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Abstract—The problem of detecting and isolating a correlated
pair among multiple Gaussian information sources is considered.
It is assumed that there is at most one pair of correlated sources
and that observations from all sources are acquired sequentially.
The goal is to stop sampling as quickly as possible, declare
upon stopping whether there is a correlated pair or not, and if
yes, to identify it. Specifically, it is required to control explicitly
the probabilities of three kinds of error: false alarm, missed
detection, wrong identification. We propose a procedure that not
only controls these error metrics, but also achieves the smallest
possible average sample size, to a first-order approximation,
as the target error rates go to 0. Finally, a simulation study
is presented in which the proposed rule is compared with an
alternative sequential testing procedure that controls the same
error metrics.

I. INTRODUCTION

The quick detection and isolation of the correlation structure
in a p-variate Gaussian random vector is of interest in many
areas of science and engineering, such as environmental moni-
toring [1], blind source separation [2], biometric authentication
[3], sensor networks [4], fault detection in power grid [5],
neural coding [6]. When p = 2, we have the problem of
sequential testing regarding the correlation coefficient of a
bivariate Gaussian distribution. This problem has been con-
sidered in [7], [8], [9], [10], where the proposed tests reduce
to certain Sequential Probability Ratio Tests [11], and also in
[12], where a repeated generalized likelihood ratio test with
a fixed maximum sample size was proposed. In the general
multivariate case (p > 2), it is natural to consider a sequential
multiple testing problem in the spirit of [13], [14], [15], [16],
[17]. Such a formulation was proposed in [18] under the
assumption that only one component/source can be observed at
each sampling instance and that observations from dependent
components exhibit the same correlation even when they are
taken far apart in time.

In this paper we assume that we observe at each sampling
instance all components of a Gaussian random vector and that
at most one pair of components is correlated. The goal is to
stop sampling as quickly as possible, declare upon stopping
whether there is a correlated pair or not, and if yes, to identify
it. Specifically, we need to control explicitly the probabilities
of three kinds of error: detecting a correlated pair when there
is none (false alarm), failing to detect any correlated pair

when there is one (missed detection), claiming correctly that
there is a correlated pair but identifying it incorrectly (wrong
isolation). The main contribution of this work is that we
propose a procedure that controls explicitly these error metrics,
and most importantly it achieves the smallest possible average
sample size, to a first-order approximation, as the target error
rates go to 0.

The proposed rule is inspired by the “gap-intersection” rule
in [16], however there are some important differences between
this work and the current paper. First, the test statistics that
correspond to the individual hypotheses in [16] are indepen-
dent, which is not the case in our setup. Second, in [16] there
are only two kinds of error under control, whereas here we
explicitly control three error metrics. Third, [16] deals with
the simultaneous testing of binary simple hypotheses, whereas
here we are interested in the simultaneous testing of simple
nulls versus two-sided alternatives.

Finally, we also compare numerically the proposed proce-
dure with a modified version of the “intersection” rule, pro-
posed in [17], which takes into account the prior information
that there is at most one correlated pair. This procedure has
two free parameters, which nevertheless can be selected so that
the three error constraints are satisfied. Our simulation study
suggests that the proposed procedure performs significantly
better, at least when the constraint on the probability of wrong
isolation is the strictest.

The remainder of the paper is organized as follows: In Sec-
tion II we formulate the problem mathematically. In Section III
we introduce the proposed rule and in Section IV we establish
its asymptotic optimality. In Section V we present the results
of the simulation study.

