2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)

1PIM: Programmable In-Memory Image Processing
Accelerator Using Near-Bank Architecture

Peng Gu*!, Xinfeng Xie*!, Yufei Ding?, Guoyang Chen®, Weifeng Zhang?, Dimin Niu*, Yuan Xie!*
'Department of Electrical and Computer Engineering, UCSB, Santa Barbara, USA
2Department of Computer Science, UCSB, Santa Barbara, USA
Email:{peng_gu, xinfeng, yufeiding, yuanxie}Qucsb.edu
3Alibaba Cloud Infrastructure, Sunnyvale, USA
4Alibaba DAMO Academy, Sunnyvale, USA

Email:{g.chen,weifeng.z,dimin.niu}Ralibaba-inc.com

Abstract—Image processing is becoming an increasingly impor-
tant domain for many applications on workstations and the data-
center that require accelerators for high performance and energy
efficiency. GPU, which is the state-of-the-art accelerator for image
processing, suffers from the memory bandwidth bottleneck. To
tackle this bottleneck, near-bank architecture provides a promis-
ing solution due to its enormous bank-internal bandwidth and
low-energy memory access. However, previous work lacks hard-
ware programmability, while image processing workloads contain
numerous heterogeneous pipeline stages with diverse computation
and memory access patterns. Enabling programmable near-bank
architecture with low hardware overhead remains challenging.

This work proposes iPIM, the first programmable in-memory
image processing accelerator using near-bank architecture. We
first design a decoupled control-execution architecture to provide
lightweight programmability support. Second, we propose the
SIMB (Single-Instruction-Multiple-Bank) ISA to enable flexible
control flow and data access. Third, we present an end-to-end
compilation flow based on Halide that supports a wide range
of image processing applications and maps them to our SIMB
ISA. We further develop iPIM-aware compiler optimizations,
including register allocation, instruction reordering, and memory
order enforcement to improve performance. We evaluate a set of
representative image processing applications on iPIM and demon-
strate that on average iPIM obtains 11.02x acceleration and
79.49% energy saving over an NVIDIA Tesla V100 GPU. Further
analysis shows that our compiler optimizations contribute 3.19 x
speedup over the unoptimized baseline.

Keywords—Process-in-memory, Image Processing, Accelerator

I. INTRODUCTION

With the advance of imaging devices and computational
photography, image processing is becoming an increas-
ingly important domain on workstations [48] and the data-
center [72] platforms for various applications, such as machine
learning [12], biomedical engineering [22], and geographic
information systems [34]. These image processing workloads
usually involve a large amount of data-intensive computa-
tions [55], thus motivating the design of domain-specific
accelerators for both high performance and energy efficiency.

*Peng Gu and Xinfeng Xie are co-primary authors.
This work was supported in part by NSF 1719160, 1730309, and 1925717.

As a state-of-the-art accelerator for image processing, GPU
has achieved great success [28]. However, the memory-
wall [63] impedes its further performance improvement as a
result of both the characteristics of image processing work-
loads and the limited bandwidth provided by the compute-
centric architecture. On the one hand, image processing appli-
cations require high memory bandwidth, since most of their
pipeline stages have low arithmetic intensity. Even worse, its
heterogeneous pipeline stages can hardly be fused [18], [19],
[30], [53], [59], [61] due to the introduction of redundant
computations and the degradation of parallelism. On the other
hand, the scaling of memory bandwidth provided by the
compute-centric architecture is hindered by both the limited
number of off-chip I/O pins [63] and costly data movement
energy [31]. To validate this bottleneck, we conduct a detailed
profiling of representative image processing benchmarks on an
NVIDIA Tesla V100 GPU [2] (Sec.III), which shows apparent
bandwidth-bound performance bottleneck (57.55% memory
utilization v.s. 3.43% ALU utilization).

To overcome the bottleneck of memory bandwidth, the 3D-
stacking processing-in-memory (3D-PIM) architecture pro-
vides a promising solution. This architecture embraces higher
memory bandwidth by integrating compute-logic nearer to
memory. The first kind of 3D-PIM designs, process-on-base-
die solution [5], [29], [39], places compute-logic on the
base logic die to utilize the cube-internal Through-Silicon-
Via (TSV) bandwidth, and demonstrates bandwidth advantages
over GPU. To further unleash the bank-level bandwidth of 3D-
PIM, the near-bank solution is proposed [3], [64], [73], which
closely integrates compute-logic to each bank in the DRAM
dies. It can provide around 10x peak bandwidth improve-
ment compared with the previous solution since compute-
logic directly accesses the local bank without going through
limited TSVs. Therefore, near-bank architecture emerges as a
competitive solution to solve the memory bandwidth challenge
for the current compute-centric image processing accelerators.

Although near-bank architecture has great potential for ac-
celerating image processing applications, there are still several
challenges. First, heterogeneous image processing pipelines
exhibit various computation and memory patterns, thus re-

978-1-7281-4661-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ISCA45697.2020.00071

804

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 31,2020 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

quiring programmable hardware support. However, directly
attaching control cores to each DRAM bank introduces large
area overhead [23], [42], [57], so it is challenging to design a
lightweight architecture supporting diverse image processing
pipelines. Second, the design of instruction set architecture
(ISA) needs to be concise yet powerful because it needs
to avoid complex hardware support while enabling flexible
computation, data movement, and control flow operations at
the same time. Third, end-to-end compilation support for this
accelerator requires easy programming interfaces to enable the
efficient mapping of various image processing pipelines to the
near-bank architecture, as well as backend optimizations to
fully exploit the hardware potentials.

To address these challenges of using the near-bank archi-
tecture for image processing pipelines, we design the first
programmable image processing accelerator (iPIM) and an
end-to-end compilation flow based on Halide [61] to effi-
ciently map applications onto our accelerator. First, iPIM
uses a decoupled control-execution architecture to integrate
a control core under the tight area constraint. Specifically,
the control core is placed on the base logic die of the
3D-stack, while lightweight computation units and several
small buffers are attached to each memory bank in DRAM
dies. During the execution of instructions, the control core
broadcasts instructions to all associated banks using TSVs, and
all computation units conduct parallel execution in lockstep.
Second, we design Single-Instruction-Multiple-Bank (SIMB)
ISA for the proposed near-bank accelerator. The SIMB ISA
supports SIMD computation which utilizes the bank’s high
I/0 width (128b), flexible data movement within the near-bank
memory hierarchy, control flow instructions that enable index
calculation, and synchronization primitives for communica-
tion. Third, we develop an end-to-end compilation flow with
new Halide schedules for iPIM. This compilation flow extends
the frontend of Halide for supporting these new schedules
and includes a backend with optimizations for iPIM including
register allocation, instruction reordering, and memory order
enforcement to reduce resource conflict, exploit instruction-
level parallelism, and optimize DRAM row-buffer locality,
respectively.

The contributions of our work are summarized as follows:

« We design a standalone programmable accelerator, iPIM,
using 3D-stacking near-bank architecture for image pro-
cessing applications. By using a decoupled control-
execution architecture, iPIM supports programmability
with small area overhead per DRAM die (~ 10.71%).

e« We propose SIMB (Single-Instruction-Multiple-Bank)
ISA which enables flexible computation, data access, and
communication patterns to support various pipeline stages
in image processing applications.

« We develop an end-to-end compilation flow based on
Halide with novel iPIM schedules and various iPIM
backend optimizations including register allocation, in-
struction reordering, and memory-order enforcement.
Evaluation results of representative image processing
benchmarks, including single stage and heterogeneous

805

multi-stage pipelines, show that iPIM design together
with backend optimizations can achieve 11.02x speedup
and 79.49% energy saving on average over an NVIDIA
Tesla V100 GPU. The backend optimizations improve
3.19x performance compared with the naive baseline.

II. BACKGROUND
A. 3D-stacking Process-in-memory (3D-PIM) Architecture

We introduce the overall architecture and opportunities of
3D-PIM for image processing applications as follows. One 3D
stacking memory cube (HBM [66] and HMC [58]) consists
of multiple stacked DRAM dies on top of a base logic die.
The control logic on the base logic die will access memory
using TSVs (Through-Silicon-Vias) [71], which are vertical
interconnects shared among 3D layers. Previous work [5],
[29], [39] has explored placing compute-logic on the base logic
die to harvest cube-internal TSV bandwidth. This solution
is constrained by the maximal bandwidth provided by TSVs
(currently 307G B/s for one cube with 1024 TSVs [66]), and
scaling TSVs is very difficult due to the large area overhead
(already 18.8% of each 3D layer [66]). To tackle this TSV
bottleneck, researchers further explore near-bank architecture
for 3D-PIM [3], [64], [73]. The near-bank design integrates
simple compute-logic adjacent to each bank without changing
DRAM bank circuitry. The enormous bank-level bandwidth
and massive bank-level parallelism make it promising to accel-
erate data-intensive image processing applications. However,
the lack of programmability due to expensive control core
support is very challenging to enable heterogeneous image
processing pipelines which have diverse computation and
memory patterns. In this work, we tackle this programma-
bility challenge by proposing a lightweight decoupled control-
execution architecture (Sec.IV-B), and SIMB ISA that supports
a wide range of image processing pipelines (Sec.IV-C).

B. Image Processing and Halide Programming Language

Image processing contains heterogeneous pipelines which
are wide and deep [61], and it is bound by memory bandwidth
on the compute-centric architecture. From the applications’
point of view, first, most image processing pipeline stages
have low arithmetic intensity (operations per byte) and massive
data parallelism for individual pixels, such as elementwise and
stencil computations. Second, the whole pipelines are long
and heterogeneous (e.g., 23 different stages in local Laplacian
filter [56]), and they have complex data dependencies (e.g.,
resampling and gather in local Laplacian filter). Therefore,
from the hardware’s point of view, these features make it very
difficult to apply pipeline fusion techniques [18], [19], [30],
[53], [59], [61] to boost the performance. Thus, on compute-
centric accelerators like GPU, image processing performance
is bound by memory-bandwidth (Sec.Ill), and near-bank ar-
chitecture provides a promising solution.

