representations is the potential quantization method
in GPU platforms. For example, users can simplify the net-
work with int8, float16, or float32 operations provided by
TensorFlow lite [54]. Our method can be applicable to such
cases that don’t introduce big changes the framework sched-
uling strategies. We still can identify the victim model ar-
chitectures by learning the execution patterns in such DNN
systems.

7.2 Defence Strategies

Microarchitecture Methodologies. There are a few ar-
chitectural memory protection methods. Oblivious Memory:

To reduce the information leakage on the bus, previous
work proposes oblivious RAM (ORAM) [26, 27, 46], which
hides the memory access pattern by encrypting the data
addresses. With ORAM, attackers cannot identify two op-
erations even when they are accessing the same physical
address [46]. However, ORAM techniques incur a signifi-
cant memory bandwidth overhead (up to an astonishing
10x), which is impractical for bandwidth-sensitive GPUs.
Dummy Read/Write Operations: Another potential defence

Session 5A: Frameworks for
deep learning — Layering the ML cake.

solution is to introduce fake memory traffic to disturb the
statistics of memory events. Unfortunately the noises exert
only a small degradation of the layer sequence prediction
accuracy, as illustrated in Section 6.2.4. As such, fake RAW
operations to obfuscate the layer dependencies identification
may be a more fruitful defensive technique to explore.
System Methodologies. The essence of our work is to
learn the compilation and scheduling graphs of the system
stack. Although the computational graphs go through multi-
ple levels of the system stack, we demonstrate that it is still
possible to recover the original computational graph based
on the raw information stolen from the hardware. At the
system level one could: 1) customize the overall NN system
stack with TVM, which is able to implement the graph level
optimization for the operations and the data layout [8]. The
internal optimization possibly increases the difficulty for the
attackers to learn the scheduling and compilation graph, or 2)
make security-oriented scheduling between different batches
during the front-end graph optimization. Although such op-
timizations may have negative impact on performance, they
may obfuscate the adversary a view of kernel information.

8 Related Work

Exploring machine learning security issues is an important
research direction with the industrialization of DNNs tech-
niques. The related existing work mainly comes from the
following two aspects.

Algorithm perspective: Adversarial attacking is one of the
most important attack model which generates the adversarial
examples with invisible perturbation to confuse the victim
model for wrong decision. These adversarial examples can
produce either the targeted [4, 7, 9, 11, 14, 33, 43, 51], or un-
targeted [25, 29-31, 47] output for further malicious actions.
The state-of-art transfer-based adversarial attacks observe
that adversarial examples transfer better if the substitute
and victim model are in the same network architecture fam-
ily [28, 44]. Therefore, the extracting inner network structure
is important for attacking effectiveness. Consequently, model
extraction work are emerged to explore the model character-
istics. Previous work steal the parameter and hyperparameter
of DNN models with the basic knowledge of NN architec-
ture [55, 57]. Seong et al. explore the internal information of
the victim model based on meta-learning [44].

Hardware perspective: Several accelerator-based attacks
are proposed, either aiming to conduct model extraction [18]
or input inversion [59]. However, their methodologies rely
on the specific design features in hardware platforms and
cannot be generally applicable to GPU platforms with full
system stack. Some studies explore the information leak-
age in general purpose platforms. CathyTelepathy [62] ex-
plores side-channel techniques in caches to reduce the hyper-
parameter space of victim DNN models by inferring the con-
figurations of GEMM operations. Naghibijouybari et al. show

397

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

that side-channel effect in GPU platform can reveal the neu-
ron numbers [32]. However, no direct evidence shows that
how these statistics are useful to the attacking effectiveness.
Targeting at the security in the edge (e.g.automotive), this
work is the FIRST to propose the DNN model extraction
framework and experimentally conduct an end-to-end at-
tack on an off-the-shelf GPU platform immune to full system
stack noises.

9 Conclusion

The widespread use of neural network-based applications
raises stronger and stronger incentive for attackers to extract
the neural network architectures of DNN models. In observ-
ing the limitations of previous work, we propose a robust
learning-based methodology to extract the DNN architecture.
Through the acquisition of memory access events from bus
snooping, layer sequence identification by the LSTM-CTC
model, layer topology connection according to the mem-
ory access pattern, and layer dimension estimation under
data volume constraints, we demonstrate one can accurately
recover a similar network architecture as the attack start-
ing point. These reconstructed neural network architectures
present significant increase in attack success rates, which
demonstrate the importance of establishing secure DNN sys-
tem stack.