II. PROBLEM FORMULATION

We consider p information sources, {Xi(t) : t ∈ N}, i =
1, . . . p, each generating a sequence of i.i.d. standard Gaussian
random variables, i.e., Xi(t) ∼ N (0, 1) for every t ∈ N ≡
{1, 2 . . .} and 1 ≤ i ≤ p. The correlation between any two
sources is assumed to be constant over time, which means
that if we denote by E the set of all (unordered) pairs, i.e.,
E := {(i, j) : 1 ≤ i < j ≤ p}, and e = (k, l) ∈ E , then there
is a number ρe ∈ (−1, 1) such that

Corr(Xk(t), Xl(t)) = ρe ∀ t ∈ N.
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We are interested in the case that there is at most one strongly
correlated pair of sources and the problem is to detect whether
such a pair exists and, if this is indeed the case, to identify
it. Specifically, given a user-specified value ρ∗ ∈ (0, 1) that
represents a correlation value large enough to be of interest,
we want to test, for each pair e ∈ E , the null hypothesis
ρe = 0 against the two-sided alternative |ρe| = ρ∗, when at
most one of the K := |E| =

(
p
2

)
nulls should be rejected.

We assume that the data from all sources become available
sequentially and the goal is to stop sampling and make a
decision as soon as possible. Thus, the σ-algebra generated
by the observations in the first n sampling instances is Fn :=
σ(X(1), . . . , X(n)), where X(n) := (X1(n), . . . , Xp(n)). A
sequential test for this problem is a pair (τ, d) that consists
of an {Fn}-stopping time, τ , at which we stop sampling
from all the sources, and an Fτ -measurable decision rule
d := (de, e ∈ E), each element of which is a Bernoulli random
variable, with the understanding that for each e ∈ E the
sources in e are declared to be correlated (resp. independent)
upon stopping when de = 1 (resp. de = 0). With an abuse of
notation, we also use d to denote the subset of pairs which
are declared to be correlated upon stopping. Since we focus
on the case that there is at most one correlated pair, we restrict
ourselves to decision rules for which at most one element can
be equal to 1.

We are interested in controlling below α the probability of
detecting a correlated pair when there is none (false alarm),
below β the probability of failing to detect a correlated pair
when there is one (missed detection), below γ the probability
of incorrectly identifying the correlated pair when there is one
(wrong isolation), where α, β, γ ∈ (0, 1) are user-specified
thresholds. To be more specific, we denote by Pe+ (resp. Pe−)
the underlying probability measure when the pair e ∈ E has
correlation ρ∗ (resp. −ρ∗), while all other sources are indepen-
dent. We also denote by P0 the underlying probability measure
when all sources are independent. We denote by ∆(α, β, γ)
the class of sequential tests (τ, d) for which P0(d 6= ∅) ≤ α
and also for every e ∈ E

Pe+(d = ∅), Pe−(d = ∅) ≤ β,
and Pe+(d 6= ∅, d 6= {e}), Pe−(d 6= ∅, d 6= {e}) ≤ γ.

The main result of this paper is that we obtain a sequen-
tial test that not only controls these error metrics, but also
achieves the smallest possible expected sample size among
all sequential tests in ∆(α, β, γ), to a first-order asymptotic
approximation as α, β, γ → 0, under P0 and Pe+, Pe−, for
every e ∈ E .

A. Notations and Statistics

For each e ∈ E we denote by Λe+(n) (resp. Λe−(n)) the
likelihood ratio of Pe+ (resp. Pe−) versus P0 after the first n
sampling instances, i.e.,

Λe+(n) :=
dPe+
dP0

(Fn), Λe−(n) :=
dPe−
dP0

(Fn), (1)

which take the following form

Λe+(n) = zn exp

{
−1

2

n∑
t=1

XTe (t)(Σ−1
+ − I2)Xe(t)

}

Λe−(n) = zn exp

{
−1

2

n∑
t=1

XTe (t)(Σ−1
− − I2)Xe(t)

}
,

(2)

where zn := (1− ρ2
∗)
−n/2, Xe(t) denotes the components of

X(t) that correspond to the pair e, Ip is the p × p identity
matrix, and

Σ+ :=

(
1 ρ∗
ρ∗ 1

)
, Σ− :=

(
1 −ρ∗
−ρ∗ 1

)
. (3)

Since for each e ∈ E we have a two-sided testing problem,
we also introduce the mixture probability measure

Pe := (Pe+ + Pe−)/2, (4)

and define the following mixture likelihood ratio

Λe(n) :=
dPe
dP0

(Fn) = (Λe+(n) + Λe−(n))/2. (5)

We use the following notation for the ordered mixture likeli-
hood ratio statistics at time n:

Λ(1)(n) ≥ · · · ≥ Λ(K)(n),

and we denote by i1(n), . . . , iK(n) the corresponding pairs,
i.e.,

Λik(n) ≡ Λ(k)(n) for every k ∈ {1, . . .K}.