Although widely-adopted programming languages for im-
age processing like Halide [61] provide optimizations for a
wide range of compute-centric accelerators like GPU [52] and
FPGA [21], there are no existing solutions for memory-centric

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 31,2020 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

(a) DRAM bandwidth = DRAM utilization = ALU utilization —_
800 100
600 * * * 80
é —~ 400 L el * » i % | 60 .E
- -
B2 200 g -
58 » 20 =
EE ol = . i B & B B, =
=}
2 . ; ;
TS S FSTS S
: &
& S S &S &S
(b) q',*" S 0@ 6@‘
L 100% >
S _ 80%
EE 60% = INT32
EE S 40% FP32
T2 20%
g 3 0%
I N R
. \3
%o% 4\“@ QQ@ é&“o ,&&‘k &%‘Q \)‘DQ\ & \a
N q.’\\e < c,; ¥

Fig. 1. GPU profiling results for image processing workloads (Table.II).

accelerators. Halide decouples the algorithm descriptions and
the algorithm to hardware mapping, thus programmers can
separately describe an algorithm and a schedule. Based on
the provided algorithms and schedules, the Halide compiler
will synthesize hardware-specific programs. In this work, we
propose the first end-to-end compilation framework for image
processing applications in Halide on the near-bank architecture
by designing novel schedules (Sec.V-B) and developing a
compiler backend to improve the performance (Sec.V-C).

III. MOTIVATION

First, we find that memory-bandwidth is the performance
bottleneck for GPU, which is the current state-of-the-art image
processing accelerator [28]. We conduct a detailed profiling
of representative benchmarks (Table.Il) using Halide frame-
work [61] and DIV8K [65] dataset on an NVIDIA Tesla V100
GPU [36]. The measured total DRAM bandwidth, DRAM
utilization, and ALU (both FP32 and INT32) utilization are
shown in Fig.1(a). We observe that these benchmarks ex-
hibit DRAM bandwidth-bound behavior by achieving 57.55%
DRAM utilization (518G B/s bandwidth) and 3.43% ALU
utilization on average. We also note that the memory and
ALU utilization are both low for Histogram benchmark, which
results from that Histogram involves value-dependent compu-
tations and the Halide schedule for GPU cannot achieve ideal
performance.

Second, we observe that multi-stage benchmarks (the last 4
in Fig.1), which are optimized by Halide pipeline fusion, show
little performance improvement compared with single-stage
benchmarks (the first 6 in Fig.1). The ALU utilization only
increases from 2.85% to 4.53%. Also, the DRAM utilization
is merely reduced from 58.80% to 55.73%, which is still
significantly higher than the ALU utilization. We conclude
that Halide compiler optimizations cannot change the memory-
bound behavior of image processing applications on GPU,
motivating an accelerator providing more memory bandwidth.

Third, we find that index calculation, which is an important
part of programmability support for flexible memory access

806

patterns, consumes a large portion of total ALU utilization
for image processing workloads. For the current profiling,
index calculation uses INT32 data type and algorithm-related
computation uses FP32 data type. The breakdown of the ALU
utilization is shown in Fig.1(b). We observe that on average
index calculation takes 58.71% of total ALU utilization, and
index calculation dominates the total ALU utilization (> 60%)
for 5 out of 10 benchmarks. The index calculation ratio is high
because image processing requires frequent translations from
2D image to 1D memory space [20]. This motivates us to
enable architecture support for index calculation in iPIM.

IV. ARCHITECTURE DESIGN

First, we introduce the microarchitecture overview in
Sec.IV-A. Second, we describe iPIM’s decoupled control-
execution scheme in Sec. IV-B. Then, we explain the instruc-
tion set architecture design in Sec. IV-C. Next, we discuss the
remote memory access mechanism and present the method
for inter-vault synchronization in Sec.IV-D. In the end, we
detail the functionalities of iPIM’s hardware components in
Sec.IV-E.

A. Microarchitecture Overview

In general, iPIM uses the 3D-stacking near-bank archi-
tecture with a top-down hierarchy of cube, vault, process
group, and process engine as illustrated in Fig.2(a). First,
iPIM consists of multiple cubes (Fig.2(al)) interconnected by
SERDES links similar to HMC [58]. Second, one cube is
horizontally partitioned into multiple vaults (usually 16 per
cube) connected by an on-chip network. Each vault (Fig.2(a2))
spans multiple 3D-stacking layers, including several process-
in-memory (PIM) dies (usually 4 to 8 per vault) and one
base logic die. The inter-layer communication is realized by
Through-Silicon-Vias (TSVs, usually 64 per vault), which are
high-bandwidth vertical interconnects that link each layer to
the base logic die. The base logic die of each vault contains
one iPIM control core (Fig.2(b)), which is the basic unit to
execute an iPIM program. Next, one PIM die of each vault
contains one process group (PG) (Fig.2(a3)), which further
consists of many process engines and a shared process group
scratchpad memory (PGSM). Last but not least, each process
engine (PE) (Fig.2(c)) employs near-bank architecture, where
compute-logic and lightweight buffers are integrated with a
DRAM bank. Especially, each PE adds an address register file
and an integer ALU to efficiently support index calculations
which are important for image processing (Fig.1(b)).

Based on this microarchitecture, iPIM decouples the control,
which happens on the base logic die, from the massive bank-
level parallel execution, which happens on the PIM dies
(Sec.IV-B). In addition, we design SIMB ISA to support
various computation and memory access patterns in image pro-
cessing, and efficiently move data among the iPIM hierarchy
(PE-level, PG-level, vault-level, or cube-level) (Sec.IV-C).

B. Decoupled Control-Execution Architecture

iPIM uses a novel decoupled control-execution design to
reduce the overhead of the control core by placing it on the

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 31,2020 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

) 5] — Cul. Path
P @SIMB Execution s Bank — Addr. Path
Sl @Remote Access B == Data Path
(a3) Zll & S MUX MUX
ZiEs [NiC g _ ’—| PGSM
@1)][(a2) 8 | st
PGSM > i S
_____ . - 1S —
AN s B
- =
= % = Inst. € | Inst. Finish) |
= =2 IS Broadcast L Ah]itU > S(IJMD
£ : t
= | = = 2 Inst. Fetch Inst. Inst. i ;
E —E - & Decode Issue Commit S
—Z———y og_ D d — 3
° ependency Issued Inst. Uz
2 £Né
(e Check Queue SIMB Execution Control Z||=
(a) (b) (©)

Fig. 2. iPIM control-execution decoupled 3D-stacking microarchitecture: (al) 3D-stacking cubes. (a2) A vault. (a3) A Process Group (PG). (b) Components
inside an iPIM control core on the base logic die. (c) Components inside a Process Engine (PE) on the PIM dies.

TABLE I
IPIM’S SINGLE-INSTRUCTION-MULTIPLE-BANK (SIMB) INSTRUCTION SET ARCHITECTURE
[Category [Instruction [Description [Operands
SIMD computation (mode:vector-vector,scalar-vector) comp,op,mode,dst_drf.
computation comp +FP/INT arithmetic (add,subtract,multiply,mac) e e . -
. . . X srcl_drf,src2_drf,vec_mask,simb_mask
+logical arithmetic (shift,and,or,xor,crop-lsb,crop-msb)
index calculation | calc_arf memory address calculation (INT only) calc_arf,op,dst_arf,src1_arf,src2_arf,simb_mask
st/ld_rf store(/load) data to(/from) the bank from(/to) the DataRF st/ld_rf,dram_addr,drf_addr,simb_mask
st/Id_pgsm store(/load) data to(/from) the bank from(/to) the PGSM st/ld_pgsm,dram_addr,pgsm_addr,simb_mask
intra-vault rd/wr_pgsm read(/wr@te) data from(/to) the PGSM to(/from) the DataRF rd/wr_pgsm,pgsm_addr,drf_add_r,simb_mask
data movement rd/wr_vsm read(/write) data from(/to) the VSM to(/from) the DataRF rd/wr_vsm,vsm_addr,drf_addr,simb_mask
mov_drf/arf | move data from(/to) DataRF to(/from) AddrRF mov_drf/arf,arf_addr,drf_addr,simb_mask
seti_vsm set immediate value to a VSM location seti_vsm,vsm_addr,imm
reset reset a DataRF entry to zero reset,drf_addr,simb_mask
ggg _r;i:i/let:men t req request data from a remote vault to the local vault gi?;ii;‘nilig’(ﬁg’S(:zt_‘vvsanlil_t;éi’rdm‘pg‘ld’dSt‘p e_id,
jump/cjump | jump/conditional jump jump/cjump,(cond),crf_addr
control flow calc_crf control flow data calculation (INT only) calc_crf,op,dst_crf,src1_crf,src2_crf
seti_crf set immediate value to a CtrIRF location seti_crf,crf_addr,imm
synchronization sync inter-vault synchronization sync,phase_id

base logic die, and allows the parallel execution of processing
engines on the PIM dies to benefit from the abundant bank-
level bandwidth. For the control core, the design principle is to
keep the hardware simple and rely on compiler optimizations
(Sec.V) to realize high performance. Therefore, iPIM uses
a pipelined, single-issue, and in-order core, where the data
hazard is eliminated when an instruction is issued, so the hard-
ware needs no complex forwarding logic. For the execution
part, the SIMB ISA (Sec.IV-C) can exploit massive bank-level
parallelism by programming the bits of simb_mask.