Acknowledgments

We thank all anonymous reviewers for their valuable feed-
back. Thank Kaisheng Ma and Song Han for their comments
and suggestions. This work was supported in part by NSF
1725447, 1730309, 1925717 and CRISP, one of six centers in
JUMP, a SRC program sponsored by DARPA.

References

[1] 2019. HMTT: Hybrid Memory Trace Toolkit. http://asg.ict.ac.cn/hmtt/

[2] Naveed Akhtar and Ajmal Mian. 2018. Threat of Adversarial Attacks
on Deep Learning in Computer Vision: A Survey. CoRR abs/1801.00553
(2018). arXiv:1801.00553

[3] Scott Alfeld, Xiaojin Zhu, and Paul Barford. 2016. Data Poisoning

Attacks Against Autoregressive Models (AAAI’16). AAAI Press, 1452—

1458.

Shumeet Baluja and Ian Fischer. 2017. Adversarial transformation

networks: Learning to generate adversarial examples. arXiv preprint

arXiv:1703.09387 (2017).

Erik-Oliver Blass and William Robertson. 2012. TRESOR-HUNT: At-

tacking CPU-bound Encryption (ACSAC ’12). ACM, New York, NY,

USA, 71-78.

Robert Callan, Alenka Zaji¢, and Milos Prvulovic. 2014. A Practical

Methodology for Measuring the Side-Channel Signal Available to the

Attacker for Instruction-Level Events (MICRO-47). IEEE Computer

Society, Washington, DC, USA, 242-254.

Nicholas Carlini and David Wagner. 2017. Towards evaluating the

robustness of neural networks. In 2017 IEEE Symposium on Security

and Privacy (SP). IEEE, 39-57.

[4

[l

5

—

(6

—

[7

—

Session 5A: Frameworks for

deep learning — Layering the ML cake.

(8]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21

—

[22]

[23

—_

[25]

[26]

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q.
Yan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. 2018. TVM: End-to-End Optimization Stack for Deep
Learning. CoRR abs/1802.04799 (2018). arXiv:1802.04799

Moustapha Cisse, Yossi Adi, Natalia Neverova, and Joseph Keshet. 2017.
Houdini: Fooling deep structured prediction models. arXiv preprint
arXiv:1707.05373 (2017).

Ronan Collobert and Jason Weston. 2008. A Unified Architecture for
Natural Language Processing: Deep Neural Networks with Multitask
Learning (ICML °08). ACM, New York, NY, USA, 160-167.

Swagatam Das and Ponnuthurai Nagaratnam Suganthan. 2011. Differ-
ential evolution: a survey of the state-of-the-art. IEEE transactions on
evolutionary computation 15, 1 (2011), 4-31.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
2009. Imagenet: A large-scale hierarchical image database. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2009.
IEEE, 248-255.

M. Dey, A. Nazari, A. Zajic, and M. Prvulovic. 2018. EMPROF: Memory
Profiling Via EM-Emanation in IoT and Hand-Held Devices. In 2018
51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 881-893.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Ex-
plaining and harnessing adversarial examples. Proceedings of the
International Conference on Learning Representations (2015).

Alex Graves, Santiago Fernandez, Faustino Gomez, and Jiirgen Schmid-
huber. 2006. Connectionist Temporal Classification: Labelling Unseg-
mented Sequence Data with Recurrent Neural Networks (ICML °06).
ACM, New York, NY, USA, 369-376.

Alex Graves and Navdeep Jaitly. 2014. Towards End-to-end Speech
Recognition with Recurrent Neural Networks (ICML’14). I-1764-
1772.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 770-778.
Weizhe Hua, Zhiru Zhang, and G. Edward Suh. 2018. Reverse Engi-
neering Convolutional Neural Networks Through Side-channel Infor-
mation Leaks (DAC ’18). ACM, New York, NY, USA, 4:1-4:6.

Andrew Huang. 2003. Keeping Secrets in Hardware: The Microsoft
Xbox Case Study. In Revised Papers from the 4th International Work-
shop on Cryptographic Hardware and Embedded Systems (CHES ’02).
Springer-Verlag, London, UK, UK, 213-227.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-
berger. [n.d.]. Densely connected convolutional networks. In CVPR
2017.