We also introduce the corresponding log-likelihood ratio pro-
cesses:

Ze+(n) := log Λe+(n), Ze−(n) := log Λe−(n),

Ze(n) := log Λe(n).
(6)

The mixture log-likelihood ratio, Ze, is not a random walk
under Pe+, as it is the case for Ze+, but we have the following
decomposition

Ze(n) = Ze+(n) + ξe(n)− log 2, where
ξe(n) := log (1 + exp{Ze−(n)− Ze+(n)}) .

(7)

We note that since ξe(n) > 0, Ze(n) ≥ Ze+(n) − log 2.
Moreover, for every e′ ∈ E with e′ 6= e and n ∈ N we have

Ze(n)− Ze′(n) ≥ Ze+(n)− Ze′+(n)− ξe′(n). (8)

We denote by Ee+ (resp. Ee−) expectation under Pe+ (resp.
Pe−) and by Ee (resp. E0) expectation under Pe (resp. P0).
If P represents any of these measures and E is expectation
under P , then for any event Γ we use the following notation:

E[Y ; Γ] :=

∫
Γ

Y dP.

Finally, for each e ∈ E we introduce the following Kullback-
Leibler information numbers

D0 := E0[−Ze+(1)] = E0[−Ze−(1)],

D1 := Ee+[Ze+(1)] = Ee−[Ze−(1)].
(9)
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III. PROPOSED PROCEDURE

In this section we introduce the proposed sequential testing
procedure and we show how it can be designed to guarantee
the desired error control. We suggest that sampling be stopped
as soon as either all mixture likelihood ratio statistics are
below 1/A, or the largest mixture likelihood ratio statistic
is above B and at the same time larger by a factor C than
the second largest mixture likelihood ratio statistic, where
A,B,C > 1 should be determined from the error constraints.
Specifically, the stopping rule of the proposed procedure is

τ∗ := min{τ1, τ2}, where

τ1 := inf{n ≥ 1 : Λ(1)(n) ≤ 1/A},
τ2 := inf{n ≥ 1 : Λ(1)(n) ≥ B,Λ(1)(n)/Λ(2)(n) ≥ C}.

When τ1 < τ2, we declare upon stopping that there is no
correlated pair of sources. When τ2 < τ1, we declare that the
the correlated pair is the one that corresponds to the largest
mixture likelihood ratio statistic, i.e.,

d∗ :=

{
∅ if τ1 < τ2

i1(τ∗) if τ2 < τ1.
(10)

Since limn→∞ Λe(n) = 0 almost surely under P0 for every
e ∈ E , τ1 is almost surely finite under P0. Moreover, for any
e, e′ ∈ E with e 6= e′ it is clear that limn→∞ Λe(n) = ∞
and limn→∞ Λe′(n) = 0 almost surely under Pe+ and Pe−,
therefore τ2 is almost surely finite under Pe+ and Pe−. We
conclude that, for any choice of A,B,C, the proposed testing
procedure, (τ∗, d∗), terminates almost surely under P0 and
under Pe+, Pe− for every e ∈ E . The following theorem
shows how to select A,B,C for (τ∗, d∗) to satisfy the three
error constraints. We recall that K represents the number of
all possible pairs, i.e., K =

(
p
2

)
.