Next, we introduce the detailed pipeline execution of iPIM
in Fig.2(b) (with related instructions in Table.l) as follows.
@ Depending on the program counter (pc), an instruction
will be fetched from the instruction cache (I$) and decoded.
pc can be updated from control register file (CtrlRF) using
Jjump/cjump, and calc_crf, seti_crf are used to calculate
control flow values. @ The decoded instruction will be
checked against instructions in the Issued Inst Queue. If
true/anti/output data dependency is found, the instruction will
stall with a pipeline bubble inserted. Once the instruction is
issued, it is added to the Issued Inst Queue until retirement.
© The issued instruction is broadcast by SIMB controller to
each PE according to the simb_mask, or sent to a vault-level

807

unit for execution (e.g. seti_vsm). If the instruction involves
remote vault access, it is dispatched to the network interface
controller (NIC). @ (a) For the vault-local SIMB execution,
each PE will check the corresponding bit in simb_mask and
proceed execution or stay idle. (b) For the remote vault access,
the request will be translated into packets and traverse the
on-chip network or off-chip links. 9 The SIMB instruction
executes in lock-step, and an instruction retires only if all bits
in the simb_mask are cleared. Each time a PE finishes an
instruction, the SIMB controller will clear its execution bit.
After an instruction finishes, it is committed by popping the
corresponding entry from the Issued Inst Queue. This also
clears data dependency for later instructions.

As a conclusion, this architecture not only enables
lightweight programmability to control heterogeneous pipeline
stages (base logic die) but also supports parallel execution to
provide abundant memory bandwidth for data-intensive image
processing operations (PIM dies).

C. Single-Instruction-Multiple-Bank (SIMB) ISA

To exploit the data-parallelism in image processing, we
propose a Single-Instruction-Multiple-Bank (SIMB) ISA to
expose bank-level parallelism as detailed in Table.l. From a

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 31,2020 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

high-level overview, this ISA resembles a RISC-like SIMD
ISA that enables bank-parallel computation as well as efficient
memory access as detailed below.

For the computation, we highlight the support for SIMB
and SIMD execution. To enable SIMB, each SIMB-capable
instruction has a simb_mask field, which is a boolean vector
indicating whether the corresponding PE should execute this
instruction or not. For example, in a vault with 8 PGs where
each PG has 4 PEs, the simb_mask should be a 32b boolean
vector. To enable SIMD, each computation and data movement
instruction operates on a vector of FP32/INT32 elements. The
vector length is chosen to be 4 to match the local bank’s
interface (128b per access) and TSV’s data transfer width
(128b per cycle), so the internal bandwidth is fully utilized.
For each vault, control signals and data signals share the same
physical TSVs through time multiplexing, which is realized by
the arbiter in Fig.2. Therefore, there is no additional TSV area
cost for control signals to each PE.

For memory access, we emphasize the support for data
movement and memory indexing. To enable data movement,
SIMB ISA contains different instructions to realize customized
data flow along the memory hierarchy. To support flexible
indexing, SIMB ISA contains index calculation instructions
and allows communication between the address register file
and the data register file to enable data-dependent computation.

More detailed explanations about SIMB ISA are as follows:

The computation instruction (comp) supports vector-
vector(/-scalar) operations specified by the mode field. The
vec_mask indicates which positions in the vector are valid for
computation. The op defines the operation to be performed.

The index calculation instruction (calc_ar f) supports paral-
lel address calculations among PEs, so each PE can have inde-
pendent memory access patterns. To allow different PEs inside
a vault to operate on different addresses in the SIMB fashion,
indirect addressing is supported for the bank (dram_addr),
PGSM (pgsm_addr), and VSM (vsm_addr) addresses. When
indirect address mode is used, the corresponding address field
will first index into the address register file in each PE, and
then the fetched address will be used to index the target
memory component. This can satisfy the need for flexible 2D
memory access patterns in image processing.

The data movement instructions (intra-vault/inter-vault) are
classified into two types. The first type involves DRAM
bank access (st/ld_r f, st/ld_pgsm for local vault access, and
req for remote vault access). The second type includes data
movement along the memory hierarchy within a vault.

The control flow instructions support control flow
(jump/cjump) and related calculations (calc_cr f, seti_cr f).
These enable iPIM programs to have dynamic behaviors to
support various computation patterns in image processing.
The synchronization instruction (sync) allows different
vaults to synchronize computation stages according to a
phase_id. Sec.IV-D contains a detailed example.

808

D. Remote Access and Synchronization

iPIM supports data access from a remote vault by imple-
menting an asynchronous request instruction (req). First, the
local vault needs to provide the remote vault’s memory address
and issues a req to local vault’s NIC. Then, the remote vault
adds this request to the DRAM request queue of the corre-
sponding PE. Next, the accessed data is temporarily buffered
in the remote vault’s VSM and sent back to the local vault
after inter-vault link traversal. The communication interface
guarantees delivery, so no acknowledgment is required.

iPIM realizes synchronization among different vaults
through a lock-step synchronization instruction (sync), which
acts as a barrier to block all instructions after this sync. The
synchronization relies on a centralized master-slave protocol,
where a selected vault is designated as the master vault
and all other slave vaults are coordinated. For a vault, a
synchronization point is reached only if all instructions before
that sync finish execution. Then, the slave vault will signal
the master vault, after which the master vault will update a
global synchronization status vector. After the global synchro-
nization point is reached, the master vault will broadcast a
proceed_phase message to all slave vaults, and all vaults will
commit the sync instruction and proceed execution phases.

E. Hardware Components and Usages

This section introduces important information regarding the
hardware components in iPIM as follows:
Data/Address Register File (DataRF/AddrRF): Both the
DataRF and AddrRF employ multi-port architecture to avoid
resource hazards during execution. The DataRF has a vector
interface (128b) that aligns with the bank’s width. To accom-
modate the scalar interface (320) of AddrRF, a multiplexer is
added. In addition, AddrRF locations A0-A3 are reserved to
store PE’s pel D, pgl D, vaultI D, and chipl D, respectively.
Process Group Scratchpad Memory (PGSM): PGSM is used
for data sharing among PEs in a PG. To access another PE’s
memory, a simple way is to generate a ld_pgsm from the
source PE followed by a rd_pgsm to the destination PE with
the same PGSM address. To enable parallel PE access, PGSM
allocates individual ports for each PE and employs multi-bank
architecture. (Fig.2(a3)). Each PE has a separate read port and
a write port into PGSM so that data loading to PGSM can be
overlapped with PGSM access. Also, PGSM has a 2D memory
abstraction for image processing applications.
Vault Scratchpad Memory (VSM): VSM has three function-
alities. First, VSM is used for data sharing among PEs in a
vault. To access another PG’s memory, a possible solution is to
generate a [d_rf and a wr_vsm to write the data to a VSM
location, and use a rd_vsm to bring the data to local PE.
Note that TSVs are shared among PGs, so VSM has only one
data port for TSVs. Second, VSM temporarily buffers the data
for remote vault access. Third, VSM acts as the instruction
memory that accepts computation offloading from a host.
In-DRAM Memory Controller: iPIM integrates a lightweight
memory controller that serves the banks inside each PG
(Fig.2(c)). The memory controller contains a memory request

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 31,2020 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

Func blurx(x, y) = (in(x — 1, y) + in(x, y)
+ in(x + 1, y)) / 3.0f;
y) = (blurx(x, v — 1) + blurx(x, y)

+ blurx(x, y + 1)) / 3.0f;

Func out(x,

out .compute_root ()
Lipim_tile(x,
.load_pgsm(xi,
.vectorize(xi,

y, xi, yi, 8, 8)
yi)
4);

Listing 1. Code example of image blur.

queue, a DRAM command buffer, DRAM command trans-
lation and issuing logic, a counter to record last DRAM
command issuing cycle, a DRAM status register, and an
open row address register. Currently the memory controller
supports two page policies (open/close page) and two DRAM
scheduling policies (FCFS,FR-FCFS) [62]. It also schedules
DRAM refresh commands according to trgprr and trrc
timing parameters similar to AXRAM [73].

On/off-chip Network: iPIM adopts a 2D mesh topology for
both the on-chip and off-chip network. Each router assumes
Input-Queued (IQ) microarchitecture and implements the X —
Y routing algorithm. Also, simple flow control and channel
allocation policies [37] are used.

V. COMPILER

This section details the design of an end-to-end compilation
flow based on Halide for iPIM hardware. First, we introduce
the programming interface of iPIM in Sec.V-A, which includes
the design of new schedules for iPIM. Second, we explain the
compilation flow in Sec.V-B including the extension of Halide
front-end compilation passes and our customized backend for
iPIM. Finally, we detail the backend optimizations in Sec.V-C
for generating efficient iPIM executable programs.

A. Programming Interface

To support various image processing applications composed
of heterogeneous pipelines on iPIM, we use Halide as the
programming language because of its success in this appli-
cation domain. Our front-end support for Halide eases the
burden of programmers from two perspectives. First, the image
processing algorithm written in Halide does not have to be
changed for iPIM because Halide decouples the algorithm
from its schedules. Second, we develop customized schedules
to provide an easy-to-use high-level abstraction for indicating
workload partition and data sharing among PEs in iPIM.
Thus the workload partition and data sharing are optimized
automatically by our end-to-end compilation flow according to
these high-level schedules without programmers’ involvement.