Yongbing Huang, Licheng Chen, Zehan Cui, Yuan Ruan, Yungang
Bao, Mingyu Chen, and Ninghui Sun. 2014. HMTT: A Hybrid Hard-
ware/Software Tracing System for Bridging the DRAM Access Trace’s
Semantic Gap. ACM Trans. Archit. Code Optim. 11, 1, Article 7 (Feb.
2014), 25 pages.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. 2016. Binarized neural networks. In Advances in neural
information processing systems. 4107-4115.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. 2016. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and< 0.5 mb model size. arXiv
preprint arXiv:1602.07360 (2016).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Im-
ageNet Classification with Deep Convolutional Neural Networks
(NIPS’12). Curran Associates Inc., USA, 1097-1105.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2016. Adversarial
examples in the physical world. arXiv preprint arXiv:1607.02533 (2016).
Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari,
and Elaine Shi. 2015. GhostRider: A Hardware-Software System for
Memory Trace Oblivious Computation (ASPLOS ’15). ACM, New York,

398

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]
[42]

[43]

[44]

[45]

[46]

[47]

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

NY, USA, 87-101.

Chang Liu, Michael Hicks, and Elaine Shi. 2013. Memory Trace Oblivi-
ous Program Execution. In Proceedings of the 2013 IEEE 26th Computer
Security Foundations Symposium (CSF ’13). IEEE Computer Society,
Washington, DC, USA, 51-65.

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. 2017. Delving
into Transferable Adversarial Examples and Black-box Attacks. ICLR
abs/1611.02770 (2017). arXiv:1611.02770

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and
Pascal Frossard. 2017. Universal adversarial perturbations. arXiv
preprint (2017).

Seyed Mohsen Moosavi Dezfooli, Alhussein Fawzi, and Pascal Frossard.
2016. Deepfool: a simple and accurate method to fool deep neural
networks. In Proceedings of 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Konda Reddy Mopuri, Utsav Garg, and R Venkatesh Babu. 2017. Fast
feature fool: A data independent approach to universal adversarial
perturbations. arXiv preprint arXiv:1707.05572 (2017).

Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael Abu-
Ghazaleh. 2018. Rendered Insecure: GPU Side Channel Attacks Are
Practical (CCS ’18). ACM, New York, NY, USA, 2139-2153.

Papernot Nicolas, D. McDaniel Patrick, Jha Somesh, Fredrikson Matt,
Celik Z. Berkay, and Swami Ananthram. 2015. The Limitations of
Deep Learning in Adversarial Settings. CoRR abs/1511.07528 (2015).
arXiv:1511.07528

Nvidia. [n.d.]. CUDA toolkit documentation. http://docs.nvidia.com/
cuda/profiler-users-guide/index.html

NVIDIA. 2016. NVIDIA Tesla K40 Active GPU Accelerator. http:
//www.pny.com/nvidia-tesla-k40-active-gpu-accelerator.

Nvidia. 2017. NVIDIA cuDNN GPU Accelerated Deep Learning. https:
//developer.nvidia.com/cudnn

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z. Berkay Celik, and Ananthram Swami. 2017. Practical Black-Box
Attacks Against Machine Learning (ASIA CCS ’17). ACM, New York,
NY, USA, 506-519.

Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Well-
man. 2016. Towards the science of security and privacy in machine
learning. arXiv preprint arXiv:1611.03814 (2016).

Nicolas Papernot, Patrick D. McDaniel, and Ian J. Goodfellow. 2016.
Transferability in Machine Learning: from Phenomena to Black-Box
Attacks using Adversarial Samples. CoRR abs/1605.07277 (2016).
arXiv:1605.07277 http://arxiv.org/abs/1605.07277

PyTorch. [n.d.]. Pytorch Tutorials. http://pytorch.org/tutorials/
Tractica Report. 2016. Artificial Intelligience Market Forecasts.

M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, Y. Kwon, and S. W. Keckler.
2018. Compressing DMA Engine: Leveraging Activation Sparsity for
Training Deep Neural Networks. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA). 78-91.

Sayantan Sarkar, Ankan Bansal, Upal Mahbub, and Rama Chellappa.
2017. UPSET and ANGRI: Breaking High Performance Image Classi-
fiers. arXiv preprint arXiv:1707.01159 (2017).

Bernt Schiele Mario Fritz Seong Joon Oh, Max Augustin. 2018.
Towards Reverse-Engineering Black-Box Neural Networks. ICLR
abs/1605.07277 (2018). https://arxiv.org/abs/1711.01768

Karen Simonyan and Andrew Zisserman. 2014. Very Deep Con-
volutional Networks for Large-Scale Image Recognition. CoRR
abs/1409.1556 (2014). arXiv:1409.1556 http://arxiv.org/abs/1409.1556
Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling
Ren, Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: An Ex-
tremely Simple Oblivious RAM Protocol (CCS ’13). ACM, New York,
NY, USA, 299-310.