Theorem 3.1: For any A,B,C > 1, we have

P0(d∗ 6= ∅) ≤ K/B, (11)
Pe+(d∗ = ∅) = Pe−(d∗ = ∅) ≤ 1/A, (12)

Pe+(d∗ 6= ∅, d∗ 6= {e}) = Pe−(d∗ 6= ∅, d∗ 6= {e})
≤ (K − 1)/C. (13)

In particular, (τ∗, d∗) ∈ ∆(α, β, γ) when

A =
1

β
, B =

K

α
and C =

K − 1

γ
. (14)

Proof: Fix A,B,C > 1. When a pair is declared to be
correlated upon stopping, Λe(τ∗) ≥ B for some e ∈ E , which
means that{

d∗ 6= ∅} ⊆
⋃
e∈E

Γe, where Γe := {Λe(τ∗) ≥ B}.

Applying Boole’s inequality and Wald’s likelihood ratio iden-
tity we obtain

P0

(
d∗ 6= ∅

)
≤
∑
e∈E

P0

(
Γe
)
≤
∑
e∈E

Ee

[
1

Λe(τ∗)
; Γe

]
≤ K

B
,

which proves (11). The equalities in (12)-(13) follow by the
symmetry of the statistics in (2). For the inequality in (12) we
observe that there is a missed detection under Pe+ when the
event Γ′e := {Λe(τ∗) ≤ 1/A} occurs, therefore

Pe+
(
d∗ = ∅

)
≤ Pe+

(
Γ′e
)
.

By the symmetry of the statistics in (2) it follows that

Pe+(Γ′e) = Pe−(Γ′e) = Pe(Γ
′
e).

From these two relationships and another application of Wald’s
likelihood ratio identity we obtain

Pe+
(
d∗ = ∅

)
≤ Pe

(
Γ′e
)

= E0[Λe(τ∗); Γ′e] ≤ 1/A,

which completes the proof of (12).
Finally, when there is a wrong identification under Pe+, the

event Γe′,e := {Λe′(τ∗)/Λe(τ∗) ≥ C} occurs for some e′ ∈ E
such that e′ 6= e. Therefore,{

d∗ 6= ∅, d∗ 6= {e}
}
⊆
⋃
e′ 6=e

Γe′,e,

and by Boole’s inequality we have

Pe+
(
d∗ 6= ∅, d∗ 6= {e}

)
≤
∑
e′ 6=e

Pe+
(
Γe′,e

)
.

By the symmetry of the statistics in (2) it follows that

Pe+(Γe′,e) = Pe−(Γe′,e) = Pe(Γe′,e),

and applying Wald’s likelihood ratio identity again we obtain

Pe(Γe′,e) = Ee′

[
Λe(τ∗)

Λe′(τ∗)
; Γe′,e

]
≤ 1/C.

Combining the last three relationships we obtain the inequality
in (13).

IV. ASYMPTOTIC OPTIMALITY

In this section we establish a non-asymptotic lower bound
on the expected sample size of an arbitrary procedure in
∆(α, β, γ) under P0 and Pe+, Pe−, e ∈ E , and then we show
that all these lower bounds are attained by the proposed rule to
a first-order approximation as α, β, γ → 0. To state the lower
bounds we need to define the following function:

h(x, y) := x log

(
x

1− y

)
+ (1− x) log

(
1− x
y

)
(15)

where x, y ∈ (0, 1). Moreover, we set x ∧ y := min{x, y}
and x ∨ y := max{x, y}.

Lemma 4.1: If α, β, γ ∈ (0, 1) such that α + β < 1 and
β + 2γ < 1, e ∈ E , and (τ, d) ∈ ∆(α, β, γ), then

E0[τ ] ≥ h(α, β)

D0

Ee+[τ ], Ee−[τ ] ≥ h(β, α)

D1

∨ h(β + γ, γ) ∨ h(γ, β + γ)

D0 +D1
.

Proof: We start with the proof of the first lower bound.
Without loss of generality, we assume that E0[τ ] <∞. Under
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P0, the log-likelihood ratio process {−Ze+(t), t ∈ N}, is a
random walk with drift equal to D0, defined in (9). Thus, by
Wald’s identity it follows that

D0 E0[τ ] = E0[−Ze+(τ)]. (16)

By the information theoretic inequality in [19, Chapter 3.2]
we have

E0[−Ze+(τ)] = E0

[
log

dP0

dPe+
(Fτ )

]
≥ h(P0(d 6= ∅), Pe+(d = ∅)).