We develop customized schedule primitives to efficiently
exploit hardware characteristics on iPIM hardware. In par-
ticular, we extend Halide with two new schedule primitives,
ipim_tile() and load_pgsm(), for distributing data into dif-
ferent banks and utilizing the scratchpad of a processing-
group. The first customized schedule for iPIM, ipim_tile(),

809

(a) Spatial Mapping ’ ATile
cube cube vault | vault PGO|PG1| - 2
00 (10 00 | a1 PG2[PG3| |PEOPEL
W [vaun . |[PG4|PG5| . |PE2PE3| silc_y
S| 0 “._|PG6|PGT e
. tile_x
An image A sub-image A Block A Patch
(b) iPIM Scheduling (PG) Currently in PGSM Load for next stage
B Non-overlapping PE3|[|PE2| |[PE3|| PE2|| |PE3|| PE2,
[0 Overlapping (Halo) PEl PEL||[PEO| ||PE1| | [PEO] %.
oo 5| S] 50 e e -
Working Set (Current Stage) @ I@ @I §
[Working Set (Next Stage) w»
PE1||[PEQ| [|PE1|| [PEQ| [|PEL|| [PEO| g
(c) iPIM Scheduling (PE)
M | T T [T TTT T
§3" T [Bee e Freor et SRERRARAR:
== 10 H‘E‘} ?“ dezmn|add ﬁf\ﬂt
A 1 [I~ I
=, HECHE s P2 HPE B2
=g e e
Cycle=1 Cycle=2 Cycle=3 Cycle=4

Fig. 3. An iPIM compilation example of image blur: (a) Spatial mapping.
(b) PG-level scheduling. (c) PE-level scheduling.

specifies the dimensions of image data to be partitioned and
distributed across the hierarchy of iPIM. For example, the
schedule ipim_tile(x,y, xi, yi, 8, 8) in Listing.1 indicates that
the image will be partitioned into image tiles (8x8 size). In
addition to the partition of the image into tiles, this schedule
also indicates the distribution of these image tiles across all
PEs. Fig.3(a) shows the distribution of these image tiles into
different levels in the hierarchy of iPIM. Specifically, image
tiles are distributed in an interleaved way to the PEs of the
same PG so that they can load adjacent image tiles at the same
loop iteration to improve data sharing. The second customized
schedule for iPIM, load_pgsm/(), indicates the usage of shared
scratchpad memory at the PG level. For example, the schedule
load_pgsm(xi,yi) in Listing.1 indicates that the data of input
image needed for computing output along loops x¢ and yi will
be loaded into shared scratchpad memory before using it for
the computation. Fig.3(b) shows the usage of PGSM according
to the specification of load_pgsm() in Listing.1 at PG-level.
After loading data into PGSM, Fig. 3(c) shows the temporal
scheduling of the computation for each PE including four steps
(@) to load the whole region of input data (@) for a vector
of output pixels. By supporting this schedule, data sharing
across adjacent image tiles can happen at the PG level.

In addition to our customized schedules for data partition
and sharing on iPIM, we leverage existing Halide schedules
to specify the fusion of pipelines and the vectorization of
computation on iPIM. In Listing.1, compute_root() ensures
that the loops along dimensions of the Func out will be
outermost loops and the stages of computing blurx will be
fused into the computation of out. During code generation,
each compute_root() implies a kernel function reading input
data from and writing output results to DRAM banks. Besides
compute_root(), we also exploit the vectorization schedule
(vectorize(xi,4)) supported by Halide for iPIM because our

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 31,2020 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

Halide Aleorithm Schedule Halide Halide
Frontend ‘¢ Optimization Module —|
iPIM L Instruction Register Instruction Executable
Backend Lowering Allocation Reordering (*.ipim)

Fig. 4. The end-to-end compilation flow of iPIM.

ISA includes SIMD instructions. Specifically, we exploit the
compilation pass of vectorization in Halide frontend aligning
data to improve the utilization of SIMD units in iPIM.

B. Compilation Flow

As shown in Fig.4, we develop an end-to-end compilation
flow to support an automatic transformation from a Halide
algorithm with customized iPIM schedules to a hardware
executable program on iPIM. We develop the frontend code
transformation to support our iPIM schedules and the back-
end instruction optimizations to improve the performance of
generated programs. Our backend optimizations have unique
challenges due to our novel near-bank architecture from two
perspectives. First, because of the simple in-order control core
design, our register allocation phase needs to prevent data
hazards due to register contention. Thus, this phase aims
to span virtual registers into different physical registers to
avoid such data hazards instead of minimizing the number
of allocated registers in the typical register allocation phase.
Second, our instruction reorder phase needs to optimize row
buffer locality when exploiting the instruction-level paral-
lelism (ILP) because of the timing characteristics of DRAM
banks. Thus we add new virtual dependencies to enhance
the row-buffer locality which is critical to the performance
of programs. In summary, our end-to-end compilation flow
takes advantage of customized schedules to generate programs
exploiting iPIM hardware features, such as PGSM, and our
backend optimizations further improve the performance of the
programs.

C. Backend Optimization

In this section, we detail the novel instruction optimizations
we developed for the backend. The major goal of the backend
in our compilation flow is to generate efficient iPIM executable
programs from the input Halide module. The backend decou-
ples this program generation process into two parts, instruc-
tion lowering which translates the Halide module into iPIM
instructions, and instruction optimizations which improve the
performance of the generated programs. We will detail these
optimizations into three parts, register allocation, instruction
reordering, and memory order enforcement. The effectiveness
of our backend optimizations will be quantitatively analyzed
in Sec.VII-E.

Register Allocation: The goal of register allocation is to
assign a physical register to each virtual register and avoid the
instruction dependency due to the conflict of physical registers.
To avoid such conflicts on physical registers, our algorithm
is based on the depth-first search on the register interference

810

Algorithm 1: Instruction reordering algorithm

Input: dependency graph of instructions G = (V, E)
Output: a sequence of instructions S
Init the set of ready instructions R =)
for v € V do
Init T(v) = 0
if v.degree == 0 then
R = RU{v}
N (v): the outgoing neighbour nodes of the node v.
L(v): the execution latency of the node v.
fori =1t |V| do
voPt = Inst with the highest priority for v € R.
R = R — {v°Pt}; S; = voPt; T(voPt) =i
for u € N(v°Pt) do
T(w) = maz{T(u), T(w*P") + L")}
u.degree = u.degree — 1
if u.degree == 0 then

R = RU{u}

graph, and it attempts to assign each virtual register from a
physical register different from the most recently used one.
The input of our algorithm, the register interference graph, is
built upon the traditional liveness analysis of virtual registers.
After building the register interference graph and converting
the register allocation problem into a graph coloring problem,
our algorithm tries to avoid the conflict of physical registers
rather than solely minimizing the number of physical registers
in the allocation. Because the architecture design of iPIM uses
simple in-order control core to avoid hardware overheads, the
traditional register allocation method could cause the depen-
dency between instructions due to the conflict of physical
registers, which further leads to pipeline stalls.

Instruction Reordering: Although the program generated
by register allocation is already executable on iPIM, we
reorder instructions in the program to maximally exploit the
instruction-level parallelism. Because of the instruction issue
mechanism of our in-order core, the dependency between
adjacent instructions will lead to pipeline stalls. Therefore,
the instruction reordering aims to expose instruction-level
parallelism to the hardware, which eliminates pipeline stalls
and improves the performance. We first build a directed graph
where each node stands for instruction and directed edges
between nodes represent the dependency between instructions.
Then we develop our instruction reordering algorithm which
traverses this directed graph in topological order. We associate
each node with a timestamp to provide an estimation of
its earliest time ready to be issued (7'(v) in Algorithm.1).
When there are multiple instructions available at a time step,
we will schedule the load instruction with the 7" smaller
than the current time step or the node with the smallest 7.
After marking the instruction to be scheduled, we update the
incoming degree of all its outgoing neighbors, and also their
timestamp 7. Finally, all instructions are scheduled into the
output sequence after iterating through |V| time steps. This
graph traversal algorithm is demonstrated in Algorithm 1, and
its time complexity is O(|V|log|V| + |E|) where |V] is the
number of nodes, i.e. instructions, and |E| is the number of
edges in the directed dependency graph.

Memory order enforcement: In addition to data depen-

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 31,2020 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

[r—
[1d_rf(DOx0,R0x0) > comp(ROX0,R0x0,0x2,MUL) ——>{ st_rf(D0x40,R0x0) |

TABLE 11
IMAGE PROCESSING BENCHMARK SETTING.

[1d_rf(DOx1,R0x1) —»{ comp(ROx1,R0x1,0x2,MUL) |——>] st_rf(DOx41,ROx1) |
* : : * H

+ v
[1d_rf(DOXE,ROXE) F—{ comp(ROXE,ROXE,0x2,MUL) —+—>] st_rf(DOX4E,ROXE) |

comp(ROXF,ROXF,0x2,MUL) ——>] st_rf(DOx4F,ROXF) |

[Id_rf(DOXF,ROXF) |
|

— Original data dependency —> Memory request queue dependency
—> Memory row buffer locality dependency

Fig. 5. Instruction reordering example: image brighten.

dency which will block issuing instructions, we also add the
dependency for resource conflicts to prevent pipeline stalls due
to resource contention on DRAM. In particular, issuing two
DRAM load instructions consecutively consumes slots in the
instruction queue at the base logic die while the second instruc-
tion has to be stalled because of the single memory request
queue and a longer DRAM access latency. In some cases, a
large number of consecutive DRAM instructions could occupy
the whole instruction queue impeding the scheduling of further
computation instructions which do not have a dependency on
any instruction in the queue. To prevent pipeline stalls due to
the lower throughput of the memory request queue, we insert
dependency between load instructions and store instructions
to defer the scheduling of consecutive memory instructions.
We use the image brighten pipeline as an example shown in
Fig.5. Since DRAM access latency varies from the case of
row buffer hit to row buffer miss, we also add the third kind
of dependency to enforce the memory accesses to the DRAM
with the same order as they appear in the input program. As
shown in Fig.5, these two kinds of newly added dependency
edges help to avoid pipeline stalls due to DRAM request queue
contention and improves the locality of row buffers as it keeps
the originally good data access locality on image tiles. After
adding these two new kinds of dependency among instructions,
the generated instruction dependency graph is passed to the
instruction reordering stage.

VI. SYSTEM INTEGRATION

We consider iPIM as a standalone accelerator with a sep-
arate address space, which is not a part of the host CPU’s
system memory. This standalone design can avoid the com-
plexity and overhead of supporting virtual memory [9] and
cache coherence [11], which introduces extra communication
traffic between the host and PIM accelerator and offsets the
benefits of PIM. iPIM can be integrated with the host CPU
using a standard bus, such as PCle [50] and AMBA [14],
and can be scaled using off-chip SERDES links similar to
HMC [58].