Jiawei Su, Danilo Vasconcellos Vargas, and Sakurai Kouichi. 2017.
One pixel attack for fooling deep neural networks. arXiv preprint
arXiv:1710.08864 (2017).

Session 5A: Frameworks for
deep learning — Layering the ML cake.

[48] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to
Sequence Learning with Neural Networks. In Advances in Neural In-
formation Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger (Eds.). Curran Associates, Inc.,
3104-3112.

Christian Szegedy, Sergey loffe, Vincent Vanhoucke, and Alexander A

Alemi. 2017. Inception-v4, Inception-ResNet and the Impact of Residual

Connections on Learning.. In AAAI 4278-4284.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,

and Zbigniew Wojna. 2015. Rethinking the Inception Architecture for

Computer Vision. CoRR abs/1512.00567 (2015). arXiv:1512.00567

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,

Dumitru Erhan, Ian Goodfellow, and Rob Fergus. 2013. Intriguing

properties of neural networks. arXiv preprint arXiv:1312.6199 (2013).

Jin-Hua Tao, Zi-Dong Du, Qi Guo, Hui-Ying Lan, Lei Zhang, Sheng-

Yuan Zhou, Cong Liu, Hai-Feng Liu, Shan Tang, and Allen Rush.

2017. BENCHIP: Benchmarking Intelligence Processors. arXiv preprint

arXiv:1710.08315 (2017).

[53] TechCrunch. 2017. Nvidia is powering the world’s first level 3 self-
driving production car.

[54] TensorFlow. [n.d.]. Post-training quantization. https://www.
tensorflow.org/lite/performance/post_training_quantization.

[55] Florian Trameér, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas
Ristenpart. 2016. Stealing Machine Learning Models via Prediction
APIs (SEC’16). USENIX Association, Berkeley, CA, USA, 601-618.

[56] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Advances in Neural Information Processing

(49

—

(50

[t

[51

—

[52

—

399

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

Systems. 6000-6010.

Binghui Wang and Neil Zhengiang Gong. 2018. Stealing Hyper-
parameters in Machine Learning. CoRR abs/1802.05351 (2018).
arXiv:1802.05351

Waymo. 2017. Introducing Waymo’s suite of custom-build, self-driving
hardware. https://medium.com/waymo/introducing-waymos-suite-
of-custom-built-self-driving-hardware-c47d 1714563/

Lingxiao Wei, Yannan Liu, Bo Luo, Yu Li, and Qiang Xu. 2018. I Know
What You See: Power Side-Channel Attack on Convolutional Neural
Network Accelerators. CoRR abs/1803.05847 (2018). arXiv:1803.05847
Nicholas Wilt. 2013. The cuda handbook: A comprehensive guide to gpu
programming. Pearson Education.

Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike
Seltzer, Andreas Stolcke, Dong Yu, and Geoffrey Zweig. 2017. The
Microsoft 2016 conversational speech recognition system. In Acous-
tics, Speech and Signal Processing (ICASSP), 2017 IEEE International
Conference on. IEEE, 5255-5259.

Mengjia Yan, Christopher W. Fletcher, and Josep Torrellas. 2018. Cache
Telepathy: Leveraging Shared Resource Attacks to Learn DNN Archi-
tectures. CoRR abs/1808.04761 (2018). arXiv:1808.04761

Xingcheng Zhang, Zhizhong Li, Chen Change Loy, and Dahua Lin.
2016. PolyNet: A Pursuit of Structural Diversity in Very Deep Networks.
CoRR abs/1611.05725 (2016). arXiv:1611.05725

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. 2017.
Learning Transferable Architectures for Scalable Image Recognition.
CoRR abs/1707.07012 (2017). arXiv:1707.07012

	Abstract
	1 Introduction
	2 Background and Challenges
	2.1 Model Characteristics
	2.2 Model Extraction Techniques

	3 Attack Model and Arch-Hints
	4 Observation and Design Overview
	5 DeepSniffer Design
	5.1 Run-time Layer Sequence Identification
	5.2 Layer Topology Reconstruction
	5.3 Dimension Size Estimation

	6 Experimental Results
	6.1 Evaluation Methodology
	6.2 Layer Sequence Identification Accuracy
	6.3 Model Size Estimation
	6.4 How Effective are the Extracted Models?

	7 Discussion
	7.1 Approach Generality
	7.2 Defence Strategies

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