By the definition of ∆(α, β, γ) we have P0(d 6= ∅) ≤ α and
Pe+(d = ∅) ≤ β. Since the function h(x, y) is decreasing on
the set {(x, y) : x + y ≤ 1}, and by assumption α + β ≤ 1,
we conclude that

E0[−Ze+(τ)] ≥ h(α, β),

which along with (16) proves the first lower bound.
For the proof of the second lower bound, without loss

of generality we focus on Pe+. Under Pe+, the process
{Ze+(t), t ∈ N} is a random walk with drift equal to D1,
and in a similar way as before we obtain

Ee+[Ze+(τ)] = Ee+

[
log

dPe+
dP0

(Fτ )

]
≥ h(Pe+(d = ∅), P0(d 6= ∅)) ≥ h(β, α).

Therefore, these two inequalities yield

Ee+[τ ] ≥ h(β, α)

D1
. (17)

For any pair e′ 6= e, consider the log-likelihood process

log
dPe+
dPe′+

(Ft) = Ze+(t)− Ze′+(t), t ∈ N,

which is a random walk with drift D0 +D1 under Pe+. Note
that

{de = 0} = {d = ∅} ∪ {d 6= ∅, d 6= {e}}, (18)

and consequently Pe+(de = 0) ≤ β + γ. Therefore, as before
we obtain

Ee+

[
log

dPe+
dPe′+

(Fτ )

]
≥ h(Pe+(de = 0), Pe′+(de = 1))

≥ h(β + γ, γ).

Using de′ instead of de, we can similarly show that

Ee+

[
log

dPe+
dPe′+

(Fτ )

]
≥ h(Pe+(de′ = 1), Pe′+(de′ = 0))

≥ h(γ, β + γ),

which yields

Ee+[τ ] ≥ h(β + γ, γ) ∨ h(γ, β + γ)

D0 +D1
. (19)

Combining (17) and (19) completes the proof of the second
lower bound.

The following lemma establishes an asymptotic upper
bound on the expected sample size of the proposed testing
procedure.

Lemma 4.2: Let e ∈ E . As A,B,C →∞ we have

E0[τ∗] ≤
logA

D0
(1 + o(1))

Ee−[τ∗], Ee+[τ∗] ≤
(

logB

D1

∨ logC

D0 +D1

)
(1 + o(1)).

Proof: We will prove the second asymptotic lower bound,
since the proof for the first one is similar. Moreover, without
loss of generality we focus on the proof under Pe+. In view
of (7)-(8), τ∗ ≤ τ2 ≤ τ ′2 ≤ τ ′′2 , where

τ ′2 = inf{n ≥ 1 : Ze(n) ≥ b and
Ze(n)− Ze′(n) ≥ c ∀ e′ 6= e},

τ ′′2 = inf{n ≥ 1 : Ze+(n) ≥ b+ log(2) and
Ze+(n)− Ze′+(n)− ξe′(n) ≥ c ∀ e′ 6= e},

and b := logB, c := logC. Therefore, it suffices to establish
the asymptotic upper bound for τ ′′2 . To this end, it suffices to
prove that for any given ε > 0 we have
∞∑
n=1

Pe+(Ze+(n) < n(D1 − ε)) <∞

∞∑
n=1

Pe+(Ze+(n)− Ze′+(n) < n(D1 +D0 − ε/2)) <∞

∞∑
n=1

Pe+(−ξe′(n) < −nε/2) <∞.

for every e′ 6= e. Fix ε > 0 and e′ 6= e. The first two series
clearly converge (see, e.g., [20, Theorem 1]). The same is true
for the third one since for sufficiently large n we have

Pe+

(
1

n
ξe′(n) >

ε

2

)
= Pe+

(
e−

1
2

∑n
t=1 Xe′ (t)

T (Σ−1
− −Σ−1

+ )Xe′ (t) > e
nε
2 − 1

)
≤ Pe+

(
e−

1
2

∑n
t=1 Xe′ (t)

T (Σ−1
− −Σ−1

+ )Xe′ (t) > e
nε
4

)
≤ Pe+

( n∑
t=1

Xe′(t)T (Σ−1
− − Σ−1

+ )Xe′(t) >
nε

2

)
= exp

{
−n M2ε2

8 + 2Mε

}
, M ≡ 1− ρ2

∗
8ρ∗

where the first inequality holds because ex− 1 > ex/2, x ≥ 1,
and the last one follows from the Hanson-Wright concentration
inequality [21] for the distribution of a quadratic form of
independent sub-Gaussian random variables.