VII. EVALUATION

We first describe the experimental setup and methodolo-
gies in Sec.VII-A. Next, we show the performance, energy,
and area results of iPIM in Sec.VII-B. In Sec.VII-C, we
demonstrate the advantages of iPIM’s near-bank design and
the effectiveness of decoupled control-execution architecture.

811

[Category [Benchmark [Description
LTiz%leten out(x,y)=ac in(x,y)
Gaussian blur_x(x,y)=(in(x,y)+in(x+1,y)+in(x+2,y))/3
Blur blur_y(x,y)=(blur_x(x,y)+blur_x(x,y+1)+blur_x(x,y+2))/3
. d(x,y)=(in(2x-1,y)+in(2x, y)-2+in(2x+1,y))/4
Single-stage | Downsample |\ ST T 2yt s
Benchmarks - -
Upsample u(x,y)=(in(x/2,y)+in((x+1)/2,y))/2
out(x,y)=(u(x,y/2)+u(x,(y+1)/2))/2
Shift out(x,y)=in(x-4,y-4)
. RDom 1(0,in.width(),0,in.height())
Histogram histogram(in(r.x,r.y))+=1
Bilateral It uses the bilateral grid filter to smooth
Grid images with edges preserved (4 pipeline stages) [15]
Interpolate It interpolates pixel values using a pyramid of
Multi-stage low-resolution samples (12 pipeline stages) [61]
Benchmarks | Local It tone-maps an image and enhances its local contrast
Laplacian using a multi-scale method (23 pipeline stages) [56]
Stencil Tt is composed of a chain of
Chain stencil computations (32 pipeline stages) [61]

In Sec.VII-D, we study the instruction breakdown of each
benchmark. In Sec.VII-E, we show the benefits of iPIM’s
compiler optimizations by conducting a series of comparative
evaluations. In the end, we conclude that iPIM’s compiler
optimizations are near-optimal by showing the achieved high
hardware utilization and instruction per cycle (IPC) number.

A. Experimental Setup

Benchmark and Dataset Selection. As detailed in Table.II,
we use a set of single-stage and multi-stage benchmarks
for an in-depth and comprehensive analysis. The single-stage
benchmarks cover a wide range of computation and memory
patterns in important image processing operations [13], such
as elementwise, stencil, reduction, gather, shift, and other
data-dependent operations. With them, we are able to provide
isolated in-depth analysis for each image processing operation.
The multi-stage benchmarks, which are widely used in image
processing programming languages [19], [30], [41], [61], on
the other hand, contain heterogeneous pipeline stages that
require the support of programmability. We use DIVEK [65]
dataset, which contains over 1500 images covering diverse
scene contents with 8K (7680 x 4320) resolution for all the
evaluated benchmarks. The choice of a high-resolution dataset
is to reflect the application trend on workstations and data-
center that deep learning training, medical image processing,
and geographical information system require higher image
quality.

Hardware Configuration. iPIM assumes 3D-stacking
memory configuration similar to previous near-bank acceler-
ators [3], [64], [73] without changing DRAM’s core timing.
We list the detailed hardware configuration, latency values,
energy consumption, and DRAM settings in Table.IIl. We
also consider important timing parameters to limit power
(trrps=4, trrpL=0, t F aww=16). iPIM contains 8 iPIM cubes
(total ~ 850mm?) to compare with a Tesla V100 GPU card [2]
with 4 HBM stacks (total ~ 1199mm?), where one HBM
stack consumes ~ 96mm? footprint [66].

Simulation Methodology. We develop a cycle-accurate
simulator extended from ramulator [40] by integrating cus-

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 31,2020 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

TABLE III
IPIM HARDWARE CONFIGURATION PARAMETERS.

Parameter Names

Cubes/Vaults/PGs/PEs/InstQueue/DRAMReqQueue
SIMD_len / CAS_width / link_width (SERDES)

Configuration |
8/16/8/4/64/16
4/128b/4

Bank / AddrRF / DataRF / PGSM / VSM (Byte) 16M/256/1K/8K/256K
tCK / tRCD / tCCD / tRTP / tRP / tRAS (ns) 1/14/2/4/14/33
tADDRREF / tDATARF / tPGSM / tVSM (ns) 1/1/111

tADD(SUB) / tMUL / tMAC / tLOGIC (ns) 4/5/8/1

tPEbus / tTSV / tNoC (hop) / tSERDES (hop) (ns) 1/1/1/0.08

RD,WR / PRE,ACT / AddrRF / DataRF (J/access) 0.52n/0.22n/0.43p/2.66p

SIMD Unit / Int ALU (J/access)
PEbus / TSV / SERDES (J/bit)
DRAM_rowbutfer_policy / DRAM_schedule

87.37p/11.05p
0.017p/4.64p/4.50p
open_page / FR-FCFS

100000 21.09 GPU =iPIM xSpeedup (w.r.t. GPU) 50
= 4378 18
210000 16
54 14 o
2 1000 123
o} 103
2 100 2 2
«
@ 10 42;
E 0
FHFSHS S & F S
R g & &> &9 P
Y & R s & @& W& ¢
S & e“& ©

Fig. 6. Throughput and speedup comparison between iPIM and GPU.

tomized compute-logic and buffers with DRAM banks. iPIM
is designed to run at a clock frequency of 1GHz under the
22nm technology node. We use cacti-3DD [16] to evaluate
the inter-PE interconnects, TSV, and the 3D DRAM bank
access latency and energy. The energy, performance, and
area of the address/data register file and process group/vault
scratchpad memory are also simulated by cacti-3DD. The
base die and the SERDES energy are set based on previous
near data processing work [60]. The hardware components
of SIMD units and integer ALUs are synthesized by design
compiler [24] to derive performance, power, and area results.
For all the evaluated components on the DRAM die, we
conservatively assume x2 area overhead considering reduced
metal layers in the DRAM process [73]. For the control core
on the base logic die, we adopt an in-order ARM cortex-AS5
core [1] to evaluate its area and power. For the GPU evaluation,
the baseline image processing workloads are written in Halide
with manually-tuned schedules. The GPU performance and
power are measured from nvprof and nvidia-smi, respectively.

B. Performance, Energy-efficiency, Area, and Thermal Issues

Performance. iPIM achieves 11.02x average speedup over
the GPU as shown in Fig.6. From the hardware’s point of view,
this speedup is mainly attributed to iPIM’s ample memory
bandwidth as a result of near-bank architecture (more compar-
isons in Sec.VII-C). From the software’s point of view, this
high speedup is achieved through good compiler optimizations
(more analysis in Sec.VII-E).

Next, we explain the variations in the speedup for different
benchmarks. First, the Brighten benchmark consists of ele-
mentwise operations which are completely bound by memory

812

TABLE IV
AREA EVALUATION OF IPIM COMPONENTS ON THE DRAM DIE
CONSIDERING DRAM PROCESS OVERHEAD.

[Name { Number { Area (mm?) { Overhead (%) \
SIMD Unit 64 2.26 2.36
Int ALU 64 0.32 0.33
Address Register File | 64 0.20 0.21
Data Register File 64 1.79 1.86
Memory Controller 16 1.84 1.92
PGSM 16 3.87 4.03
Total - 10.28 10.71

bandwidth, so iPIM’s enormous bank-level bandwidth can
provide very good speedup (21.09%). Second, the Histogram
benchmark involves data-dependent computation resulting in
inferior performance using Halide’s default schedule on GPU.
The schedule on iPIM converts it into a reduction of parallel
reduced partial histogram results, thus it achieves significant
performance improvement (43.78x). Third, Blur and Stencil
Chain benchmarks only have moderate speedup (4.32x and
4.30x, respectively) on iPIM. Later analysis (Sec.VII-D and
Sec.VII-E2) shows that these two benchmarks have higher
computation intensity than other benchmarks, and involve a lot
of index calculations which are bound by address register file.
As a conclusion, the results indicate that iPIM can effectively
accelerate a wide range of image processing applications.

Energy-efficiency. iPIM achieves 79.49% average energy
saving over the GPU (Fig.7). The energy saving mainly comes
from the reduction of expensive data movement compared
with GPU, since iPIM’s compute-logic can use the local bank
without off-chip data access. Sec.VII-C2 provides a more
detailed energy breakdown to show the small overhead of data
movement in iPIM. Also, we observe that for each benchmark
the energy saving in Fig.7 is approximately proportional to the
speedup in Fig.6. This is because iPIM’s increased bank-level
bandwidth is a result of near-bank data access, which also
contributes to the reduction of data movement energy.

Next, we explain the difference in energy saving between
single-stage benchmarks and multi-stage benchmarks (89.26%
and 66.81%, respectively). iPIM employs compute_root
schedule, where intermediate data between pipelines are writ-
ten back to banks without fusing. In comparison, since Halide
employs pipeline fusion for multi-stage benchmarks on GPU,
the expensive off-chip memory access can be reduced due to
increased on-chip data reuse. As a result, iPIM has a slight
drop in energy saving for multi-stage benchmarks.

Area. iPIM’s decoupled control-execution architecture is
area-efficient because it only adds small area overhead (ex-
ecution part) per DRAM die and the control core can be
well fitted on the base logic die. First, we evaluate the
area of execution components in the PIM layers considering
DRAM process overhead (Fig.2(c)), and normalize the total
added area to a DRAM die (96mm? [66]). We show that
the added area per DRAM die is small (10.71%) to support
programmability according to Table.IV. Second, we evaluate
the area of iPIM’s control core on the base logic die (Fig.2(b)).
The core consumes 0.92mm? total silicon footprint (including

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 31,2020 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

GPU =iPIM x Energy Saving (w.r.t. GPU)

Energy per Image (J)
Energy Saving (%)

Fig. 7. Energy comparison between iPIM and GPU.

Speedup (w.r.t. base-die) x Energy Saving (w.r.t. base-die) %0

10 <
=
9)
8 % x x 2 X x 28 of
E * x £
= 6 x 50 %
g5 . < Jng
&4 30 &
3 0 g
1 10 |
0 0
$ & ¢ R D
sg\é\ Q\o &Q\ Q\ %’Q& qu‘b& 0‘\ Qe\‘b" \Q&Q v‘b’o 6&‘)0
o R > ;
< &K & & & & S
Qe A A > %@

Fig. 8. Comparison of near-bank and process-on-base-die solutions.

the VSM which takes 0.23mm?), and it can be well fitted into
the extra area of each vault (3.5mm? [29]) on the base logic
die. On the contrary, if this control core is naively integrated
with each bank, the total area overhead per DRAM die will
increase to 122.36%, which is 10.42x larger than that of our
decoupled control-execution design.

Thermal Issues. iPIM’s peak power is 63W per cube
considering both DRAM dies and the base logic die, and the
peak power density is 593mW/mm?2. The normal operating
temperature for 8Hi HBM2 DRAM dies is 105°C [66],
and we conservatively assume the DRAM dies in our case
operates under 85°C. A prior study on 3D PIM thermal
analysis [75] shows that active cooling solutions can effec-
tively satisfy this thermal constraint (85°C'). Both commodity-
server active cooling solution [51] (peak power density al-
lowed: 706mW/mm?) and high-end-server active cooling
solution [25] (peak power density allowed: 1214mW/ mm?))
can be used. Also, compared with previous work [75] where
PIM logics are concentrated on the base logic die far from the
top heat sink, iPIM distributes the PIM logics evenly to each
DRAM dies, so the heat dissipation will be much better [4]. In
addition, we note that the majority of the peak power (78.5%)
is induced by simultaneously activating/precharging DRAM
banks. Since iPIM compiler optimizes row buffer locality for
image processing workloads, for memory-intensive workloads
with ideal row buffer locality, the frequency of this activity is
relatively low.

C. Architecture Analysis

1) Comparison of iPIM and process-on-base-die solution:
We compare iPIM with the process-on-base-die (PonB) solu-
tion and observe that iPIM on average achieves 3.61 x speedup

s DRAM mSIMD Unit @ AddrRF oDataRF sPGSM = Others

Brighten
Blur 1

P

Dow
Up

Shift I
Histogram i
Bilateral Grid in|
Interpolate 1
Local Laplaci T
Stencil Chain T
Mean ai;

0% 20% 40% 60% 80% 100%

Fig. 9. Energy breakdown of iPIM programs.

and 56.71% energy saving as shown in Fig.8. We further
explain the PonB configuration and the advantages of iPIM
over the PonB solution. The only difference of PonB with
iPIM is that all near-bank components are moved to the base
logic die, and these components access their DRAM banks
through TSVs. We evaluate PonB using the same benchmarks
and simulator while serializing the data traffic on the shared
TSVs between the base logic die and the DRAM dies. The
inferior performance of the PonB solution is because all mem-
ory accesses need to go through TSVs with limited bandwidth,
which is only 10% of iPIM’s peak memory bandwidth. The
energy overhead of the PonB solution is induced by expensive
in-cube data movement energy, which is 2.48 x of iPIM’s local
bank access energy. We argue that it is impractical for the
PonB solution to have the same memory bandwidth as iPIM
by increasing the number of TSVs, since this will increase
the TSV overhead by 10x, which translated to 187% area
overhead per DRAM die.

2) Energy Breakdown: We provide a detailed energy break-
down of iPIM programs shown in Fig.9. The DRAM in this
figure contains the background energy, activation/precharge
(RAS) energy, read/write (CAS) energy, and refresh energy.
The SIM Dunit contains all floating/integer operation energy
of the SIMD unit. The AddrRF/DataRF/PGSM contains
the read/write energy and leakage energy. The Others con-
tains data movement energy and control core’s energy on the
base logic die. The breakdown shows that iPIM’s decoupled
execution-control architecture spends most of the energy on
PIM dies (89.17%), and only a small part on data movements
and the control core (10.83%). This can be further justified by
the instruction breakdown analysis in Sec.VII-D. The low en-
ergy consumption of inter-vault and intra-vault data movement
is contributed from (1) iPIM’s near-bank architecture and (2)
localized data movement benefited from the memory hierarchy
and compiler optimizations.

3) Sensitivity Analysis: We conduct sensitivity studies on
how the number of registers per PE (RF) and Process Group
Scratchpad size (PGSM) will impact the execution time. First,
to study the RF sensitivity (Fig.10(a)), we vary the RF value
from 16 to 128 and normalize the execution time to the case
when RF=128. We observe that RF=16, RF=32, and RF=64
have 46.8%, 26.8%, and 9.5% performance drop compared
to RF=128, respectively. The performance drop is attributed
to the decreased number of registers that results in (1) more

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 31,2020 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

(a) 16 =32 =64 w128

E !
£ 3
S
2
)
4
2 0
z & 3y
E F T FFFHFFfT & FFHS S
z & & 5 P S R
z & & F F &S
Q0 é§$ S &?\ %@
A Y
i 4(b) 2KB =4KB =8KB
5
g 2
&
1
=
@
% 0
S SRR e, >
i & & eé‘& s & & & & \9&9 & &
2 & F Q'v‘é& & \“_&ﬁ \)‘)Q B N
) A D &
o) o <
A Y

Fig. 10. Sensitivity of (a) the number of registers; (b) the scratchpad size.

mintra-vault data movement
mindex calculation

= computation
minter-vault data movement
m control flow + synchronization

Brighten
Blur
Dow pl
Upsampl
Shift
Histogram
Bilateral Grid
Interpolate
Local Laplaci
Stencil Chain
Mean

0% 20% 40% 60% 80% 100%

Fig. 11. Instruction breakdown of iPIM programs.

registers spilling to the local DRAM bank, and (2) increased
register data dependency. Second, to study the PGSM sensitiv-
ity (Fig.10(b)), we change the PGSM from 2K B to 8K B and
normalize the execution time to the case when PGSM=8K B.
We observe that PGSM=2K B and RF=4K B have 58.9% and
39.0% performance drop compared to PGSM=8K B, respec-
tively. This is because reduced scratchpad size will increase
the number of accesses to long latency DRAM. For this paper,
we choose RF=64 and PGSM=8K B as a tradeoff between
performance and area overhead (Table.IV).

D. Instruction Breakdown

From the instruction breakdown of iPIM programs shown
in Fig.11, we can observe that each benchmark is a com-
bination of different instructions with varied ratios. From
the programmability perspective, this indicates that SIMB
ISA efficiently maps heterogeneous pipeline stages which
exhibit diverse computation, data movement, and control flow
patterns. Therefore, SIMB ISA can provide flexible support
for a wide range of image processing applications.

We also find that index calculation instructions on average
take 23.25% of total instruction count. Since the image uses
2D memory abstraction and physical memory assumes linear
address space, frequent index calculations are required to map
the 2D image reference locations to the corresponding memory
addresses. This index calculation overhead takes more than

S

mopt v.s. baselinel mopt v.s. baseline2 = opt v.s.b

3 optvs.b

w

Speedup
[

= ¥ 3 o
SChmDLwhL s

Fig. 12. Effectiveness of different iPIM compiler optimizations.

28% of total instruction count for Blur, Shift, Histogram,
Bilateral Grid, and Stencil Chain benchmarks. This provides
a direct explanation about iPIM’s moderate speedup on these
benchmarks as shown in Fig.6 except for Histogram.
Another important observation is that the inter-vault data
movement instructions are a very small part (1.44%) of the
total instruction count. This confirms image processing kernels
have good data parallelism and can be efficiently mapped onto
near-bank architecture with little global data movement.

E. Compiler Analysis

1) Effectiveness of compiler optimizations: We add a set
of comparative evaluations to justify the performance bene-
fits provided by iPIM’s compiler optimizations (Fig.12). We
summarize these optimization choices as follows. The register
allocation policy determines whether to use the minimum
number of physical registers (min) or scatter registers to
avoid the dependency of instructions (max). The instruction
reordering option determines whether to reorder the instruction
of programs generated by the register allocation stage. The
memory order enforcement option chooses whether to add
dependency edges on adjacent memory requests or not before
sending the dependency graph to the instruction reordering
stage. The optimized design (opt) adopts the max register
allocation policy and applies both instruction reordering and
memory order enforcement. The naive baseline (baselinel)
assumes the men register allocation policy without instruction
reordering. All of baseline2, baseline3, and baseline4 have
only one different compiler optimization option compared to
opt . Specifically, baseline2 uses the min register allocation
policy, baseline3 does not apply instruction reordering, and
baseline4 does not enforce memory order. The rest of settings
for baseline2 — 4 remain the same as opt.

We observe that all of iPIM compiler optimizations provide
an overall 3.19x speedup (opt v.s. baselinel). Further analy-
sis shows that max register allocation provides 2.59x speedup
than min register allocation (opt v.s. baseline2). This is be-
cause iPIM’s in-order core does not support expensive register
renaming mechanism in the out-of-order execution, and max
register allocation can optimally eliminate output-dependency
and anti-dependency to prevent issue stall of later instructions.
Next, instruction reordering provides 2.74x speedup (opt
v.s. baseline3), since it can expose more instruction-level-

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 31,2020 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

SIMD Unit = Address RF = Data RF x Instruction Per Cycle (IPC)

[=
(=}

Utilization (%)
W B W
(=] (=]
OO0 o000000—
—NWhRUNAJ0O
1PC

Fig. 13. iPIM’s key components’ utilization and IPC.

parallelism by overlapping instructions without dependency.
In the end, enforcement of memory-order provides 1.30x
speedup (opt v.s. baselined). The reason is that it can
maximally interleave other instructions with memory access
requests and it also improves row buffer locality.