Combining the two previous lemmas we can state and
prove the main result of this paper.
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Theorem 4.1: Suppose the thresholds in (τ∗, d∗) are selected
according to (14). Then, for every e ∈ E , as α, β, γ → 0 we
have

E0[τ∗] ∼ inf
(τ,d)∈∆(α,β,γ)

E0[τ ] ∼ | log β|
D0

Ee+[τ∗] ∼ inf
(τ,d)∈∆(α,β,γ)

Ee+[τ ] ∼ | logα|
D1

∨ | log γ|
D0 +D1

Ee−[τ∗] ∼ inf
(τ,d)∈∆(α,β,γ)

Ee−[τ ] ∼ | logα|
D1

∨ | log γ|
D0 +D1

.

Proof: We prove the result for Pe+ and some arbitrary
e ∈ E , since the other cases can be shown similarly. If the
thresholds are selected according to (14), then from Lemma
4.2 it follows that

Ee+[τ∗] ≤
(
| logα|
D1

∨ | log γ|
D0 +D1

)
(1 + o(1)).

Moreover, in view of the definition of the function h in (15).
it is clear that as x, y → 0

h(x, y) ∼ | log y| and h(x, y) ∨ h(y, x) ∼ | log(x ∧ y)|.

Thus, by Lemma 4.1 it follows that as α, β, γ → 0

inf
(τ,d)∈∆(α,β,γ)

Ee+[τ ] ≥
(
| logα|
D1

∨ | log γ|
D0 +D1

)
(1 + o(1)),

which completes the proof.
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Figure 1. Expected Sample Size under different values of the correlation
coefficient, ρ, in one pair, while all other pairs are uncorrelated

V. COMPARISON

In this section we present a simulation study in which
we compare the proposed rule with a modification of the
Intersection Rule, (τint, dint), proposed in [17], according
to which we stop as soon as either all log-likelihood ratio
statistics are below 1/A, or one of them is above B and all
others below 1/A, i.e.,

τint := inf{n ≥ 1 : 0 ≤ p(n) ≤ 1

and Λe(n) /∈ (1/A,B) for all e ∈ E},

dint :=

{
∅ if p(τint) = 0

i1(τint) otherwise.

where p(n) represents the number of mixture likelihood ratio
statistics at time n that are greater than 1. It can be shown,
similarly to Theorem 3.1, that (τint, dint) ∈ ∆(α, β, γ) when
the thresholds are selected as

A =
1

β
and B = max

{
K

α
,
K − 1

γ

}
. (20)

For our simulation study we set p = 10, ρ∗ = 0.7, α =
β = 10−2, γ = 10−3. We select the thresholds for the
proposed rule according to (14) and for the intersection rule
according to (20). We estimate the expected sample size of
both procedures when all pairs are uncorrelated apart from
one that has correlation ρ. We consider different values for
ρ in the interval (−0.9, 0.9), not only the cases ρ = 0 and
ρ = ρ∗,−ρ∗ that we considered in our theoretical results.

From Figure 1 we observe that when the absolute value of
ρ is larger than ρ∗ (resp. close to 0), the expected sample
size of the proposed rule (τ∗, d∗) is much smaller than (resp.
essentially the same as) that of (τint, dint). Moreover, we
observe that the worst-case scenario for both procedures occurs
when |ρ| is equal to some value between 0 and ρ∗. However,
it is interesting to see that, even in this case, (τ∗, d∗) has a
visibly better expected sample size than (τint, dint).
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