2) IPC and Utilization analysis: As shown in Fig.13, we
provide the IPC of the control cores and the utilization of key
hardware components on the PIM dies. First, we observe that
the average IPC achieves a very high value of 0.63 after inten-
sive compiler optimizations. This implies that iPIM currently
attains near-optimal performance, and further improvement
has an upper bound of 1.59x assuming no pipeline stalls.
Second, detailed analysis shows that for each benchmark,
key hardware components reach very high utilization. For
example, benchmarks with intensive index calculations (Blur,
Shift, Histogram, Bilateral Grid, and Stencil Chain) realize
more than 40% utilization on the address register file. As
a conclusion, the high IPC and hardware utilization indicate
current compilation flow has well-optimized image processing
applications on iPIM architecture.

VIII. RELATED WORK

Image processing accelerators. Previous work has ex-
plored Field Programmable Gate Array (FPGA) [19], [41],
[59], Coarse Grain Reconfigurable Arrays (CGRA) [67],
[68], and ASIC solutions [20], [49] for image processing
acceleration. These accelerators target mobile and embedded
platforms, where power-efficiency and low latency are the
primary goals of optimization. Also, the application scenar-
ios are mostly image streaming applications with a small
working set, so spatially distributed data flow architecture is
often adopted to map the entire image processing pipeline.
To achieve the desired power-efficiency, line buffer [67] is
widely used to exploit producer-consumer data locality and
fuse pipeline stages, so the intermediate data can stay on-chip
without expensive off-chip memory access. In comparison,
iPIM focuses on data center and workstation environments,
where the complex algorithm pipelines and large working set
due to high-resolution images need both high memory capacity
and bandwidth. Thus, conventional compute-centric accelera-
tors will suffer from the memory bandwidth bottleneck, while
iPIM’s near-bank architecture provides abundant bandwidth
resources to tackle this challenge.

Process-in-memory (PIM) accelerators. We compare
iPIM with previous work using practical DRAM technol-
ogy without invasive modifications to the DRAM bank’s
circuitry [46], [47]. The first category of research [26], [38],
[57] that tries to integrate processor cores to DRAM dies
suffers from large area overhead. iPIM solves this challenge
by proposing a control-execution decoupled approach where
the control core is placed on the base logic die and shared
by execution units closely integrated with each bank. The
second category of research adopts 3D process-on-logic-die
architecture [5], [10], [29], [33], [39], [45], [54], [70], [74],
[76], which is bound by the TSV bandwidth available in
the base logic die. iPIM evaluation shows 3.61x speedup
and 56.71% energy saving compared with this approach. To
further improve memory bandwidth, a few work [3], [64],
[73] employs near-bank architecture similar to this work, but
only supports limited fixed functionalities and cannot map the
heterogeneous image processing pipelines which have diverse
computation and memory patterns. iPIM proposes SIMB ISA
and an end-to-end compilation flow to solve this programma-
bility challenge. In addition, some recent work proposes inte-
grating computation logic on the DRAM DIMM modules to
enable low overhead near-data processing [6], [7], [32], [43].
While practical, these architecture designs only have small
bandwidth improvement over CPUs compared with 3D-PIM
solutions. There are also studies exploiting PIM architectures
based on non-volatile memory (NVM) technologies [8], [17],
[27], [35], [44], [69]. Compared with these studies, DRAM
provides a better write endurance than NVM, which is critical
to image processing applications where intermediate results of
pipelines need to be written back to memory.

IX. CONCLUSION

This paper proposes iPIM, the first programmable in-
memory image processing accelerator using near-bank archi-
tecture. iPIM uses a decoupled control-execution architecture
to support lightweight programmability. It also contains a
novel SIMB (Single-Instruction-Multiple-Bank) ISA to enable
various computation and memory patterns for heterogeneous
image processing pipelines. In addition, this paper develops an
end-to-end compilation flow extended from Halide with new
schedules for iPIM. The compiler backend further contains op-
timizations for iPIM including register allocation, instruction
reordering, and memory order enforcement. Evaluations show
that iPIM supports programmability with small area overhead,
and provides significant speedup and energy saving compared
with GPU. Further analysis demonstrates the benefits of iPIM
compared with the previous process-on-base-logic architecture
design and the effectiveness of iPIM’s compiler optimizations.

REFERENCES

[1] “ARM Cortex-AS5 processor,” 2009, https://https://www.arm.com/
products/silicon-ip-cpu/cortex-a/cortex-a5. [Online]. Available: https:
//https://www.arm.com

[2] “NVIDIA Tesla V100 GPU Architecture,” 2018,
https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf. [Online]. Available: http://www.nvidia.com

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 31,2020 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

(3]

=

=

(6]

[8

(91

[10]

[11]

[12]

[13

[14]

(15

[16]

[17]

[18

[19

[20]

[21]

[22]
[23]

S. Aga, N. Jayasena, and M. Ignatowski, “Co-ml: a case for collaborative
ml acceleration using near-data processing,” in Proceedings of the
International Symposium on Memory Systems. ACM, 2019, pp. 506—
517.

A. Agrawal, J. Torrellas, and S. Idgunji, “Xylem: Enhancing vertical
thermal conduction in 3d processor-memory stacks,” in 2017 50th
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). IEEE, 2017, pp. 546-559.

J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” ACM SIGARCH
Computer Architecture News, vol. 43, no. 3, pp. 105-117, 2016.

M. Alian and N. S. Kim, “Netdimm: Low-latency near-memory network
interface architecture,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2019, pp. 699-711.

M. Alian, S. W. Min, H. Asgharimoghaddam, A. Dhar, D. K.
Wang, T. Roewer, A. McPadden, O. O’Halloran, D. Chen, J. Xiong
et al., “Application-transparent near-memory processing architecture
with memory channel network,” in 2018 51st Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO). 1EEE, 2018,
pp. 802-814.

A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S.
Williams, P. Faraboschi, W.-m. W. Hwu, J. P. Strachan, K. Roy et al.,
“Puma: A programmable ultra-efficient memristor-based accelerator
for machine learning inference,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2019, pp. 715-731.

A. Barbalace, A. Iliopoulos, H. Rauchfuss, and G. Brasche, “It’s time to
think about an operating system for near data processing architectures,”
in Proceedings of the 16th Workshop on Hot Topics in Operating
Systems. ACM, 2017, pp. 56-61.

A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu,
R. Thakur, D. Kim, A. Kuusela, A. Knies, P. Ranganathan et al.,
“Google workloads for consumer devices: Mitigating data movement
bottlenecks,” in ACM SIGPLAN Notices, vol. 53, no. 2. ACM, 2018,
pp. 316-331.

A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, R. Ausavarung-
nirun, K. Hsieh, N. Hajinazar, K. T. Malladi, H. Zheng et al., “Conda:
Efficient cache coherence support for near-data accelerators,” 2019.

S. T. Bow, Pattern recognition and image preprocessing. CRC press,
2002.

G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with
the OpenCV library. ” O’Reilly Media, Inc.”, 2008.

K.-y. Chae, “Advanced microcontroller bus architecture (amba) system
with reduced power consumption and method of driving amba system,”
Jun. 19 2007, uS Patent 7,234,011.

J. Chen, S. Paris, and F. Durand, “Real-time edge-aware image process-
ing with the bilateral grid,” in ACM Transactions on Graphics (TOG),
vol. 26, no. 3. ACM, 2007, p. 103.

K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and N. P.
Jouppi, “Cacti-3dd: Architecture-level modeling for 3d die-stacked dram
main memory,” in Proceedings of the Conference on Design, Automation
and Test in Europe. EDA Consortium, 2012, pp. 33-38.

P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 27-39, 2016.

Y. Chi, J. Cong, P. Wei, and P. Zhou, “Soda: stencil with optimized
dataflow architecture,” in 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 1EEE, 2018, pp. 1-8.

N. Chugh, V. Vasista, S. Purini, and U. Bondhugula, “A dsl compiler
for accelerating image processing pipelines on fpgas,” in 2016 Interna-
tional Conference on Parallel Architecture and Compilation Techniques
(PACT). 1IEEE, 2016, pp. 327-338.

J. Clemons, C.-C. Cheng, I. Frosio, D. Johnson, and S. W. Keckler, “A
patch memory system for image processing and computer vision,” in The
49th Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Press, 2016, p. 51.

E. Del Sozzo, R. Baghdadi, S. Amarasinghe, and M. D. Santambrogio,
“A common backend for hardware acceleration on fpga,” in 2017 IEEE
International Conference on Computer Design (ICCD). 1EEE, 2017,
pp. 427-430.

T. M. Deserno, “Biomedical image processing,” 2011.

J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss,
J. Granacki, J. Shin, C. Chen, C. W. Kang et al., “The architecture

816

24

[25]

[26]

27

[28

[29]

[30

[31]

[32]

[33

[34]

[35]

[36

[37

[38

[39]

[40]

[41

[42]

[43]

of the diva processing-in-memory chip,” in Proceedings of the 16th
international conference on Supercomputing, 2002, pp. 14-25.

G. Dupenloup, “Automatic synthesis script generation for synopsys
design compiler,” Dec. 28 2004, uS Patent 6,836,877.

Y. Eckert, N. Jayasena, and G. H. Loh, “Thermal feasibility of die-
stacked processing in memory,” 2014.

D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. McKen-
zie, “Computational ram: Implementing processors in memory,” /EEE
Design & Test of Computers, vol. 16, no. 1, pp. 32-41, 1999.

D. Fujiki, S. Mahlke, and R. Das, “In-memory data parallel processor,”
in ACM SIGPLAN Notices, vol. 53, no. 2. ACM, 2018, pp. 1-14.

J. Fung and S. Mann, “Using graphics devices in reverse: Gpu-based
image processing and computer vision,” in 2008 IEEE international
conference on multimedia and expo. 1EEE, 2008, pp. 9-12.

M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3d memory,”
in ACM SIGARCH Computer Architecture News, vol. 45, no. 1. ACM,
2017, pp. 751-764.

J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell,
A. Vasilyev, M. Horowitz, and P. Hanrahan, “Darkroom: compiling
high-level image processing code into hardware pipelines.” ACM Trans.
Graph., vol. 33, no. 4, pp. 144-1, 2014.

M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC). 1EEE, 2014, pp. 10-14.

W. Huangfu, X. Li, S. Li, X. Hu, P. Gu, and Y. Xie, “Medal: Scalable
dimm based near data processing accelerator for dna seeding algorithm,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 587-599.

J. Jang, J. Heo, Y. Lee, J. Won, S. Kim, S. J. Jung, H. Jang, T. J.
Ham, and J. W. Lee, “Charon: Specialized near-memory processing
architecture for clearing dead objects in memory,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 2019, pp. 726-739.

J. R. Jensen, Introductory digital image processing: a remote sensing
perspective. Prentice Hall Press, 2015.

Y. Ji, Y. Zhang, X. Xie, S. Li, P. Wang, X. Hu, Y. Zhang, and
Y. Xie, “Fpsa: A full system stack solution for reconfigurable reram-
based nn accelerator architecture,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 733-747.

Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the
nvidia volta gpu architecture via microbenchmarking,” arXiv preprint
arXiv:1804.06826, 2018.

N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. E.
Shaw, J. Kim, and W. J. Dally, “A detailed and flexible cycle-accurate
network-on-chip simulator,” in 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). 1EEE, 2013,
pp- 86-96.

Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and
J. Torrellas, “Flexram: Toward an advanced intelligent memory system,”
in Proceedings 1999 IEEE International Conference on Computer
Design: VLSI in Computers and Processors (Cat. No. 99CB37040).
IEEE, 1999, pp. 192-201.

D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“Neurocube: A programmable digital neuromorphic architecture with
high-density 3d memory,” in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). 1EEE, 2016, pp. 380-
392.

Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
dram simulator,” IEEE Computer architecture letters, vol. 15, no. 1, pp.
45-49, 2015.

D. Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang, S. Hadjis, R. Fiszel,
T. Zhao, L. Nardi, A. Pedram, C. Kozyrakis et al., “Spatial: A language
and compiler for application accelerators,” in ACM Sigplan Notices,
vol. 53, no. 4. ACM, 2018, pp. 296-311.

P. M. Kogge, “Execube-a new architecture for scaleable mpps,” in /994
International Conference on Parallel Processing Vol. 1, vol. 1. 1EEE,
1994, pp. 77-84.

Y. Kwon, Y. Lee, and M. Rhu, “Tensordimm: A practical near-memory
processing architecture for embeddings and tensor operations in deep
learning,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019, pp. 740-753.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 31,2020 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang, “Rram-based
analog approximate computing,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 34, no. 12, pp. 1905-
1917, 2015.

J. Li, X. Wang, A. Tumeo, B. Williams, J. D. Leidel, and Y. Chen,
“Pims: a lightweight processing-in-memory accelerator for stencil com-
putations,” in Proceedings of the International Symposium on Memory
Systems. ACM, 2019, pp. 41-52.

S. Li, A. O. Glova, X. Hu, P. Gu, D. Niu, K. T. Malladi, H. Zheng,
B. Brennan, and Y. Xie, “Scope: A stochastic computing engine for
dram-based in-situ accelerator.” in MICRO, 2018, pp. 696-709.

S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa:
A dram-based reconfigurable in-situ accelerator,” in 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2017, pp. 288-301.

X. L. Li, B. Veeravalli, and C. Ko, “Distributed image processing on
a network of workstations,” International Journal of Computers and
Applications, vol. 25, no. 2, pp. 136-145, 2003.

M. Mahmoud, B. Zheng, A. D. Lascorz, F. H. Assouline, J. Assouline,
P. Boucher, E. Onzon, and A. Moshovos, “Ideal: Image denoising
accelerator,” in 2017 50th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 1EEE, 2017, pp. 82-95.

C. McGinnis, “Pci-sig® fast tracks evolution to 32gt/s with pci express
5.0 architecture,” News Release, June, vol. 7, 2017.

D. Milojevic, S. Idgunji, D. Jevdjic, E. Ozer, P. Lotfi-Kamran, A. Panteli,
A. Prodromou, C. Nicopoulos, D. Hardy, B. Falsari et al., “Thermal
characterization of cloud workloads on a power-efficient server-on-
chip,” in 2012 IEEE 30th International Conference on Computer Design
(ICCD). IEEE, 2012, pp. 175-182.

R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and K. Fa-
tahalian, “Automatically scheduling halide image processing pipelines,”
ACM Transactions on Graphics (TOG), vol. 35, no. 4, p. 83, 2016.

R. T. Mullapudi, V. Vasista, and U. Bondhugula, “Polymage: Automatic
optimization for image processing pipelines,” in ACM SIGPLAN Notices,
vol. 50, no. 4. ACM, 2015, pp. 429-443.

L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “Graphpim:
Enabling instruction-level pim offloading in graph computing frame-
works,” in 2017 IEEE International symposium on high performance
computer architecture (HPCA). 1EEE, 2017, pp. 457-468.

NVIDIA, “Nvidia data loading library (dali),” NVIDIA DALI documen-
tation: https://github.com/NVIDIA/DALI, 2019.

S. Paris, S. W. Hasinoff, and J. Kautz, “Local laplacian filters: Edge-
aware image processing with a laplacian pyramid.” ACM Trans. Graph.,
vol. 30, no. 4, p. 68, 2011.

D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent ram,”
IEEE micro, vol. 17, no. 2, pp. 34-44, 1997.

J. T. Pawlowski, “Hybrid memory cube (hmc),” in 2011 IEEE Hot Chips
23 Symposium (HCS). 1EEE, 2011, pp. 1-24.

J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-Kelley, and
M. Horowitz, “Programming heterogeneous systems from an image pro-
cessing dsl,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 14, no. 3, p. 26, 2017.

S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, “Ndc: Analyzing the impact
of 3d-stacked memory+logic devices on mapreduce workloads,” in 2014
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). 1EEE, 2014, pp. 190-200.

J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-
rasinghe, “Halide: a language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines,” in Acm
Sigplan Notices, vol. 48, no. 6. ACM, 2013, pp. 519-530.

S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory access scheduling,” in ACM SIGARCH Computer Architecture
News, vol. 28, no. 2. ACM, 2000, pp. 128-138.

B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin,
“Scaling the bandwidth wall: challenges in and avenues for cmp scaling,”
ACM SIGARCH Computer Architecture News, vol. 37, no. 3, pp. 371—
382, 20009.

H. Shin, D. Kim, E. Park, S. Park, Y. Park, and S. Yoo, “Mcdram:
Low latency and energy-efficient matrix computations in dram,” /EEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 11, pp. 2613-2622, 2018.

817

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

M. D. M. E J. L. Shuhang Gu, Andreas Lugmayr and R. Timofte,
“Div8k: Diverse 8k resolution image dataset,” in International Confer-
ence on Computer Vision (ICCV) Workshops, October 2019.

K. Sohn, W. Yun, R. Oh, C. Oh, S. Seo, M. Park, D. Shin, W. Jung,
S. Shin, J. Ryu, H. Yu, J. Jung, K. Nam, S. Choi, J. Lee, U. Kang,
Y. Sohn, J. Choi, C. Kim, S. Jang, and G. Jin, “A 1.2 v 20 nm 307
gb/s hbm dram with at-speed wafer-level io test scheme and adaptive
refresh considering temperature distribution,” IEEE Journal of Solid-
State Circuits, vol. 52, no. 1, pp. 250-260, 2017.

A. Vasilyev, N. Bhagdikar, A. Pedram, S. Richardson, S. Kvatinsky,
and M. Horowitz, “Evaluating programmable architectures for imaging
and vision applications,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1EEE, 2016, pp. 1-13.
F.-J. Veredas, M. Scheppler, W. Moffat, and B. Mei, “Custom implemen-
tation of the coarse-grained reconfigurable adres architecture for multi-
media purposes,” in International Conference on Field Programmable
Logic and Applications, 2005. 1EEE, 2005, pp. 106-111.

K. Wu, G. Dai, X. Hu, S. Li, X. Xie, Y. Wang, and Y. Xie, “Memory-
bound proof-of-work acceleration for blockchain applications,” in Pro-
ceedings of the 56th Annual Design Automation Conference 2019, 2019,
pp. 1-6.

C. Xie, X. Zhang, A. Li, X. Fu, and S. Song, “Pim-vr: Erasing motion
anomalies in highly-interactive virtual reality world with customized
memory cube,” in 2019 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). 1EEE, 2019, pp. 609-622.

Y. Xie and J. Zhao, “Die-stacking architecture,” Synthesis Lectures on
Computer Architecture, vol. 10, no. 2, pp. 1-127, 2015.

Y. Yan and L. Huang, “Large-scale image processing research cloud,”
Cloud Computing, pp. 88-93, 2014.

A. Yazdanbakhsh, C. Song, J. Sacks, P. Lotfi-Kamran, H. Esmaeilzadeh,
and N. S. Kim, “In-dram near-data approximate acceleration for gpus,”
in Proceedings of the 27th International Conference on Parallel Archi-
tectures and Compilation Techniques. ACM, 2018, p. 34.

M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis,
and X. Qian, “Graphp: Reducing communication for pim-based graph
processing with efficient data partition,” in 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2018, pp. 544-557.

Y. Zhu, B. Wang, D. Li, and J. Zhao, “Integrated thermal analysis
for processing in die-stacking memory,” in Proceedings of the Second
International Symposium on Memory Systems, 2016, pp. 402-414.

Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and X. Qian,
“Graphq: Scalable pim-based graph processing,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 2019, pp. 712-725.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 31,2020 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

